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On the diffusion approximation of nonconvex
stochastic gradient descent

WenginG Hu, Caras Juwchr LiT, Ler Li*, anp Jian-Guo Liv?

We study the stochastic gradient descent (SGD) method in noncon-
vex optimization problems from the point of view of approximating
diffusion processes. We prove rigorously that the diffusion process
can approximate the SGD alporithm weakly using the weak form
of master equation for probahility evolution. In the small step size
regime and the presence of omnidirectional noise, our weak approx-
imating diffusion process suggests the following dynamics for the
SGD iteration starting from a local minimizer (resp. saddle point):
it escapes in a number of iterations exponentially (resp. almost lin-
early] dependent on the inverse stepsize. The results are obtained
using the theory for random perturbations of dynamical systems
(theory of large deviations for local minimizers and theory of ex-
iting for unstable stationary points). In addition, we discuss the
effects of hatch size for the deep neural networks, and we find that
small batch size is helpful for SGD algorithms to escape unstable
stationary points and sharp minimizers. Our theory indicates that
using small batch size at earlier stage and increasing the batch size
at later stage is helpful for the SGD to be trapped in flat minimiz-
ers for better generalization.

KEYWORDS AND PHRASES: Nonconvex optimization, stochastic gradient
descent, diffusion approximation, stationary points, batch size.

1. Introduction

Many nonconvex optimization tasks involve finding desirable stationary
point. The stochastic gradient descent (SGD) algorithm and its variants
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enjoy favorable computational and statistical efficiency and are hence pop-
ular in these tasks [4, 7, 5]. A central issue is whether the iteration scheme
can escape from unstable stationary points including both saddle points and
local maximizers. When the objective function has the strict saddle property
such that all unstable stationary points have a strictly negative eigenvalue, it
is shown by Ge et al. [15] that in both unconstrained and constrained cases,
SGD with appropriately chosen stepsizes converges to a local minimizer with
high probability after suitably many steps.

Using continuous time processes to approximate stochastic algorithms
in machine learning has appeared in several works. In [27, 13], the idea
of diffusion approximations for SGDs has appeared. The SGD in [27] is
limited to a special class while the approach in [13] is based on the study
of semi—groups. Further, recent stochastic analysis works by the first two
authors study the SGD and the stochastic heavy—ball method from their
approximating diffusion processes. These diffusion processes is also known as
the randomly perturbed gradient flow [19] as well as the randomly perturbed
dissipative nonlinear oscillator [20].

In this paper. we consider a broadly general unconstrained stochastic
optimization problem and develop an analytic framework of generic diffusion
approximations, aiming at better understanding and analyzing the global
dynamics of nonconvex SGD. To achieve this, we prove rigorously that the
dynamics of nonconvex SGD can be approximated by SDEs using the weak
form of master equations. The idea is kind of similar to [13] but the proof here
does not use semi—groups explicitly. Our diffusion approximation framework
for the nonconvex SGD sugpests the vital role of randomness in enabling the
algorithm to fast escape from unstable stationary points, as well as efficient
convergence to a stationary point. The results are summarized in Theorems
2 and 3 in the main text. Besides, the diffusion approximation also provides
insights of the effects of batch size in deep learning, discussed in Section 5.

Ge et al. [15] proved that for discrete-time SGD the iterations for es-
caping from a saddle point is of order C' - 72, where C absorbs a power
of d and polylogarithmic factor of 57!, so our rate in Theorem 3 implies a
much faster rate than [15] for saddle points escaping. Our result suggests a
potentially much sharper convergence rate.

It is worth pointing out that our result is not a proof of the O(n ! log 1)
escaping rate since the diffusion approximation is proved only on a fixed time
interval [0, T']. On the other hand, on time interval |0, cc) such an approx-
imation is only valid in a weaker topology (See Appendix A and compare
with [25]). Our hope is that the current work can shed some light in the un-
derstanding of the dynamics of discrete stochastic approximation algorithms
such as SGD.
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Diffusion approximation of nonconvex SGD

The rest of the paper is organized as follows. In Section 2, we give a brief
introduction to SGD and related background. In Section 3, we introduce the
diffusion process that weakly approximates SGD on any finite interval. This
diffusion process is our subject of study in the remaining sections. Moreover,
we consider an important example of SGD, namely SGD with mini—batch
and its corresponding diffusion process. In Section 4, we consider the limit
hehavior of the diffusion process. The study here gives us the understanding
regarding escaping times from unstable stationary points and local minimiz-
ers. The effect of batch size is then discussed in Section 5 with the intuition
established in Section 4. We conclude that small batch size is helpful for
SGD to escape from sharp local minimizers and unstable stationary points.
We also propose to decrease the batch size as the iteration goes on. The
classical results for simulated annealing suggests that our intuition makes
sense, We present numerical evidence to validate our theory in Section 6.

2. Background

In this section we prepare for readers the basic settings of the SGD algorithm.
For a generally nonconvex stochastic loss function f(x;{) that is twice dif-
ferentiable with respect to x, our goal is to solve the following optimization
problem

min  E[f(x; ()],

where ( is sampled from some distribution D. For notational convenience,
we denote

(2.1) F(x) :=E[f(x;()].

At k™ iteration, we evaluate the noisy gradient Vf {xik_”;.ck} and up-
date the iteration according to

(2.2) x®) = x50 _ w7 f(x0; ¢).

