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We st u d y t h e st o c h a sti c gr a di e nt  d e s c e nt ( S G D)   m et h o d i n  n o n c o n-
v e x o pti mi z ati o n  pr o bl e m s fr o m t h e  p oi nt  of  vi e w of a p pr o xi m ati n g
di ff u si o n  pr o c e s s e s.   We  pr o v e  ri g or o u sl y  t h at  t h e  di ff u si o n  pr o c e s s
c a n  a p pr o xi m at e  t h e  S G D  al g orit h m   w e a kl y  u si n g  t h e   w e a k  f or m
of   m a st er  e q u ati o n f or  pr o b a bilit y  e v ol uti o n. I n  t h e  s m all  st e p  si z e
r e gi m e a n d t h e  pr e s e n c e of o m ni dir e cti o n al  n oi s e,  o ur   w e a k a p pr o x-
i m ati n g  di ff u si o n  pr o c e s s  s u g g e st s  t h e  f oll o wi n g  d y n a mi c s  f or  t h e
S G D it er ati o n st arti n g fr o m  a l o c al   mi ni mi z er (r e s p. s a d dl e  p oi nt):
it e s c a p e s i n  a  n u m b er  of it er ati o n s e x p o n e nti all y (r e s p.  al m o st li n-
e arl y)  d e p e n d e nt  o n  t h e i n v er s e  st e p si z e.   T h e  r e s ult s  ar e  o bt ai n e d
u si n g  t h e  t h e or y  f or  r a n d o m  p ert ur b ati o n s  of  d y n a mi c al  s y st e m s
(t h e or y  of  l ar g e  d e vi ati o n s  f or  l o c al   mi ni mi z er s  a n d  t h e or y  of  e x-
iti n g  f or  u n st a bl e  st ati o n ar y  p oi nt s).  I n  a d diti o n,   w e  di s c u s s  t h e
e ff e ct s  of  b at c h si z e f or t h e  d e e p  n e ur al  n et w or k s,  a n d   w e  fi n d t h at
s m all  b at c h  si z e i s  h el pf ul  f or  S G D  al g orit h m s  t o  e s c a p e  u n st a bl e
st ati o n ar y  p oi nt s  a n d  s h ar p   mi ni mi z er s.   O ur  t h e or y i n di c at e s  t h at
u si n g s m all  b at c h si z e  at  e arli er st a g e  a n d i n cr e a si n g t h e  b at c h si z e
at l at er st a g e i s  h el pf ul f or t h e  S G D t o  b e tr a p p e d i n  fl at   mi ni mi z-
e r s f or  b ett er  g e n er ali z ati o n.

K e y w o r d s   a n d  p h r a s e s: N o n c o n v e x  o p ti mi z a ti o n,  s t o c h a s ti c  g r a di e nt
d e s c e nt,  di ff u si o n  a p p r o xi m a ti o n,  s t a ti o n a r y  p oi nt s,  b a t c h  si z e.

1.  I n t r o d u c ti o n

M a n y  n o n c o n v e x  o pti mi z ati o n  t a s k s  i n v ol v e  fi n di n g  d e sir a bl e  st ati o n ar y

p oi nt.   T h e  st o c h a sti c  gr a di e nt  d e s c e nt  ( S G D)  al g orit h m  a n d  it s  v ari a nt s

ar Xi v:  1 7 0 5. 0 7 5 6 2
∗ C orr e s p o n di n g  a ut h or.
† C.  J.   Li  i s  p arti all y  s u p p ort e d  b y   R N M S 1 1- 0 7 4 4 4( KI- N et)  d uri n g  hi s  vi sit  at

D u k e   U ni v er sit y.
‡ T h e   w or k  of  J.- G.   Li u  i s  p arti all y  s u p p ort e d  b y   KI- N et   N S F   R N M S 1 1- 0 7 4 4 4,

N S F   D M S- 1 5 1 4 8 2 6  a n d   N S F   D M S- 1 8 1 2 5 7 3.

3



4 We n qi n g   H u  et  al.

e nj o y  f a v or a bl e  c o m p ut ati o n al  a n d  st ati sti c al  e ffi ci e n c y  a n d  ar e  h e n c e  p o p-
ul ar i n  t h e s e  t a s k s [ 4,  7,  5].   A  c e ntr al i s s u e i s   w h et h er  t h e it er ati o n  s c h e m e
c a n e s c a p e fr o m  u n st a bl e st ati o n ar y  p oi nt s i n cl u di n g  b ot h s a d dl e  p oi nt s  a n d
l o c al   m a xi mi z er s.   W h e n t h e  o bj e cti v e f u n cti o n  h a s t h e st ri ct  s a d dl e  p r o p e rt y
s u c h t h at all  u n st a bl e st ati o n ar y  p oi nt s  h a v e a stri ctl y  n e g ati v e ei g e n v al u e, it
i s s h o w n  b y   G e  et  al. [ 1 5] t h at i n  b ot h  u n c o n str ai n e d  a n d  c o n str ai n e d  c a s e s,
S G D   wit h  a p pr o pri at el y c h o s e n st e p si z e s c o n v er g e s t o a l o c al   mi ni mi z er   wit h
hi g h  pr o b a bilit y  aft er  s uit a bl y   m a n y  st e p s.

U si n g  c o nti n u o u s  ti m e  pr o c e s s e s  t o  a p pr o xi m at e  st o c h a sti c  al g orit h m s
i n   m a c hi n e  l e ar ni n g  h a s  a p p e ar e d  i n  s e v er al   w or k s.  I n  [ 2 7,  1 3],  t h e  i d e a
of  di ff u si o n  a p pr o xi m ati o n s  f or  S G D s  h a s  a p p e ar e d.   T h e  S G D  i n  [ 2 7]  i s
li mit e d  t o  a  s p e ci al  cl a s s   w hil e  t h e  a p pr o a c h  i n  [ 1 3]  i s  b a s e d  o n  t h e  st u d y
of  s e mi – gr o u p s.   F urt h er,  r e c e nt  st o c h a sti c  a n al y si s   w or k s  b y  t h e  fir st  t w o
a ut h or s  st u d y  t h e  S G D  a n d  t h e  st o c h a sti c  h e a v y – b all   m et h o d  fr o m  t h eir
a p pr o xi m ati n g  di ff u si o n  pr o c e s s e s.   T h e s e  di ff u si o n  pr o c e s s e s i s al s o  k n o w n a s
t h e r a n d o ml y  p ert ur b e d  gr a di e nt  fl o w [ 1 9] a s   w ell  a s t h e r a n d o ml y  p ert ur b e d
di s si p ati v e  n o nli n e ar  o s cill at or [ 2 0].

I n  t hi s  p a p er,   w e  c o n si d er  a  br o a dl y  g e n er al  u n c o n str ai n e d  st o c h a sti c
o pti mi z ati o n  pr o bl e m a n d  d e v el o p a n  a n al yti c fr a m e w or k  of g e n eri c  di ff u si o n
a p pr o xi m ati o n s,  ai mi n g  at  b ett er  u n d er st a n di n g  a n d  a n al y zi n g  t h e  gl o b al
d y n a mi c s  of  n o n c o n v e x  S G D.   T o  a c hi e v e  t hi s,   w e  pr o v e  ri g or o u sl y  t h at  t h e
d y n a mi c s  of  n o n c o n v e x  S G D  c a n  b e  a p pr o xi m at e d  b y  S D E s  u si n g  t h e   w e a k
f or m of   m a st er e q u ati o n s.   T h e i d e a i s ki n d of si mil ar t o [ 1 3]  b ut t h e pr o of  h er e
d o e s  n ot  u s e s e mi – gr o u p s e x pli citl y.   O ur  di ff u si o n  a p pr o xi m ati o n fr a m e w or k
f or t h e  n o n c o n v e x  S G D s u g g e st s t h e  vit al r ol e  of r a n d o m n e s s i n e n a bli n g t h e
al g orit h m  t o f a st  e s c a p e fr o m  u n st a bl e  st ati o n ar y  p oi nt s,  a s   w ell  a s  e ffi ci e nt
c o n v er g e n c e  t o  a  st ati o n ar y  p oi nt.   T h e r e s ult s  ar e  s u m m ari z e d i n   T h e or e m s
2  a n d  3 i n t h e   m ai n t e xt.   B e si d e s, t h e  di ff u si o n  a p pr o xi m ati o n  al s o  pr o vi d e s
i n si g ht s  of  t h e  e ff e ct s  of  b at c h  si z e i n  d e e p l e ar ni n g,  di s c u s s e d i n  S e cti o n  5.

G e  et  al.  [ 1 5]  pr o v e d  t h at  f or  di s cr et e –ti m e  S G D  t h e  it er ati o n s  f or  e s-
c a pi n g  fr o m  a  s a d dl e  p oi nt  i s  of  or d er C · η − 2 , w h er e C a b s or b s  a  p o w er
of d a n d  p ol yl o g arit h mi c  f a ct or  of η − 1 ,  s o  o ur  r at e i n   T h e or e m  3 i m pli e s  a
m u c h f a st er  r at e  t h a n [ 1 5] f or  s a d dl e  p oi nt s  e s c a pi n g.   O ur  r e s ult  s u g g e st s  a
p ot e nti all y   m u c h  s h ar p er  c o n v er g e n c e  r at e.

It i s   w ort h p oi nti n g o ut t h at o ur r e s ult i s n ot a pr o of of t h e O (η − 1 l o g η − 1 )
e s c a pi n g r at e si n c e t h e  di ff u si o n a p pr o xi m ati o n i s  pr o v e d o nl y o n a  fi x e d ti m e
i nt er v al  [ 0, T ].   O n  t h e  ot h er  h a n d,  o n  ti m e  i nt er v al  [ 0, ∞ )  s u c h  a n  a p pr o x-
i m ati o n  i s  o nl y  v ali d  i n  a   w e a k er  t o p ol o g y  ( S e e   A p p e n di x   A  a n d  c o m p ar e
wit h [ 2 5]).   O ur  h o p e i s t h at t h e  c urr e nt   w or k  c a n s h e d s o m e li g ht i n t h e  u n-
d er st a n di n g  of t h e  d y n a mi c s  of  di s cr et e st o c h a sti c  a p pr o xi m ati o n  al g orit h m s
s u c h  a s  S G D.
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T h e r e st  of t h e  p a p er i s  or g a ni z e d  a s f oll o w s. I n  S e cti o n  2,   w e  gi v e  a  bri ef
i ntr o d u cti o n t o  S G D  a n d r el at e d  b a c k gr o u n d. I n  S e cti o n  3,   w e i ntr o d u c e t h e
di ff u si o n  pr o c e s s t h at   w e a kl y  a p pr o xi m at e s  S G D  o n  a n y  fi nit e i nt er v al.   T hi s
di ff u si o n  pr o c e s s i s  o ur s u bj e ct  of st u d y i n t h e r e m ai ni n g s e cti o n s.   M or e o v er,
w e  c o n si d er  a n  i m p ort a nt  e x a m pl e  of  S G D,  n a m el y  S G D   wit h   mi ni – b at c h
a n d it s  c orr e s p o n di n g  di ff u si o n  pr o c e s s.  I n  S e cti o n  4,   w e  c o n si d er  t h e li mit
b e h a vi or  of t h e  di ff u si o n  pr o c e s s.   T h e st u d y  h er e  gi v e s  u s t h e  u n d er st a n di n g
r e g ar di n g e s c a pi n g ti m e s fr o m  u n st a bl e st ati o n ar y  p oi nt s  a n d l o c al   mi ni mi z-
er s.   T h e  e ff e ct  of  b at c h  si z e i s  t h e n  di s c u s s e d i n  S e cti o n  5   wit h  t h e i nt uiti o n
e st a bli s h e d  i n  S e cti o n  4.   We  c o n cl u d e  t h at  s m all  b at c h  si z e  i s  h el pf ul  f or
S G D  t o  e s c a p e fr o m  s h ar p l o c al   mi ni mi z er s  a n d  u n st a bl e  st ati o n ar y  p oi nt s.
We  al s o  pr o p o s e  t o  d e cr e a s e  t h e  b at c h  si z e  a s  t h e  it er ati o n  g o e s  o n.   T h e
cl a s si c al  r e s ult s  f or  si m ul at e d  a n n e ali n g  s u g g e st s  t h at  o ur  i nt uiti o n   m a k e s
s e n s e.   We  pr e s e nt  n u m eri c al  e vi d e n c e  t o  v ali d at e  o ur  t h e or y i n  S e cti o n  6.

