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1. Introduction

Parameter estimation of (stochastic) dynamical systems is an exciting area of
research with ubiquitous applications in many areas in science and technology,
where it usually requires incorporating data into a model. This is often known as
data assimilation (see Ref. 41 for a mathematical introduction) in particular in the
context of numerical weather forecast. It is also known as system identification in
the control literature (see for example Chaps. 11 and 12 of Ref. 40 for applica-
tions for modeling robots). In such problems, a physical model of the form of a
dynamical system is derived from (partial) empirical observations and is usually
calibrated with and improved by experimental data. The problem is also related to
uncertainty quantification, which is important as it enables the building of more
realistic models and making better predictions of their behavior in the future. In
the modeling of self-organized systems, different ways to qualify uncertainties have
been studied (see for example Refs. 2, 8, 15, 19, 37 and 49).

In this work, we are interested in the parameter estimation problems arising
from a particular class of physical systems that can be modeled by interacting
particle systems. This means that the dynamics of the system is determined by
interactions between agents (particles) together with some intrinsic or extrinsic
random effects. Such systems are widely used to establish different mathematical
models describing collective behaviors of organisms and social aggregations, for
instance flocks of birds,?® aggregation of bacteria,* schools of fish,?” swarms formed
by insects,® opinion dynamics*? and robotics and space missions.?¢ Various types of
diffusion are considered in these models: While linear diffusion is more commonly
used,'® the diffusion can be slow in areas with few particles, known as the degenerate
(slow) diffusion model*®; and similarly, the diffusion can also be fast.*” One may
also consider the nonlocal diffusion, where organisms adopt Lévy process search
strategies which have continuous paths interspersed with random jumps.?? Thus
qualifying the type of the diffusion can significantly reduce the uncertainty in model
predictions and is hence a very important step in many applications. This paper
focuses on the case of Brownian diffusion with unknown diffusion parameter. We
study the diffusion parameter estimation of such interacting particle systems with
partial observed data.

More precisely, the microscopic agent-based model investigated here describes
the evolution of positions of N agents, denoted by {X!} C R% i=1,..., N, whose
evolution is governed by a system of stochastic differential equations (SDEs) of the

type

N
1 .
dxt = mZF(Xf — X!)dt +V2vdB!, i=1,...,N, (1.1)
J#i
where F' models some pairwise interaction between the agents and B} are indepen-

dent realizations of Brownian motions which count for extrinsic random perturba-
tion of the agent positions. In such systems, the agents are assumed to be identical,
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so that the noise level v is the same for each agent. In this work, we assume that
the interaction kernel F' between agents is known, while the noise level v is to
be determined. More specifically, we will focus on the case when the interaction
between agents is given by Newtonian type interaction for dimension d > 2, or
more precisely, a regularized Newtonian interaction, to be specified below. Suppose
we observe or track the trajectories of K agents on the time interval [0, T], where
1 <« K <« N, the question we address in this work is how to estimate v and to
quantify the error of the estimator.

A more general situation one may consider is the problem for which the inter-
action kernel is also to be determined, this will be left for future works. In Ref. 21,
authors solved the following inverse problem for aggregation equations: given an
equilibrium state, they constructed a corresponding force F' to ensure that equilib-
rium. We also note the recent work® which considers learning the interaction kernel
for a deterministic interacting particle systems through a variational approach.
While admittedly that we have taken a simple scenario and a somewhat simplistic
model for interacting agents, already many interesting issues arise from both math-
ematical and application point of view. For instance, how accurate one can make
the estimation by only observing/tracking a few agents. How the potential singu-
larities of the interacting potential (such as Coulomb or Newtonian type) impact
the estimation accuracy.