Here > 0 denotes the step size or learning rafe, and the noisy gradi-
ent admits randomness . that comes from both noise in stochastic gradi-
ent and possibly injected additive noise. We assume that §; (i = 0) are
iid random wvariables such that {; is independent of the sigma algebra
a(x® %', .. x*1). It is straightforward to observe that the iteration {x*}

generated by (2.2) forms a discrete time, time—homogeneous Markov chain.
One of the advantages of stochastic gradient method is that it requires little
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memory and is hence scalable to the “big data” setting., Throughout this
paper, we focus on the case that the stochastic function f(x;¢) is twice—
differentiable with respect to x.

Let us introduce the following definition:

Definition 1 (Stationary Point). We call x R a stationary point if the
gradient VF(x) = 0. By mvestigating the Hessian matrix at point x, we
detail the definition in the following two cases:

(i) A stationary point x is (asymptotically) stable if the Hessian matrix
V?F(x) is positive definite.

(i1) A stationary point x is unstable if the least eigenvalue of Hessian matrix
V2F(x) is strictly negative.

It is straightforward to observe that a stable stationary point is always a
local minimizer, and an unstable stationary point can be either a local max-
imizer (when Hessian has only negative eigenvalues) or a saddle point (when
Hessian has both negative and nonnegative eigenvalues). As a side remark,
results in [8] implies that nondegenerate stationary points are isolated and
can hence be analyzed sequentially.

3. Diffusion approximation for SGD

In this section, we introduce the concept of the diffusion process that will
be analyzed throughout the entire paper for the approximation of SGD.

3.1. The diffusion approximation

In this subsection, we justify rigorously that the 3GD (2.2) can be approx-
imated by SDEs with global weak accuracy O(n?) for k € [0,T /5], where
T is a fixed number independent of n. For this purpose, we introduce the
psendo—time s such that the k—th step corresponds to time sp = k.

We introduce the following subset of O™ smooth functions equipped
with its natural norm:

(31)  CP®Y) =L feC™RY | |flen= Y [Dflo <o

|| =

Here, the subindex “b” means “bounded”.
We aim to find diffusion approximations for SGD. Namely to find a
diffusion process which solves an SDE and whose trajectory is close to the
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SGD trajectory in a weak sense. Such an idea appeared in [27, 13]. The
SGD algorithms considered in [27] are limited to a special class of objective
functions while the approach in [13] relies on semi-groups. We will mostly
follow the framework in (13| here but the proof in this paper is slightly
different.

Consider that the SDE given as

(3.2) AX (s) = b(X (s)) ds + y7S(X (s)) dB(s),
where b(x) is a vector—valued function and S(X (s)) is a matrix—valued func-

tion. We now introduce the concept of weak accuracy:

Definition 2. Fix T = 0. We say {X(kn)} approximates the sequence
{x®} with weak order p > 0 if for any ¢ € U: UH-”, there exists O = 0
and ny > 0 that are independent of 5 (but may depend on T, i and its
derivatives) such that

(3.3)
[Ep(x™)) — Ep(X (kn))| < Crf for all 1 < k < T/n and all 5 € (0,).

Let us fix a test function ¢ € C'f . and define

(3.4) u®(x) = Ex(p(x™)),

where [, means that the process starts at x. Then by the Markov property,
we find the following weak form of master equations

W (x) = B (B (p(x®H)x1) )
(35) — Ex(uk(x))
—E («(x— 1V £(x:0)))

Performing Taylor expansion for uk, we construct SDE approximations of the
SGD at different orders. Based on this observation, we prove the following

theorem which is a refined version of Theorem 1 in [27]. Our proof uses the
semi—group method and is relatively new:

Theorem 1. Assume that there erists C' > 0 such that for any { € D,

17 C)ller < C.
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Choose
_ vp L <2
56 bx) = ~VE(x) — p19IVEP,
S(x) =/ X(x)
where
(3.7) E(x) = var(Vf(x;C)).

FizT > 0 and let X (t) be the solution to SDE (3.2) with X (0) = x(”). Then
{X (kn)} approzimates the sequence {x™®)} with weak order 2 on [0,T).

Proof. We fix a test function ¢ € CP. Define u* as in (3.4) and therefore we
have (3.5). Introduce

(3.8) u(x, 8) = Exip( X (8)),

where x indicates that the expectation is taken conditioning on X (0) = x.
Then, u(x, s) satisfies the Kolmogrov backward equation

(3.9) du=Lu:="h-Vu+ %nz : Vi,
The symbol *:=" means that the left-hand side appears for the first time
and it is defined by the right-hand side.