2.   B a c k g r o u n d

I n t hi s s e cti o n   w e pr e p ar e f or r e a d er s t h e b a si c s etti n g s of t h e S G D al g orit h m.
F or  a  g e n er all y  n o n c o n v e x  st o c h a sti c l o s s  f u n cti o n f (x ; ζ )  t h at i s  t wi c e  dif-
f er e nti a bl e   wit h  r e s p e ct  t o x ,  o ur  g o al i s  t o  s ol v e  t h e f oll o wi n g  o pti mi z ati o n
pr o bl e m

mi n
x

E [f (x ; ζ )] ,

w h er e ζ i s  s a m pl e d  fr o m  s o m e  di stri b uti o n D .   F or  n ot ati o n al  c o n v e ni e n c e,
w e  d e n ot e

F (x ) : = E [f (x ; ζ )] .( 2. 1)

At k t h i t er ati o n,   w e  e v al u at e  t h e  n oi s y  gr a di e nt ∇ f x ( k − 1 ) ; ζ k a n d  u p-
d at e  t h e it er ati o n  a c c or di n g  t o

( 2. 2) x ( k ) = x ( k − 1 ) − η ∇ f (x ( k − 1 ) ; ζ k ) .

H er e η > 0  d e n ot e s  t h e st e p  si z e or l e a r ni n g  r at e,  a n d  t h e  n oi s y  gr a di-
e nt  a d mit s  r a n d o m n e s s ζ k t h at  c o m e s  fr o m  b ot h  n oi s e  i n  st o c h a sti c  gr a di-
e nt  a n d  p o s si bl y  i nj e ct e d  a d diti v e  n oi s e.   We  a s s u m e  t h at ζ i ( i ≥ 0)  ar e
i.i. d  r a n d o m  v ari a bl e s  s u c h  t h at ζ k i s  i n d e p e n d e nt  of  t h e  si g m a  al g e br a
σ (x 0 , x 1 , . . . , x k − 1 ). It i s str ai g htf or w ar d t o  o b s er v e t h at t h e it er ati o n { x ( k ) }
g e n er at e d  b y  ( 2. 2) f or m s  a  di s cr et e  ti m e,  ti m e – h o m o g e n e o u s   M ar k o v  c h ai n.
O n e  of t h e  a d v a nt a g e s  of st o c h a sti c  gr a di e nt   m et h o d i s t h at it r e q uir e s littl e
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m e m or y  a n d  i s  h e n c e  s c al a bl e  t o  t h e  “ bi g  d at a ”  s etti n g.   T hr o u g h o ut  t hi s
p a p er,   w e  f o c u s  o n  t h e  c a s e  t h at  t h e  st o c h a sti c  f u n cti o n f (x ; ζ )  i s  t wi c e –
di ff er e nti a bl e   wit h  r e s p e ct  t o x .

L et  u s i ntr o d u c e  t h e f oll o wi n g  d e fi niti o n:

D e fi ni ti o n  1 ( St ati o n ar y   P oi nt) . We  c all x ∈ R d a  st ati o n ar y  p oi nt if  t h e
gr a di e nt ∇ F (x ) = 0 .   B y  i n v e sti g ati n g  t h e   H e s si a n   m atri x  at  p oi nt x , w e
d et ail  t h e  d e fi niti o n i n  t h e f oll o wi n g  t w o  c a s e s:

(i)   A  st ati o n ar y  p oi nt x i s  ( a s y m pt oti c all y) st a bl e if  t h e   H e s si a n   m atri x
∇ 2 F (x ) i s  p o siti v e  d e fi nit e.

(ii)   A st ati o n ar y  p oi nt x i s u n st a bl e if t h e l e a st ei g e n v al u e of   H e s si a n   m atri x
∇ 2 F (x ) i s  stri ctl y  n e g ati v e.

It i s str ai g htf or w ar d t o  o b s er v e t h at  a st a bl e st ati o n ar y  p oi nt i s  al w a y s  a
l o c al   mi ni mi z er,  a n d  a n  u n st a bl e st ati o n ar y  p oi nt  c a n  b e  eit h er  a l o c al   m a x-
i mi z er ( w h e n   H e s si a n  h a s  o nl y  n e g ati v e ei g e n v al u e s)  or  a s a d dl e  p oi nt ( w h e n
H e s si a n  h a s  b ot h  n e g ati v e  a n d  n o n n e g ati v e  ei g e n v al u e s).   A s  a  si d e  r e m ar k,
r e s ult s i n [ 8] i m pli e s  t h at  n o n d e g e n er at e  st ati o n ar y  p oi nt s  ar e i s ol at e d  a n d
c a n  h e n c e  b e  a n al y z e d  s e q u e nti all y.

3.   Di ff u si o n  a p p r o xi m a ti o n  f o r   S G D

I n  t hi s  s e cti o n,   w e  i ntr o d u c e  t h e  c o n c e pt  of  t h e  di ff u si o n  pr o c e s s  t h at   will
b e  a n al y z e d  t hr o u g h o ut  t h e  e ntir e  p a p er f or  t h e  a p pr o xi m ati o n  of  S G D.

3. 1.   T h e   di ff u si o n  a p p r o xi m a ti o n

I n  t hi s  s u b s e cti o n,   w e j u stif y  ri g or o u sl y  t h at  t h e  S G D  ( 2. 2)  c a n  b e  a p pr o x-
i m at e d  b y  S D E s   wit h  gl o b al   w e a k  a c c ur a c y O (η 2 ) f or k ∈ [ 0, T / η],   w h er e
T i s  a  fi x e d  n u m b er  i n d e p e n d e nt  of η .   F or  t hi s  p ur p o s e,   w e  i ntr o d u c e  t h e
p s e u d o –ti m e s s u c h  t h at  t h e k –t h  st e p  c orr e s p o n d s  t o  ti m e s k = k η .

We  i ntr o d u c e  t h e  f oll o wi n g  s u b s et  of C m s m o ot h  f u n cti o n s  e q ui p p e d
wit h it s  n at ur al  n or m:

C m
b ( R d ) =

⎧
⎨

⎩
f ∈ C m ( R d ) f C m : =

|α | ≤m

|D α f |∞ < ∞

⎫
⎬

⎭
.( 3. 1)

H er e,  t h e  s u bi n d e x  “ b ”   m e a n s  “ b o u n d e d ”.
We  ai m  t o  fi n d  di ff u si o n  a p pr o xi m ati o n s  f or  S G D.   N a m el y  t o  fi n d  a

di ff u si o n  pr o c e s s   w hi c h  s ol v e s  a n  S D E  a n d   w h o s e  tr aj e ct or y  i s  cl o s e  t o  t h e
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S G D  tr aj e ct or y  i n  a   w e a k  s e n s e.  S u c h  a n  i d e a  a p p e ar e d  i n  [ 2 7,  1 3].   T h e

S G D  al g orit h m s  c o n si d er e d i n [ 2 7]  ar e li mit e d  t o  a  s p e ci al  cl a s s  of  o bj e cti v e

f u n cti o n s   w hil e  t h e  a p pr o a c h  i n  [ 1 3]  r eli e s  o n  s e mi – gr o u p s.   We   will   m o stl y

f oll o w  t h e  fr a m e w or k  i n  [ 1 3]  h er e  b ut  t h e  pr o of  i n  t hi s  p a p er  i s  sli g htl y

di ff er e nt.

C o n si d er  t h at  t h e  S D E  gi v e n  a s

d X (s ) = b (X (s )) d s +
√

η S (X (s )) d B (s ),( 3. 2)

w h er e b (x ) i s  a  v e ct or – v al u e d f u n cti o n  a n d S (X (s )) i s  a   m atri x – v al u e d f u n c-

ti o n.   We  n o w i ntr o d u c e  t h e  c o n c e pt  of   w e a k  a c c ur a c y:

D e fi ni ti o n  2. Fi x T > 0.   We  s a y { X (k η )} a p pr o xi m at e s  t h e  s e q u e n c e

{ x ( k ) } wit h   w e a k  or d er p > 0  if  f or  a n y ϕ ∈ C
2 ( p + 1 )
b , t h er e e xi st s C > 0

a n d η 0 > 0  t h at  ar e  i n d e p e n d e nt  of η ( b ut   m a y  d e p e n d  o n T , ϕ a n d  it s

d eri v ati v e s)  s u c h  t h at

|E ϕ (x ( k ) ) − E ϕ (X (k η ))| ≤ C η p f or  all  1 ≤ k ≤ T / η a n d  all η ∈ ( 0, η0 ) .

( 3. 3)

L et  u s  fi x  a  t e st f u n cti o n ϕ ∈ C 6
b ,  a n d  d e fi n e

u k ( x ) = E x ( ϕ (x ( k ) ) ) ,( 3. 4)

w h er e E x m e a n s t h at t h e  pr o c e s s st art s  at x .   T h e n  b y t h e   M ar k o v  pr o p ert y,

w e  fi n d  t h e f oll o wi n g   w e a k f or m  of   m a st er  e q u ati o n s

u k + 1 ( x ) = E x E x 1 ( ϕ (x ( k + 1 ) ) |x ( 1 ) )

= E x ( u k ( x ( 1 ) ) )

= E u k ( x − η ∇ f (x ; ζ )) .

( 3. 5)

P erf or mi n g   T a yl or e x p a n si o n f or u k ,   w e c o n str u ct  S D E a p pr o xi m ati o n s of t h e

S G D  at  di ff er e nt  or d er s.   B a s e d  o n  t hi s  o b s er v ati o n,   w e  pr o v e  t h e  f oll o wi n g

t h e or e m   w hi c h i s  a  r e fi n e d  v er si o n  of   T h e or e m  1 i n [ 2 7].   O ur  pr o of  u s e s  t h e

s e mi – gr o u p   m et h o d  a n d i s  r el ati v el y  n e w:

T h e o r e m  1. A s s u m e  t h at  t h e r e  e xi st s C > 0 s u c h  t h at  f o r  a n y ζ ∈ D ,

f (x ; ζ ) C 7 ≤ C.
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C h o o s e

b (x ) = − ∇ F (x ) −
1

4
η ∇| ∇ F (x )|2 ,

S (x ) = Σ (x ),
( 3. 6)

w h e r e

Σ (x ) = v ar( ∇ f (x ; ζ )).( 3. 7)

Fi x T > 0 a n d l et X (t) b e t h e  s ol uti o n t o  S D E ( 3. 2) wit h X ( 0)   = x ( 0 ) . T h e n
{ X (k η )} a p p r o xi m at e s  t h e  s e q u e n c e { x ( k ) } wit h   w e a k  o r d e r 2 o n [ 0, T ].

P r o of. We  fi x  a t e st f u n cti o n ϕ ∈ C 6
b .   D e fi n e u k a s i n  ( 3. 4)  a n d t h er ef or e   w e

h a v e  ( 3. 5).  I ntr o d u c e

u (x , s) = E x ϕ (X (s )) ,( 3. 8)

w h er e x i n di c at e s  t h at  t h e  e x p e ct ati o n i s  t a k e n  c o n diti o ni n g  o n X ( 0)   = x .
T h e n, u (x , s)  s ati s fi e s  t h e   K ol m o gr o v  b a c k w ar d  e q u ati o n

∂ s u = L u : = b · ∇u +
1

2
η Σ : ∇ 2 u.( 3. 9)

T h e  s y m b ol  “: = ”   m e a n s  t h at  t h e  l eft- h a n d  si d e  a p p e ar s  f or  t h e  fir st  ti m e
a n d it i s  d e fi n e d  b y  t h e  ri g ht- h a n d  si d e.