Observe that the scaling of (1.1) is chosen such that we are in the mean-
field regime, as the interaction strength decreases as 1/N as the number of agents
N —o0. It is thus expected that in the limit N — oo, the system can be well
described by a mean-field dynamics, which can be described as the following non-
linear partial differential equation (PDE):

op=vAp—V-(pFxp), xR t>0, (1.2a)

p(x,0) = po(x), (1.2b)
where the noise level v > 0 enters the PDE system as a diffusion parameter. In
particular, here the interaction kernel is chosen as Newtonian:

C.x

P =T

Vo e RA{0}, d>2, (1.3)

with C, = I;S;id/ /22) . Here the sign F indicates that the interaction between individuals
can either be attraction or repulsion. Specifically, when the mechanism of interaction
is attraction, the mean field equation (1.2) becomes the parabolic—elliptic Keller—
Segel equation,®®#* which is a prototypical model for chemotaxis and has been used
in many related modeling scenarios. The analysis of the scaling limit of interacting
particle system (1.1) is usually called the mean-field limit, which passes limits from
microscopic discrete particle systems to macroscopic continuum models.

While it would be intriguing to study the parameter identification problem for
the particle system (1.1) with the Newtonian interaction (1.3), such microscopic

system is however ill-posed, as shown by the recent deep result by Fournier and
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Jourdain (see Proposition 4 of Ref. 23): For any N > 2 and T > 0, denote {X;(¢);t €
[0,T],i=1,...,N} the solution to (1.1) with F given in (1.3), then

P(3s€[0,T],31<i<j<N:Xi(s)=X;(s)) >0,

i.e. the singularity cannot be avoided in any finite time with a positive probability
and thus the particle system is not well-defined.

Classical results of the mean-field limit require the kernel F' € W1>°(R%). One
possible way to overcome singularity is to regularize the kernel F. In particular, in
this work we consider the regularized kernel FVV:

FN = Fxyyn, tn(x) = NO(N°x), (1.4)

where § the cut-off index and 0 < ¥(x) € C°(R?) is a cut-off function, which
satisfies ¢(z) = ¢(|z|) and [, 1 (x)dz = 1. Then we have the regularized stochastic
particle system { X!}, satisfying

1

N
ﬁZFN(Xf—X;?)dtJr\/@dBf, i=1,...,N, (1.5)

J#i
where the initial data {X?} ; are independently identically distributed (i.i.d.) with
the common density function py. Since the regularized kernel is Lipschitz for any
fixed N, the system above has a unique global strong solution. The corresponding
aggregation equation has the form

ax! =

op=vAp—V-(pFN xp), zecR t>0, (1.6a)

p(x,0) = po(x). (1.6b)

Classical results for mean-field limit with globally Lipschitz forces were obtained
by Braun and Hepp'® and Dobrushin.'® Then Bolley, Cafiizo and Carrilo” presented
an extension of the classical theory to the particle system with only locally Lipschitz
interacting force. The last few years have seen great progress in mean-field limits
for singular forces by treating them with an N-dependent cut-off. In particular, the
mean-field limit for the Keller—Segel model has been rigorously proved in Refs. 22,
23, 24, 30 and 31. And the deterministic particle method for aggregation equations
can be found in Refs. 11 and 13. For a general overview of this topic we refer readers
to Refs. 12, 25, 34, 35 and 46.

Considering the parameter estimation problem for diffusion processes, there is
a huge literature in statistics and econometrics, often related to the estimation of
volatility in financial models. A complete literature review is beyond our scope and
we refer the readers to Ref. 45 for an overview. To make the scenario more realis-
tic, instead of assuming the availability of some trajectories {X!}¥ , for all time
t € [0,T], we consider the case that trajectories are only observed at discrete time
snapshots during the time interval. Diffusion parameter estimation problems based

on discrete observations have been discussed by many authors.!3:6,14,17,20,33,39,50
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However, to our knowledge, no previous work has been done for diffusion estimation
in the context of interacting particle systems. Specifically, there are a few differ-
ences between our work and these works: (1) We consider parameter estimation of
an interacting particle system, however authors mentioned above studied a single
diffusion process. (2) Our estimator (1.8) concerns the information of interacting
particles, but they only investigated one trajectory and take the expectation value
of this stochastic process. (3) In our setting, the interacting force F' is singular,
while the drift function is assumed to be regular enough in usual statistics lit-
erature as mentioned earlier. Our main result, given below in Theorem 1.1 after
we make precise the estimator 7, quantifies the estimation error of the proposed
estimator.