By the assumption on f(-; (), |[n2]les < C(m) < oo and [|b|ge < C for
n < p. It follows that

sup ||ulcs < C(T,m) < oo, for all < .
DT

Further, we have the following semi-group expansion estimate:

(3.10)
2
‘ﬂ(x, (k + 1)) — u(x, kn) — nLu(x, kn) — %Lzu[x, kn)| < C(|Jullcs)n’.

which implies that

(3.11) ‘u{x, (k + 1)) — u(x, kn) — gb(x) - Vu(x, k)

— %nz{ﬂl:x} +b(x)b(x)T) : V2u(x, kn) — %n“v|b(x)|“ -Vu(x, kn)| < Cn™.
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Now, by Taylor expansion, we have
(312) E(u(x — 1V (x,C), kn)) = ulx, k) ~ 1V F(x) - Va(x, k)
+ SPE(VF0x, OV, OT) s V2ulx, k) + C(Julon)n
With the choice of b(-) and () in (3.6), we find that
o) - Vs, ) + L0 G0 - Ve, )

= =)V F(x) - Vu(x, kn) + 7R (x, k),
(2(x) + b(x)b(x)") = E(Vf(x, OV f(x,0)") + nRa(x, kn),

(3.13)

with |Ry| < C fori=1,2.
Define

E* = sup ¥ (x) — u(x, kn)|.
We then find using (3.11) and (3.12) that
(3.14) lu(x, (k+ 1)n) — E(u(x — gV F(x,C), k)| < Cn®, 7 < mo.
Using (3.5), (3.14) and (3.13), we therefore find

E* < E(juf(x — gV £(x;€)) — ulx — ¥V f(x, <), kn)|) + C(T, n)n*
< EF + C(T, n)nf.

The claim then follows. (|

In the O(n?) approximation, —3yV|VF(x)|? is a small correction to
b(x). Throwing away this term reduces the weak error from O(5*) to O(n)
as mentioned in [27, 13]. Interestingly, if one goes over the proof, one will
find that for O(n) weak approximation on [0, T, choosing b(x) = —VF'(x) is
enough and the explicit choice of the function S(x) is not important. Indeed,
as justified in Appendix A, if we set ¥ = 0, the magnitude of the error is of
order O(,/7). The weak error is of order ((n) because the mean of the error
is O(n). Keeping v/n¥ indeed captures the essential behavior introduced by
the noise. Hence, for simplicity, from here on, we will focus on the following
approximation:

(3.15) dX (s) = —VF(X (s))ds + /TS(X (s)) dB(s),
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where S(x) = [var(Vf(x;¢))]"/? is a positive semidefinite matrix—valued
function and B(s) is a standard d-dimensional Brownian motion. We call
the solution X (s) to SDE (3.15) the S5GD diffusion process with respect to
(2.2). In the rest of this paper, we concentrate our analysis on the continu-
ous process X (s) that solves (3.15), which gives us more insight about the
original discrete—time SGD dynamics.

3.2, An example from deep neural networks

In deep learning [17], our goal is to minimize a generally nonconvex loss
function in order to learn the weights of a deep neural network. To be con-
crete, the goal in training deep neural networks given a training set is to
solve the following stochastic optimization problem

1 M
min Fi(x) = HZ fi(x).
i1

xR

Here, M is the size of the training set and each component f; corresponds to
the loss function for data point # € {1,..., M }. x is the vector of weights (or
parameters for the neural networks) being optimized. When we use mini—
batch training and m = |B¢| is the size of minibatch,

f060 = 2= 3 0 = -3 £

icB;

with { = ({y,...,Gn). Here, we assume the sampling is uniform and without
replacement; i.e. (; is picked with equal probability from {1,... M }\{(;;1 <
j<i—1}forall 1l <i < m. The objective function can be further written
as the expectation of a stochastic function

1 & 1
TS =B [ =3 fi(x)].
i=1 m iEE,:

Hence the SGD algorithm (2.2) for minimizing the objective function F'(x)
iteratively updates the algorithm as

1
(k) _ k=1 | e lk—1)
= x n (m E V fi(x }) ;

=B, k)
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where 1 is the constant stepsize and (*) = {C{k}, cee ,{,ﬂ] The subindex k
for m means that the batch size may depend on time. This is the classical
mini-batch version of the SGD. If m; = m is a constant and {¢'¥) : k > 1}
are i.i.d, then {x¥!} forms a discrete time-homogeneous Markov chain.

For this classical mini-batch version of SGD, we can accurately gquantify
its variance:
Proposition 1. Suppose we draw a batch B: of m data points uniformily
from the entire data set {1,... M} without f*ep.i.'acpment and estimate the
gradient with the averaged sampic gradients (1/m) Zf L Vfilx)liep,. The
estimator is unbiased and the covariance is

1A 1
¥(x) = var (— Vfi(x) e .c) =| =] Eolx),
mg ‘ b (m M') o

where

M
S0(x) = 77— (VF () = VA)(TF() = VA(x)

is the sample covariance matrir of random vector V fi(x).

Proof. We can rewrite the noisy gradient as
1 m
Vi(x¢) = Egvmx},

where { = (1,...,¢m)-

The second moment matrix is given by

1
EVI(xOVi(x,O" =~ Y Eff,.

1<ij<m
If ¢ = j, the expectation is
1 M
Efe S8 =37 2 VIVIy.
p=1

If i £ j, we have

M
Efefl = o > E(VA G = B = T SV
=1 i#
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Since EV f(x,¢) = VF(x) = 4 M| Vf;(x), we find that

(3.16) var(Vf(x,()) = EVf(x,O)Vf(x,¢)T = VF(x)VF(x)"

M M
(m—1) T 1 r 1 T
= MMM —1) va;fvfk Ry vaﬂvfp T Z ViV T,
i#k r=1 Jike=1
which simplifies to the expression as in the statement. O

Proposition 1 implies that the diffusion matrix 8(x) in the SGD diffu-
sion process is asymptotically equal to /Xg(x)/m when M is large. This
computation shows that the SDE approximation for this model is given by

(3.17) dX (s) = —VF(X(s)) ds + \/H (é - %) S0 dB(s).