B y  t h e  a s s u m pti o n  o n f (·; ζ ), η Σ C 6 ≤ C (η 0 ) < ∞ a n d b C 6 ≤ C f or
η ≤ η 0 .  It f oll o w s  t h at

s u p
0 ≤ s ≤ T

u C 6 ≤ C (T, η 0 ) < ∞ , f or  all η ≤ η 0 .

F u rt h er,   w e  h a v e  t h e f oll o wi n g  s e mi- gr o u p  e x p a n si o n  e sti m at e:

u (x , (k + 1) η ) − u (x , k η) − η L u (x , k η) −
η 2

2
L 2 u (x , k η) < C ( u C 6 ) η 3 ,

( 3. 1 0)

w hi c h i m pli e s  t h at

( 3. 1 1) u (x , (k + 1) η ) − u (x , k η) − η b (x ) · ∇u (x , k η)

−
1

2
η 2 ( Σ (x ) + b (x )b (x ) T ) : ∇ 2 u (x , k η) −

1

4
η 2 ∇| b (x )|2 · ∇u (x , k η) < C η 3 .
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N o w,  b y   T a yl or  e x p a n si o n,   w e  h a v e

( 3. 1 2) E (u (x − η ∇ f (x , ζ), k η))   = u (x , k η) − η ∇ F (x ) · ∇u (x , k η)

+
1

2
η 2 E (∇ f (x , ζ)∇ f (x , ζ) T ) : ∇ 2 u (x , k η) + C ( u C 3 ) η 3 .

Wit h  t h e  c h oi c e  of b (·) a n d Σ (·) i n  ( 3. 6),   w e  fi n d  t h at

η b (x ) · ∇u (x , k η) +
η 2

4
∇| b (x )|2 · ∇u (x , k η)

= − η ∇ F (x ) · ∇u (x , k η) + η 3 R 1 ( x , k η),

(Σ (x ) + b (x )b (x ) T ) = E (∇ f (x , ζ)∇ f (x , ζ) T ) + η R 2 ( x , k η),

( 3. 1 3)

wit h |R i | ≤ C f or i = 1 , 2.

D e fi n e

E k = s u p
x

|u k ( x ) − u (x , k η)|.

We  t h e n  fi n d  u si n g  ( 3. 1 1)  a n d  ( 3. 1 2)  t h at

|u (x , (k + 1) η ) − E (u (x − η ∇ f (x , ζ), k η))| ≤ C η 3 , η ≤ η 0 .( 3. 1 4)

U si n g  ( 3. 5),  ( 3. 1 4)  a n d  ( 3. 1 3),   w e  t h er ef or e  fi n d

E k + 1 ≤ E (|u k ( x − η ∇ f (x ; ζ )) − u (x − η ∇ f (x , ζ), k η)|) + C (T, η )η 3

≤ E k + C (T, η )η 3 .

T h e  cl ai m  t h e n f oll o w s.

I n  t h e O (η 2 )  a p pr o xi m ati o n, − 1
4 η ∇| ∇ F (x )|2 i s  a  s m all  c orr e cti o n  t o

b (x ).   T hr o wi n g  a w a y  t hi s  t er m  r e d u c e s  t h e   w e a k  err or  fr o m O (η 2 ) t o O (η )
a s   m e nti o n e d  i n  [ 2 7,  1 3].  I nt er e sti n gl y,  if  o n e  g o e s  o v er  t h e  pr o of,  o n e   will
fi n d t h at f or O (η )   w e a k  a p pr o xi m ati o n  o n [ 0 , T ], c h o o si n g b (x ) = − ∇ F (x ) i s
e n o u g h  a n d t h e e x pli cit c h oi c e  of t h e f u n cti o n S (x ) i s  n ot i m p ort a nt. I n d e e d,
a s j u sti fi e d i n   A p p e n di x   A, if   w e  s et Σ =  0,  t h e   m a g nit u d e  of  t h e  err or i s  of
or d er O (

√
η ).   T h e   w e a k  err or i s  of  or d er O (η )  b e c a u s e t h e   m e a n  of t h e  err or

i s O (η ).   K e e pi n g
√

η Σ i n d e e d  c a pt ur e s t h e  e s s e nti al  b e h a vi or i ntr o d u c e d  b y
t h e  n oi s e.   H e n c e, f or  si m pli cit y, fr o m  h er e  o n,   w e   will f o c u s  o n  t h e f oll o wi n g
a p pr o xi m ati o n:

( 3. 1 5) d X (s ) = − ∇ F (X (s )) d s +
√

η S (X (s )) d B (s ),
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w h er e S (x ) = [ v ar( ∇ f (x ; ζ ))] 1 / 2 i s  a  p o siti v e  s e mi d e fi nit e   m atri x – v al u e d
f u n cti o n  a n d B (s )  i s  a  st a n d ar d d – di m e n si o n al   Br o w ni a n   m oti o n.   We  c all
t h e  s ol uti o n X (s )  t o  S D E  ( 3. 1 5)  t h e S G D  di ff u si o n  p r o c e s s wit h  r e s p e ct  t o
( 2. 2).  I n  t h e  r e st  of  t hi s  p a p er,   w e  c o n c e ntr at e  o ur  a n al y si s  o n  t h e  c o nti n u-
o u s  pr o c e s s X (s )  t h at  s ol v e s  ( 3. 1 5),   w hi c h  gi v e s  u s   m or e i n si g ht  a b o ut  t h e
ori gi n al  di s cr et e –ti m e  S G D  d y n a mi c s.

3. 2.   A n  e x a m pl e  f r o m   d e e p   n e u r al   n e t w o r k s

I n  d e e p  l e ar ni n g  [ 1 7],  o ur  g o al  i s  t o   mi ni mi z e  a  g e n er all y  n o n c o n v e x  l o s s
f u n cti o n i n  or d er  t o l e ar n  t h e   w ei g ht s  of  a  d e e p  n e ur al  n et w or k.   T o  b e  c o n-
cr et e,  t h e  g o al  i n  tr ai ni n g  d e e p  n e ur al  n et w or k s  gi v e n  a  tr ai ni n g  s et  i s  t o
s ol v e  t h e f oll o wi n g  st o c h a sti c  o pti mi z ati o n  pr o bl e m

mi n
x ∈ R d

F ( x ) ≡
1

M

M

i= 1

f i ( x ).

H er e, M i s t h e si z e  of t h e tr ai ni n g s et  a n d e a c h c o m p o n e nt f i c orr e s p o n d s t o
t h e l o s s f u n cti o n f or  d at a  p oi nt i ∈ { 1 , . . . , M } . x i s t h e  v e ct or  of   w ei g ht s ( or
p ar a m et er s  f or  t h e  n e ur al  n et w or k s)  b ei n g  o pti mi z e d.   W h e n   w e  u s e   mi ni –
b at c h  tr ai ni n g  a n d m = |B ζ | i s  t h e  si z e  of   mi ni b at c h,

f (x ; ζ ) =
1

m
i∈ B ζ

f i ( x ) =
1

m

m

i= 1

f ζ i
( x )

wit h ζ = ( ζ 1 , . . . , ζm ).   H er e,   w e  a s s u m e t h e s a m pli n g i s  u nif or m  a n d   wit h o ut
r e pl a c e m e nt; i. e. ζ i i s  pi c k e d   wit h e q u al  pr o b a bilit y fr o m { 1 , . . . , M } \ { ζ j ; 1 ≤
j ≤ i − 1 } f or  all  1 ≤ i ≤ m .   T h e  o bj e cti v e  f u n cti o n  c a n  b e f urt h er   writt e n
a s  t h e  e x p e ct ati o n  of  a  st o c h a sti c f u n cti o n

1

M

M

i= 1

f i ( x ) = E ζ

⎛

⎝ 1

m
i∈ B ζ

f i ( x )

⎞

⎠ .

H e n c e  t h e  S G D  al g orit h m  ( 2. 2) f or   mi ni mi zi n g  t h e  o bj e cti v e f u n cti o n F (x )
it er ati v el y  u p d at e s  t h e  al g orit h m  a s

x ( k ) = x ( k − 1 ) − η ·

⎛

⎝ 1

m k
i∈ B

ζ ( k )

∇ f i ( x
( k − 1 ) )

⎞

⎠ ,
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w h er e η i s  t h e  c o n st a nt  st e p si z e  a n d ζ ( k ) = ( ζ
( k )
1 , . . . , ζ

( k )
m k ).   T h e  s u bi n d e x k

f or m m e a n s  t h at  t h e  b at c h  si z e   m a y  d e p e n d  o n  ti m e.   T hi s  i s  t h e  cl a s si c al
mi ni – b at c h  v er si o n  of  t h e  S G D.  If m k = m i s  a  c o n st a nt  a n d { ζ ( k ) : k ≥ 1 }
ar e i.i. d,  t h e n { x ( k ) } f or m s  a  di s cr et e  ti m e- h o m o g e n e o u s   M ar k o v  c h ai n.

F or t hi s  cl a s si c al   mi ni- b at c h  v er si o n  of  S G D,   w e  c a n  a c c ur at el y  q u a ntif y
it s  v ari a n c e:

P r o p o si ti o n  1. S u p p o s e   w e  d r a w  a  b at c h B ζ of m d at a  p oi nt s  u nif o r ml y
f r o m  t h e  e nti r e  d at a  s et { 1 , . . . , M } wit h o ut  r e pl a c e m e nt  a n d  e sti m at e  t h e
g r a di e nt   wit h  t h e  a v e r a g e d  s a m pl e  g r a di e nt s ( 1/ m ) M

i= 1 ∇ f i ( x ) 1 i∈ B ζ
. T h e

e sti m at o r  i s  u n bi a s e d  a n d  t h e  c o v a ri a n c e  i s

Σ (x ) = v ar
1

m

M

i= 1

∇ f i ( x ) 1 i∈ B ζ
=

1

m
−

1

M
Σ 0 ( x ),

w h e r e

Σ 0 ( x ) =
1

M − 1

M

i= 1

( ∇ F (x ) − ∇ f i ( x ))( ∇ F (x ) − ∇ f i ( x ))

i s  t h e  s a m pl e  c o v a ri a n c e   m at ri x  of  r a n d o m  v e ct o r ∇ f i ( x ).

P r o of. We  c a n  r e writ e  t h e  n oi s y  gr a di e nt  a s

∇ f (x , ζ) =
1

m

m

i= 1

∇ f ζ i
( x ),

w h er e ζ = ( ζ 1 , . . . , ζm ).
T h e  s e c o n d   m o m e nt   m atri x i s  gi v e n  b y

E ∇ f (x , ζ)∇ f (x , ζ) T =
1

m 2
1 ≤ i, j ≤ m

E f ζ i
f T

ζ j
.

If i = j ,  t h e  e x p e ct ati o n i s

E f ζ i
f T

ζ j
=

1

M

M

p = 1

∇ f p ∇ f T
p .

If i = j , w e h a v e

E f ζ i
f T

ζ j
=

1

M

M

k = 1

E ( ∇ f ζ j
|ζ i = k )∇ k f =

1

M (M − 1)
j = k

∇ f j ∇ f T
k .
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Si n c e E ∇ f (x , ζ) = ∇ F (x ) = 1
M

M
i= 1 ∇ f i ( x ),   w e  fi n d  t h at

( 3. 1 6)  v ar( ∇ f (x , ζ))   = E ∇ f (x , ζ)∇ f (x , ζ) T − ∇ F (x )∇ F (x ) T

=
(m − 1)

m M (M − 1)
j = k

∇ f j ∇ f T
k +

1

m M

M

p = 1

∇ f p ∇ f T
p −

1

M 2

M

j, k = 1

∇ f j ∇ f T
k ,

w hi c h  si m pli fi e s  t o  t h e  e x pr e s si o n  a s i n  t h e  st at e m e nt.