Take a time step At > 0 and let ¢, := nAt and M := 4, (we assume that -
is an integer). Denote Xi(") := X!" as the solution to (1.5) at time ¢,. Namely,
one has

tnt1
x _ x M :/ ZFN (X7 — X3)ds +V2u(B{"* — B!")
tn J#l

n+1
=/t 1 ZFN S X2)ds + VAN, (1.7)

" J#i

where M(n) ~ N(0,1)%, i.e. the standard Gaussian distribution in dimension d.
Then we are ready to define our estimator for the diffusion parameter

K M-1

QdKT SN MY - x M) (1.8)

=1 n=0

where 1 < K < N, which means we only have partial observations.
Our main result quantifies the estimation error of the proposed estimator (1.8),
which is summarized as below.

Theorem 1.1. Suppose the initial data 0 < po(z) € L' N L>=(R?) and let p(z,t)
be the regular solution of the aggregation equation (1.2) up to the time T such that
pE L°°(O T; L' N L**(RY)). Take a time step At > 0 and let t, = nAt and
M = . Assume {X(n)}l Ln=o be the K (1 < K < N) sample trajectories
satzsfymg (1.7) with the cut-off index 0 < § < é at time t,. For any o > 0, there
exists some constant Ny > 0 depending only on v, a, T and ||pol|11nr=(re), such
that for N > Ny, the estimator U defined in (1.8) is an approximation of v, and the
following estimate holds:

dK M~2

P(lv—v| < CQV%At%(l + V%N_‘Slog(N)) +w)>1—-N"“=-2"" 5 | (1.9

for any v € (0,1), where Cyo, > 0 depends only on o, T and ||po|| 1 ~pe (re)-
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Let us remark on two simple consequences from (1.9). If we consider N — oo,
(1.9) simplifies to
1 2
P([D— v| < Cav® At? +yv) > 1—2e " 5 (1.10)
for any v € (0,1). Thus despite that we are dealing with an interacting system,
when N is large the accuracy of the estimator is similar to that based on using K
(independent) trajectory observations of a non-interacting particle system. More-
over, to get from (1.9) a simpler looking error bound, we can choose Atz = ¥
(assuming we are able to adjust the frequency of observations) and get

dKT

P[0 — v| < (Cav? + v)ALZ) > 1 -2~ 5 (1.11)

where we used the fact that M~* = -L~% = T. Estimate (1.11) indicates that
increasing the number K of the observed data improves the accuracy of our esti-
mator U (the probability increase as K becomes larger).

To prove the theorem on the error of the estimator, we defined an intermediate
estimator

VK,N ‘=

1 K M-1 (i) - s g N N
n n S S
2dKTZZ X=X */t 7N_1§:F (X7 = XJ)ds|
=1 n=0 n

J#i
then we split the error into two parts
|/V\—l/| < |/V\—VK’N|+‘VK’N—Z/. (1.12)

Let us denote

n 1 S SN B < N
=X =X, b= o7 2 V(X - X5 ds,

" i
then
vk, — V|
1 K M-1 . - -

:m;nzo “ai = b'[" — |a| |

S S IDMILTIPRES 9) L]