The batch size therefore affects the magnitude of the diffusion.
4. Limiting behavior via stochastic analysis

Throughout this section, we introduce stochastic analysis theory to study
the stochastic iterates which are needed to escape from critical points, in
the limiting regime of small stepsize 7 — 07. We add a 5 on the superscript
of the SGD diffusion process X 7(t) to emphasize that the process depends
om the stepsize 7.

Notational conventions. We denote by |[u|| the Euclidean norm of a vector
u € RY. For a real symmetric matrix H € B9 let A, (H) be its smallest
eigenvalue. Fixing a connected open set D ¢ R, a function g : D — R
is said to be continuously differentiable, denoted by ¢ € C'(D), if it has
continuous first—order partial derivatives dg/fz;. Similarly, for any m > 2,
we say ¢ is m times continuously differentiable, denoted by g € C™(D), if
all the first order partial derivatives are C"™ (D)) functions. Let VF(x) and
V2?F(x) be the gradient vector and Hessian matrix at point x for a function
F € C*(D). Finally, a matrix valued function S : D — B is said to be
(D) if each entry of 8 is a C™( D) function.

In this subsection, we aim at describing the dynamics near local mini-
mizers and saddle points (Theorems 2 and 3). Recall that [7 is a bounded
connected open set with smooth boundary 8D, Let us first introduce the
following;
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Definition 3. We say a matrix valued function M(x) : D — E%*9 is uni-
formly positive definite if M(x) is positive definite at every point x € 1), and
|g£ Amin (M(x)) = 0. In words, the smallest eigenvalue of M(x) is positive
x

and is bounded away from 0.
Let the hitting time T7 of 8D be

(4.1) T"=inf{s > 0: X"(s) € 8D}.
Also, let E; denote the conditional expectation operator on X7(0) = x.
4.1. Escape from local minimizers

Suppose without loss of penerality that x* = 0 is a non—degenerate local
minimizer (otherwise, consider the shifted function F(x+x*)). We conclude
the following theorem.

Theorem 2. Consider the SDE (3.15). Suppose the matriz—valed function
S(x) € €1, F(x) € C? and S(x)S(x)T is uniformly positive definite. Then
for any sufficiently small § = 0 there erists an open ball B(0,4) C U such
that for any conver open set 1) inside B(0),8) containing x = 0, there exists
a constant Vp € (0,00) depending only on D such that the expected hitting
time T in (4.1) satisfies

(4.2) ﬂ£%+wlﬂg[ExT"] =Vp forallx € D.

Further, we have uniform control of the mean cxit time: there exist §;
(0,8), C1,Cy = 0 and g > 0 so that whenever n < 1y

(43) 1< inf  qlog[ExT" < sup nplog[ExT" < Co.
x=B(0.5,) xeB(0,6,)

In particular, we define N7 = T"/n which is the continuous analogue of
iterntion steps. Then, there exist Oy Cy > 0 such that the expected steps
needed to escape from a local minimizer satisfies

(44) C3<  inf nplogEN"| < sup  plog[EN| < Cy.
xeB(0,4,) xeB(0,4,)

Remark. Theorem 2 indicates that on average, the system will wander near
the local minimizer for asymptotically exp(Cn~') number of steps until an
escaping event from local minimizer oceurs,
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To prove Theorem 2, we show some anxiliary results., Denote
(4.5) u(x) = E,T"
By [10, Corollary 5.7.4], u(x) satisfies the following elliptic PDE with Dirich-

let. boundary condition

(4.6)

Lu=-1, xe D,
w=10, xedl

where L is the generator of the diffusion process given hy

2
(4.7) L= g E (S(x)8(x) ")y ﬁ.-::ﬁ*g-- —VF(x)-V.
if e

The following lemma is useful to ns:

Lemma 1. If there exist a function ¥ € CHU)NC(U) with ¥ > 0, ||| >
0, v = 0,x € U for some open, connected set U < [} and a positive number
p = 0 such that —Lap < pap, @ € U, then

u(x) = cU.

—_ X
plllloo’

In particular, suppose py is the principal eigenvalue of —L, then
1
[le]loo = -

Proof. Consider
1
= u— m
Then, v = 0,x € dU. Also,

Lap L

—_—1l >0
plldlleo [#lloe

—JTwv=1+

Then, v > 0 for x £ U by maximum prineiple.
Picking p = g1 and ¢ to be the prinecipal eigenfunction, we obtain the
second claim, [l
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Lemma 2. If 17 is an open set thal contains the non-degenerate local min-
imizer x = 0 such that there erists v > 0 satisfying VF(x) - x > 4|x|* for
all x € D, then

(4.8) liminf 7 sup logE, 77 > 0.
n—0 xeld

Proof. By [11, Theorem 4.4],
liminfnlog(1/p) = 0,
s

where gy is the principal eigenvalue mentioned in Lemma 1.
Then, by Lemma 1, we have

_ _ 1
(4.9) 11]’:11'1 _3[1]'1f 7 ::E log ExT" > 11]’;['1_%[1;11: nlog (E) = 0.
The claim follows. O

Proof of Theorem 2. This theorem is a natural consequence of the classical
Freidlin—Wentzell’s large deviation theory. Since x = 0 is a nondegenerate
local minimum, we are able to pick § > 0 such that VF(x) - x > ~|x|* for
some v > 0 whenever x € B(0,4). Now, we fix D < B(0,4).
Applying [14, Chapter 4, Theorem 4.1], we conclude that there exists
Vb € [0, ).
i];i_li%nlogExT'" =Vp <ocforallxeD.