Pr o p o siti o n  1  i m pli e s  t h at  t h e  di ff u si o n   m atri x S (x )  i n  t h e  S G D  di ff u-
si o n  pr o c e s s  i s  a s y m pt oti c all y  e q u al  t o Σ 0 ( x )/ m w h e n M i s  l ar g e.   T hi s
c o m p ut ati o n  s h o w s  t h at  t h e  S D E  a p pr o xi m ati o n f or  t hi s   m o d el i s  gi v e n  b y

d X (s ) = − ∇ F (X (s )) d s + η
1

m
−

1

M
Σ 0 d B (s ).( 3. 1 7)

T h e  b at c h  si z e  t h er ef or e  a ff e ct s  t h e   m a g nit u d e  of  t h e  di ff u si o n.

4.   Li mi ti n g   b e h a vi o r   vi a  s t o c h a s ti c  a n al y si s

T hr o u g h o ut  t hi s  s e cti o n,   w e  i ntr o d u c e  st o c h a sti c  a n al y si s  t h e or y  t o  st u d y
t h e  st o c h a sti c  it er at e s   w hi c h  ar e  n e e d e d  t o  e s c a p e  fr o m  criti c al  p oi nt s,  i n
t h e li miti n g  r e gi m e  of  s m all  st e p si z e η → 0 + . We a d d a η o n t h e  s u p er s cri pt
of  t h e  S G D  di ff u si o n  pr o c e s s X η ( t)  t o  e m p h a si z e  t h at  t h e  pr o c e s s  d e p e n d s
o n  t h e  st e p si z e η .

N ot ati o n al  c o n v e nti o n s. We  d e n ot e  b y u t h e   E u cli d e a n  n or m  of  a  v e ct or
u ∈ R d .   F or  a  r e al  s y m m etri c   m atri x H ∈ R d × d , l et λ mi n ( H )  b e it s  s m all e st
ei g e n v al u e.   Fi xi n g  a  c o n n e ct e d  o p e n  s et D ⊂ R d ,  a  f u n cti o n g : D → R
i s  s ai d  t o  b e  c o nti n u o u sl y  di ff er e nti a bl e,  d e n ot e d  b y g ∈ C 1 ( D ),  if  it  h a s
c o nti n u o u s  fir st – or d er  p arti al  d eri v ati v e s ∂ g / ∂ x i .  Si mil arl y,  f or  a n y m ≥ 2,
w e  s a y g i s m ti m e s  c o nti n u o u sl y  di ff er e nti a bl e,  d e n ot e d  b y g ∈ C m ( D ),  if
all t h e  fir st  or d er  p arti al  d eri v ati v e s  ar e C m − 1 ( D ) f u n cti o n s.   L et ∇ F (x ) a n d
∇ 2 F (x )  b e t h e  gr a di e nt  v e ct or  a n d   H e s si a n   m atri x  at  p oi nt x f or  a f u n cti o n
F ∈ C 2 ( D ).   Fi n all y,  a   m atri x  v al u e d  f u n cti o n S : D → R d × d i s  s ai d  t o  b e
C m ( D ) if  e a c h  e ntr y  of S i s  a C m ( D ) f u n cti o n.

I n  t hi s  s u b s e cti o n,   w e  ai m  at  d e s cri bi n g  t h e  d y n a mi c s  n e ar  l o c al   mi ni-
mi z er s  a n d  s a d dl e  p oi nt s  ( T h e or e m s  2  a n d  3).   R e c all  t h at D i s  a  b o u n d e d
c o n n e ct e d  o p e n  s et   wit h  s m o ot h  b o u n d ar y ∂ D .   L et  u s  fir st  i ntr o d u c e  t h e
f oll o wi n g:
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D e fi ni ti o n  3. We  s a y  a   m atri x  v al u e d  f u n cti o n M (x ) : D → R d × d i s u ni-
f o r ml y  p o siti v e  d e fi nit e if M (x ) i s  p o siti v e  d e fi nit e  at e v er y  p oi nt x ∈ D , a n d
i nf
x ∈ D

λ mi n ( M (x )) > 0.  I n   w or d s,  t h e  s m all e st  ei g e n v al u e  of M (x ) i s  p o siti v e

a n d i s  b o u n d e d  a w a y fr o m  0.

L et  t h e  hitti n g  ti m e T η of ∂ D b e

( 4. 1) T η = i nf { s > 0 : X η ( s ) ∈ ∂ D } .

Al s o, l et E x d e n ot e  t h e  c o n diti o n al  e x p e ct ati o n  o p er at or  o n X η ( 0)   = x .

4. 1.   E s c a p e  f r o m  l o c al   mi ni mi z e r s

S u p p o s e   wit h o ut  l o s s  of  g e n er alit y  t h at x ∗ = 0 i s  a  n o n – d e g e n er at e  l o c al
mi ni mi z er ( ot h er wi s e,  c o n si d er t h e s hift e d f u n cti o n F (x + x ∗ ) ).   We  c o n cl u d e
t h e f oll o wi n g  t h e or e m.

T h e o r e m  2. C o n si d e r  t h e  S D E ( 3. 1 5) .  S u p p o s e  t h e   m at ri x – v al e d  f u n cti o n
S (x ) ∈ C 1 , F (x ) ∈ C 2 a n d S (x )S (x ) T i s  u nif o r ml y  p o siti v e  d e fi nit e.   T h e n
f o r  a n y  s u ffi ci e ntl y  s m all δ > 0 t h e r e  e xi st s  a n  o p e n  b all B (0 , δ) ⊂ U s u c h
t h at f o r  a n y  c o n v e x  o p e n  s et D i n si d e B (0 , δ) c o nt ai ni n g x = 0 , t h e r e e xi st s
a  c o n st a nt V̄ D ∈ ( 0, ∞ ) d e p e n di n g  o nl y  o n D s u c h  t h at  t h e  e x p e ct e d  hitti n g
ti m e T η i n ( 4. 1) s ati s fi e s

li m
η → 0 +

η l o g[E x T η ] = V̄ D f o r  all x ∈ D.( 4. 2)

F u rt h e r,   w e  h a v e  u nif o r m  c o nt r ol  of  t h e   m e a n  e xit  ti m e:  t h e r e  e xi st δ 1 ∈
( 0, δ), C 1 , C2 > 0 a n d η 0 > 0 s o  t h at   w h e n e v e r η ≤ η 0

C 1 ≤ i nf
x ∈ B ( 0 , δ1 )

η l o g[E x T η ] ≤ s u p
x ∈ B ( 0 , δ1 )

η l o g[E x T η ] ≤ C 2 .( 4. 3)

I n  p a rti c ul a r,   w e  d e fi n e N η = T η / η w hi c h  i s  t h e  c o nti n u o u s  a n al o g u e  of
it e r ati o n  st e p s.   T h e n,  t h e r e  e xi st C 3 , C4 > 0 s u c h  t h at  t h e  e x p e ct e d  st e p s
n e e d e d  t o  e s c a p e  f r o m  a  l o c al   mi ni mi z e r  s ati s fi e s

C 3 ≤ i nf
x ∈ B ( 0 , δ1 )

η l o g[E x N η ] ≤ s u p
x ∈ B ( 0 , δ1 )

η l o g[E x N η ] ≤ C 4 .( 4. 4)

R e m a r k. T h e or e m  2 i n di c at e s  t h at  o n  a v er a g e,  t h e  s y st e m   will   w a n d er  n e ar
t h e l o c al   mi ni mi z er  f or  a s y m pt oti c all y  e x p( C η − 1 )  n u m b er  of  st e p s  u ntil  a n
e s c a pi n g  e v e nt fr o m l o c al   mi ni mi z er  o c c ur s.
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T o  pr o v e   T h e or e m  2,   w e  s h o w  s o m e  a u xili ar y  r e s ult s.   D e n ot e

u (x ) = E x T η .( 4. 5)

B y [ 1 0,   C or oll ar y  5. 7. 4], u (x ) s ati s fi e s t h e f oll o wi n g elli pti c   P D E   wit h   Diri c h-

l et  b o u n d ar y  c o n diti o n

L u = − 1 , x ∈ D,

u = 0 , x ∈ ∂ D,
( 4. 6)

w h er e L i s  t h e  g e n er at or  of  t h e  di ff u si o n  pr o c e s s  gi v e n  b y

L =
η

2
i j

( S (x )S (x ) ) i j
∂ 2

∂ x i ∂ x j
− ∇ F (x ) · ∇.( 4. 7)

T h e f oll o wi n g l e m m a i s  u s ef ul  t o  u s:

L e m m a  1. If t h e r e  e xi st  a f u n cti o n ψ ∈ C 2 ( U ) ∩ C ( Ū ) wit h ψ ≥ 0 , ψ ∞ >

0 , ψ = 0 , x ∈ ∂ U f o r s o m e  o p e n,  c o n n e ct e d s et U ⊂ D a n d  a  p o siti v e  n u m b e r

μ > 0 s u c h  t h at − L ψ ≤ μ ψ , x ∈ U , t h e n

u (x ) ≥
ψ

μ ψ ∞
, x ∈ U.

I n  p a rti c ul a r,  s u p p o s e μ 1 i s  t h e  p ri n ci p al  ei g e n v al u e  of − L , t h e n

u ∞ ≥
1

μ 1
.

P r o of. C o n si d er

v = u −
ψ

μ ψ ∞
.

T h e n, v ≥ 0 , x ∈ ∂ U . Al s o,

− L v = 1 +
L ψ

μ ψ ∞
≥ 1 −

ψ

ψ ∞
≥ 0 .

T h e n, v ≥ 0 f or x ∈ U b y   m a xi m u m  pri n ci pl e.

Pi c ki n g μ = μ 1 a n d ψ t o  b e  t h e  pri n ci p al  ei g e nf u n cti o n,   w e  o bt ai n  t h e

s e c o n d  cl ai m.
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L e m m a  2. If D i s  a n  o p e n  s et  t h at  c o nt ai n s  t h e  n o n- d e g e n e r at e l o c al   mi n-
i mi z e r x = 0 s u c h  t h at  t h e r e  e xi st s γ > 0 s ati sf yi n g ∇ F (x ) · x > γ |x |2 f o r
all x ∈ D , t h e n

li m i nf
η → 0

η s u p
x ∈ D

l o g E x T η > 0 .( 4. 8)

P r o of. B y [ 1 1,   T h e or e m  4. 4],

li m i nf
η → 0 +

η l o g ( 1/ μ 1 ) > 0 ,

w h er e μ 1 i s  t h e  pri n ci p al  ei g e n v al u e   m e nti o n e d i n   L e m m a  1.

T h e n,  b y   L e m m a  1,   w e  h a v e

li m i nf
η → 0

η s u p
x ∈ D

l o g E x T η ≥ li m i nf
η → 0

η l o g
1

μ 1
> 0 .( 4. 9)

T h e  cl ai m f oll o w s.

P r o of  of   T h e o r e m  2. T hi s  t h e or e m i s  a  n at ur al  c o n s e q u e n c e  of  t h e  cl a s si c al
Fr ei dli n – We nt z ell’ s  l ar g e  d e vi ati o n  t h e or y.  Si n c e x =  0  i s  a  n o n d e g e n er at e
l o c al   mi ni m u m,   w e  ar e  a bl e  t o  pi c k δ > 0  s u c h  t h at ∇ F (x ) · x > γ |x |2 f or
s o m e γ > 0   w h e n e v er x ∈ B (0 , δ).   N o w,   w e  fi x D ⊂ B (0 , δ).

A p pl yi n g  [ 1 4,   C h a pt er  4,   T h e or e m  4. 1],   w e  c o n cl u d e  t h at  t h er e  e xi st s
V̄ D ∈ [ 0, ∞ ).

li m
η → 0

η l o g E x T η = V̄ D < ∞ f or  all x ∈ D.

