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In this paper we prove the global existence, uniqueness, optimal large time decay rates, and uniform
gain of analyticity for the exponential PDE h; = Ae=A% in the whole space Rf. We assume the
initial data is of medium size in the Wiener algebra A(Rd); we use the initial condition Ahgy €
A(Rd) which is scale-invariant with respect to the invariant scaling of the exponential PDE. This
exponential PDE was derived in [18] and more recently in [22].
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1. Introduction and main results

Epitaxial growth is an important physical process for forming solid films or other nano-structures.
Indeed it is the only affordable method of high quality crystal growth for many semiconductor
materials. It is also an important tool to produce some single-layer films to perform experimental
research, highlighted by the recent breakthrough experiments on the quantum anomalous Hall effect
and superconductivity above 100 K lead by Qikun Xue [3, 12].

This subject has been the focus of research from both physics and mathematics since the classic
description of step dynamics in the work of Burton, Cabrera, and Frank in 1951 [2], Weeks [30] in
the 1970’s, the KPZ stochastic partial differential equation description beyond roughness transition
in 1986 [16], and the mathematical analysis of Spohn in 1993 [29]. We refer to the books [26, 33]
for a physical explanation of epitaxial growth. For more recent modeling and analysis, we refer to
in particular to [6, 8, 13, 14, 21] and the references therein.

Epitaxy growth occurs as atoms, deposited from above, adsorb and diffuse on a crystal surface.
Modeling the rates that the atoms hop and break bonds leads in the continuum limit to the degenerate
4th-order PDE h; = Ae~2»" which involves the exponential nonlinearity and the p-Laplacian A P
with p = 1, for example. This equation was first derived in [18] and more recently in [22]. In
this paper, we will focus on this class of exponential PDE for the case p = 2 and we give a short
derivation of the model below.
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Let h(x,t) be the height of a thin film. We consider the dynamics of atom deposition,
evaporation, detachment and diffusion on a crystal surface in the epitaxial growth process. In
absence of atom deposition and evaporation' and in the continuum limit, the above process can
be well described by Fick’s law:

hi+V-J =0 J=—DVps.

Here Dj; is the surface diffusion constant and pg is the equilibrium density of adatoms on a
substrate of the thin film. py is described by the grand canonical ensemble e~ (Es—rs)/ksT yp
to a normalization constant, where Ej is the energy of pre adatom, ps is the chemical potential
pre adatom, kp is the Boltzmann constant and T is the temperature. We lump e~ Es/%8T and the
normalization constant into a reference density p° and then we arrive at the Gibbs—Thomson relation
ps = pYets/k8T which is connected to the theory of molecular capillarity [27].

In the continuum limit, the chemical potential g is computed by the variation of free energy
of the thin film. A simple broken-bond model for crystals consists of height columns described by
h = (h;)i=1,..~ with screw-periodic boundary conditions in the form

hi+N =h; +aaN Vi,

where « is the average slope and a is the side length. The column 4; is derived into &; /a square
boxes where an atom is placed to the center of each box. The atoms then connect to the nearest
neighbor atoms with a bond from up, down, left and right. These bonds contain almost all the
energy of the system. Hence we set the total energy of the system equal to

E(h) = —y - (# of bonds),

where y is the energy per bond. The negative sign represents that the atoms prefer to stay together.
It requests an amount of y energy to brake the bond and separate two atoms. With the identity
x + |x| = 2x4 and some elementary computations, we can decompose the total energy E (k) into
the bulk contribution Ej and the surface contribution E. The bulk contribution is given by

2y N yo
Ep = —— h;i + —N.
b a ]; i + 5

Due to the conservation of mass Zj.\;l h;, we know that E}, is independent of time and we can drop
it from the energy computation. The surface contribution Ej is given by

N
Es = %Zlhi —hi—1] .

i=1

This free energy agrees with the computation in [30]. In general the free energy takes the form
1
E(h) = — [ [Vh|Pdx,
p

! In the case of atom deposition and evaporation with a constant rate @, we need to normalize the height by subtracting
out h(x,t) — at. After doing that however we obtain the same equation.
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or some linear combinations of those [23].
Now we can compute the chemical potential: pus = ‘;—’,‘: = —Aph and the PDE becomes

hy = Ae™2rh (1.1)

where, for simplicity, we have taken the constant coefficients Dy po = 1,kgT = 1. We refer to [22]
and [18, 19] for a more physical derivation.

A linearized Gibbs—Thomson relation py = p%e#s
the physical modeling and it results the following PDE

k8T ~ pO(1 + g/ kpT) is usually used in

Dyp°

hy = ——
! kgT

AAh. (1.2)

Giga—Kohn [14] proved that there is a finite time extinction for (1.2). For the difficult case of p =1,
Giga—Giga [13] developed a H~! total variation gradient flow to analyze this equation and they
showed that the solution may instantaneously develop a jump discontinuity in the explicit example
of crystal facet dynamics. This explicit construction of the jump discontinuity solution for facet
dynamics was extended to the exponential PDE (1.1) in [19].

The exponential PDE (1.1) exhibits many distinguished behaviors in both the physical and the
mathematical senses. The most important one is the asymmetry in the diffusivity for the convex
and concave parts of height surface profiles. This can be seen directly if we recast (1.1) into the
following weighted H ~! gradient flow with curvature-dependent mobility [14, 20]:

he =V ML = e,
8h
The exponential nonlinearity drastically distinguishes the diffusivity for the convex and concave
surface and leads to the singular behavior of the solution.

In [20], a steady solution where Al contains a delta function was constructed and the global
existence of weak solutions with A/ as a Radon measure was proved for the case p = 2. In [11],
a gradient flow method in a metric space was studied together with global existence and a free
energy-dissipation inequality was obtained.

In the present paper, we will study the case p = 2 in the exponential PDE (1.1):

hy = Ae™"  inRY. (1.3)

We will consider initial data /¢ (x). We will take advantage of the Wiener algebra A(R%); A(R%)
is the space FO1 a5 defined in (1.5) in the next section. In particular in Section 1.2 our main results
show that if Ahg € A(R?) with explicit norm size less than %, assuming additional conditions,
then we can prove the global existence, uniqueness, uniform gain of analyticity, and the optimal
large time decay rates (in the sense of Remark 1.5). We note that for A > 0 the invariant scaling of
(1.3)is

(1, x) = A 2h(A*t, Ax), (1.4)
and the condition Ahy € A(R?) is scale invariant (the exact condition we use is /g € F2! which

is scale invariant).
In the next section we will introduce the necessary notation.