— 2dKT ~ = dKT ~ =

K M-1 ) K M-1 ) % 1 K M-1 2 2

g

I/\
’ﬂ
.MW

&
Il
-
3
Il
<

1 K M-1

i=1 n=0
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Notice that

K M-1 K M-1 trtt 1 N 2
n2 _ N s s
ZdKTZZ;nZO o = 2dKTZ§ / N71;F (X7 = X7)ds

1 N
o P - X))

i

2

— | FN(X? —y)p(y, s)dy | ds

IN
3
1=
1Mf

=t

Rd
K M 1y it 2
dKT 2 /t /Rd FN(X? —y)ply, s)dyds
= |Z2| + |I3\7
which implies
Vi — I < [Ta| + Ts] + (20)* (2AT] +2/Ts)) %
Collecting above inequality and (1.12), we conclude
= v < (1+20%) (1ol + |Ts]?) + vrew — v, (1.13)
when |Zy|, |Z3] < 1.
Moreover, notice that
K M-1 K M-1 K M-1
V= 2dKTZ Z o < dKT; nz% o — 0+ dKT; nzo il
< 2wk N + 2|T2| + 2|Zs]
< 2lug, N — V| + 2|T2| + 2|Z3| + 2v < 6 + 2v, (1.14)
when |vig n — |, |Z2], |Z3] < 1. Combining (1.14) with (1.13), it yields that
P~ 1| < CvE(Tal® +|Zs] %) + lview v, (1.15)

where C' is a positive number.

In the sequel, we will see that the estimate of |Z3| is a direct result from the
property of regularized kernel FV (see estimate (3.2)). And the estimate of |Z;]
is an estimate of interaction (see Theorem 2.2), which follows from the mean-field
limit result (see Theorem 2.1). As for the estimate of |vx n — V|, it can be deduced
from a concentration inequality of Chi-squared distribution (see Theorem 3.1).

The work is organized as follows: In Sec. 2, we will give a rigorous proof of the
mean-field limit for aggregation equations with Newtonian potential. Based on this,
we also obtain an error estimate on interaction. Section 3 is devoted to prove that
our estimator 7 is a good approximation of v and the convergence rate between
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them is achieved. Then in Sec. 4 we further extend our result to the case where the
aggregation equation has a bounded Lipschitz interacting force.

2. Mean-Field Limit and Estimate on Interaction

In this section, we will prove the mean-field limit for particle system (1.5). Namely,
given the solution p := p(x,t) to the mean-field equation (1.6), we construct a
mean-field trajectories {Y/}X | from (1.6), then we prove the closeness between
Xy = (Xt,...,X%) and Y} = (Y{,...,YY). To do this, we shall consider again a
Newtonian system with noise. However, this time not subject to the pair interaction
but under the influence of the external mean field FV  p(x,t)

dY,}:/ FN(Y! —y)p(y,t)dydt +V2vdB!, i=1,...,N, (2.1)
Rd

here we let {Y;}¥, have the same initial condition as {X!}¥, (i.i.d. with the
common density pg). Since the particles are subject to an external field, the inde-
pendence is conserved. Therefore, the {Y;!}¥ | are distributed i.i.d. according to
the common probability density p. We remark that the aggregation equation (1.6)
is Kolmogorov’s forward equation for any solution of (2.1), and in particular their
probability distribution p solves (1.6).

2.1. Preliminaries

Notations. The generic constant will be denoted generically by C, even if it is
different from line to line. The notation ||-||, represents the usual LP-norm of a
function for any 1 < p < co. For a vector X; = (X},..., X%), we denote
[ Xtlloo == sup |XF].
i=1,...,N

i=1,...,

Since error estimates obtained later are valid when the solution of PDE (1.6) is
regular enough, we assume that

0 < po € L' N L®(RY), (2.2)
then Eq. (1.6) has a unique local solution with the following regularity:

||p||L°°(O,T;L1ﬂL°°(Rd)) < C(||P0||L1mLoo(Rd)) =: Cpy,

where C), is independent of N and T' > 0 depends only on v and ||po| 11~z (rd)-
The proof of this result is a standard process (see for example Proposition 4.1 of
Ref. 22).

Let us recall some estimates of the regularized kernel F'V defined in (1.4).

Lemma 2.1. ([30, Lemma 2.1]) (1) FV(0) = 0, FN(x) = F(x) for any |x| > N—°
and |FN (z)| < |F(x)| for any x € R%;

(2) |0PFN (z)| < CNUWHIBI=19 for any 2 € RY;

(3) |FV]2 < CNGEZD2,
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Next we define a cut-off function LY, which will provide the local Lipschitz
bound for FV.