F urt h er m or e,  gi v e n  a n y σ > 0  t h at i s  s u ffi ci e ntl y  s m all,

s u p
x ∈ D

E x T η ≤ T e x p(( V̄ D + σ )/ η )( 4. 1 0)

f or  s o m e T > 0 w h e n η i s  s u ffi ci e ntl y  s m all.

We  cl ai m  t h at V̄ D i s  stri ctl y  p o siti v e. I n d e e d,  u si n g   E q u ati o n ( 4. 1 0)  a n d
L e m m a  2,   w e  h a v e  t h at

V̄ D ≥ li m i nf
η → 0

η s u p
x ∈ D

l o g E x T η > 0 .

T h e  fir st  cl ai m f oll o w s.

We   m o v e  o nt o i n e q u alit y  ( 4. 3).   T h e  e xi st e n c e  of C 2 > 0 f oll o w s  dir e ctl y
fr o m   E q u ati o n  ( 4. 1 0).   F or  t h e  e xi st e n c e  of C 1 > 0,   w e  c h o o s e δ 1 s o  t h at  it
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s ati s fi e s  t h e  r e q uir e m e nt  o n   P a g e  2 2 8  of  [ 1 0].   We  a p pl y  t h e  fir st  i n e q u alit y
o n   P a g e  2 3 0 i n [ 1 0]  a n d  g et f or  s o m e T 0 > 0 t h at

P x ( T η ≤ e ( V̄ D − σ ) / η ) ≤ 4 T − 1
0 e − σ / 2 η , ∀ x ∈ B ( 0, δ1 ) ,

w h er e   w e  h a v e  u s e d  t h e  f a ct  t h at  t h e  fir st  t er m  i n  t h e  i n e q u alit y  o n   P a g e
2 3 0 i n [ 1 0] i s  z er o  si n c e  t h e  st arti n g  p oi nt X 0 = x ∈ B (0 , δ1 ).   A s  a  r e s ult,

E x T η ≥ e ( V̄ D − σ ) / η ( 1 − P x ( T η ≤ e ( V̄ D − σ ) / η ) ) > e x p
C 1

η
( 4. 1 1)

u nif or ml y  f or x ∈ B (0 , δ1 ).   T h e  l a st  st at e m e nt  i s  a  c or oll ar y  of   w h at  h a s
b e e n j u st  pr o v e d.

R e m a r k s. We   m a k e  s e v er al  r e m ar k s  b el o w:

(i) V̄ D i s  c all e d  t h e q u a si- p ot e nti al ( s e e [ 1 0,   C h a p.  5])  a n d i s  t h e  c o st  f or
f or ci n g  t h e  s y st e m  t o  b e  at z ∈ ∂ D st arti n g  fr o m x ∗ = 0 . S e e [ 1] f or
a   P oi s s o n  cl u m pi n g  h e uri sti c s  a n al y si s  f or  t hi s  pr o c e s s.  I ntr o d u c e  t h e
s et  of f u n cti o n s [ 1 0,   C h a p.  5]

V s ( z ) = u ∈ L 2 ( 0, s) : ∃ φ ∈ C [ 0, s], φ(s ) = z ,

∀ 0 ≤ τ ≤ s,  φ (τ ) =
τ

0
( − ∇ F (φ (ξ ))) d ξ +

τ

0
S ( φ (ξ )) u (ξ )d ξ ,

w h er e L 2 ( 0, s)   m e a n s  s q u ar e i nt e gr a bl e f u n cti o n s  o n  t h e i nt er v al [ 0 , s].
T h e n,  t h e  q u a si- p ot e nti al i s  gi v e n  b y

V̄ D = i nf
z ∈ ∂ D

i nf
s > 0

i nf
u ∈ V s ( z )

1

2

s

0
|u (τ )|2 d τ.

T h e  q u a si- p ot e nti al cl e arl y  d e p e n d s  o n  h o w  o n e c h o o s e S (f or e x a m pl e,
o n e   m a y   m ulti pl y  a  c o n st a nt  o n S a n d  r e d e fi n e η ),  b ut   E q u ati o n  ( 4. 2)
i s  v ali d f or  a n y  c h oi c e  of S .

(ii)   L et D b e  a  r e gi o n  t h at  c o nt ai n s  o nl y  o n e  s a d dl e  p oi nt z ∗ of F (·).   T h e
cl a s si c al E y ri n g- K r a m e r s  f o r m ul a [ 1 6]   w a s  fir st  ri g or o u sl y  pr o v e d  i n
[ 6,  2 8]  a n d  c o n cl u d e s  a s ε =

√
η → 0 +

E x ∗ τ D =
2 π

|λ 1 ( z ∗ ) |

| d et( ∇ 2 F (z ∗ ) ) |

| d et( ∇ 2 F (x ∗ ) ) |
e x p

F (z ∗ ) − F (x ∗ )

ε

( 1   + O ( 1 / 2 l o g ( − 1 ) )) .
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T hi s  i n cl u d e s  a  pr ef a ct or  t h at  d e p e n d s  o n  b ot h  t h e   H e s si a n  of  t h e

s a d dl e  p oi nt z ∗ a n d l o c al   mi ni mi z er x ∗ .   H o w e v er, i n   m a n y  a p pli c ati o n s,

w e  ar e i n  t h e  r e gi m e d · η → ∞ .   F or i n st a n c e, i n  tr ai ni n g  d e e p  n e ur al

n et w or k s,   w e  oft e n  h a v e d = 1 0 6 a n d η = 1 0 − 4 .   T h e  a s y m pt oti c s  of

e s c a pi n g  fr o m  a  l o c al   mi ni mi z er  i n  t h e  r e gi m e  of η → 0 , d · η → ∞ i s

a n i nt er e sti n g  c a s e  b ut l a c k s   m at h e m ati c al  t h e or y.

(iii)   H er e t h e e s c a pi n g ti m e fr o m l o c al   mi ni mi z er i s e x p o n e nti all y  d e p e n d e nt

o n  t h e  i n v er s e  st e p si z e.   T h e   m o m e nt u m   m et h o d  s u c h  a s  h e a v y- b all

m et h o d  [ 2 0]  or   N e st er o v’ s  a c c el er at e d  gr a di e nt   m et h o d  [ 2 9,  3 0,  3 1]  i s

wi d el y  a d o pt e d i n  d e e p l e ar ni n g,  a n d it  c a n  h el p  f a st er  e s c a pi n g  fr o m

b ot h s a d dl e  p oi nt s  a n d l o c al   mi ni mi z er s.   T h e e x a ct c h ar a ct eri z ati o n  o n

e s c a pi n g fr o m l o c al   mi ni mi z er i n st e a d  of s a d dl e  p oi nt s i s l eft f or f ut ur e

r e s e ar c h.

4. 2.   E s c a p e  f r o m   u n s t a bl e  s t a ti o n a r y   p oi n t s

F or  a  g e n eri c  n o n d e g e n er at e  s a d dl e  p oi nt  ( or  l o c al   m a xi mi z er) x ∗ w e  ar e

r e a d y  t o  pr e s e nt  t h e f oll o wi n g   T h e or e m  3.   T o  si m plif y  t h e  pr e s e nt ati o n,   w e

c o nti n u e  t o  a s s u m e   wit h o ut l o s s  of  g e n er alit y  t h at x ∗ = 0 . Al s o, si n c e H i s

r e al  s y m m etri c,  it  h a s d r e al  ei g e n v al u e s  d e n ot e d  b y λ 1 ≥ λ 2 ≥ . . . ≥ λ d .

T o  b e  c o n v e ni e nt,   w e  i ntr o d u c e γ i = − λ d − i ,  a n d  h e n c e γ 1 ≥ γ 2 ≥ . . . ≥ γ d

a r e  t h e  ei g e n v al u e s  of − H .   R e c all  t h at x = 0 i s  a n o n d e g e n e r at e  st ati o n a r y

p oi nt if λ i =  0.   F or  a  n o n d e g e n er at e   mi ni mi z er,   w e  cl e arl y  h a v e λ d > 0 or

γ 1 < 0,  a n d f or  a  n o n d e g e n er at e  u n st a bl e  p oi nt, λ d < 0 or γ 1 > 0.

T h e o r e m  3. C o n si d e r t h e  S D E ( 3. 1 5) . L et D ⊂ R d b e  a  b o u n d e d  c o n n e ct e d

o p e n  s et   wit h  s m o ot h  b o u n d a r y  c o nt ai ni n g  t h e  st ati o n a r y  p oi nt 0 . S u p p o s e

S (x ) : D → R d × d i s C 3 a n d S (x )S T ( x ) i s  u nif o r ml y  p o siti v e  d e fi nit e,  a n d

F : D → R i s C 4 . If x 0 = 0 i s  a  n o n d e g e n e r at e  u n st a bl e  p oi nt  t h at  s ati s fi e s

γ 1 > 0 , a n d γ i = 0 f o r  a n y 1 ≤ i ≤ d ,  t h e n  c o n diti o n e d  o n X ( 0)   = 0 , t h e

e x p e ct e d  hitti n g  ti m e T η i n ( 4. 1) s ati s fi e s

li m
η → 0

E 0 T η

l o g η − 1
= 0 .5 γ − 1

1 .( 4. 1 2)

F u rt h e r m o r e,  f o r  a n y x 0 ∈ D ,  c o n diti o n e d  o n X ( 0)   = x 0 ,  t h e  e x p e ct e d

hitti n g  ti m e T η i n ( 4. 1) s ati s fi e s

li m
η → 0

E x 0
T η

l o g η − 1
≤ 0 .5 γ − 1

1 .( 4. 1 3)
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I n  p a rti c ul a r,   w e  d e fi n e N η = T η / η w hi c h i s t h e  c o nti n u o u s  c o r r e s p o n d e n c e

of  it e r ati o n  st e p s.   T h e n,  t h e  e x p e ct e d  st e p s  n e e d e d  t o  e s c a p e  f r o m  a  s a d dl e

p oi nt  i s  a s y m pt oti c all y  gi v e n  b y

E N η 1

2 γ 1
η − 1 l o g (η − 1 ) a s η → 0 .( 4. 1 4)

T h e or e m  3 f oll o w s fr o m t h e cl a s si c al  d y n a mi c al s y st e m r e s ult i n [ 2 4]  a n d

d et ail e d  i n § B  i n  t h e   A p p e n di x.  I n  a d diti o n,  t h e  a n al y si s  pr o vi d e d  i n  [ 2 4]

s u g g e st s t h e f oll o wi n g i nt er e sti n g  p h e n o m e n o n: if x 0 i s  a  p oi nt s u c h t h at t h e

O D E  ( 4. 1 5)  n e v er  hit s ∂ D , t h e n a s η → 0 + , X (T η )  c o n v er g e s  t o  a   m e a s ur e

t h at c o n c e ntr at e s  o n t h e i nt er s e cti o n  b et w e e n ∂ D a n d t h e tr aj e ct or y  of   O D E

i niti ali z e d  at  a  p oi nt x 0 t h at  d e vi at e s ti n y s m all fr o m 0 at t h e ei g e n dir e cti o n

of   H e s si a n  c orr e s p o n di n g  t o γ 1 .

R e m a r k. N ot e  t h at i n  ( 4. 1 3),   w e  h a v e i n e q u alit y.  If  t h e  gr a di e nt  fl o w   O D E

s y st e m

d X (s )

d s
= − ∇ F (X (s )), X ( 0)   = x 0 ,( 4. 1 5)

s ati s fi e s θ (x 0 ) = i nf { t : X (t) ∈ ∂ D } ∈ ( 0, ∞ ),  t h e n

li m
η → 0

E x 0
T η = θ (x 0 ) .

F or  s u c h x 0 t h e li mit i n  ( 4. 1 3) i s  t h e n  gi v e n  b y li m η → 0 E x 0
T η / l o g η − 1 = 0.