64 J.-G. LIU AND R. M. STRAIN

1.1  Notation

We introduce the following useful norms:
115,02 [ 1671760l s>—a/p. 1<p<2. (15)

We note that the Wiener algebra A(R%) is %!, and the condition Ahy € A(R?) is given by
ho € F>!. Here f is the standard Fourier transform of f:

¢ def — 1 —ix-§
F@)=FIrAE) = WA; Sf(x)e ™ dx. (1.6)
When p = 1 we denote the norm by
1/ lls g/ €11/ ()] dt. (1.7)
R4

We will use this norm generally for s > —d and we refer to it as the s-norm. To further study the

case s = —d, then for s = —d we define the Besov-type s-norm:
I heee 2| [ teP17 @1 d8] . = sop [ leP17 @ s, (18)

Cr & keztcr

where for k € Z we have
Cr = {£ e R? : 21 < jg| < 2k, (1.9)

Note that we have the inequality

s < [, I6F17@1 4 = 111 (1.10)

We note that
I/ l-a/p.00 S NS Lo ray

for p € [1,2] as is shown in [25, Lemma 5].
Further, when p = 2 we denote the norm (for s > —d /2) by

1 Wz = | 6P IS @PAE = 115 = 1=2)"? f 1220y (1.11)
F Rd H R)
We also introduce following norms with analytic weights:
115,02 [ rer O fenpas sz0. pena 1)

for a positive function v(t).
We also introduce the following notation for an iterated convolution

FH@0 = (2 0 = [ =010y,
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where * denotes the standard convolution in R . Furthermore in general

S0 = (f %% ),

where the above contains j — 1 convolutions of j copies of f. Then by convention when j = 1 we
have f*! = £, and further we use the convention f*0 = 1.

We additionally use the notation A < B to mean that there exists a positive inessential constant
C > Osuchthat A < CB. The notation ~ used as A &~ B means that both 4 < B and B < A4 hold.

1.2 Main results

In this section we present our main results. Our Theorem 1.1 below shows the global existence of
solutions under a medium sized condition on the initial data as in Remark 1.2.

Theorem 1.1 Consider initial data hg € F%2 N F2! further satisfying ||ho|l2 < y« where ys > 0
is given explicitly in Remark 1.2. Then there exists a global in time unique solution to (1.3) given by
h(t) € CA(F%2 N F21) and we have that

t
Ill2(t) + 0. / Ills(@d < Aol (113)
0

with 02,1 > 0 defined by (2.11).
In the next remark we explain the size of the constant.

REMARK 1.2 We can compute precisely the size of the constant y, from Theorem 1.1. In particular
the condition that it should satisfy is that

U D
foya) = G2+ 62+ Tys + e =1 =) =yl <1
—

Such a y, can be taken to be y. € (0,52/500]. For this reason we call the initial data “medium
size”. However y, = 105/1000 is too big in our framework.

Now in the next theorem we prove the large time decay rates, and the propagation of additional
regularity, for the solutions above.

Theorem 1.3 We assume all the conditions in Theorem 1.1. We also assume that |\ho||—4,00 < 00
but not necessarily small.
In particular for any max{—2, —d} < s < 2 we have that

I1721ls (@) < N0l (1.14)

assuming additionally that ||hg||s < oo but not necessarily small.
In particular if hg € F*! and hy € F?? (these norms are not assumed to be small) then we
conclude the large time decay rate

1h()]ls < (14 1)~ /4, (1.15)

where d is the spatial dimension in (1.3).
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Then in the next theorem we explain the instant gain of uniform analyticity, at the optimal linear
temporal growth rate of 7'/, and the uniform large time decay rate of the analytic norms.

Theorem 1.4 We assume all the conditions in Theorem 1.1. Additionally suppose that ||ho||—4,00 <
00, hy € F* for some fixed 0 < s < 2 and hg € F?2 (these norms are not assumed to be small).

Then there exists a positive increasing function v(t) > 0 such that v(t) ~ t'/* for large t = 1.
For this v(t), the solution h(t, x) from Theorem 1.1 further gains instant analyticity: h(t) € C,Oflf’l.
And the analytic norm decays at the same rate:

D) 51 < (14 1)~ 6D, (1.16)

The function v(t) is defined precisely in (8.7).

In the remarks below we further explain the optimal linear uniform time decay rates and the
optimal linear gain of analyticity with radius v(r) ~ /4.

REMARK 1.5 We point out that the large time decay rates which we obtain in (1.15) and (1.16) (and
also in (3.1) below) are the same as the optimal large time decay rates for the linearization of (1.3),
which is given by

g+ A% =0, (1.17)

obtained by removing the non-linear terms in the expansion of the nonlinearity as in (2.1) below.
In particular it can be shown by standard methods that if go(x) is a tempered distribution
vanishing at infinity and satisfying ||go||p,c0 < 00, then one further has

~ H,(s—p)/y He—t(—A)W

llgollp,00 forany s = p, y > 0.

sllL%((0,00))

It then follows from this equivalence that the optimal large time decay rate for the norm
”e_’(_A)V/Z go ||S is t=6=P/¥ In particular the optimal decay rates for solutions of the linear
equation (1.17) in the norm (1.7) are ~¢~P)/4 These optimal linear large time decay rates are
the same as the non-linear time decay rates in (1.15) and (3.1). These large time decay rates even
hold for solutions to the equation (1.3) in the analytic norm as in (1.16).

When we say in this paper that the large time decay rates are optimal, we mean that we obtain
the optimal linear decay rate as just described in Remark 1.5.

REMARK 1.6 Regarding the rate of growth of the radius of analyticity, we look at solutions to the
following linear equation:
g+ (=)"g=0. y>0. (1.18)

If this equation has initial initial data g then it’s solution is g = e™* a2y

at the following quantity

af m1/2 /2 a|g|_ ~
e e e / leper Y 30 8)) .
R

One may try to take o > 0 as large as possible to increase the temporal rate of growth of the radius
of analyticity of solutions to (1.18). A larger o > 0 gives a stronger estimate if the norm above is
finite. In the whole space R¢, it can be shown for o = % that r*|&| — ¢|&]¥ < 1 holds uniformly for

0<|é|<ocoandr =0.Ifa > % then it can be shown that t%|&| — ¢|£]” is unbounded and goes

go. We now take a look
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to infinity as 1 — oo along a large range of |&| directions. By this reasoning, in the whole space
R, the optimal rate of growth of the temporal radius of analyticity for the linear equation (1.18) is
o = L in the analytic weight term e’“ ¢! in the above norm.