Definition 2.1. Let

d
— if [z| > 6N,
LN (z) = { || (2.3)
N4 glse,
and £V : RN — IE]%N be defined by (CN(Xt))- =5 Zfij LY (X} —X?). Further-
more, we define £ (Y;) by (£ (V2))i i= Jpa LN (Y — @) p(x, t)da.
Denote
N(yt)),; = N t
(FN () o1 ;F -Y}) (2.4)
VED

then we have the local Lipschitz continuity of 7.

Lemma 2.2. (Lemma 2.3 of Ref. 32) If || X; — Y;|loo < 2N7°, then it holds that
IFN(Xe) = FN(¥)[loo < CILN (Yo)llool| Xt = Yilloo, (2.5)
for some C > 0 independent of N.

The following observations of F¥ and LY turn out to be very helpful in the
sequel.

Lemma 2.3. (Lemma 2.4 of Ref. 32) Let LY (x) be defined in Definition 2.1 and
p € L' N L>(R%). Then there exists a constant C > 0 independent of N such that

ILY s plloo < Clog(N)(lloll + 12llso),

(2.6)
1LY # plloo < CNP(llplly + llplloo);

and
IEN % pllse < C(llpll1 + llollso),

[VEYN s plloe < Clog(N)([lpllx + [|pllc)-
Also, we need the following concentration inequality to provide us the probabil-

(2.7)

ity bounds of random variables.

Lemma 2.4. Let Z,...,Zy be i.i.d. random variables with E[Z;] = 0, E[Z2] <
g(N) and |Z;| < C\/Ng(N). Then for any o > 0, the sample mean Z = % > i_, Z;

satisfies
P<| 7> Co/oN) loguv)) <N

VN
where C,, depends only on C' and a.

The proof can be seen in Lemma 1 of Ref. 26, which is a direct result of the
Taylor expansion and the Markov’s inequality.
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2.2. Mean-field limit for the aggregation equation with Newtonian
potential

In this section, we obtain the maximal distance between the exact microscopic
dynamics (1.5) and the approximate mean-field dynamics (2.1). Denote

F = [ PV - opla s, (2)
Rd
then we can introduce the following lemma of law of large numbers.

Lemma 2.5. At any fized time t € [0,T], suppose that Yy = (Y}')i=1,.. N satisfies
the mean-field dynamics (2.1) with i.i.d initial data sharing the common density po
satisfying (2.2). Assume that F~ and FY are defined in (2.4) and (2.8) respectively,
LN and ZN are showed in Definition 2.1. For any o > 0 and 0 < § < é, there
exists a constant C1 o > 0 depending only on o, T' and C,p, such that

s(d—2)—1

P(IFN (¥2) = FY (V)lloo = CroaN"“F " log(N)) < N2, (2.9)

and

dé—1
2

P(ILY (V) = 2" (V) oo 2 C1aN T log(N)) < N™°. (2.10)
Proof. We can prove this lemma by using Lemma 2.4. Due to the exchangeability
of the particles, we are ready to bound

N
1
w7 PO ) - [ PNt = ajptatyds

(FNYih — (F (Y =

N
1
N-—14&77
j=2
where
Zj=FN(Y} -Y}) - / FN(Y] — z)p(z, t)dz.
R4
Since Y/ and Y} are independent when j # 1 and F~(0) = 0, let us consider Y} as
given and denote E'[-] = E[-|Y{]. It is easy to show that E'[Z;] = 0 since

E'[FN(Y! -Y])] = /Rd FN(Y] — z)p(z, t)dz.
To use Lemma 2.4, we need a bound for the variance

B2, =& ||PY0 - v - [ PO - et s

R3

2]
Since it follows from Lemma 2.3 that

YO = a)ola)de < Cllol + o)
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it suffices to bound

BN (v = Y))] = [ PN =)ot e < Cllolh + oll) < OT.Co).

and

E[FN(Y! -Y})’] = /]R FN(Y! — 2)2p(x, t)dx

< lpllsclFN3 < O(T, Cpg )N,
where we have used |[FN |y, < CN®(E~1 in Lemma 2.1(iii). Hence one has

E/[|Zj|2] < CNé(d—Z).