H e n c e  i n  t h e  c a s e  of  n o n d e g e n er at e  l o c al   m a xi mi z er,  ( 4. 1 3)  gi v e s  t h e  li mit

0  f or  all  p oi nt s  b ut 0 .   H o w e v er,  i n  t h e  c a s e  of  s a d dl e  p oi nt s,  t h e  li mit  i s

n o n z er o f or  all  p oi nt s  o n  t h e  s o- c all e d st a bl e   m a nif ol d .

5.   E ff e c t s  of   b a t c h  si z e  i n   d e e p   n e u r al   n e t w o r k s

I n  t hi s  s e cti o n,   w e  u s e  t h e  di ff u si o n  a p pr o xi m ati o n  t o  di s c u s s  h o w  b at c h

si z e  a ff e ct s  t h e  b e h a vi or  of  t h e  S G D  al g orit h m  f or  d e e p  n e ur al  n et w or k s  a s

i ntr o d u c e d i n § 4. I n r e c e nt  y e ar s,  d e e p  n e ur al  n et w or k  h a s  a c hi e v e d st at e- of-

t h e- art  p erf or m a n c e i n  a  v ari et y  of  a p pli c ati o n s i n cl u di n g  c o m p ut er  vi si o n,

n at ur al  l a n g u a g e  pr o c e s si n g  a n d  r ei nf or c e m e nt  l e ar ni n g.   Tr ai ni n g  a  d e e p

n e ur al  n et w or k fr e q u e ntl y i n v ol v e s s ol vi n g  a  n o n c o n v e x st o c h a sti c  o pti mi z a-

ti o n  pr o bl e m  u si n g  S G D  al g orit h m s  a n d t h eir  v ari a nt s,   w hi c h  h a s  al s o r ai s e d

m a n y i nt er e sti n g  t h e or eti c al  q u e sti o n s.



Di ff u si o n  a p pr o xi m ati o n  of  n o n c o n v e x  S G D 1 9

F or  n o n c o n v e x  o pti mi z ati o n  pr o bl e m s, t h e l o s s f u n cti o n   m a y  h a v e   m a n y
l o c al   mi ni mi z er s.   A   mi ni mi z er  i s  c all e d  a  s h ar p   mi ni mi z er  if  t h e  f u n cti o n
gr a p h  h a s  l ar g e   m e a n  c ur v at ur e  at  t h e   mi ni m u m;  ot h er wi s e,   w e  c all  t h e
mi ni mi z er  a  fl at   mi ni mi z er.  It  i s  b eli e v e d  t h at  a  fl at   mi ni mi z er  h a s  b ett er
g e n er ali z ati o n  b e h a vi or.   T h e or e m  2  t ell s  u s  t h e  li miti n g  b e h a vi or  of  S G D
n e ar   mi ni mi z er s  f or η → 0.  I n  t h e  li miti n g  r e gi m e,  S G D  i s  h ar d  t o  e s c a p e
fr o m  a   mi ni mi z er.   H o w e v er, i n  t h e  s m all  b ut  fi nit e η r e gi m e   w h er e  t h e  dif-
f u si o n  a p pr o xi m ati o n  i s  still  v ali d,  S G D  c a n  e s c a p e  t h e   mi ni mi z er s  i n  a
r e a s o n a bl e  n u m b er  of  st e p s.   F or  fl att er   mi ni mi z er s,  t h e   H e s si a n  i s  s m all er
a n d  S G D  i s   m or e  li k el y  t o  b e  tr a p p e d.   B el o w,   w e  c o n si d er  s m all  b ut  fi nit e
η a n d  c o n si d er  t h e  e ff e ct s  of  b at c h  si z e.

B y   Pr o p o siti o n  1,   w e  c o n cl u d e  t h at  t h e  v ari a n c e  of  r a n d o m n e s s i n  e a c h
it er at e  s c al e s  li n e arl y   wit h  r e s p e ct  t o  t h e  i n v er s e  b at c h  si z e,  a n d  t h er ef or e
t h e  r a n d o m n e s s  l e v el  of  a  s m all- b at c h   m et h o d  i s  hi g h er  t h a n  it s  l ar g e-
b at c h  c o u nt er p art.   B a s e d  o n  t hi s  o b s er v ati o n,  u si n g  t h e  di ff u si o n  fr a m e-
w or k,   w e  ar e  a bl e  t o  e x pl ai n  t h e  e ff e ct s  of  b at c h  si z e  i n  d e e p  l e ar ni n g  a s
f oll o w s:

(i)  S m all er  b at c h  si z e l e a d s  t o l ar g er  o m ni dir e cti o n al  n oi s e,   w hi c h  e n a bl e s
r a pi d  e s c a pi n g  fr o m  n o n d e g e n er at e  s a d dl e  p oi nt s,  a n d  h e n c e  c o n si s-
t e ntl y  pr o d u c e  g o o d  l o c al   mi ni mi z er.   T hi s  e x pl ai n s  t h e  s a d dl e- p oi nt
e s c a pi n g  p h e n o m e n o n  e x hi bit e d  b y   D a u p hi n  et  al.  a n d   K e s k ar  et  al. i n
[ 8,  2 3].

(ii)  S G D   wit h s m all  b at c h si z e s e s c a p e s s h ar p   mi ni mi z er s   m or e e a sil y  c o m-
p ar e d   wit h l ar g e  b at c h  si z e.   M e a n w hil e,  S G D   wit h  s m all  b at c h  si z e i s
m or e  li k el y  t o  b e  tr a p p e d  n e ar  fl at   mi ni mi z er s  c o m p ar e d   wit h  s h ar p
mi ni mi z er s  b e c a u s e  t h e   H e s si a n  of  t h e l o s s f u n cti o n i s  r el ati v el y  s m all
n e ar  fl at   mi ni mi z er s.  S o  s m all  b at c h  si z e  at  t h e  e arl y  st a g e  c a n  h el p
S G D  t o  e s c a p e  s h ar p   mi ni mi z er s  a n d  e x pl or e  fl at   mi ni mi z er s,  e x pl ai n-
i n g  t h e  p h e n o m e n o n  of  e s c a pi n g  fr o m  l o c al   mi ni mi z er s  o b s er v e d  b y
K e s k ar  et  al. i n [ 2 3].

(iii)   F or t h e  S G D t o s ettl e  d o w n at  fl at   mi ni mi z er s,   w hi c h  h a v e  b ett er g e n er-
ali z ati o n  pr o p ert y,   w e  n e e d t o  u s e l ar g er  b at c h si z e  at l at er st a g e.   T hi s
a gr e e s   wit h  t h e  cl a s si c al  r e s ult s fr o m  si m ul at e d  a n n e ali n g  a s  di s c u s s e d
i n  d et ail  b el o w.

L et  u s  n o w f o c u s  o n  h o w  c h a n gi n g  t h e  b at c h  si z e  c o ul d  p o s si bl y l e a d  t o
b ett er  p erf or m a n c e  u si n g  t h e  di ff u si o n  a p pr o xi m ati o n.   F or  t h e  c o n v e ni e n c e
of  di s c u s si o n, l et  u s  d e n ot e

β (s ) = η
1

m (s )
−

1

M
∼

η

m (s )
, S 0 = Σ 0 ,
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a n d  t h e  S D E  r e a d s

d X (s ) = − ∇ F (X (s )) d s + β (s ) S 0 d B .

O u r   m oti v ati o n i s t o  fi n d  a  g o o d β (s ) s u c h t h at t h e  pr o c e s s  c o n v er g e s t o t h e
gl o b al   mi ni mi z er f a st  e n o u g h.   A  p o s si bl e fr a m e w or k i s t o s ol v e t hi s  pr o bl e m
fr o m  a  st o c h a sti c  c o ntr ol  vi e w p oi nt  [ 1 2].   H o w e v er,  t h e  r e s ult e d   H a milt o n-
J a c o bi- B ell m a n e q u ati o n i s  h ar d t o a n al y z e.   H er e   w e st at e o n e cl a s si c al r e s ult
fr o m  si m ul at e d  a n n e ali n g,  a n d  c o n cl u d e  t h at  f or  c o n v er g e n c e  t o  a  gl o b al
mi ni mi z er,  v ar yi n g  b at c h  si z e   m a y  pr o vi d e  a  u s ef ul  str at e g y.

P r o p o si ti o n  2. [ 2 1]  S u p p o s e  t h e r e  e xi st R > 0 a n d a > 0 s u c h  t h at  f o r
all |x | > R , (x / x ) · ∇F (x ) ≥ a ,  a n d  t h at  t h e r e  a r e  fi nit el y   m a n y  l o c al
mi ni mi z e r s  i n si d e |x | ≤ R . D e n ot e A t h e  s et  of  gl o b al   mi ni mi z e r s  of F (x )
a n d X (s ) s ol v e  t h e  f oll o wi n g  S D E

d X (s ) = − ∇ F (X (s )) d s +
γ

l o g ( 2   + s )
d B (s ).

T h e n  t h e r e  e xi st s γ 0 > 0 s u c h  t h at  f o r  all > 0 a n d γ > γ 0 ,

li m
s → ∞

P ( X (s ) ∈ A ) = 1,

w h e r e A d e n ot e s  t h e - n ei g h b o r h o o d  of A .

Pr o of  of   Pr o p o siti o n  2  c a n  b e f o u n d i n [ 2 1,   T h e or e m  3. 3].   T hi s  pr o p o si-
ti o n  t ell s  u s  t h at  at  t h e  e arl y  st a g e,   w e  s h o ul d  u s e l ar g e η a n d  s m all  b at c h
si z e m t o i n cr e a s e  t h e  di ff u si vit y  s o  t h at  t h e  pr o c e s s   will  n ot  b e  tr a p p e d i n
s h ar p l o c al   mi ni mi z er s  a n d  e s c a p e fr o m  s a d dl e  p oi nt s f a st er.   At l at er  st a g e,
w e   m a y  c h o o s e l ar g e  b at c h  si z e  s o  t h at  t h e  pr o c e s s   will  c o ol  d o w n i nt o  t h e
gl o b al   mi ni mi z er s  or  fl at l o c al   mi ni mi z er s.   T h e  r ul e i s  t o  s et

m (s ) ≈ mi n( C l o g (s + 2) / η,   m ∗ ) ,

w h er e m ∗ i s t h e l ar g e st  b at c h si z e  o n e   m a y   w a nt t o  u s e i n  o pti mi z ati o n.   T hi s
a gr e e s   wit h  t h e i nt uiti o n fr o m  t h e  pr e vi o u s  di s c u s si o n.