In this paper the relevant linearized equation is (1.17) (linearized from (2.1) below) for which
the optimal linear temporal growth rate of analyticity as above is e!'"YEl with o = %. We prove
in Theorem 1.4 that the non-linear equation (1.3) also enjoys the uniform global in time gain of
analyticity as in (1.16) with rate v(¢) ~ t'/#, and in addition the analytic norm satisfies the global
in time uniform optimal linear large time decay rates.

Alternatively in the torus T¢, by a similar analysis one can see that the optimal rate of growth
of the radius of analyticity for the linear equation (1.18) when y = 1is ¢ = 1 in the analytic weight
term e’* ¢!, This improvement can be shown directly because the Fourier modes are discrete and one
does not have to handle the situation where the modes are becoming arbitrarily small as |§| — 0.

1.3 Related results, and methods used in the proof

A key point in our paper is to do a Taylor expansion of the exponential non-linearity as in (2.1)
below. Then one can take advantage of the fact that after taking the Fourier transform, then the
products in the expansion are transformed into convolutions. Therefore one can use the structure of
spaces such as F2'! to get useful global in time estimates like (2.10) without experiencing significant
loss. Here we mention previous work such as [4, 5] where a related strategy was employed for the
Muskat problem. Then we can obtain the optimal large time decay rates in the whole space using
the global in time bounds that we obtain such as in (2.10) in combination with Fourier splitting
techniques. The techniques to obtain the decay rates in the whole space have a long history, and
we just briefly refer to the methods in [25, 28] and the discussion therein. To prove the uniform
gain of analyticity, we perform a different splitting involving derivatives of the radius of analyticity
V/(¢) from (8.7), and we acknowledge the methods from [7, 24] and [9] that are used for different
equations.

We also mention that, after the mathematics in this paper had been completed, the paper [15]
was posted showing the global existence of at least one weak solution to the exponential PDE (1.3)
and the exponential large time decay, working on the torus T;‘f. The paper [15] also uses the Taylor
expansion of the exponential nonlinearity, and the condition Ahg € A(T¢) with an equivalent size
condition.

We further mention the recent subsequent paper of Ambrose [1] who works on the same equation
(1.3) again in the torus T¢ in the related scale invariant norm

Inllsg = Y Ikl sup el k).

kezn 1€[0,00)

Compared to the norms in this paper and in [15], then [1] moves the sup, inside. Then, using the
notation in this paper, if initially ||/¢]| B = Aol 2.1 (pay < 1/4, then [1] obtains global existence

and gain of analyticity in 52 (T?). In the whole space case, in the analogous space B2 R9), [1]
obtains a local in time existence theorem of analytic solutions for initial data that is small in
F2l (R). The smallness constant on the initial data for the local existence theorem is not carefully
tracked in the whole space case.

We would also like to mention [17] which studies the existence and uniqueness of fourth order
equations using different methods.
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1.4 Self-similar solutions

In this section we briefly mention the self-similar form of solutions to (1.3). We recall the scale
invariance (1.4). We suppose that % is of the self-similar form

h(x,t) = tY2H(x/tV%). (1.19)

Then £ is invariant with respect to the scaling (1.4), and satisfies ||A(:,7)||2 = ||H |2 in the norm
(1.7). Here we let y = x/11/* be the self-similar variable. Further if the profile H(y) satisfies the
following equation

1 1
SHO) = 7V H() = =2 H (14, Y, HO)P = ATH())

then h(x,1) = tY2H(x/t'/*) is a self-similar solution to (1.3). Here V, and A, are the gradient
and the Laplacian in the variable y.
Note that the equation above can be equivalently written as

1 1 -
SHO) =30 VyH) = Ay 7,
or alternatively after a Taylor expansion of the exponential it can be written as

2+d 1 S (—AyH)!
—HO) + A2H = 2V GHO) + 4y > + (1.20)

Jj=2

Theorem 1.7 Any self-similar solution of the form (1.19) to the equation (1.3) for which | H |2 <
YV« for the constant y, as in Remark 1.2, must satisfy |H ||, = 0.

Theorem 1.7 will be proven in Section 2.4.

1.5  Outline of the paper

The rest of the paper is organized as follows. In Section 2 we prove the a priori estimates for the
exponential PDE (1.3) in the spaces F%P_Then in Section 3 we prove the large time decay rates in
the whole space for a solution. After that in Section 4 we prove the uniform bounds in the Besov-
type s-norms with negative indices including the critical index ||/ || -4 0o Where d is the dimension of
R;’c’. In Section 5 we prove the uniqueness of solutions. Then in Section 6 we sketch a proof of local
existence and local gain of analyticity using an approximate regularized equation. And in Section 7
we explain how the results from the previous sections grant directly the proofs of Theorem 1.1 and
Theorem 1.3. Lastly in Section 8 we explain how to obtain Theorem 1.4. This in particular uses
the previous decay results (1.15) as well as previous results such as [7, 24]. In the Appendix A we
present some plots of a few numerical simulations that were carried out for the exponential PDE
(1.3) by Tom Witelski [31, 32].

2. A priori estimates

In this section we prove the apriori estimates for the exponential PDE in (1.3) and (2.1) in the spaces
F*5:P for p € [1,2]. The key point is that we can prove a global in time Lyapunov inequality such as
(2.10) below under an O(1) medium size smallness condition on the initial data.
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2.1 A priori estimate in F2l

We first establish the case of 2! in order to explain the main idea in the simplest way. The equation
(1.3) can be recast by Taylor expansion as

2, (—Ah)/

h,+A2h=AZ( : ) 2.1)
— J!
j_

We look at this equation (2.1) using the Fourier transform (1.6) so that equation (1.3) is expressed
as

,h(E. 1)+ E1*h(E 1) = —|E]? Z | [Ph)* (6. 1) 2.2)

j= 2

We multiply the above by |£|? to obtain

B.IEPAE. 1) + €1 (E. 1) = —g* Z (- PRy €.1) 23)

j= 2

We will estimate this equation on the Fourier side in the following.
Our first step will be to estimate the infinite sum in (2.3). To this end notice that for any real
number s > 0 the following triangle inequality holds:

E1° < FOVNE a2 = Gl + 15l @4

where (s —1)T = s—1ifs = land (s—1)* = 0if 0 < s < 1. We have further using the inequality
(2.4) when s > 1 that

[ R0 PR @lde < [ 100120« (- PRO1dE < Plilealbl L @S)

Above we used Young’s inequality repeatedly with 1 +1 =1+ 1.