Furthermore, given any o > (0 that is sufficiently small,

(4.10) sup ExT" < Texp((Vp +a)/n)
X

for some T' > 0 when 7 is sufficiently small.
We claim that Vp is strictly positive. Indeed, using Equation (4.10) and
Lemma 2, we have that

Vb = liminf nsup log E,T7 > 0.
T+l xeld
The first claim follows.,

We move onto inequality (4.3). The existence of Cs > 0 follows directly
from Equation (4.10). For the existence of 'y > 0, we choose §; so that it
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satisfies the requirement on Page 228 of [10]. We apply the first inequality
on Page 230 in [10] and get for some Ty > 0 that

Po(T7 < elVP=o)) < 4T leo/27, ix € B(0,6y),

where we have used the fact that the first term in the inequality on Page
230 in [10] is zero since the starting point X, = x € B(0,4;). As a result,

(4.11) E T > E[Fu—cr]fﬂ{]_ —P(T" < E{F'D—g}jq)) > exp (%)

uniformly for x € B(0,4;). The last statement is a corollary of what has
been just proved. O

Remarks. We make several remarks below:

(i) Vp is called the quasi-potential (see [10, Chap. 5]) and is the cost for
foreing the system to be at 2 £ 9D starting from x* = 0. See [1] for
a Poisson clumping heuristics analysis for this process. Introduce the
set of functions [10, Chap. 5|

Vi(z) = {u. € L2(0,5) : 3¢ € C[0, ], ¢(s) = 2,

<< son) = [ (VRO + [ s,

where L*(0, s} means square integrable functions on the interval [0, s].
Then, the quasi-potential is given by

— 2
o= ot gt 5 [ o

The quasi-potential clearly depends on how one choose S (for example,
one may multiply a constant on 8 and redefine 5), but Equation (4.2)
is valid for any choice of 5.

(ii) Let ) be a region that contains only one saddle point =* of F'(-). The
classical Eyring-Kramers formula [16] was first rigorously proved in
[6, 28] and concludes as ¢ = /7 — 07

2 /| det(VZF(z*))] exp (F[z*] — F{:r"})

B0 = RG] V] et (VP E @)

~
L=

(1+ O log(e™))).
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This includes a prefactor that depends on both the Hessian of the
saddle point z* and local minimizer z*. However, in many applications,
we are in the regime d - 7 — oo, For instance, in training deep neural
networks, we often have d = 10° and = 10~ 1. The asymptotics of
escaping from a local minimizer in the regime of 7 — 0,d -5 — oo is
an interesting case but lacks mathematical theory.

(ii1)) Here the escaping time from local minimizer is exponentially dependent
on the inverse stepsize. The momentum method such as heavy-hall
method [20] or Nesterov's accelerated gradient method [29, 30, 31] is
widely adopted in deep learning, and it can help faster escaping from
hoth saddle points and local minimizers. The exact characterization on
escaping from local minimizer instead of saddle points is left for future
research.

4.2, Escape from unstable stationary points

For a generic nondegenerate saddle point (or local maximizer) x* we are
ready to present the following Theorem 3. To simplify the presentation, we
continue to assume without loss of generality that x* = 0. Also, since H is
real symmetric, it has d real eigenvalues denoted by Ay = Ay > ... = Ay
To be convenient, we introduce 3 = —Ag_;, and hence 11 = w2 = ... = 94
are the eigenvalues of —H. Recall that x = 0 is a nondegenerate stationary
point if A; # 0. For a nondegenerate minimizer, we clearly have Az = 0 or
7 < 0, and for a nondegenerate unstable point, Ay < 0 or 4y = 0.

Theorem 3. Consider the SDE (3.15). Let D — R? be a bounded connected
apen set with smooth boundary containing the stationary point 0. Suppose
Six): D — Ri*4 45 C3 and El[ijT{x} is uniformly positive definite, and
F:D—=RisC* If xg = 0 is a nondegenerate unstable point that satisfies
41 =0, and v # 0 for any 1 < i < d, then conditioned on X(0) = 0, the
expected hitting time T in (4.1) salisfies

. EoT" -1
(4.12) lim e = 05y,

Furthermore, for any xo € D, conditioned on X(0) = xp, the ezpected
hitting time T" in (4.1) satisfies

(4.13) lim B, T7

< 0547,
=0 logy—! — N
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In particular, we define N = T/ which is the continuous correspondence
of iteration steps. Then, the expected steps needed to escape from o saddle
point is asymptotically given by

(4.14) ENT < Lﬁl_l log(n~') as n — 0.
2m

Theorem 3 follows from the classical dynamical system result in [24] and
detailed in §B in the Appendix. In addition, the analysis provided in [24]

suggests the following interesting phenomenon: if xg is a point such that the
ODE (4.15) never hits 8D, then as  — 0%, X (T") converges to a measure

that concentrates on the intersection between G127 and the trajectory of ODE
initialized at a point xg that deviates tiny small from 0 at the eipendirection

of Hessian corresponding to .

