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A compact Green’s function for general dispersive
anisotropic poroelastic media in a full-frequency
regime is presented for the first time. First, starting
in a frequency domain, the anisotropic dispersion is
exactly incorporated into the constitutive relationship,
thus avoiding fractional derivatives in a time domain.
Then, based on the Radon transform, the original
three-dimensional differential equation is effectively
reduced to a one-dimensional system in space.
Furthermore, inspired by the strategy adopted in
the characteristic analysis of hyperbolic equations,
the eigenvector diagonalization method is applied to
decouple the one-dimensional vector problem into
several independent scalar equations. Consequently,
the fundamental solutions are easily obtained. A
further derivation shows that Green’s function can
be decomposed into circumferential and spherical
integrals, corresponding to static and transient
responses, respectively. The procedures shown in this
study are also compatible with other pertinent multi-
physics coupling problems, such as piezoelectric,
magneto-electro-elastic and thermo-elastic materials.
Finally, the verifications and validations with existing
analytical solutions and numerical solvers corroborate
the correctness of the proposed Green’s function.
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1. Introduction
The fundamental solution, i.e. Green’s function, is the solution of a physical field (e.g.
displacement, electrical fields, etc.) recorded from a receiver due to a unit excitation at a
source point. Green’s function plays an indispensable role in the realm of integral equations,
whose numerical implementation in matrix form is usually called the method of moments in
computational electromagnetics [1, p. 71]. The integral equations include (i) surface integral
equations, based on the surface equivalence principle [2,3], and (ii) volume integral equations,
based on the volume equivalence theorem [1, p. 71]. In computational mechanics, the numerical
implementation of the former is widely known as the boundary element method [4,5; 6, p. 3]
which is widely used in fracture detection [7] and crack propagation simulations [8–11]. On
the other hand, an important application of volume integral equations is the homogenization
technique. For composite problems, the micro-structures are usually on a scale much smaller than
a wavelength, requiring computationally intractable dense meshes for conventional numerical
solvers; instead, a homogenization technique is preferred to provide the effective material
properties [12–14]. The homogenization is contingent upon the Eshelby tensor/depolarization
dyadic, which is an integral of Green’s function [13,15,16; 17, p. 3–3; 18, ch. 4].

The applicability of integral equations depends on (i) the existence of a Green’s function, which
is usually restricted to a full-space problem or stratified media, and (ii) the calculation complexity,
which is usually accelerated by the conjugate-gradient fast Fourier transform method [19] or the
fast multipole method [20]. Therefore, a compact and efficient expression of Green’s function is
always desirable.

However, to the best of the authors’ knowledge, a Green’s function for anisotropic dispersive
poroelastic media is not available yet. There are three difficulties in relation to this: anisotropy,
dispersion and poroelasticity. First, anisotropy naturally arises from the aligned microstructures
of the crystals [16]. The fundamental solution becomes non-trivial owing to the fact that
anisotropy undermines the simplicity of those derivations based on the isotropy assumption
[21–24]. For instance, an explicit expression of Green’s function for isotropic media is just a
scalar function [1, pp. 10, 198], whereas extensive efforts have to be devoted to deriving a
Green’s function for anisotropic materials. Typically, the Fourier transform is used pervasively
[25, ch. 2.10; 26,27]. However, the underlying problem of the Fourier transform-based methods
requires an infinite integral. The elimination of this integral, leading to an explicit expression,
can be achieved by means of the Cauchy residue theorem for static problems, such as anisotropic
elastic solids [28–30] and piezoelectric solids [31]. Fortunately, the Radon transform-based Green’s
function was developed, where only a finite integral is involved [32–34]. Second, dispersive
materials exhibit frequency-dependent properties. In time domain, one has to confront either
convolutional integrals or fractional derivatives [35–38]. In the frequency domain, complex-
valued material parameters are introduced, thus leading to distinct properties, with respect
to the original real-valued system [39]. From an experimental study, it has been found that
serpentinite rock requires 21 independent parameters, in the quality factor matrix, to fully
depict the anisotropic attenuations in elastic media [40]. From a mathematical perspective,
the elasticity matrix becomes non-Hermitian, but is still symmetric, thus the eigenvectors are
no longer orthogonal. In addition, the roots of the characteristic polynomial for the Kelvin–
Christoffel matrix are no longer in complex conjugate pairs. Therefore, the existing fundamental
solutions, with the underlying assumption of a non-dispersive material, may require a prudent
modification [33,41–43]. Third, poroelastic materials require many input parameters [44–46]. In
addition, the pore fluid behaves differently in low- and high-frequency regimes. Especially in
the high-frequency regime, the pore fluid is a dispersive medium involving fractional derivatives
[47,48].

Therefore, the main goal of this study is to first succinctly propose a unified formulation
of Green’s function for anisotropically dispersive fluid-saturated porous media. Even though
the fundamental solutions for anisotropic/viscoelastic/poroelastic media have been around
for a while [43,46,49], they are more from a collection of derived formulations, thus lacking
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a comprehensive procedure for complete anisotropically dispersive poroelastic materials. It is
therefore desirable to give a compact formulation of the corresponding Green’s function in this
paper, equipped with the following three steps. First, the dispersion is exactly incorporated
into the frequency-domain constitutive relationship, thus the temporal fractional derivatives
are avoided. As a result, we propose a full anisotropic-Q matrix to quantitatively depict the
anisotropic dispersion in porous media. Second, we take full advantage of the Radon transform,
by transforming the original three-dimensional space differential equation into a one-dimensional
system in local coordinates [50]. Third, inspired by previous work on the characteristic analysis
of hyperbolic equations [21,35,45,51–53], the eigenvector diagonalization strategy is adopted to
decouple the components of a vector into separate scalar equations. Consequently, a closed-
form of Green’s function is succinctly expressed as a circumferential integral and a spherical
integral, corresponding to static and transient responses, respectively. Finally, the results are
verified and validated with analytical and numerical solutions. It is worth mentioning that the
above procedure is also compatible with other pertinent multi-physics coupling problems, such as
piezoelectric, magneto-electro-elastic and thermo-elastic materials [41,54]. This will also smooth
the way for new numerical solver verifications.