Observe that generally 9, |h| (3 hh + ho h)|h| 1. Now we multiply (2.3) by h|h| L&, 1),
add the complex conjugate of the result then integrate, and use (2.5) for s = 4 to obtain the
following differential inequality

—Ilhllz + |2lle < lIhlls Z —Ilhll . (2.6)
Now we denote the function
o0 4 3 o0 ( + 1)3 )
£O) = ,y’ oy ———y/ 2.7
] ; ]
j=2 j=1

Then (2.7) defines an entire function which is strictly increasing for y = 0 with f>(0) = 0. In
particular we choose the value y, such that f>(y.) = 1.
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Then (2.6) can be recast as

—IIhllz + Il < llklls f2(1R112) (2.8)

If the initial data satisfies
loll2 < y«, (2.9)

then we can show that || z]»(¢) is a decreasing function of z. Note that y, = y,« in the notation
from (2.18) below. In particular

LI720) < f2(lholl2) <1

Using this calculation then (2.8) becomes

d
EIIhIIz +02,1/hlle <O, (2.10)

where
def

02,1 = 1= fa(|lholl2) > 0. (2.11)

In particular if (2.9) holds, then ||/]|2(¢) < y« will continue to hold for a short time, which allows
us to establish (2.10). The inequality (2.10) then defines a free energy and shows the dissipation
production.

At the end of this section we look closer at the function f>(y):

)

X G+ S GG-=DG =2 +6j( —1)+7Tj + 1)y
fz(y)zzwzz(](] )(j )+j]‘(] Y+ 77 + Dy
j=1 . !

which gives
L) =07 +6y*+ Ty + e — 1. 2.12)
We know that f>(0) = 0 and f>(y) is strictly increasing. Let y, satisfy

G+ 6y2+ Ty + D> —1=1 (2.13)

Then f>(y«) = 1 as above.
To extend this analysis to the case where s # 2 we consider infinite series:

0 .gt2 + 1 s+1 ;
() = Z; jT ¥/ Z: U ) (2.14)
i=

Again f;(0) = 0 and f;(y) is a strictly increasing entire function for any real 5. We further remark
that for r = s we have the inequality

O < (), s<r. ¥Yy=0. (2.15)

We further have a simple recursive relation

fs(y) = (yfs 1), [ =e -

This allows us to compute f;(y) for any s a non-negative integer as in (2.12).
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2.2 A priori estimate in the high order s-norm

In this section we prove a high order estimate for any real number s > —1:

0/Elh(E 1) + [E1°Th(E 1) = IEIS“Z (Iélzh)*](é 1) (2.16)

j= 2

Using (2.5) and (2.16), one has

—||h||s + llsa < 1Blls4a Z (2.17)
Now we recast (2.17) as
d
27 1lls + Al < 1711 s+4 s ([1721]2)
Let yg« satisfy fs(ys«) = 1. If
7oll2 < min(yss«, y+). (2.18)

Note that by (2.15) we have that ys« < y,« for s < r. In particular we are using y>« = yx in (2.9)
and therefore yg« < y. whenever s < 2.
Then by (2.10) we have

fs(IhC.0)l12) < fe(llholl2) < 1
Hence we conclude the energy-dissipation relation
d
271G Dlls + 051l €. Dllsa < 0. (2.19)
when (2.18) holds. Here we define o5,1 = (1 — fi(|[holl2) >
Alternatively if s > —d and —2 < s < —1 then we by a s1m11ar procedure we use (2.4) to obtain
that

—IIhI|s+ I7lls+a < Nhllsra for (I7]2)-

And for ||hg||2 < y« we similarly obtain m”h(‘» s +o-11lh(, 1) ||s+4 <O.

2.3 A priori estimate in F5P

In this section we prove a general FoP for 1 < p < 2. We multiply the equation (2.2) by
plEIP ﬁ|f;|1’_2(é ,t) and add the complex conjugate equation to obtain

0, (1617 1h17 .0)) + p|s|w+4|i%|1’<s,t>

= p Iél”’“hlhl" 26 D (EPR &.1)

j 2

—§Z 617 2RIA 26 08D 6.0). (2.20)
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We will estimate this equation when p € (1,2]. To this end, we split ps = (p — 1)s + s, and we
split 2 = (1’—;1)4 + (% - 2). We will do a Holder inequality with ijl + % = 1, then use (2.4), and
then Young’s inequality repeatedly with 1 + % = % + 1 to obtain

|, i@l e Pioy @) g

< NIEFTPRIZ, 111 5721 Ph)
< NEFFPRIZ, 572Nl 2h) * (6 PR O Lo
< TP RIRN s, RIS @21)

Above we have used that s + % — 2 > 1 to use the first inequality in (2.5), or s + % =2
We now use (2.20) and (2.21) to obtain

o0
—||h||” + plh| (A Z T (2.22)
Fs.p p Fs+4/p.p 4 Fs+4/p.p .

The sum in the upper bound is fs44/,—4(||/2]|2) from (2.14). Similar to the previous discussions, we
choose the positive real number y;,« to satisty fii4/p—4(Vspx) = 1.
Then if
”hOHZ < min(ysp*’ y*)v (2.23)

it further holds that fsy4/,—a(I2(.0)2) < fira/p-4(llholl2) < 1. Hence we again have the
energy-dissipation relation

||h( O, , + posplhC D% Ly, 0. (2.24)

when (2.23) holds. Here 05, = (1 — fita/p—4(lholl2)) > 0.

Thus we have proven the general F5P estimate for 1 < p<2ands+2-2>1lors+2 =2.
For instance for p = 2 then we have shown (2.24) for s = 1 and s = 0. The estimate (2.24) for the
remaining range of s = 0 and 1 < p < 2 can be handled by an analogous procedure using (2.4) and
a slight modification of (2.21).