Hemark. Note that in (4.13), we have inequality. If the gradient flow ODE
gsystem
dX(s) _

(4.15) - =-VF(X(s)), X(0)=xo,

satisfies @(xg) = inf{f : X (t) € D} € (0, 00), then
rlri_r‘nﬂIE-,WT’F = B(xo).

For such x; the limit in (4.13) is then given by lim, .o Ex,77/logn™! = 0.
Hence in the case of nondegenerate local maximizer, (4.13) gives the limit
0 for all points but 0. However, in the case of saddle points, the limit is
nonzero for all points on the so-called stable manifold.

5. Effects of batch size in deep neural networks

In this section, we use the diffusion approximation to discuss how batch
size affects the behavior of the SGD algorithm for deep neural networks as
introduced in §4. In recent years, deep neural network has achieved state-of-

the-art performance in a variety of applications including computer vision,
natural language processing and reinforcement learning. Training a deep

neural network frequently involves solving a nonconvex stochastic optimiza-
tion problem using SGD algorithms and their variants, which has also raised

many interesting theoretical gquestions.
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For nonconvex optimization problems, the loss function may have many
local minimizers. A minimizer is called a sharp minimizer if the function
graph has large mean curvature at the minimum; otherwise, we call the
minimizer a flat minimizer. It is believed that a fHat minimizer has better
generalization behavior. Theorem 2 tells us the limiting behavior of SGD
near minimizers for 7 — (. In the limiting regime, SGD is hard to escape
from a minimizer. However, in the small but finite 5 regime where the dif-
fusion approximation is still valid, SGD can escape the minimizers in a
reasonable number of steps. For flatter minimizers, the Hessian is smaller
and SGD is more likely to be trapped. Below, we consider small but finite
7j and consider the effects of batch size.

By Proposition 1, we conclude that the variance of randomness in each
iterate scales linearly with respect to the inverse batch size, and therefore
the randomness level of a small-batch method is higher than its large-
batch counterpart. Based on this observation, using the diffusion frame-
work, we are able to explain the effects of batch size in deep learning as
follows:

(i} Smaller batch size leads to larger omnidirectional noise, which enables
rapid escaping from nondegenerate saddle points, and hence consis-
tently produce good local minimizer. This explains the saddle-point
escaping phenomenon exhibited by Danphin et al. and Keskar et al. in
8, 23].

(ii) SGD with small batch sizes escapes sharp minimizers more easily com-
pared with large batch size. Meanwhile, SGD with small batch size is
more likely to be trapped near flat minimizers compared with sharp
minimizers because the Hessian of the loss function is relatively small
near flat minimizers. So small batch size at the early stape can help
SGD to escape sharp minimizers and explore flat minimizers, explain-
ing the phenomenon of escaping from local minimizers observed by
Keskar et al. in [23].

(ii1) For the SGD to settle down at flat minimizers, which have better gener-
alization property, we need to use larger batch size at later stage. This
agrees with the classical results from simulated annealing as discussed
in detail below.

Let us now focus on how changing the batch size could possibly lead to
better performance using the diffusion approximation. For the convenience
of discussion, let us denote

ﬁtsj=n(# 1) I Se= /T

m(s) M) mis)
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and the SDE reads
dX(s)= —VF(X(s))ds ++/8(s)SpdB.

Our motivation is to find a good 3(s) such that the process converges to the
global minimizer fast enough. A possible framework is to solve this problem
from a stochastic control viewpoint [12]. However, the resulted Hamilton-
Jacobi-Bellman equation is hard to analyze. Here we state one classical result
from simulated annealing, and conclude that for convergence to a global
minimizer, varving batch size may provide a useful strategy.

Proposition 2. [21] Suppose there exist B > 0 and a > 0 such that for
all [x| > R, (x/|x||) - VF(x) = a, and that there are finitely many local
minimizers inside |x| < R. Denote A the set of global minimizers of F(x)
and X (s) solve the follounng SDFE

- 7
dX(s) = ~VF(X(s))ds + “’—mg(z = dB(s).

Then there exists Ay > 0 such that for all ¢ > 0 and ~ > 7,
. _
e_l‘l_l}'glm]P"I:Jifl';as] e A% =1,

where A® denotes the e-neighborhood of A.

Proof of Proposition 2 can be found in [21, Theorem 3.3]. This proposi-
tion tells us that at the early stage, we should use large 5 and small batch
size m to increase the diffusivity so that the process will not be trapped in
sharp local minimizers and escape from saddle points faster. At later stage,
we may choose large batch size so that the process will cool down into the
global minimizers or flat local minimizers. The rule is to set

mi(s) = min(C log(s + 2)/n,m"),

where m* is the largest batch size one may want to use in optimization. This
agrees with the intuition from the previous discussion.