To summarize, this research delivers the following novelties:

(i) Green’s function for general anisotropically dispersive poroelastic media is presented for
the first time.

(ii) The Radon transform is applied to effectively reduce the three-dimensional spatial
derivatives into one dimension.

(iii) The eigenvalue diagonalization is further applied to simplify the non-Hermitian
anisotropic problem.

(iv) The results are verified and validated with existing analytical solutions and numerical
solvers.

This paper is organized as follows. Section 2 lists the notations used in the paper. The
Fourier transform and Radon transform are introduced in §3, which are preparatory for the
subsequent sections. In §4, the governing equations for poroelastic waves are provided in a full-
frequency range. Then, §§5–7 elaborate the full anisotropic dispersion, the Radon transform-based
fundamental problem and the eigenvector diagonalization technique, respectively. Extensions
to relevant problems are illustrated in §8. Section 9 elucidates the numerical implementation,
verification and validation. Concluding remarks are given in §10.

2. Nomenclature
For convenience, we list the various notations used in this paper in alphabetical order below.

— The summation convention is not applied unless specified.
— A is a matrix, either symmetric or non-symmetric, either Hermitian or non-Hermitian,

either complex or real.
— Bi is magnetic flux density.
— C is the elasticity matrix with size 6 × 6.
— D is the elasticity matrix for poroelastic media.
— Di is the electric flux density.
— Du

IJ is the stiffness tensor of the undrained (i.e. unjacketed) material, subject to the Voigt
notation [18, p. 24; 55], where I, J = 1, 2, 3, 4, 5, 6.

— F is the force matrix in a diagonalized system.
— F is the Fourier transform operator.
— G is the dyadic Green’s function.
— Ĝ is the Radon transform dyadic Green’s function.
— GR is the transient part of the dyadic Green’s function.
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— GS is the static part of the dyadic Green’s function.
— I is the identity matrix.
— K is a diagonal matrix, the generalized wavenumber.
— L is the first spatial derivative operator matrix.
— M is the fluid–solid coupling modulus.
— M is a modulus, any entry of D.
— Mr are the reference moduli measured at ωr.
— Pi � 1/2 is the Pride number.
— Q is the quality factor
— R is the Radon transform operator.
— R is the right eigenvector matrix, assembled in a column manner.
— Ti is the tortuosity vector of the solid matrix.
— U is the left eigenvector matrix, assembled in a row manner.
— W is the dependent variable matrix in a diagonalized system.
— αI is the generalized Biot’s effective-stress coefficient. Specifically, it is the ratio of the

pore-fluid pressure, which causes the same amount of strain as the the total stress [55,
p. 225].

— b is the component of n along e.
— δ(·) is the Dirac delta function.
— δIP is the Kronecker delta.
— (e, t1, t2)� are the local coordinate bases.
— ε is the electrical permittivity matrix with size 3 × 3.
— εij is the skeleton strain

εij := 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (2.1)

where i, j= 1, 2, 3.
— fc is the central frequency for the source time function.
— fi is the body force density imposed in the elastic system.
— f (1)

i is the body force density imposed in the matrix frame.

— f (2)
i is the body force density imposed in the pore fluid.

— f e is the static electrical charge density source.
— f m is the static magnetic charge density source.
— Γ (·) is the Kelvin–Christoffel matrix.
— j is the imaginary number.
— κi is the permeability of the solid matrix.
— λI is the diagonal entry of Λ.
— Λ is the right/left eigenvalue matrix.
— Λi/2 is interpreted, approximately, as the pore-volume to pore-surface ratio.
— μ is the magnetic permeability matrix with size 3 × 3.
— n is the Radon transform projection direction, a unit vector.
— ν is the fluid viscosity.
— ω is the angular frequency.
— ωc

i is the critical frequency,

ωc
i = ν/κ

ρw
i

. (2.2)

— ωr is the reference angular frequency.
— p is the fluid pressure for the pore.
— p is the third-rank piezoelectric tensor, written in matrix form with size 3 × 6.
— φ is the matrix porosity.
— Ψi is the time-domain viscodynamic operator in the xi direction.
— Ψ̃i is the frequency-domain viscodynamic operator in the xi direction.
— q is the third-rank piezomagnetic tensor, written in matrix form with size 3 × 6.
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— ρ is the density of the poroelastic medium: ρ = (1 − φ)ρs + φρf , where φ is the porosity of
the poroelastic medium.

— ρ is the density matrix.
— ρw

i is fluid inertia along axis i,

ρw
i = ρf

Ti

φ
. (2.3)

— ρf is the density of the fluid.
— ρs is the density of the solid frame.
— s is the Radon transform space.
— t is the time axis.
— t is the orthogonal unit vector with respect to e.
— τij is the total stress of the poroelastic medium.
— θ is the azimuthal angle in the local coordinate.
— ui is the dependent variable, particle displacement of the solid frame.

— ufi is the dependent variable, filtration displacement, i.e. the relative particle displacement,
with respect to the solid frame, for the pore fluid.

— vi is the particle velocity of the solid frame.

— v
f
i is the filtration velocity, i.e. the relative particle velocity, with respect to the solid frame,

for the pore fluid,

v
f
i := φ

(
v

(f )
i − vi

)
. (2.4)

— v
(f )
i is the particle velocity of the pore fluid.

— ϕ is the electric scalar potential.
— ς is the variation (increment) of the fluid content, a measurement of the fluid amount

flowing in/out of the porous media,

ς := −∂i ·
[
φ

(
u(f )
i − ui

)]
. (2.5)

— ϑ is the magnetic scalar potential.
— x := (x, y, z)�.
— xi is the spatial Cartesian coordinate with i= 1, 2, 3 corresponding to the x, y, z directions.
— ξ is the magneto-electric matrix with size 3 × 3.
— Ξ is a diagonal matrix.
— ζ is the electro-magnetic matrix with size 3 × 3.