In particular (2.24) holds for s = 0 and p = 2 under only the assumption (2.9) because by
(2.15) we have that ygo« < Y. Similarly yz4« < y« and (2.24) holds for s = 2 and p = 2 under
only the assumption (2.9). These are the main two additional estimates that we will use in this paper.

2.4 Proof of Theorem 1.7 regarding self-similar solutions

In this section we will prove Theorem 1.7 using the estimates from the previous sub-sections.
We recall the dynamic equation (2.1) and apply the the Fourier transform (1.6) as in (2.2), then
the self-similar equation (1.20) after Fourier transform is

2+d A A
2EEA@ + I AE = & VA g Z (-POYEn. 23

j= 2
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We multiply the above by |& |2§|I-AI |~1(&) and perform the estimate exactly the same as in (2.6) to

obtain that

2+d
T||H||2 + 1 Hlls < [|H ll6 f2(I| H I|2) -

We therefore conclude as in (2.8)—(2.13) that if || H |, # O then we must have that |H |, > yx*
since f>(y*) = 1. This completes the proof of Theorem 1.7.

3. Large time decay
In this section we prove the following large time decay rates in the whole space.

Proposition 3.1 Given the solution to (1.3) from Theorem 1.1. Suppose additionally that ||ho|s <

oo for some max{—2,—d} < s < 2. Further suppose ||ho|—-g,00 < 00. Assume that ||ho||§:_2.2 and

Il ||2f.0’2 are both initially finite. Then we have the following uniform decay estimate for t = 0:

Ihlls < (14 0)~CFD/4, (3.1)
The implicit constant in the inequality above depends on ||ho||2, ||holls, [1h0]l-d.00- ||ho||é272, and
”hO”;-oz

Notice that this decay only depends on the smallness of the |4g]2 norm. No other norm is
required to be small. Further notice that Proposition 3.1 directly implies (1.15) in Theorem 1.3
A key step in proving (3.1) is to prove the following uniform estimate:

Proposition 3.2 Given the solution from Theorem 1.1. Suppose additionally that ||ho|| 4,00 < 00,

kol , < oo, and ||ho||§:_ < 00. Then we have

]."2,2 0,2

7] -d,00 < 1. (3.2)

The proof of Proposition 3.2 will be given in Section 4. The goal of this section is to establish
(3.1) by assuming (3.2).
We will use the following decay lemma from Patel-Strain [25]:

Lemma 3.3 Suppose g = g(t, x) is a smooth function with g(0,x) = go(x) and assume that for
some L € R, ||gol, < oo and

llg@llp.00 < Co

for some p = —d satisfying p < . Let the following differential inequality hold for y > 0 and for
some C > 0:

d
E”g"u < —Cllglu+y-

Then we have the uniform in time estimate

lglle@) < (Igolle + Co) (14 1)~ w217,

This lemma is stated in the paper [25] with y = 1, however the similar proof below assumes
only that y > 0. We include the proof for completeness.
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Proof. For some §, k > 0 to be chosen, and s € R, we initially observe that
Il = [ , 1612 @Ids
R

/ E[€12(®)|d
[&]>(1461)%

> (14 80 / E[P18()|dE

|E]>(1+81)S

=1+ SI)Sﬁ(”g”:c—ﬂ —/

[El<(1482)8

WV

€1 12(®)d¢).
Using this inequality with « = u + y and B = y, we obtain that

d
18l + €A+ 807 Ngllu < =Clgluty + €A+ 807 lIglu

< C(1 4+ 81) / E1412(8)|dE.

[El<(1+82)*

Then, using the sets Cy as in (1.9) and defining ys to be the characteristic function on a set .S, the
upper bound in the last inequality can be bounded as follows

/ E116@1ds = 3 [ rueeassonlEIE] ds
EI<(1+81)S Ck

kez
~ Y f|s|“|gr|ds
2k <(1481)s ¥ Ck
k —_
Slglooo Y. 2K
2k <(1481)S

< llgllpoo(l + 81)SH=P Z 2k=p) (1 4 §7)=s=r)
2k(1481)—5<1

S lgllpoo(1 + 81)®7)
< Co(l + §1)S1=p),

where the implicit constant in the inequalities does not depend on ¢. In particular we have used that
the following uniform in time estimate holds

Z 2k(u—p)(1 + gt)—sw—p) < 1.
2k(1+681)—5<1

Combining the above inequalities, we obtain that

d
18l + CA 8D glu £ Co(l + 807 (1 + §1)* 4P, (3.3)
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In the following estimate will use (3.3) with s = —1/y, we suppose a > (1 — p)/y > 0, and we
choose § > 0 such that a6 = C. We then obtain that

d d -

S+ 808l = (1 + 80 gl + asllgl (1 + %!
d -

= (480" gl + Cllglu(l + 80"

d -
=1+ 8t)“(E||g||M +C(1+81) 1IIgIIM)
< Co(1 + St)a—l—(M—P)/V.

Since a > (u — p)/y, we integrate in time to obtain that

c o
(1807180l < Igollu + =1 + 80702/,

We conclude our proof by dividing both sides of the inequality by (1 + §7)%. O

We have established the differential energy inequalities (2.10) and (2.19) for the equation (1.3).
Thus to prove the time decay in (3.1) it remains only to establish (3.2).

4. Proof of the uniform bound ||/|_z () <1
In this section we will prove the uniform bound in (3.2).

Proof of Proposition 3.2. We recall (2.2), and we uniformly bound the integral over Cy for each
J € Z asin (1.8) and (1.9). We obtain the following differential inequality

i —d\p —d+4,p < S l —d+2 £ 125 1V*)
yr /C 1 |h<s,z)|ds+/ck dg |g17 4 1A 1) \;ﬂ/ck dg [E17 (g PIRD™ (6. 0).

4.1
We will estimate the upper bound. We can estimate the integral as
dE 51712 (PR (.0) < 270D / dg [§P(EPh™ (5.1)
Cx Cxk
SI-PA- P €Dl 4.2)

The last inequality holds because the integral over Cy is of size 29% .
We will use (2.4). We also use Young’s inequality, first with 1 + é = % + %, and again with
1+ % =1+ % repeatedly to obtain:

I PO PR Ollge < 7201 1AON2 10 - PH* POl
< J2 Il zaalll- PAON2N - PAOI
&

S Mk a2l 22 10052 (4.3)
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Now we plug (4.2) into (4.1) to obtain

o0

d g _ N 1 A
— [ &l dlh(é,t)ldSJrf dg [EFHhE DI < Y = I-PA-PRY Ollege. @4
dt Cx Cx i J!
We further estimate the upper bound using (4.3) to obtain
o0 1 . e j2 .
> ﬁlll AP 0l S Ih@ za2llh @) 2.2 > ﬁllh(t)llé 2
Jj=2 j=2

S @O a2 1A O] 2.2

In the above we have used that

~.