6.   N u m e ri c al  e x p e ri m e n t

I n  t hi s  s e cti o n,   w e  s et  u p  e x p eri m e nt s  a n d  pr e s e nt  n u m eri c al  e vi d e n c e s  t o
v ali d at e  o ur  t h e or y   m e nti o n e d  a b o v e.  I nt uiti v el y,  a d di n g  n oi s e  t o  t h e  gr a-
di e nt  of  n o n c o n v e x  st o c h a sti c  l o s s  f u n cti o n   m a n u all y  c a n  al s o  i n cr e a s e  t h e
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r a n d o m n e s s  l e v el  of  c ert ai n  b at c h  si z e   m et h o d,  s o   w e   will  c o n si d er  s u c h
str at e gi e s f or  c o m p ari s o n.   C o n cr et el y,   w e  a d d  n oi s e  t o  t h e  u p d at e d   w ei g ht s
a n d  a p pl y t h e f oll o wi n g   m o di fi e d  S G D t o  o pti mi z e   w ei g ht s  of  n e ur al  n et w or k
wit h l ar g e  b at c h   m et h o d.   We  h a v e

x ( k ) = x ( k − 1 ) − η ·
1

m k
i∈ B k

∇ f i ( x
( k − 1 ) ) + ,

w h er e ∼ N ( 0, σ2 I )  i s  a  r a n d o m  v e ct or  i n d e p e n d e nt  of x a n d σ i s  a  p o si-
ti v e  c o n st a nt.   We  c o n si d er  a  p o p ul ar  a n d  r e pr e s e nt ati v e  c o n fi g ur ati o n  u s e d
b y   K e s k ar  et  al. [ 2 3]   w hi c h i s  a  f ull y – c o n n e ct e d   m o d el  f or  tr ai ni n g   M NI S T
d at a  s et.   T h e   m o d el  u s e s  7 8 4  n e ur o n s  a s  i n p ut  l a y er  a n d  u s e  1 0  n e ur o n s
wit h  s oft m a x  a cti v at e f u n cti o n  a s  o ut p ut l a y er.   T h e  hi d d e n l a y er s  c o n si st  of
5  f ull y  c o n n e ct e d  l a y er s   wit h   R e L U  a cti v ati o n  f u n cti o n  f oll o w e d  b y  b at c h –
n or m ali z e d l a y er s [ 2 2].   F or  all  e x p eri m e nt s,   w e  u s e d  a  b at c h  of  2 0 4 8 s a m pl e s
a s l ar g e  b at c h   m et h o d  a n d  1 2 8  s a m pl e s  a s  s m all  b at c h   m et h o d.   We  c o n si d-
er e d  S G D  o pti mi z er   wit h o ut   m o m e nt u m  a n d  t h e  pr o p o s e d   m o di fi e d  S G D
o pti mi z er  a b o v e.   T o  o b s er v e  t h e  di ff u si o n  pr o c e s s  of   w ei g ht s,   w e  c al c ul at e
E u cli d e a n  di st a n c e s  of   w ei g ht  v e ct or s fr o m t h e i niti al   w ei g ht  v e ct or f or  e a c h
it er ati o n.   We  al s o  u s e d  t h e  b e st  r e s ult s fr o m l ar g e  b at c h   m et h o d  a n d  s m all
b at c h   m et h o d  a s i niti al   w ei g ht s t o tr ai n   m o d el f or  v ali d ati n g t h e r a n d o m n e s s
l e v el  ar o u n d l o c al   mi ni m u m.

A s  ill u str at e d  i n   Fi g ur e  3  a n d  4,  o ur  e x p eri m e nt s  g ot  si mil ar  g e n er-
ali z ati o n  p erf or m a n c e  g a p   wit h   K e s k ar  et  al.  i n  [ 2 3]   w hi c h  l e a d s  t o  hi g h
tr ai ni n g  a c c ur a c y  b ut  l o w  t e st  a c c ur a c y  r e s p e cti v el y,  p arti c ul arl y  b y  u si n g
l ar g e  b at c h   m et h o d.   T h e  g a p  b et w e e n  tr ai ni n g  a c c ur a c y  a n d  t e st  a c c ur a c y
b e c o m e s   wi d er  a s t h e  b at c h si z e  b e c o m e s l ar g er. I n   Fi g ur e  1  a n d  2, t h e s m all
b at c h   m et h o d’ s   w ei g ht s  g o f urt h er t h a n l ar g e  b at c h   m et h o d’ s   w ei g ht s  at t h e
s a m e  it er ati o n  of  u p d at e d   w ei g ht s.   T hi s  r e s ult  i s  si mil ar   wit h   H o ff er  et  al.
i n  [ 1 8].   Di ff er e nt  b at c h  si z e   m et h o d s  h a v e  di ff er e nt  di ff u si o n  r at e s  a n d  t h e
di st a n c e s  b et w e e n  i niti al   w ei g ht s  a n d   w ei g ht s  at  t h e  e n d  of  tr ai ni n g  pr o-
c e s s  ar e  di ff er e nt.   A c c or di n g t o  o ur t h e or y, t hi s  p h e n o m e n o n ill u str at e s t h at
s m all  b at c h  si z e   m et h o d  h a s  hi g h  l e v el  of  o m ni dir e cti o n al  n oi s e   w hi c h  e n-
a bl e s   w ei g ht s  t o  r a n d o m   w al k   wit h l ar g e  r a n g e  of  s urf a c e  of  n o n c o n v e x l o s s
f u n cti o n.   E s s e nti all y,  t h e   G h o st   B at c h   N or m ali z ati o n  [ 1 8]   w hi c h  i s  t o  a c-
q uir e st ati sti c s  o n  p arti al  b at c h r at h er t h a n t h e f ull  b at c h st ati sti c i n cr e a s e s
t h e r a n d o m n e s s l e v el.   T h er ef or e,   w e i nf er t h at  at t h e  e n d  of tr ai ni n g  pr o c e s s
l ar g e  b at c h   m et h o d t e n d s t o c o n v er g e t o s h ar p er   mi ni mi z er s   w hi c h  h a s l o w er
t e st  a c c ur a c y [ 2 3]  b e c a u s e  of l o w  di ff u si vit y.   A s s h o w n i n   Fi g ur e  5  a n d  6,   w e
c a n  c o n fir m  s m all  b at c h   m et h o d  h a s  l ar g er  di ff u si o n  r at e  t h a n  l ar g e  b at c h
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Fi g ur e  1:   E u cli d e a n  di st a n c e  of   w ei g ht  v e ct or fr o m  t h e i niti al   w ei g ht  v e ct or
v er s u s  it er ati o n  f or  di ff er e nt  b at c h  si z e s.   We  c h o o s e  l e ar ni n g  r at e η = 0 .1.
F or  t h e   m o di fi e d  S G D   w e  s et σ = 0 .0 0 0 5 4  t o   m a k e  t h e  c ur v e  si mil ar   wit h
s m all  b at c h   m et h o d’ s  c ur v e.

Fi g ur e  2:   E u cli d e a n  di st a n c e  of   w ei g ht  v e ct or  fr o m  t h e  i niti al   w ei g ht  v e c-
t or  v er s u s  it er ati o n  f or  di ff er e nt  b at c h  si z e s.   We  s et  l e ar ni n g  r at e η = 0 .1,
m o m e nt u m ρ = 0 .9.   F or  t h e   m o di fi e d  S G D   w e  s et σ = 0 .0 0 0 5 4.
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Fi g ur e  3:   T h e  a c c ur a c y  of  t h e  t e st  a n d  tr ai ni n g  s et  v er s u s  t h e  n u m b er  of
b at c h  si z e.   We  s et η = 0 .1,   m o m e nt u m ρ =  0  a n d  t h e  s a m e  n u m b er  of
it er ati o n s  o n   M NI S T.

Fi g ur e  4:   T h e  a c c ur a c y  of  t h e  t e st  a n d  tr ai ni n g  s et  v er s u s  t h e  n u m b er  of
b at c h si z e.   We s et η = 0 .1,   m o m e nt u m ρ = 0 .9 a n d s a m e  n u m b er of it er ati o n s
o n   M NI S T.

m et h o d  a n d  b y  vi br ati n g  t e st  a c c ur a c y  o n e  c o ul d  g et  a  b ett er  r e s ult.   A s

ill u str at e d i n   Fi g ur e  5,   w h e n t h e   w ei g ht s  c o m e t o  a  fl at  ar e a r el ati v el y, l ar g e
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Fi g ur e  5:   T h e  a c c ur a c y  of t h e t e st s et  v er s u s t h e  n u m b er  of  e p o c h.   T h e  b e st
r e s ult  of  s m all  b at c h   m et h o d i s  u s e d  a s  t h e i niti al   w ei g ht  a n d η = 0 .1.

Fi g ur e  6:   T h e  a c c ur a c y  of t h e t e st s et  v er s u s t h e  n u m b er  of  e p o c h.   T h e  b e st
r e s ult  of l ar g e  b at c h   m et h o d i s  u s e d  a s  t h e i niti al   w ei g ht  a n d η = 0 .1.

b at c h   m et h o d  t e n d s  t o  fi n d  t h e  gl o b al   mi ni mi z er s  or  fl at  l o c al   mi ni mi z er s

r at h er  t h a n  s m all  b at c h   m et h o d   wit h  r a n d o m   w al k.   T h e  o nl y   w a y  t o  fi n d

a  b ett er  r e s ult  t h a n  l ar g e  b at c h   m et h o d  b y  u si n g  s m all  b at c h   m et h o d  i s
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tr ai ni n g l o n g er.  It i n cr e a s e s  t h e  pr o b a bilit y  of  g etti n g  a  g o o d  r e s ult  d uri n g
a tr ai ni n g  pr o c e s s.   O n t h e  c o ntr ar y, i n   Fi g ur e  6   w h e n t h e   w ei g ht s  c o m e t o  a
s h ar p  ar e a  r el ati v el y,  s m all  b at c h   m et h o d   m a k e   w ei g ht s  e s c a p e  fr o m  s h ar p
mi ni mi z er s.

A s   m e nti o n e d  a b o v e,   w e  tr y  t o  pr o p o s e  a   m et h o d   w hi c h  c o ul d i n cr e a s e
t h e r a n d o m n e s s l e v el  of  c ert ai n  b at c h si z e.   T h e r e a s o n   w h y   w e  pr o p o s e s u c h
a   m et h o d i s  t h e  di ff er e nt  di ff u si vit y  of l ar g e  b at c h   m et h o d  a n d  s m all  b at c h
m et h o d  a n d t h at l ar g e  b at c h   m et h o d i s  g o o d f or  p ar all eli zi n g  S G D f or   D e e p
l e ar ni n g [ 9].  It i s  a  g o o d   w a y  t o  s p e e d  u p  tr ai ni n g  pr o c e s s  a n d  d e cr e a s e  t h e
c o m p ut ati o n al  g a p.   We  t u n e  t h e  v al u e σ = 0 .0 0 0 5 4  t o   m a k e  l ar g e  b at c h
m et h o d’ s  c ur v e  si mil ar  t o  s m all  b at c h   m et h o d i n   Fi g ur e  1  a n d  2.   H o w e v er,
t h e r e s ult s  ar e si mil ar  u si n g l ar g e  b at c h   m et h o d  a n d  h a v e  a  bit i m pr o v e m e nt
b y  u si n g  S G D   wit h   m o m e nt u m.   T h e s e  p h e n o m e n a   m e a n t h at   w e  n e e d   m or e
el a b or at e  n oi s e  r at h er  t h a n  pl ai n  s p h eri c al  n oi s e.   At  t h e  e arl y  st a g e,   w e
c a n i n cr e a s e  t h e  r a n d o m n e s s  of l ar g e  b at c h   m et h o d  s o  t h at   w ei g ht s  d o  n ot
tr a p p e d  i n  s h ar p   mi ni mi z er s  a n d  e s c a p e  fr o m  s a d dl e  p oi nt s  f a st er.   W h e n
w ei g ht s  c o m e  t o  a  fl at   mi ni mi z er,   w e j u st  u s e  n or m al l ar g e  b at c h   m et h o d  t o
m a k e   w ei g ht  tr a p p e d i n  fl at   mi ni mi z er s.

A c k n o wl e d g e m e n t s

T h e a ut h or s t h a n k   Y u h a o   T a n g f or a s si st a n c e of  fi g ur e s a n d si m ul ati o n  pl ot s.

A p p e n di x   A.   O n   w e a k  a p p r o xi m a ti o n  of   di ff u si o n   p r o c e s s  t o
s t o c h a s ti c  g r a di e n t   d e s c e n t

I n t h e   m ai n t e xt,   w e  h a v e  c o n si d er e d  t h e  st o c h a sti c  gr a di e nt  d e s c e nt  ( S G D)
it er ati o n

( A. 1) x ( k ) = x ( k − 1 ) − η ∇ f (x ( k − 1 ) , ζk ) , x ( 0 ) = x 0 ∈ R d ,

i n   w hi c h ζ k ∼ D i s  a n  i.i. d.  s e q u e n c e  of  r a n d o m  v ari a bl e s   wit h  t h e  s a m e
di stri b uti o n D , a n d η > 0 i s t h e l e ar ni n g r at e.   U s u all y η i s t a k e n t o  b e  q uit e
s m all.   We  a p pr o xi m at e  ( A. 1)  b y  t h e  di ff u si o n  pr o c e s s

( A. 2) d X (s ) = − ∇ F (X (s ))d s +
√

η S (X (s )) d B s , X ( 0)   = x 0 ∈ R d .