3. Preliminaries

(a) Fourier transform
For a function f with a real independent variable t, the Fourier transform is defined as (R→C)

F
(
f (t)

)
:= F(ω) =

∫+∞

−∞
f (t) e−jωt dt, (3.1)

for any real number ω, and the inverse Fourier transform is (C→R)

F−1 (F(ω)) := f (t) = 1
2π

∫+∞

−∞
F(ω) ejωt dω. (3.2)

Based on these two definitions, we have the following immediate property:

F

(
dnf (t)

dtn

)
= (

jω
)n

F
(
f (t)

)
. (3.3)
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(b) Radon transform
For a function f with a real independent variable x in three-dimensional space, the Radon
transform and its inverse are defined as (R→R or C→C) [56, appendix A]

R
(
f (x)

)
:= f̂ (s, n) =

∫
R3

f (x)δ(s − n · x) dx (3.4a)

and

R−1
(
f̂ (s,n)

)
:= f (x) = − 1

8π2

∫
|n|=1

∂2
s f̂ (s,n) dS(n), (3.4b)

respectively, which correspond to a planar integral of the function f (x) over n · x= s and a
spherical surface integral of the function f̂ (s, n) over |n| = 1, respectively. Based on these two
definitions, we have the following two immediate properties:

R
(
∂if (x)

) = ni∂sf̂ (s,n) (3.5a)

and

R
(
∂i∂jf (x)

) = ninj∂
2
s f̂ (s, n), (3.5b)

which transfer the multiple direction derivatives into the one-dimensional s-space derivative.

(c) Calculation of the inverse Radon transform
In figure 1, for a fixed x, usually a vector pointing from the source to the receiver, we can establish
a new local coordinate, with the base (e, t1, t2)� [33, appendix A]. We have the x-aligned unit
vector e defined as

x= xe. (3.6)

The other two unit orthogonal vectors can be freely chosen. Equivalently, on the orthogonal plane,
we can introduce the local azimuthal angle θ with unit vector t as

t = cos θt1 + sin θt2. (3.7)

Then, the unit vector n is expressed as

n= be +
√

1 − b2t. (3.8)

Therefore, the spherical integral in §3b can be calculated as
∫
|n|=1

· dS(n) =
∫ 1

b=−1

∫ 2π

θ=0
· dbdθ . (3.9)

4. Governing equations of general poroelastic waves
Based on the Euler–Lagrange equation, we can derive the following wave equations for the
poroelastic equation in time domain [55, p. 254]:

∂τij

∂xj
= ρ

∂vi

∂t
+ ρf

∂v
f
i

∂t
− f (1)

i (4.1a)

and

− ∂p
∂xi

= ρf
∂vi

∂t
+ Ψi ∗

∂v
f
i

∂t
− f (2)

i , (4.1b)

where ‘*’ denotes a time convolution and (x, y, z, t) are the independent variables. Note that the
summation convention is applied over subscript ‘j’. According to §3a, we apply the Fourier
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x

e
b

n
t2

t1
q

Figure 1. Schematic of a local coordinate (e, t1, t2) for a source (star) and receiver (triangle) pair, used in the Radon transform.
The vector e points from the source to the receiver, with distance x. The local varying normal vector n has an azimuthal angle
θ and a projected component b along e. (Online version in colour.)

transform over the t-axis, leading to the frequency-domain equations

∂τij

∂xj
= −ω2ρui − ω2ρf u

f
i − f (1)

i (4.2a)

and

− ∂p
∂xi

= −ω2ρf ui − ω2Ψ̃iu
f
i − f (2)

i , (4.2b)

with independent variables (x, y, z, ω) and dependent variables (ui, u
f
i ).

Written in matrix form, the equations read [55, p. 282]

Lτ = −ω2ρu − f , (4.3)

with

u=
(
ux, uy, uz, u

f
x , u f

y , u f
z

)�
, (4.4)

f =
(
f (1)
x , f (1)

y , f (1)
z , f (2)

x , f (2)
y , f (2)

z

)�
, (4.5)

L6×7 (∂) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂x 0 0 0 ∂z ∂y 0
0 ∂y 0 ∂z 0 ∂x 0
0 0 ∂z ∂y ∂x 0 0
0 0 0 0 0 0 ∂x

0 0 0 0 0 0 ∂y

0 0 0 0 0 0 ∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.6)

and ρ6×6(ω) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρ 0 0 ρf 0 0
0 ρ 0 0 ρf 0
0 0 ρ 0 0 ρf
ρf 0 0 Ψ̃x 0 0
0 ρf 0 0 Ψ̃y 0
0 0 ρf 0 0 Ψ̃z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.7)

Note that (4.3) will be closed by relating the stress vector to the strain vector based on the
constitutive relationship in §5.
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The pore fluid behaves differently in low-/high-frequency regimes. Specifically, for a low-
frequency regime (ω < ωc

i ), the fluid has Poiseuille-type behaviour; therefore, we have

Ψ̃i(ω) = ρw
i + ν

κi

(
πδ(ω) + 1

jω

)
. (4.8)

Note that ω2δ(ω) ≡ 0, so we can write

Ψ̃i(ω) = ρw
i + ν

κi

1
jω

. (4.9)

For a high-frequency regime (ω > ωc
i ), the fluid is governed by the Johnson–Koplik–Dashen model

[47, p. 27]; therefore, we have

Ψ̃i(ω) = ρw
i + ν

κi

1
jω

(
1 + jω

Ωi

)1/2
, (4.10)

with
Ωi =

ωci

Pi
, Pi =

4Tiκi

Λ2
i φ

. (4.11)

5. Anisotropic constitutive relationship

(a) Purely elastic porous media
For a fully anisotropic solid frame, the constitutive relationship in Voigt notation reads [18, p. 24;
55, p. 281]

τ =Dε. (5.1)

The detailed expressions are given below:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τxx

τyy

τzz

τyz

τxz

τxy

−p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Du
11 Du

12 Du
13 Du

14 Du
15 Du

16 Mα1
Du

12 Du
22 Du

23 Du
24 Du

25 Du
26 Mα2

Du
13 Du

23 Du
33 Du

34 Du
35 Du

36 Mα3
Du

14 Du
24 Du

34 Du
44 Du

45 Du
46 Mα4

Du
15 Du

25 Du
35 Du

45 Du
55 Du

56 Mα5
Du

16 Du
26 Du

36 Du
46 Du

56 Du
66 Mα6

Mα1 Mα2 Mα3 Mα4 Mα5 Mα6 M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

2 εyz

2 εxz

2 εxy

−ς

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.2)

Note that the above equation is valid in both the time and frequency domains, given that the
porous medium is purely elastic.