11

So the hypotheses of Lemma 2.4 are satisfied with g(N) = CN®@=2)_ In addi-
tion, it follows from (ii) in Lemma 2.1 that |Z;| < ON°%(4=1 < C/Ng(N). Hence,

using Lemma 2.4, we have the probability bound

s(d—2)—1

P((FN (YO — (B~ (Yi)i| = C(a, T, C,y )N ™7 log(N)) < N~

Similarly, the same bound must also apply to the cases where i =2,..., N,

s(d—2)—1

P(|FN (%) = F (Yo)lleo > Cl, T, Cpy )N 57 log(N)) < N0 (2.11)

Let C1,o be the constant in (2.11), we conclude (2.9).
To prove (2.10), we follow the same procedure above
=N 1 al
(¥ 0 = @ (Y = g S LN =¥ = [ VO = (et
j=2
N
1
= — Z‘77

N —14
j=2

where

2 =10 =Y = [ 180~ e

It is easy to show that E'[Z;] = 0. To use Lemma 2.4, we need a bound for the

variance. One computes that

B[ (v - Y))] = [ VO = ohpte. 0o < Clog(N) (ol + )
< C(T,Cyy) log(V),
and

J

2
BLY (=Y = [ 207 ol e < CNU (ol + [l

< C(T,Cp )N,
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where we have used the estimates of LY in Lemma 2.3. Hence one has
B[, < CN.

So the hypotheses of Lemma 2.4 are satisfied with g(N) = CN%. In addition,
it follows from Definition 2.1 that |Z;| < CN% < Cy/Ng(N). Hence, we have the
probability bound

YYo= C(a,T, Cp) N5 log(N)) < N2,

P((LN (Yo) — (L
by Lemma 2.4, which leads to
P(ILN (1) = LY (Yoo > Cla, T, Cpp)N 2" log(N)) < N7 (2.12)

Thus, (2.10) follows from (2.12). O

Next we improve the consistency error to all time. To do this, we need the
following lemma, where we temporarily set the time step size At = t,11—t, = N -4
with 8 > 2, which is only for the purpose of proving Propositions 2.1 and 2.2. Here
N—% will not influence the choice of the At in Theorem 1.1.

Lemma 2.6. Assume that the time step size At = t,11 —t, = N-4 for B> 2
and Yy satisfies the mean-field dynamics (2.1). There exists some constant Cg > 0
depending only on T and C,,, such that it holds

P (sup sup ||V = Y3, |l = C’ByéNB;fi?> < CpNar exp(—C’BN%z).

N t€[tn,tnt1]

Proof. Notice that for ¢ € [t,, tp41]

t
i Y, = / / FN(Y# —y)p(y, s)dy ds + V2vAt(B' — B'™)
t,, J R

=: I (t) + I»(1). (2.13)

It follows from Lemma 2.3 that
sup  [[1(t)]loo < CAL < ONT, (2.14)

tn <t<tn41

where C' depending only on 7" and C,,. To estimate I5(t), recall a basic property
of the Brownian motion (Lemma 2.7 of Ref. 31):

P ( sup  ||B® — BY||oe > b) < Cy (VAL /b) exp(—Cab? / At), (2.15)

t<s<t+At

where C; and C, depend only on d. Choosing b= N~4 in (2.15), it leads to

IP( sup || 12(8)]|s0 > \/zuN—‘Z*f> < CYN"T exp(—CoNT).  (2.16)

tnétStn+1
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Collecting (2.14) and (2.16), it yields that

]P’(sup sup ||V = Yi, |l > CriN~ ><ClN 2d exp(— 02N¥),

N t€[tn tny1]

for 5 > 2, which concludes the proof. O

Now we can prove the consistency error in all time.