S u c h  a n  a p pr o xi m ati o n  c a n j u sti fi e d  a s i n t h e  pr o of  of   T h e or e m  1.   H o w e v er,
t h e  pr o bl e m   wit h t hi s  a p pr o xi m ati o n i s i n t h at ( a) t h e  a p pr o xi m ati o n   w or k s
o n  [ 0 , T ]  f or  fi x e d T > 0;  ( b)   T h e  a p pr o xi m ati o n  err or  i s  c h ar a ct eri z e d  b y



2 6 We n qi n g   H u  et  al.

a  c o n st a nt C > 0  t h at   m a y  n ot  b e  di m e n si o n –fr e e.  ( c).   T o  g ai n O (η ) w e a k
a p pr o xi m ati o n, S c a n  b e  ar bitr ar y  s m o ot h  b o u n d e d f u n cti o n s.

I n  t hi s  a p p e n di x   w e  ai m  at  e x pl ai ni n g  t h at  t h e  li mit  pr o c e s s  ( A. 2)  i s
a  b ett er  a p pr o xi m ati o n  t o  t h e  di s cr et e  it er ati o n  ( A. 1)  a m o n g  t h e O (η ) a p-
pr o xi m ati o n s a n d t h e t er m

√
η S (X (s )) d B s i s e s s e nti al t o c a pt ur e t h e O (

√
η )

fl u ct u ati o n.   M or e o v er,  i n  a   w e a k er  t o p ol o g y,  t h e  a p pr o xi m ati o n  i s  v ali d  o n
[ 0, ∞ ).

We  pr o p o s e t h e f oll o wi n g   w a y  of  u n d er st a n di n g t h e  a p pr o xi m ati o n, t h at
i s  e s s e nti all y  a d a pt e d fr o m  cl a s si c al   m o n o gr a p h s [ 2,  3,  2 6].   L et  u s i ntr o d u c e
a  d et er mi ni sti c  pr o c e s s t h at  c a n  b e  c h ar a ct eri z e d  b y  a n  or di n ar y  di ff er e nti al
e q u ati o n

( A. 3) d Y (s ) = − ∇ F (Y (s ))d s , Y ( 0)   = x 0 ∈ R d .

It  t u r n s  o ut,  t h at  a s η > 0  t e n d s  t o  z er o,   w e  h a v e  str o n g  n or m  c o n v er-
g e n c e

( A. 4) li m
η → 0

m a x
0 ≤ k ≤ T / η

x ( k ) − Y (η k ) R d = 0 .

I n d e e d,  o n l ar g er ti m e s c al e s, t h e  a b o v e  a p pr o xi m ati o n c a n  b e r e ali z e d i n
a   w e a k  t o p ol o g y  s p e ci fi e d  b el o w.   F or  e a c h  fi x e d T > 0, l et C [ 0, T ]( R

d ) b e t h e

s p a c e  of c o nti n u o u s f u n cti o n s fr o m t h e i nt er v al [ 0 , T ] t o R d .   F or  a n y f u n cti o n
φ ∈ C [ 0, T ]( R

d ),   w e  e q ui p  t h e  s p a c e C [ 0, T ]( R
d ) wit h n or m φ C [ 0 , T ] ( R d ) =

s u p
0 ≤ t≤ T

|φ (t)|. L et C [ 0,∞ ) ( R
d )  b e t h e s p a c e  of c o nti n u o u s f u n cti o n s fr o m [ 0 , ∞ )

t o R d .   F or  a n y f u n cti o n φ ∈ C [ 0,∞ ) ( R
d ),   w e  e q ui p  t h e  s p a c e C [ 0,∞ ) ( R

d ) wit h

n or m φ C [ 0 , ∞ ) ( R d ) =
∞

n = 1

1

2 n
φ C [ 0 , n ] ( R d ) .   U n d e r  t h e  n or m · C [ 0 , ∞ ) ( R d ) , t h e

s p a c e C [ 0,∞ ) ( R
d )  b e c o m e s  a  s e p ar a bl e   B a n a c h  s p a c e.

F or  a  f a mil y  of  f u n cti o n s φ n ∈ C [ 0,∞ ) ( R
d )  a n d  t h e  f u n cti o n φ ∈

C [ 0,∞ ) ( R
d ),   w e s a y t h at φ n φ w e a kl y i n C [ 0,∞ ) ( R

d ) if  a n d  o nl y if f or  e v er y

li n e ar  f u n cti o n al A : C [ 0,∞ ) ( R
d ) → R t h at  i s  c o nti n u o u s  i n  t h e  s e n s e  t h at

A (φ n − φ ) → 0 if φ n − φ C [ 0 , ∞ ) ( R d ) → 0 a s n → ∞ , w e h a v e A (φ n − φ ) → 0
f or  e v er y  s u c h li n e ar f u n cti o n al A a s n → ∞ .

L et  u s   m o dif y  t h e  tr aj e ct or y x ( k ) i n  ( A. 1)  i nt o  a  c o nti n u o u s  f u n cti o n
x η ( t)  b y li n e arl y i nt er p ol at e  b et w e e n  p oi nt s (( k − 1) η, x ( k − 1 ) ) a n d ( k η, x ( k ) ),
k = 1 , 2,..., i. e.,

(t, xη ( t))   = t,
t

η
− k + 1 x ( k ) + k −

t

η
x ( k − 1 )
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f or  (k − 1) η ≤ t < k η .  I n  t hi s   w a y,  t h e  f u n cti o n x (t)  c a n  b e  vi e w e d  a s  a n
el e m e nt  i n C [ 0,∞ ) ( R

d ).   M or e o v er,  t h e  s ol uti o n s X (t) i n ( A. 2) a n d Y (t) i n

( A. 3)  ar e  al s o  el e m e nt s  i n C [ 0,∞ ) ( R
d ).   We  cl ai m  t h e  f oll o wi n g  t w o  r e s ult s

a s s u mi n g  t h at f (·, ξ) C 2 i s  u nif or ml y  b o u n d e d.

T h e o r e m  4. F o r  a n y  s e q u e n c e η n → 0 ,   w e  h a v e x η n ( t) Y (t) a s n → ∞
i n  t h e  s p a c e C [ 0,∞ ) ( R

d ) .

T h e  u n d er st a n di n g  of  t h e  di ff u si o n  a p pr o xi m ati o n X (t) t o x (t) c a n b e
a c hi e v e d  vi a  n or m al  d e vi ati o n s.   T o  s e e  t h at,  o n e  c a n  c o n si d er  t h e  r e s c al e d
pr o c e s s

( A. 5) ζ η ( t) =
x η ( t) − Y (t)

√
η

.

T h e o r e m  5. F o r  a n y  s e q u e n c e η n → 0 ,   w e  h a v e ζ η n ( t) Z (t) a s n → ∞
i n  t h e  s p a c e C [ 0,∞ ) ( R

d ) .   T h e  p r o c e s s Z (t) i s  c h a r a ct e ri z e d  b y  t h e  st o c h a sti c
di ff e r e nti al  e q u ati o n

( A. 6) d Z (s ) = M (s )Z (s )d s + S (Y (s ))d W s , Z ( 0)   =  0 ∈ R d .

i n   w hi c h W s i s  a  st a n d a r d   B r o w ni a n   m oti o n  i n R d , a n d M (s ) i s  a  b o u n d e d
d × d m at ri x  f u n cti o n.

T h e  a b o v e  t h e or e m s  c a n  b e  pr o v e d  vi a  st a n d ar d   m et h o d s  i n   O D E  a p-
pr o xi m ati o n  ( s e e [ 3])  a n d  n or m al  d e vi ati o n  t h e or y  ( s e e [ 2],   P art II,   C h a pt er
4,   T h e or e m  7).   We  o mit  t h e  d et ail s  h er e.

B y  ( A. 6),   w e  c a n  s a y  t h at   w e  h a v e  a n  a p pr o xi m at e  e x p a n si o n  ( s u c h
e x p a n si o n s  a p p e ar  i n  p h y si c s  lit er at ur e s  a n d  ar e  c all e d   V a n – K a m p e n’ s  a p-
pr o xi m ati o n [ 3 2])  of  t h e f or m

( A. 7) x (t) ≈ Y (t) +
√

η
t

0
S ( Y (s )) d W s .

N oti c e  t h at  b y  ( A. 3),   w e  h a v e

Y (t) = x 0 −
t

0
∇ F (Y (s )) d s .

T h er ef or e   w e  h a v e  a n  e x p a n si o n

x (t) ≈ x 0 −
t

0
∇ F (Y (s )) d s +

√
η

t

0
S ( Y (s )) d W s .
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N ot e  t h at  b y  ( A. 5)  a n d  ( A. 6)  t h e  pr o c e s s e s x (t) a n d Y (t)  ar e  cl o s e  at
or d er O (

√
η ).   Fr o m  h er e,   w e  h a v e  a p pr o xi m at el y

x (t) ≈ x 0 −
t

0
∇ F (x (s )) d s +

√
η

t

0
S ( x (s )) d W s .

T hi s j u sti fi e s  t h e  a p pr o xi m ati o n  of X (t) i n ( A. 2) t o x (t).

A p p e n di x   B.   D e t ail e d   di s c u s si o n  r e g a r di n g   T h e o r e m  3

Si n c e D i s  b o u n d e d,   w e  c a n   m o dif y t h e  v al u e s  of S a n d F o ut si d e D s o t h at
t h e y  a n d  t h eir  d eri v ati v e s  ar e  b o u n d e d  i n  t h e   w h ol e  s p a c e,   w hi c h  cl e arl y
d o e s  n ot  c h a n g e  t h e  hitti n g  ti m e.

R e c all  t h at x =  0  i s  a  n o n d e g e n er at e  s a d dl e  p oi nt  or  a  n o n d e g e n er at e
l o c al   m a xi m u m  p oi nt.   C o n si d er  t h e  d y n a mi c s  s y st e m  gi v e n  b y

d

d s
x (s ) = − ∇ F (x (s )), x ( 0)   = x

L et

W S = { x ∈ D :  li m
s → ∞

x ( s ) = 0, x ( 0)   = x = 0 } ,( B. 1)

w hi c h i s  c all e d  t h e  st a bl e   m a nif ol d  of  t h e  d y n a mi c s  s y st e m  a n d  d e fi n e

θ (x ) = i nf { s > 0 : x (s ) ∈ ∂ D } .( B. 2)

I n  [ 2 4,   T h e or e m  2. 2],  t h e  f oll o wi n g  a s y m pt oti c s  f or  t h e   m e a n  e xit  ti m e
w er e  pr o v e d,   w hi c h  a p pli e s  t o l o c al   m a xi m u m  p oi nt  a s   w ell:

P r o p o si ti o n  3. If x ∈ W S ∪ { 0 } , t h e n

li m
η → 0

1

l o g η − 1
E x T η =

1

2 γ 1
.

If x ∈ D \ (W S ∪ { 0 } ), t h e n

li m
η → 0

E x T η = θ (x ).

R e m a r k. T h e  e s c a pi n g  ti m e  ( 4. 1 2)  fr o m  t h e  u n st a bl e  criti c al  p oi nt  c a n  b e
u n d er st o o d i nt uiti v el y  a s f oll o wi n g: i n t h e  b all B ( 0, η0 .5 ), t h e   Br o w ni a n   m o-
ti o n  d o mi n at e s  a n d  t h e  ti m e  t h at  t h e  pr o c e s s  arri v e s  at  t h e  b o u n d ar y  i s
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s = O ( 1).   Fr o m ∂ B ( 0, η0 .5 ) t o ∂ B ( 0, 1),  t h e  c o n v e cti o n  t er m  d o mi n at e s  a n d
it  i s  e s s e nti all y X = γ 1 X a n d  h e n c e  ti m e  s p e nt  f or  t h e  s e c o n d  st a g e  i s
s ∼ l o g (η − 1 ).
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