2 .
O™ <1

oo
J=2

The above holds because the sum initially Z,oiz %||ho||£_2 < 1 converges generally. Then we
further use the estimate (2.10) to see that ||i(?)|2 < |lkoll2-
We conclude from integrating (4.4) and using the above estimates that

—d ! —d+4,7,
/Ckm |h(s,r)|ds+/0ds/0kds|s| A 5)]

< / €1 o €)]dE + / ds|h(®) ] paalhO)] 2. (45)
Ck 0

Thus as long as we make the proper assumptions to bound

t t t
/ ds||h(r>||f~4,2||h(r)||fz.2s\/ / dsuh(z)n;‘zdr\/ [ mor.as G

then the bound (4.5) with (4.6) implies Proposition 3.2.
However when |[|/¢|| 2.2 and |Ag]| 20> are both initially finite then (2.24) implies that (4.6)

holds. Here we have used (2.24) with p = 2, s = 2 and s = 0, respectively. Then we obtain the
bound (3.2). O

5. Uniqueness
In this section we prove the uniqueness of solutions to (1.3) which satisfy (2.9).

Proposition 5.1 Given two solutions hy and hy to (1.3) with the same initial data hy satisfying
(2.9). Then ||hy — ha|l2 = 0. If we further assume that the initial data satisfies ||hollo < oo, then
|71 — hallo = 0. In particular ||hy — ha||pee = 0.

Proof of Proposition 5.1. We consider the equation (2.1) satisfied by both /; and /,. Then we have
that
0o . .
—Ahy) — (—Ahy)/
(hl_hZ)t+A2(hl_h2):AZ( 1) .'( 2) )
J!

J=2
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We further have the algebraic identity

j—1
(—Ahy)! = (=Ahy) = —(Ahy — Ahy) (Z(—Ahl)j_l_m(—Ahz)m) .

m=0

We take the Fourier transform to obtain

0 (hi€.0 = ha6.0)) + 181* (i €.0) = hat6.0))

o0
= el (11 (Fr = h2) )+ 30— (Zu I R (R )*'"). 5.1)
j= 2
Then we obtain that
d
E”hl —halls + lh1 — halls+4 = Us. (5.2)

Above U; is the integral of the right side of (5.1) multiplied by |&]°:

i X1 (A L. e -
U = - /R ds|s|2+]ZZJ.,(;(|-|2(h1—h2))*(|-|2h1> G=1=m) s (|- 1Pho) )

We will consider the cases s = 2 and then s = 0.
When s = 2 above, we use (2.4) and Young’s inequality to obtain

00 .4
Us < |y —halle Y J.—,maX{thsz lha]l2} !
j=
5
+ 1 = ha|l2 max{|| 21 ls. ||h2||6}Z—max{||h1||2 a2} 2.

j= 2

Above we use max{||/i1 |2, ||#2]|2} only to reduce the number of terms that we need to write down.
Now since the initial data satisfies (2.9) then we have

SVA 1oyt
> = max{|lh o, [hall2 7t < Y = lholl3 ™
=7 =t

5 . 5 P . . .
Also Zjoiz ’]—, max{|| 12, |22}/ 72 < Z;‘;Z ]]—, Iholl3 % < 1. Then after integrating (5.2) with
s = 2 in time, we obtain that

t t
1721 —hzllz(l)+0/ 71 = halls(s) ds ﬁ/ 171 = h2ll2(s) max{{|hy 6. [1h2l6}(s) ds.
0 0

Here we use 0 = 03,1 > 0 from (2.11). Notice that fot max{||h1 s, |72l6}(s) ds < oo by (2.10).
Now the Gronwall inequality implies that ||y — A2 |2 = 0.
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We turn to the case s = 0 in (5.2). We will obtain an upper bound for Uy. We will use (2.4)
(with s = 2 in (2.4)). Then with Young’s inequality we obtain

oo )

Up < Iy —halls S ’]— max||h1 |2, [z llo} "

!
j=2

+ [hy = hzllz max{|[2y]la, [|h2la} 2]]— max{|| 1|2, [h2]2}" 2.

However we know from the previous case that ||2; — A |2 = O therefore the second term above is
zero. Then similar to the previous case, for a § > 0 we obtain

t
Iy — hallo(t) + 8/ Vs = halla(s) ds < 0.
0

We conclude that || — hz]jo = 0. O

We remark that the same methods can be used to prove that |41 — hz| 702 = 0.

6. Local existence and approximation

In this section we prove the local existence theorem using a suitable approximation scheme. Since
the methods in this section are rather standard, therefore we provide a sketch of the key ideas.

Proposition 6.1 Consider initial data hg € F%2 further satisfying ||holl2 < y« where ys > 0 is
given explicitly in Remark 1.2.

Then there exists a time T > 0 and an interval [0, T| upon which we have a local in time unique
solution to (1.3) given by h(t) € C°([0, T]; F&2NF2Y). This solution also gains instant analyticity
on [0,T] as

2] 2.1 (1) < llholl2e®™

where v(t) = bt for some fixed b € (0, 1) with b = b(||ho]|2).

To prove this we perform a regularization of (2.1) as follows. Let ; be the heat kernel in R¥ for
t > 0. We will consider {¢ with € > 0 so that {, is an approximation to the identity as ¢ — 0. We
define the regularized equation as:

0:h€ + A%(Ee  Ee % hE)

Z( A@e*ﬁe*hé)) g =lorhe  (6D)

This regularized system (6.1) can be directly estimated using all of the apriori estimates from
the previous sections. In particular all the previous estimates for (1.3) in this paper continue to
straightforwardly apply to the approximate problem (6.1).

These estimates allow us to prove a local existence theorem for the regularized system (6.1)
using the Picard theorem on a Banach space C°([0, T.]; F*2 N F°2). We find the abstract evolution
system given by 8,h€ = F(h€) where F is Lipschitz on the open set { f(x) € F*2 n F02 .
[ f1l 2.1 < y«}. Observe that h§ € F*2 since ho € F2. Further, since the convolutions are taken
with the heat kernel, we can prove analyticity for /€.
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In particular directly following (2.19) we obtain for some §; > 0 that

d
Eﬂhe(l)ﬂz + 8111¢e * Le x h€]ls <O.