(b) Quality factor matrix and dispersive poroelastic media
In the case of dispersive media, Kjartansson [57] introduced the quality factor definition, based
on the Caputo fractional derivative.

In time domain, the constitutive relationship (5.1) has to be amended: the modulus M , any
entry of D in (5.1), involves a Caputo fractional derivative operator C

0 D
2γ
t := ∂2γ /∂t2γ as

M (t) = cos2
(πγ

2

) (
Mr

ω
2γ
r

)
C
0 D

2γ
t , (5.3)

with
γ = 1

π
arctan

1
Q

. (5.4)

In frequency domain, the constitutive relationship (5.1) is still valid, but with a complex-valued
elasticity matrix: M becomes a much simpler complex value with a fractional exponent

M (ω) =Mr cos2
(πγ

2

) (
jω
ωr

)2γ

. (5.5)
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With the correspondence principle [55, pp. 102, 291], we can get the elasticity matrix D in (5.1),
which is complex valued and frequency dependent.

6. Radon transform-based Green’s function problem
Note the strain definition

ε = L�u. (6.1)

Then we have the governing equation in the frequency domain as(
Γ (∂ , ω) + ω2ρ(ω)

)
u(x, ω) = −f (x, ω), (6.2)

with the Kelvin–Christoffel matrix as

Γ (∂ , ω) = L(∂)D(ω)L�(∂), (6.3)

involving the derivative operators, only with the differential order 2.
Therefore, the fundamental solution problem is written as [1, p. 44](

ΓIP(∂ , ω) + ω2ρIP

)
GPK(x, ω) = −δIKδ(x), (6.4)

where I,P,K = 1–6. Note the summation convention is applied over the subscript ‘P’.
Now applying the Radon transform on both sides of (6.4), we get(

Γ (n, ω)∂2
s + ω2ρ(ω)

)
Ĝ(s,n, ω) = −Iδ(s). (6.5)

However, Γ (n, ω) is still a full matrix, so it is not ready to solve the above equation.

7. Eigenvector diagonalization
Taking insight from solving the Riemann problem in the localized coordinates [21,35,45,51–53],
the eigenvalue diagonalization can be used to solve the fundamental solution for (6.5).

For a matrix A, either symmetric or non-symmetric, either Hermitian or non-Hermitian, either
complex or real, we have

AR=RΛ, (7.1)

where R and Λ are, respectively, the right-eigenvector and eigenvalue matrices, assembled in a
column manner. Similarly, we have the row-assembled left-eigenvector matrix U, subject to

UA= ΛU. (7.2)

Then, left multiplying (7.1) with U, and right multiplying (7.2) with R, respectively, lead to the
second and third identities

UAR=URΛ = ΛUR. (7.3)

Therefore, UR commutes with a diagonal matrix Λ, that is, UR is also diagonal. This fact implies
that the right eigenvector R is always invertible, even though A is a non-Hermitian matrix.

Now we write (6.5) as(
ρ−1(ω)Γ (n, ω)∂2

s + ω2I
)
Ĝ(s,n, ω) = −δ(s)ρ−1(ω). (7.4)

And we let
A(n, ω) = ρ−1(ω)Γ (n, ω), (7.5)

which is a non-symmetric matrix, or more accurately, a non-Hermitian matrix, thus leading to
a non-orthogonal eigenvector system. We note that the method proposed in [33] assumes the
orthogonality of each individual eigenvector, thus this is not applicable here. We also note that
Green’s solution, provided in [41, §3(c)], requires a non-dispersive matrix A. Fortunately, inspired
by the strategy leveraged in the characteristic analysis while solving the Riemann problem of
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hyperbolic equations, we can apply the eigenvector diagonalization method, to decouple the one-
dimensional tangled vector problem into several independent scalar equations [58, p. 51],(

RΛR−1∂2
s + ω2I

)
Ĝ(s, n, ω) = −δ(s)ρ−1(ω), (7.6)

that is, (
Λ∂2

s + ω2I
)
W(s,n, ω) = −δ(s)F(ω), (7.7)

with
W(s,n, ω) =R−1Ĝ(s, n, ω),

and F(ω) =R−1ρ−1(ω).

⎫⎬⎭ (7.8)

It is noteworthy that the analytical solution for (7.7) can be easily obtained row by row,
inasmuch as Λ is a diagonal matrix. More specifically, we have(

λI∂s
2 + ω2

)
WIJ(ωs, n, ω) = −δ(s)FIJ. (7.9)

According to [45], the dispersive systems have four propagating modes (λI > 0) and two non-
propagating modes (λI = 0), respectively.

(a) Propagating modes
In the case of λI > 0, the solution is

WIJ(s,n, ω) = − j
2ω

√
λI

e−jω/
√

λI |s|FIJ. (7.10)

(b) Non-propagating modes
In the case of λI = 0, (7.9) becomes

ω2WIJ = −δ(s)FIJ , (7.11)

and the solution is

WIJ(s, ω) = − δ(s)
ω2 FIJ . (7.12)

Applying the inverse Radon transform leads to

WIJ(x, t) = − δ(x)
ω2 FIJ. (7.13)

Therefore, the non-propagating modes make no difference to the results.