Proposition 2.1. (Consistency) Let Y; = (Y')i=1,.. N satisfies the mean-field

3

dynamics (2.1) with i.i.d initial data sharing the common density po satisfying (2.2).
Assume that FN and F be defined in (2.4) and (2.8), respectively. For any o > 0
and 0 < 6 < é, there exists a constant Co o > 0 depending only on o, T' and C,
such that

P( sup |FV(Yy) = F (Yoo > CoaEN""F log(N >> <N (217)
t€[0,T]
and
IP’( sup [[LN (V) = L (V)lloo > Coav? N7 log(N )) <N« (2.18)
t€[0,T]

Proof. Denote events

H:=4qsup sup |[Vi—-Y; [ < Cpri N~ 2t , (2.19)
N t€[tn,tnt1]
and
N —=N §(d—2)—1
Co, = {IF"(V2) =F (Vi )lloo 2 Cra N2 log(N)},

where Cp and C , are used in Lemmas 2.5 and 2.6, respectively. According to
Lemmas 2.5 and 2.6, one has

P(C) < N, P(H) < CpN 2t exp(~CpNT)

for any o > 0 and g > 2.
Furthermore, we denote

Bi, = {I1£¥ (%) = L% (Vi,)lloo < CraN 77 log(N)}, (2.20)
then under the event B, , it holds that
1Y (Ve )lloo < IIZ™ (Veu)lloo + C1aN 7" log(N) < C(a, T, Cpo) log(N)  (2:21)

and P(Bf ) < N~% by Lemma 2.5.
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For all ¢ € [t,,, tp+1], under the event B; NC:;, NH, we obtain

IFN (V) = F (V) oo

<IFVE) = YY) oo + 1FN (Ye) = F (Ve
HIFY (%) - F ()l

< 1LY (Vi) loollYe = Vi, lloo + CraN "2 log(N)
+Clog(N) [|Y: — Y, [l

< C(a, T, Cpy ) og(N)N~ 52 + 0y o N™5 log(N)

§(d— 2)1

< C(a,T,C, VN log(N), (8> (d—2)(1— dd)),

where in the second inequality we have used the local Lipschitz bound of F¥

7N (V) = FN(Y2,)

oo < CILY (Ve )lloo 1Y = Yo, oo

under the event H (see in Lemma 2.2). It yields that
5(d—2)—1 2) 1

sup () - FY Yl < Ca, T, Cp vt NS log(N),
te[0,T

holds under the event ﬂrﬂl/fol (B, N Cs,) NH. Therefore,

5(d 2) 1
P( sup |FN (V) — F (Y)l|oo = Cla, T, Cpo )2 10g(N)>
t€[0,T)
M—-1 M—-1
< 2 BB+ 3 PG+ PO)
n=0 n=0
< TN * 4 CpNT exp(—CpN"T ) < N« (2.22)

Denote Cs o to be the constant C'(c, T, C), ) in (2.22). Since o > 0 is arbitrary and
so is o/, hence (2.17) holds true. The proof of (2.18) can be done similarly. O

In order to prove the convergence, we still need the stability result which states
the following.

Proposition 2.2. (Stability) Assume that trajectories Xy = (X!)i=1,. .n, Yz =
(Y!)iz1,...~ satisfy (1.5) and (2.1) respectively with the initial data Xo = Yo, which

are i.9.d. sharing the common density po satisfying (2.2). Let events B, and H be
defined in (2.20) and (2.19) respectively, F~ be defined in (2.4). Denote events

t€[0,T]

A= { sup ||X: — Yl < N_é}, (2.23)
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and

S(A) == {|IFV (X)) = F¥(Vi)lloe < Alog(N) | X; — Vil + Av? log(N)N ™37,
Vte[0,T]}.

For any o > 0, there ewists some C3 o > 0 depending only on «, T and C,, such
that

M—-1
(] B, NANH C S(Cs.0).

n=0

Here the event S(Cs o) can be seen as the stability result and the events By, , A and
H can be treated as the stability conditions.