Similarly following following (2.24) we obtain for some §, > 0 that

d
E”he(t)”i:-o,z + 8218e * Ce * hS”iL—z,z <0.

From these estimates, we can obtain the convergence needed to take a limit as € — 0 in (6.1) and
obtain the unique solution from Proposition 6.1 on the uniform time interval [0, 7] for some T > 0.

In the following we show how to to reach analyticity in short time as in Proposition 6.1. The
approximation scheme in (6.1) is well designed to reach the analytic regime in short time, and
maintain the analyticity in the limit as € — 0. Below, we explain the gain of analyticity with the a
priori estimate.

6.1  Reach analyticity in a short time

We use v(t) = bt (for some b > 0 to be determined) in the analytic space (1.12) with s = 2 and
p = 1. Note that |£|3 < |£]® + |£|2. From (2.3) we obtain the following differential inequality:

d >t .
gl + A=V Ol VO + g 35102, 62)
j=2 . v

We recall f; in (2.7) and (2.14). We have the estimate

%uhn 20+ (L= D)IAl gs < bll g2 + 1Al go1 (1Al z2) (6.3)
Recalling (2.9), we can choose a small 7" > 0 such that
loll2e"" < ys.
Then by choosing 7" smaller if necessary, on 0 < ¢t < T by continuity we have
LR z21) < by < 1,

where b1 = by (|| hol|2, T). We choose b > 0 small enough so that § = 1 —b — b; > 0, and then we
have

d
E”hﬂ];.s,l + 5||h||];.5.1 < b||h||]-__5.1. (6.4)
Then we apply the Gronwall inequality to (6.4) to obtain
2] 2.1 (1) < llholl2e”T < ya.

This completes the proof of the gain of analyticity, and Proposition 6.1.
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7. Global existence

In this section we briefly collect our previous estimates and explain the proofs of Theorem 1.1 and
Theorem 1.3. Note that if (2.9) holds then (2.10) also holds. Also (2.24) holds fors = O and p = 2
under only the assumption (2.9) because by (2.15) we have that yg2« < y.. These global in time
bounds combined with Proposition 5.1 and Proposition 6.1 yield directly the proof of Theorem 1.1.

We now explain the proof of Theorem 1.3. Notice that the analysis in Section 2.2 directly yields
(1.14). And the fast large time decay rates (1.15) follow from Proposition 3.1 and Proposition 3.2
under the assumptions used in the statement of (1.15).

8. Long time existence and decay in the analytic norms

In this section we will present finally the proof of Theorem 1.4. This will show the global in time
uniform gain of analyticity with radius of analyticity that grows like '/ for large ¢ > 1. This will
also show the uniform large time decay rates of the analytic norms with the optimal linear decay
rate as in Remark 1.5.

8.1  Gevrey estimates and the radius of analyticity

We consider v(¢) > 0, and now we look at estimates for (2.1) in the ]:"5’1 space with 0 < s < 2. We
will show that the radius of analyticity grows like v(¢) ~ t'/# which is the optimal linear growth
rate as in Remark 1.6.

We multiply (2.2) by |§|se”(’)|‘§‘}_;|ﬁ|_l (£,1) and then we obtain
0 (161" O FAIE. 1)) = v @)1+ e OFAIE 0 + 1514 O 6 1)

1 o0 1 = A A .
= 3 F|§|S+2e”(t)|élh|h|_l(§vt)(|§|2h)*1 (&.1)
j=2""

1 o= 1 An = .
=5 2 lEF2e R @ 0 (EPR Y 0. 8.1
j=7"
To estimate the nonlinear term on the right side we use Young’s inequality as

/R IR ORNA@IAIT ) - PRC)™ ©)) d
< (1§12 ORI E P |y
< JRAEP e ORIR) 5 (P By D
< P N ggrea ORI (8.2)

Now we use (8.2) to obtain the following estimate

oo

d
Tl g < VO ggens = lggras + I ggran Y
j=2

is+2
L—|in) (8.3)

i—1
jroE
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We will use (8.3) to simultaneously prove a global bound and large time decay rates.

For now we will focus on the second two terms on the left side of (8.3). We use Holder’s
inequality with s + 1 = 25 + (s + 4), then Young’s inequality with 2 + 1 = 1, and multiply and
divide by v(¢)3/4 and then we have that

3 1
1l 2y < DRI I L s < 0@ Ml gr + 0@ Il o (B4

Further, since ¢* < 1 + xe* for x = 0, using also (8.4) we also have that
iz = [ leper@llice.iae
v Rd

< / EF 1A DIdE + v(0) / £ O e, 1) d g
]Rd ]Rd

v(t)*

3
< Al g5 + Z||h||}-.5,1 + T||h||];.\s’+4,1.

We conclude that
Al .1 < 4llAll e + v(t)4||h||¢5+4,1. (8.5)

This is one estimate that we will use just below.
Looking at (8.3), now we estimate the following difference using (8.4) and (8.5)

3 _ 1,
VOlAN s+ = 1Al gs+an < ZV’(I)V(I) IHh”j:‘fsl + v (t)v(t)3||h||;5+4.1 — 1Al gs+4
3
< 3 Ov@) A £en + ZV’(I)V(l)_lv(t)4llh||;5+4.l

1
+ VOO Al e = ] gyras. (8.6)

We will also use this estimate momentarily.
First with b > 0 from Proposition 6.1, for ¢ = 0, we choose

(1) = ((bto)* + at)'/4, (8.7)

for some zo > Oanda > 0 to be determined. Then v'(1) = %((bto)*+at)™>/*and v/ (t) = Sv(r)~>.
Further then

V(W) () = %
and V' (1)v()~' = Sv()*
And then from (8.6) we have
3a _ a
VO g = Dl ggran < 0O 1kl g = (1= 5 ) 1l gy,

Later we will choose 0 < a < 4 small.
Now from (8.5) we have

—lIll gsran < —v@OTH Al g1+ 40O TR £
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We choose «, 8 = 0 such that @ + 8 = 1. Then we have
VO] gy = DAl g
< (%T“ +4a (1- ‘Z’)) V(O e e (1= 5 ) v Il gy = B (1= 5 ) Il gy

These are the main upper bounds that we will use next.
Now returning to (8.3), we obtain the following differential inequality

© 542

J

d _ _ i
E”h”ﬁgvl + 8v(?) 4||h||f'5sl < @) 7| £ —iellall gsan + A] gstan Z 7 ”h”]f'ﬁll'
j=2
| (8.8)
In the above § = (1 — 4) > 0 is a small constant and 0 < ¥ = B(1 — %) < 1 can be chosen

arbitrarily close to 1. Further A = (34 + 4a(1 — 2)) > 0 can be chosen to be small.