(c) Green’s function in matrix form
Considering (7.8), (7.10) and the identity

d2e−jω/
√

λI |s|

ds2 = −2j
ω√
λI

δ(s) − ω2

λI
e−jω/

√
λI |s|, (7.14)

we have the following expression in matrix form:

∂2
s Ĝ(s,n, ω) =RΞR−1ρ−1, (7.15)

with the diagonal matrix

ΞII := − 1
λI

δ(s) + 1
2λI

jω√
λI

e−jω/
√

λI |s|. (7.16)

Note that we let ΞII := 0 for λI = 0.
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Consequently, applying the inverse Radon transform, we have

G(x, ω) = −1
8π2

∫
|n|=1

∂2
s Ĝ(s, n, ω) dS(n), (7.17)

which can be decomposed into two parts as

G(x, ω) =GS(x, ω) + GR(x, ω), (7.18)

where the static response is a circumferential integral,

GS(x, ω) = 1
8π2

∫
|n|=1

RΛ−1R−1ρ−1δ(n · x) dS(n), (7.19)

and the transient response is a spherical integral,

GR(x, ω) = − 1
16π2

∫
|n|=1

RΛ−1
(

jω
√

Λ
−1

e−jω
√

Λ
−1|n·x|

)
R−1ρ−1 dS(n)

= − 1
16π2

∫
|n|=1

R
(
Λ−1jK e−jK|n·x|

)
R−1ρ−1 dS(n). (7.20)

Further applying the calculation method in §3c, we obtain

GS(x, ω) = 1
8π2

∫ 1

b=−1

∫ 2π

θ=0
RΛ−1R−1ρ−1δ(bx) dbdθ

= 1
8π2x

∫ 2π

θ=0
RΛ−1R−1ρ−1 dθ

∣∣∣∣∣
b=0

(7.21)

and

GR(x, ω) = − 1
16π2

∫ 1

b=−1

∫ 2π

θ=0
R

(
Λ−1jK e−jK|n·x|

)
R−1ρ−1 dbdθ , (7.22)

which can be easily calculated by applying the Gaussian quadrature rules [51]. Note that for the
zero-eigenvalue inverse in Λ, we just let it be zero.

To this end, the time-domain displacement expression is obtained,

uI =F−1 (GIP(x, ω)FP(ω)) . (7.23)

Note the summation convention is applied over the subscript ‘P’.

8. Other pertinent problems
The above concise procedures invigorate the applications to other multi-physics problems, such
as the piezoelectric-magnetic and thermo-elastic systems, as long as the governing equations
share the unified form as (6.2). The linear magneto-electro-elasticity system, with dynamic elastic
responses, has the following governing equations [54]:

∂τij

∂xj
= ρ

∂vi

∂t
− fi, (8.1a)

∂Dj

∂xj
= f e, (8.1b)

∂Bj

∂xj
= f m, (8.1c)



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180610

...........................................................

which are closed by the constitutive relationship (5.1). Note the summation convention is applied
over subscript ‘j’. Specifically, the variables are assigned with new physical fields,

τ 12×1 =
(

τxx τyy τzz τyz τxz τxy Dx Dy Dz Bx By Bz

)�
, (8.2a)

ε12×1 =
(

εxx εyy εzz 2 εyz 2 εxz 2 εxy Ex Ey Ez Hx Hy Hz

)�
, (8.2b)

D12×12 =

⎛⎜⎝ C6×6 −p�
6×3 −q�

6×3
p3×6 ε3×3 ξ3×3
q3×6 ζ 3×3 μ3×3

⎞⎟⎠ , (8.2c)

and (4.5)–(4.7) are, respectively,

u= (
ux, uy, uz, −ϕ, −ϑ

)� , (8.3)

L5×12 (∂) =

⎛⎜⎜⎜⎜⎜⎝
∂x 0 0 0 ∂z ∂y

0 ∂y 0 ∂z 0 ∂x

0 0 ∂z ∂y ∂x 0
∂x ∂y ∂z

∂x ∂y ∂z

⎞⎟⎟⎟⎟⎟⎠ (8.4)

and ρ5×5 = diag
(
ρI3×3, 0, 0

)
. (8.5)

Note the above can be reduced to the static piezoelectric problem or lossless poroelastic media
[41,54]. Furthermore, we can also unifiedly get the Green’s function for thermoelastic waves, by
assembling the corresponding matrices [41].

9. Numerical verifications and validations

(a) Verifications of isotropic materials with an independent solver
Even though no analytical solution is available for the anisotropic dispersive poroelastic waves
yet, we can still use the existing isotropic solutions, with just a special case of anisotropic media
here, as a reference to verify our results.

From the perspective of the physical meaning, we need four Q values to describe the intrinsic
attenuation of an isotropic poroelastic material: QK and Qμ for the isotropic frame, corresponding
to the attenuation of the bulk and shear moduli, respectively; QKf for the pore fluid, with respect
to the bulk modulus; and QKs implicitly accounting for the solid–fluid coupling. Then the next
step is to calculate the complex moduli, by substituting (5.4) into (5.5); the other entries of the
matrix D in (5.2) can be obtained by the correspondence principle [55; 59, pp. 102, 291].

The source and receiver are at (0, 0, 0) m and (20, 250, 320) m, respectively. The source has a
Ricker wavelet, with a central frequency fc = 60 Hz, a delayed time 1.2/fc and a polarization
vector (0, 0, 1, 0, 0, 0)� in (4.3). The reference frequency is fr = 10 Hz. Table 1 provides the isotropic
poroelastic parameters. The reference solutions of the viscous poroelastic media are based on the
extension of the existing isotropic solution for the purely poroelastic situation [60], according to
§5b. Figure 2 provides the waveform verifications for different Q value sets in table 2, and the
corresponding root mean square (RMS) differences are provided: the agreement is satisfactory,
since almost all the RMS differences have a magnitude of 0.01%. The attenuation becomes stronger
and the phases of the three wavelets, i.e. fast-P, S, slow-P waves, are left shifted, as the Q value
decreases. Moreover, the wavelets are tremendously distorted, when strong attenuation, i.e. a
small Q value set such as case 1 in table 2, is added.
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1.424
(a)

(b)

(c)

(d)

RMS = 0.0183%

RMS = 0.0280%

RMS = 0.0245%

RMS = 0.0441%

×10–3 Vx (m s–1)

–1.424
0.010

0

–0.010
0.053

0

–0.053
0.102

0

–0.102

0

0 0.1 0.2 0.3
t (s)

0.4 0.5 0.6

Figure 2. Waveform comparison of Vx between our new Green’s function (black solid line) and the existing isotropic Green’s
function (red dashed line); (a–d) correspond to cases 1–4 in table 2, respectively. (Online version in colour.)