6. Numerical experiment

In this section, we set up experiments and present numerical evidences to
validate our theory mentioned above. Intuitively, adding noise to the gra-
dient of nonconvex stochastic loss function manually can also increase the
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randomness level of certain batch size method, so we will consider such
strategies for comparison. Coneretely, we add noise to the updated weights
and apply the following modified SGD to optimize weights of neural network
with large batch method. We have

k k— 1 E—

fEBk

where € ~ N(0,7I) is a random vector independent of x and o is a posi-
tive constant. We consider a popular and representative configuration used
by Keskar et al. [23] which is a fully—connected model for training MNIST
data set. The model uses T84 neurons as input layer and use 10 neurons
with softmax activate function as output layer. The hidden layers consist of
5 fully connected layers with RelLU activation function followed by bateh-
normalized layers [22]. For all experiments, we used a batch of 2048 samples
as large batch method and 128 samples as small batch method. We consid-
ered SGD optimizer without momentum and the proposed modified SGD
optimizer above. To observe the diffusion process of weights, we calculate
Euclidean distances of weight vectors from the initial weight vector for each
iteration. We also used the best results from large batch method and small
batch method as initial weights to train model for validating the randomness
level around local minimum.

As illustrated in Figure 3 and 4, our experiments got similar gener-
alization performance gap with Keskar et al. in [23] which leads to high
training accuracy but low test accuracy respectively, particularly by using
large batch method. The gap between training accuracy and test accuracy
becomes wider as the batch size becomes larger. In Figure 1 and 2, the small
batch method’s weights go further than large batch method’s weights at the
same iteration of updated weights. This result is similar with Hoffer et al.
in [18]. Different batch size methods have different diffusion rates and the
distances between initial weights and weights at the end of training pro-
cess are different. According to our theory, this phenomenon illustrates that
small batch size method has high level of omnidirectional noise which en-
ables weights to random walk with large range of surface of nonconvex loss
function. Essentially, the Ghost Batch Normalization [18] which is to ac-
quire statistics on partial batch rather than the full batch statistic increases
the randomness level. Therefore, we infer that at the end of training process
large batch method tends to converge to sharper minimizers which has lower
test accuracy [23| because of low diffusivity. As shown in Figure 5 and 6, we
can confirm small batch method has larger diffusion rate than large batch
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Figure 1: Euclidean distance of weight vector from the initial weight vector
versus iteration for different batch sizes. We choose learning rate 5 = 0.1,
For the modified SGD we set & = 0.00054 to make the curve similar with
small batch method’s curve.
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Figure 2: Fuclidean distance of weight vector from the initial weight vec-
tor versus iteration for different batch sizes. We set learning rate = 0.1,
momentum g = 0.9, For the modified SGD we set & = 0.00054.
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Figure 3: The accuracy of the test and training set versus the number of
batch size. We set 7 = (L1, momentum p = 0 and the same number of
iterations on MNIST.

A -
- i —— -
09975 - —
e
0.9950 &
[
099325 1
-
o
I —8— Test Accuracy
B 0.9300 =& Training ACCuracy
S
0.9875 4
0.9850 4
09825
! - . - ! - .
128 256 512 1024 2048 4096 8192
Batch Size

Figure 4: The accuracy of the test and training set versus the number of
batch size. We set p = 0.1, momentum p = 0.9 and same number of iterations
on MNIST.

method and by vibrating test accuracy one could get a better result. As
illustrated in Figure 5, when the weights come to a flat area relatively, large
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Figure 5; The accuracy of the test set versus the number of epoch. The best
result of small batch method is used as the initial weight and 5 = 0.1.
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Figure 6;: The accuracy of the test set versus the number of epoch. The hest
result of large batch method is used as the initial weight and 5 = 0.1.

batch method tends to find the global minimizers or flat local minimizers
rather than small batch method with random walk. The only way to find
a better result than large batch method by using small batch method is
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training longer. It increases the probability of getting a good result during
a training process. On the contrary, in Figure 6 when the weights come to a
sharp area relatively, small batch method make weights escape from sharp
minimizers.

As mentioned above, we try to propose a method which could increase
the randomness level of certain batch size. The reason why we propose such
a method is the different diffusivity of large batch method and small batch
method and that large batch method is good for parallelizing SGD for Deep
learning [9]. It is a good way to speed up training process and decrease the
computational gap. We tune the value # = 0.00054 to make large batch
method’s curve similar to small batch method in Figure 1 and 2. However,
the results are similar using large batch method and have a bit improvement
by using SGD with momentum. These phenomena mean that we need more
elaborate noise rather than plain spherical noise. At the early stage, we
can increase the randomness of large batch method so that weights do not
trapped in sharp minimizers and escape from saddle points faster. When
weights come to a flat minimizer, we just use normal large batch method to
make weight trapped in flat minimizers.
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Appendix A. On weak approximation of diffusion process to
stochastic gradient descent

In the main text, we have considered the stochastic gradient descent (SGD)
iteration

(A1) x® = x=1 g f(x®0 G % = xp € RE,

in which {p ~ T is an i.i.d. sequence of random variables with the same
distribution T, and 5 > 0 is the learning rate. Usually 5 is taken to be quite
small. We approximate (A.1) by the diffusion process

(A2)  dX(s) = —VF(X(s))ds + /nS(X (s))dB, , X(0) = xR .

Such an approximation can justified as in the proof of Theorem 1. However,
the problem with this approximation is in that (a) the approxdmation works
on [0,7] for fixed T > 0; (b) The approximation error is characterized by
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a constant €' > () that may not be dimension—free. (c). To gain O(n) weak
approximation, S8 can be arbitrary smooth bounded functions.