We will use the estimate (8.8), combined with the following procedure to obtain the global
decay of the analytic norm with radius (8.7). For now we restrict to the case s = 2. We start with the
solution from Theorem 1.1 with initial data satisfying (2.9). Further as in Theorem 1.3 we assume
that hy € F22, hy € F%2, and lholl—d,00 < oo. Then from (1.15) we can choose a large time
T1 = T1(€') > 0 such that for = 0 we have

[A(T1 + 1)]l2 < €v(t)"CFD, (8.9)

where we will choose ¢’ > 0 small in a moment.

From the local existence result in Proposition 6.1, we know that equation (2.1) has a gain of
analyticity on a local time interval starting with the initial data described in the previous paragraph.
We take initial data that for the gain of analyticity as ||2(T})]|2 < € where € = €(€’, fp) > 0 is small
and € — 0 as € — 0. Then for a short time interval [T}, T} + 2¢] from Proposition 6.1 we still
have

1A (T + )] 220 <€

forall t € [Ty, Ty + 2to] where as in Proposition 6.1 we use () = bt.

This is how we choose tp > 0 small from (8.7) to guarantee the above based upon our choice
of €. We use estimate (8.8) with s = 2 starting at time 77 + fo with v(¢) = ((bto)* + at)'/* as
in (8.7). To ease the notation, in the rest of this paragraph we write h(t) = h(T1 + to + ) and
ho = h(T1 + to). Now following arguments analogous to below (2.8) using (8.8) with s = 2 we
have

d - a - an " N
eVl + 80O Wl gz < 0@ Wil g =l g + Bl g 3 1A
j=2

< M) CTD O] o1 < CAv()" D74 (8.10)

Here we used that ||fz||F~2,1 < (1)~ @D Above we can take C > 0 and C; > 0 since, as above,
we can choose ||A]| z2.1 to be arbitrarily small. We multiply by v(1)*¥/ to obtain

d ~
= (vOP U] £21) < Cav(e)* -GS,
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Note that %v(t)“‘s/“ = §v(r)*¥/4=* Then we integrate to obtain

cA a

T
MOl < 5o ayaa

v(0)"CFD 4 o] £2.1v(0)* 4w (1) *0. 8.11)
This concludes the main estimates of this paragraph.

Now choosing a > 0 sufficiently small, depending upon the other parameters in (8.11), allows
us to propagate the assumption that ||7(71 + 7o + 7) 2.1 < € for all 7 = 0. Therefore (8.10) and
(8.11) hold for all times ¢ = 0. We conclude that

IA(T + 1) z20 = [ &P O’ AE, T + 1)|dE < (1 + 1)~ CTD/4 (8.12)
v Rd

which holds uniformly for some fixed 7 > 0 and all # = 0.
We can also prove (8.12) for any 0 < s < 2 by using the same technique, and obtain the decay
rate in (1.16). These estimates now grant Theorem 1.4. Q.E.D.

We remark that one can also control the exponential PDE (1.3) globally in time in the norms of F*!
for s > 2 and in F*? for general s = 0 and p € (1,2] using only the smallness assumption from
(2.9) that is used in Theorem 1.1. The idea is to use the large time decay in (1.15) for s = 2 to show
that after a time 7 > 0 the norm ||4(T")||> can be as small as we need in order to control the sums
such as in the upper bounds of (2.17) and (2.22). In a similar way one can also obtain control of the
analytic norms such as 77,

Appendix
A. Numerical simulations

Here we present some numerical simulations of (3) to illustrate some aspects of the main results.
The computations were contributed by Thomas Witelski [31, 32] and carried out specifically for this
paper.

The equation (1.3) was simulated in one spatial dimension with periodic boundary conditions
on 0 < x < 2m. Computations were done using a fully-implicit backward Euler time-stepping
scheme with a second-order accurate finite-difference discretization in space with 214 = 16,384
grid points (results were also validated against a Fourier pseudo-spectral code). Initial conditions
for each simulation were taken to be hg(x) = A sin(x) with A > 0, which gives ||/¢||» = A using
the norm (1.7).

Results for three different values for A are shown to illustrate behaviors starting from initial data
below or above the critical value y. &~ 0.104835667. Figure 1 shows that below y., for A = 0.1,
the 2! norm is monotone decreasing in time, as expected from Theorem 1. In this particular case,
the evolution of the Y/2**® norm (here, also starting from value A) is almost indistinguishable from
the 721, but it is always a lower bound for that norm. The decay of profiles of Ay (x, ?) are also
shown. Note that here /2 denotes the standard homogeneous Sobolev norm with two derivatives
in the L°° space.

Further analysis is needed to better understand the behaviors for A > y., but numerical
simulations can be suggestive of the dynamics that can occur. Figure 2 shows results starting from
A = 0.3. The value of the W2 is still monotone decreasing, but now the evolution of the F2l
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FIG. 1. Numerical simulation of evolution from initial data 2o = A sin(x) with % = A < yx showing monotone decay
of the 721 norm

0.3
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FIG. 2. Numerical simulation of evolution from initial data Ay = A sin(x) with % = A > y4 showing that F21 norm
is no longer monotone decreasing when the conditions of Theorem 1 are violated
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FIG. 3. Numerical simulation of evolution from significantly larger initial data o = A sin(x) with 3 = A > y, having
both norms being non-monotone in time and suggesting finite-time blow-up

norm is not monotone. For larger initial data, Figure 3 shows results starting from A = 3. Here both
norms are non-monotone in time and seem to suggest formation of a finite-time singularity as /.
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blows-up. Numerical evidence for finite-time blow was given in an earlier 2013 paper by Marzuola
and Weare [22].

The ebook version of this paper contains full color images of the plots in of Fig. 1-3.
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