Table 1. The isotropic poroelastic parameters.

Ks (GPa) K (GPa) μ (GPa) Kf (GPa) ρs (kg m−3) ρf (kg m−3) φ T ν/κ (Pa s/D)

80 7 8 5.25 3200 1000 0.2 (2.5 2.5 2.5) 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Validations of dispersive anisotropic media with a high-order solver
For the poroelastic materials with anisotropic attenuation, the implementation of Green’s function
is proposed for the first time; nevertheless, we can validate this analytical solution with an existing
high-order discontinuous Galerkin (DG) algorithm [45].

The fluid-saturated medium used is an orthorhombic frame with the elastic constants shown
in table 3. The supplementary porous material parameters refer to table 4. In table 5, we provide
the Q factor values: a Q matrix with size 6 × 6 for anisotropic attenuation and dispersion in the
frame, QKf for the pore fluid and QKs for the interaction between the solid skeleton and the pore
fluid. According to (5.4) and (5.5), with the correspondence principle [55, pp. 102, 291; 59], we can
obtain a complex-valued modulus matrix in (5.2) at the reference frequency fc = 10 Hz,

D=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

95.87 14.89 15.79 0 0 0 6.93
14.89 187.00 31.17 0 0 0 −6.90
15.79 31.17 112.29 0 0 0 2.68

0 0 0 32.96 0 0 0
0 0 0 0 26.98 0 0
0 0 0 0 0 9.29 0

6.93 −6.90 2.68 0 0 0 23.01

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 2. The Q value sets.

QK Qμ QKf QKs
1. 5 5 15 10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. 20 20 60 40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. 80 80 240 160
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. +∞ +∞ +∞ +∞
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Elastic moduli of an orthorhombic crystal [18, table A.4.2f].

c11 c22 c33 c44 c55 c66 c12 c13 c23
93.8 185 112 33 27 9.3 17 15 32

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. The anisotropic poroelastic parameters.

Ks (GPa) Kf (GPa) ρs (kg m−3) ρf (kg m−3) φ T ν/κ (Pa s/D)

60 2.25 2963 1000 0.1 (1 1 1) 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5. Q value sets of an orthorhombic poroelastic crystal.

Q11 Q22 Q33 Q44 Q55 Q66 Q12 Q13 Q23 QKf QKs
80 45 60 25 30 32.5 20 25 30 30 40

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.28 0.75 0.65 0 0 0 0.30
0.75 4.19 1.02 0 0 0 −0.25
0.65 1.02 1.89 0 0 0 0.14

0 0 0 1.32 0 0 0
0 0 0 0 0.90 0 0
0 0 0 0 0 0.29 0

0.30 −0.25 0.14 0 0 0 0.76

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
GPa. (9.1)

Then, figure 3 displays the phase velocity distributions: (a) the real part, corresponding to the
wave propagation, and (b) the imaginary part, corresponding to the wave dissipation, for the
four types of waves, i.e. fast P, slow P, fast S and slow S waves, respectively [45, eqns. 26, 27]. In
this figure, the anisotropy ratio is defined as

Vmax − Vmin

(Vmax + Vmin)/2
. (9.2)

It is remarkable that the imaginary parts have distinct distributions versus the real parts in
figure 3, which reveal different anisotropies for wave propagation and attenuation in this
fluid-saturated material.

A source with a polarization vector (0, 0, 1, 0, 0, 0)� in (4.3), having a Ricker wavelet with fc =
36 Hz and strength 1 × 1015 N m−3, is located at (0, 0, 0) m. Considering the symmetry feature of
the velocity distributions in figure 3, four receivers are evenly deployed along a quarter circle with
azimuthal angles, measured from the X-axis, {18◦, 36◦, 54◦, 72◦}, whose centre is at (0, 0, 600) m,
and radius is 500 m, on the XY-plane. Figures 4–6 provide the waveform comparisons between a
high-order DG solver and the analytical solution proposed in this study, showing that excellent
agreement is achieved. Owing to the anisotropy, the waveforms are overwhelmingly different
between the different channels in figures 4–6.
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Figure 4. Dispersive anisotropic poroelastic waveform comparison of Vx between a Green’s function (black solid line) and a
high-order DG solver (red dashed line); (a–d) correspond to the four receivers, respectively. (Online version in colour.)
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Figure 5. Dispersive anisotropic poroelastic waveform comparison of Vy between a Green’s function (black solid line) and a
high-order DG solver (red dashed line); (a–d) correspond to the four receivers, respectively. (Online version in colour.)
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Figure 6. Dispersive anisotropic poroelastic waveform comparison of Vz between a Green’s function (black solid line) and a
high-order DG solver (red dashed line); (a–d) correspond to the four receivers, respectively. (Online version in colour.)

10. Conclusion
In this study, we first propose a compact integral expression of Green’s function for
general poroelastic materials, incorporating anisotropic dispersion. Two critical techniques are
leveraged: localization and diagonalization by applying the Radon transform and eigenvalue
decomposition, respectively. Unlike the Fourier transform-based methods, the Radon transform
method used in this paper only requires the integral over a finite area. Furthermore, this Radon
transform brings the benefit that simplifies the three-dimensional spatial derivative into a one-
dimensional problem. Inspired by the procedure analysing the characteristics of hyperbolic
equations, the originally intractable full anisotropic system is diagonalized, resulting in several
simple scalar equations. The verification and validation demonstrate the correctness of the
proposed Green’s function. It is noteworthy that the analysis shown in this paper is heuristic for
solving other pertinent problems, such as the fundamental solutions for piezoelectric-magnetic
and thermo-elastic materials.