In this appendix we aim at explaining that the limit process (A.2) is
a better approximation to the discrete iteration (A.1) among the O(n) ap-
proximations and the term ,/7S( X (s)) d By is essential to capture the O(,/7)
fluctuation. Moreover, in a weaker topology, the approximation is valid on
[0, oc).

We propose the following way of understanding the approxdmation, that
is essentially adapted from classical monographs [2, 3, 26]. Let us introduce
a deterministic process that can be characterized by an ordinary differential
equation

(A.3) dY (s) = —VF(Y (s))ds , Y (0) = z0 € RY .

It turns out, that as 5 > 0 tends to zero, we have strong norm conver-
gence

A4 li ) v (nk)||ge =0 .
(A.4) nﬂﬂiﬁf (B (k)| e

Indeed, on larger time scales, the above approximation can be realized in
a weak topology specified below. For each fixed T' > 0, let Cjg (R9) be the
space of continuous functions from the interval [0, T| to RY. For any function
= CIDIT]{Rd}, we equip the space Clg (R?) with norm 9l g v (me) =
DsupT |d(t)]. Let Cig o0 (RY) be the space of continuous functions from [0, 0o)

to 9. For any function f.i- E Clo,o0) {IR ), we equip the space C o, ,_,E:,{R ) with

norm | é|ey, . re) = E ||'~'i‘||r:.‘“|(nd} Under the norm || - ||, ., (r4), the

space Clp x) (RY) becomes a separable Banach space.

For a family of functions ¢, < C[E.}m}{ﬂd} and the function ¢ €
U[U‘MJ{R“"]? we say that ¢ — ¢ weakly in G[ﬂ.rm}{ﬂd] if and only if for every
linear functional A : Clﬂim](]:&d) —+ [ that is continuous in the sense that
Aldn — @) = 0if [|¢n — 8| ..y (may —+ 0 a8 1 — 00, we have A(dn — ¢) — 0
for every such linear functional A as n — oo,

Let us modify the trajectory z'*) in (A.1) into a continuous function
a"(t) by linearly interpolate between points ((k— 1)1, x*=1) and (kn, x*¥)),
k=1,2,..,1e

(t,2"(t)) = (t. (% ke 1) x® 4 (;c _ %) x{fc—u)
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for (K — 1)y <t < ky. In this way, the function z(#) can be viewed as an
element in G'mm],{]ll'i}. Moreover, the solutions X (¢) in (A.2) and Y (#) in

(A.3) are also elements in Clg ) (R7). We claim the following two results
assuming that || f(-, £)|lc= is uniformly bounded.

Theorem 4. For any sequence ny, — 0, we have () = ¥ (f) as n — o
in the space Clg ) (R?).

The understanding of the diffusion approximation X (t) to z(f) can be
achieved via normal deviations. To see that, one can consider the rescaled
process

zZ"(t) — Y (i)
Theorem 5. For any sequence 1, — 0, we have (" (1) — Z(t) as n — o

in the space Clg o) (RY). The process Z (t) is characterized by the stochastic
differential equation

(A.5) () =

(A.6) dZ(s) = M(s)Z(s)ds + S(Y (s))dW, , Z(0) =0 e B .

in which W, is a standard Brownian motion in R%, and M(s) is a bounded
d % d matriz function.

The above theorems can be proved via standard methods in ODE ap-
proximation (see [3]) and normal deviation theory (see [2], Part II, Chapter
4, Theorem 7). We omit the details here.

By (A.6), we can say that we have an approximate expansion (such
expansions appear in physics literatures and are called Van-Kampen's ap-
proximation [32]) of the form

(A7) o(t) = Y () + VA L S(Y (s))dIV .

Notice that by (A.3), we have

L
Y(t) =a:u_fﬂ VE(Y (s))ds .

Therefore we have an expansion

2(t) ~ 20 — L VE(Y (5))ds + /7 ﬁ S(Y (5))dWs .
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Note that by (A.5) and (A.6) the processes x(f) and Y () are close at
order O(,/7). From here, we have approximately

i i
2(t) = xg —f VF(x(s))ds + ﬁf S(a(s))dW, .
ul 1]
This justifies the approximation of X (1) in (A.2) to =(t).
Appendix B. Detailed discussion regarding Theorem 3

Since D) is bounded, we can modify the values of 8§ and I outside D) so that
they and their derivatives are bounded in the whole space, which clearly
does not change the hitting time.

Recall that x = 0 is a nondegenerate saddle point or a nondegenerate
local maximum point. Consider the dynamics system given by

d
EX{SJ = —VF(x(s)), x(0) =x

Let

(B.1) WS —{x e D: lim x(s) = 0,x(0) = x # 0},

which is called the stable manifold of the dynamics system and define
(B.2) f(x) = inf{s > 0: x(s) € dD}.

In [24, Theorem 2.2], the following asymptotics for the mean exit time
were proved, which applies to local maximum point as well:

Proposition 3. If x € WY U {0}, then

1 1
lim B T — —.
70 log ! 27

Ifxe D\ (W3 U {0}), then

rlll_r% ExTT = f(x).

Hemark. The escaping time (4.12) from the unstable eritical point can be
understood intuitively as following: in the ball B(0,n”%), the Brownian mo-
tion dominates and the time that the process arrives at the boundary is
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s = O(1). From dB(0,n"") to 8B(0, 1), the convection term dominates and
it is essentially X' = -4 X and hence time spent for the second stage is

s~ log(n™").
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