Data accessibility. This article has no additional data.
Authors’ contributions. All authors contributed to the development of the theory and methodology presented in
this paper. Q.Z. implemented the code and wrote the manuscript, M.Z. provided the verification reference
code, Y.F. reviewed Green’s function, J.G.L. checked the mathematical demonstration and Q.H.L. supervised
the study.
Competing interests. We have no competing interests.
Funding. Q.Z. is sponsored by the John T. Chambers Scholar Award fund at Duke University, Durham, NC
27708, USA.

References
1. Chew WC, Tong MS, Hu B. 2008 Integral equation methods for electromagnetic and

elastic waves. Synth. Lect. Comput. Electromagn. 3, 1–241. (doi:10.2200/S00102ED1V01Y
200807CEM012)

http://dx.doi.org/doi:10.2200/S00102ED1V01Y200807CEM012
http://dx.doi.org/doi:10.2200/S00102ED1V01Y200807CEM012


18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180610

...........................................................

2. Ren Y, Chen Y, Zhan Q, Niu J, Liu QH. 2017 A higher order hybrid SIE/FEM/SEM method
for the flexible electromagnetic simulation in layered medium. IEEE Trans. Geosci. Remote Sens.
55, 2563–2574. (doi:10.1109/TGRS.2016.2647618)

3. Li MK, Chew WC. 2006 Using tap basis to implement the equivalence principle algorithm
for domain decomposition in integral equations. Microw. Opt. Technol. Lett. 48, 2218–2222.
(doi:10.1002/(ISSN)1098-2760)

4. Aliabadi MH. 2002 The boundary element method, applications in solids and structures, vol. 2. New
York, NY: John Wiley & Sons.

5. Ylä-Oijala P, Kiminki SP, Järvenpää S. 2015 Conforming boundary element methods in
acoustics. Eng. Anal. Boundary Elem. 50, 447–458. (doi:10.1016/j.enganabound.2014.10.002)

6. Gibson WC. 2015 The method of moments in electromagnetics. Boca Raton, FL: CRC Press.
7. Chen T, Li J, Toksöz N. 2013 Simulating shear wave propagation in two-dimensional fractured

heterogeneous media by coupling boundary element and finite difference methods. Geophys.
J. Int. 194, 1810–1822. (doi:10.1093/gji/ggt193)

8. Argani LP, Bigoni D, Capuani D, Movchan NV. 2014 Cones of localized shear strain in
incompressible elasticity with prestress: Green’s function and integral representations. Proc.
R. Soc. A 470, 20140423. (doi:10.1098/rspa.2014.0423)

9. Martin PA, Richardson JD, Gray LJ, Berger JR. 2002 On Green’s function for a three-
dimensional exponentially graded elastic solid. Proc. R. Soc. Lond. A 458, 1931–1947.
(doi:10.1098/rspa.2001.0952)

10. Tang J, Wu K, Zeng B, Huang H, Hu X, Guo X, Zuo L. 2018 Investigate effects of weak bedding
interfaces on fracture geometry in unconventional reservoirs. J. Pet. Sci. Eng. 165, 992–1009.
(doi:10.1016/j.petrol.2017.11.037)

11. Tang J, Wu K, Li Y, Hu X, Liu Q, Ehlig-Economides C. 2018 Numerical investigation of the
interactions between hydraulic fracture and bedding planes with non-orthogonal approach
angle. Eng. Fract. Mech. 200, 1–16. (doi:10.1016/j.engfracmech.2018.07.010)

12. Shetty S, Zhan Q, Liang L, Boyd A, Zeroug S, Simoes V, Canesin F. 2018 Method for determining
properties of a thinly laminated formation by inversion of multisensor wellbore logging data. WO
Patent no. PCT/US2018/028826.

13. Zhan Q, Zhang R, Baker J, Hansen H, Liu QH. 2017 Mapping the foam-induced dielectric
anisotropy for high-speed cables. In Proc. 2017 IEEE Electrical Design of Advanced Packaging
and Systems Symposium (EDAPS) (EDAPS 2017), Haining, Hangzhou, P. R. China, 14–16 December
2017. New York, NY: IEEE.

14. Ammari H, Fitzpatrick B, Gontier D, Lee H, Zhang H. 2017 Sub-wavelength focusing of
acoustic waves in bubbly media. Proc. R. Soc. A 473, 20170469. (doi:10.1098/rspa.2017.
0469)

15. Eshelby JD. 1957 The determination of the elastic field of an ellipsoidal inclusion, and related
problems. Proc. R. Soc. Lond. A 241, 376–396. (doi:10.1098/rspa.1957.0133)

16. Hornby BE, Schwartz LM, Hudson JA. 1994 Anisotropic effective-medium modeling of the
elastic properties of shales. Geophysics 59, 1570–1583. (doi:10.1190/1.1443546)

17. Mackay TG, Lakhtakia A. 2015 Modern analytical electromagnetic homogenization. San Rafael,
CA: Morgan & Claypool Publishers.

18. Mavko G, Mukerji T, Dvorkin J. 2009 The rock physics handbook: tools for seismic analysis of porous
media. Cambridge, UK: Cambridge University Press.

19. Fang Y, Hu Y, Zhan Q, Liu QH. 2018 Electromagnetic forward and inverse algorithms for 3-D
through-casing induction mapping of arbitrary fractures. IEEE Geosci. Remote Sens. Lett. 15,
996–1000. (doi:10.1109/LGRS.2018.2818112)

20. Song J, Cai-Cheng L, Weng Cho C. 1997 Multilevel fast multipole algorithm for
electromagnetic scattering by large complex objects. IEEE Trans. Antennas Propag. 45,
1488–1493. (doi:10.1109/8.633855)

21. Zhan Q, Ren Q, Zhuang M, Sun Q, Liu QH. 2018 An exact Riemann solver for wave
propagation in arbitrary anisotropic elastic media with fluid coupling. Comput. Methods Appl.
Mech. Eng. 329, 24–39. (doi:10.1016/j.cma.2017.09.007)

22. Zhou B, Greenhalgh S. 2005 Analytic expressions for the velocity sensitivity to the
elastic moduli for the most general anisotropic media. Geophys. Prospect. 53, 619–641.
(doi:10.1111/gpr.2005.53.issue-4)

23. Zhou B, Greenhalgh S. 2011 3-D frequency-domain seismic wave modelling in heterogeneous,
anisotropic media using a Gaussian quadrature grid approach. Geophys. J. Int. 184, 507–526.
(doi:10.1111/gji.2010.184.issue-1)

http://dx.doi.org/doi:10.1109/TGRS.2016.2647618
http://dx.doi.org/doi:10.1002/(ISSN)1098-2760
http://dx.doi.org/doi:10.1016/j.enganabound.2014.10.002
http://dx.doi.org/doi:10.1093/gji/ggt193
http://dx.doi.org/doi:10.1098/rspa.2014.0423
http://dx.doi.org/doi:10.1098/rspa.2001.0952
http://dx.doi.org/doi:10.1016/j.petrol.2017.11.037
http://dx.doi.org/doi:10.1016/j.engfracmech.2018.07.010
http://dx.doi.org/doi:10.1098/rspa.2017.0469
http://dx.doi.org/doi:10.1098/rspa.2017.0469
http://dx.doi.org/doi:10.1098/rspa.1957.0133
http://dx.doi.org/doi:10.1190/1.1443546
http://dx.doi.org/doi:10.1109/LGRS.2018.2818112
http://dx.doi.org/doi:10.1109/8.633855
http://dx.doi.org/doi:10.1016/j.cma.2017.09.007
http://dx.doi.org/doi:10.1111/gpr.2005.53.issue-4
http://dx.doi.org/doi:10.1111/gji.2010.184.issue-1


19

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180610

...........................................................

24. Zhang L, Zhou B. 2018 Calculation of slowness vectors from ray directions for qP-,
qSV-, and qSH-waves in tilted transversely isotropic media. Geophysics 83, C153–C160.
(doi:10.1190/geo2017-0751.1)

25. Chew WC. 1990 Waves and fields in inhomogeneous media. New York, NY: Van Nostrand
Reinhold.

26. Lifshitz I, Rozentsveig L. 1947 Construction of the Green tensor for the fundamental equation
of elasticity theory in the case of unbounded elastically anisotropic medium. Zh. Eksp. Teor.
Fiz. 17, 783–791.

27. Hong D, Huang WF, Chen H, Liu QH. 2017 Novel and stable formulations for the response
of horizontal-coil eccentric antennas in a cylindrically multilayered medium. IEEE Trans.
Antennas Propag. 65, 1967–1977. (doi:10.1109/TAP.2017.2670360)

28. Ting TCT, Lee VG. 1997 The three-dimensional elastostatic Green’s function for general
anisotropic linear elastic solids. Q. J. Mech. Appl. Math. 50, 407–426. (doi:10.1093/qjmam/
50.3.407)

29. Buroni FC, Sàez A. 2013 Unique and explicit formulas for Green’s function in three-
dimensional anisotropic linear elasticity. J. Appl. Mech. 80, 051018-1–051018-14. (doi:10.1115/
1.4023627)

30. Xie L, Zhang C, Sladek J, Sladek V. 2016 Unified analytical expressions of the three-
dimensional fundamental solutions and their derivatives for linear elastic anisotropic
materials. Proc. R. Soc. A 472, 20150272. (doi:10.1098/rspa.2015.0272)

31. Xie L, Zhang C, Wang J. 2018 Unified and explicit expressions of three-dimensional Green’s
functions and their first derivatives for piezoelectric solids with general anisotropy. Int. J.
Solids Struct. 155, 1–14. (doi:10.1016/j.ijsolstr.2018.05.009)

32. Wang CY, Achenbach J. 1994 Elastodynamic fundamental solutions for anisotropic solids.
Geophys. J. Int. 118, 384–392. (doi:10.1111/j.1365-246X.1994.tb03970.x)

33. Wang CY, Achenbach J. 1995 Three-dimensional time-harmonic elastodynamic Green’s
functions for anisotropic solids. Proc. R. Soc. Lond. A 449, 441–458. (doi:10.1098/rspa.
1995.0052)

34. Pan E. 2002 Three-dimensional Green’s functions in anisotropic magneto-electro-elastic
bimaterials. Z. Angew. Math. Phys. 53, 815–838. (doi:10.1007/s00033-002-8184-1)

35. Zhan Q, Zhuang M, Sun Q, Ren Q, Ren Y, Mao Y, Liu QH. 2017 Efficient ordinary differential
equation-based discontinuous Galerkin method for viscoelastic wave modeling. IEEE Trans.
Geosci. Remote Sens. 55, 5577–5584. (doi:10.1109/TGRS.2017.2710078)

36. Jiang S, Zhang J, Zhang Q, Zhang Z. 2017 Fast evaluation of the Caputo fractional derivative
and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678.
(doi:10.4208/cicp.OA-2016-0136)

37. Shi J, Liu JG. 1994 Relaxation and diffusion enhanced dispersive waves. Proc. R. Soc. Lond. A
446, 555–563. (doi:10.1098/rspa.1994.0120)

38. Tang T, Yu H, Zhou T. 2018 On energy dissipation theory and numerical stability for time-
fractional phase field equations. (http://arxiv.org/abs/1808.01471)

39. Zhu T. 2017 Numerical simulation of seismic wave propagation in viscoelastic-anisotropic
media using frequency-independent Q wave equation. Geophysics 82, WA1–WA10.
(doi:10.1190/geo2016-0635.1)
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