Proof. First, we split S(A) into the union of non-overlapping sets {S,, (A)}M 1 (A),

n=0
where
Sn(A) = {IIFN(X1) = FN (V) [0 < Alog(N) [ X, — Vil

_ 542

+Alog(N)N™72d | Vt € [tn, tnt1]}-

Notice that for any ¢ € [t,, t,41], under the event AN #H, one has

sup [ Xy =Vl £ sup [ Xy =Y+ sup ViVl
te(tn tnyi] tE[tn tnt1] te(tn tny1]

<N 4 CpiN~3 <2N7° (B> 2d5—2)

and

sup ||V — Vi, ||, < CprEN~2¢ < N7 (8> 2d5 —2).

tE€[tn,tnt1]
Then applying the local Lipschitz bound of FN (see in Lemma 2.2) leads to

IFN(Xe) = FY¥ (Y1) low
)

<FN(X) = FY V) oo + [FN (Yen) — FN(Y2)lloo
<IN Vi) oo (1Xe = Vi, llo + 11Ye, — Yill)
< OILN (Vi) oo 11X = Yill oo + 2C1LY (Ve )loo 12, = Yell o

under the event ANH.
Furthermore, under the event B;_, it follows from (2.21) that

1LY (Ye,)lloo < Clog(NV),
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Hence, for all t € [t,,tn41] one has

IFY (X)) = FY(¥o)lloo < Clon, T, Gy ) log(N) [|1X: = Vi o
+C(a, T, C,y)v? log(N)N~ 20"
under event ANH N B, . Denote the C(«, T, C), ) in the above as C3 . This implies
ANHNB;, C S,(Cs,q), which yields
M—1
() B, N"HNACS(Csa)
n=0

Thus, the proposition has been proved. O

Before proving the result on mean-field limit, let us recall a Gronwall-type
inequality in Ref. 32.

Lemma 2.7. For any T > 0, let e(t) be a non-negative continuous function on
[0,T] with the initial data e(0) = 0 and X\, 0 be two universal constants satisfying
the following differential inequality that holds

de(t
(ji(t) < Clog(N)e(t) + Clog(N)N™*, 0<t<Ty, (2.24)
provided that
sup e(t) < N7° (2.25)
te[0,T1]

holds. Then e(t) is uniformly bounded on [0,T]. Furthermore, there is a No € N
depending only on C and T such that for all N > Ny

sup e(t) < N7°, (2.26)
te[0,T]

Proof. This lemma has been proved in Lemma 3.3 of Ref. 32. For completeness,
we provide a proof here, which is done by contradiction. We assume that there is a
t € [0, 7] with e(t) > N~*2 and show that for N > Ny with some Ny € N specified
below, we get a contradiction.

It follows that the infimum over all times ¢ where e(t) is larger than or equal to
N2 exists and we define

T, =inf{0 <t <T:e(t) > N2}
We get by continuity of e(t) together with e(0) = 0 that T* > 0,

— N2 — N2
e(Ty) =N and omax, e(t) = N""2. (2.27)

Since (2.25) implies (2.26), we get for T1 = T, that

<C’\/1og t) 4+ Clog* (N)N™s, 0<t<T,.
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Gronwall’s Lemma gives that
e(t) < eOVIEN 1og? ()N,
in particular
e(T,) < eCVIeM T g2 (N)N s,

Since e“ V18T and log?(N) are asymptotically bounded by any positive
power of N, we can find a Ny € N depending only on C and T such that for any
N> Ny

eCVIBNT 1602 (N) < N23722 for 0 < Ay < As,
and hence
e(Ty) < N~ for any N > Nj.

Thus we get a contradiction to (2.27) for all N > Ny and the lemma is proven.
O

Our next theorem states that the N-particle trajectory X; = (X!)i=1, ..n
starting from Xy (i.i.d. with common density pg) remains close to the mean-
field trajectory Y; = (Y;');=1,.. n with the same initial configuration Yy = Xj.
More precisely, we prove that the measure of the set where the maximal distance
supyeo, 711Xt —Y[loo on [0, T] exceeds N9 decreases exponentially with the number

of particles N, as N grows to infinity.

Theorem 2.1. (Convergence) Assume that trajectories Xt = (X!)i=1, N, Y2 =
(Y")iz1,...~ satisfy (1.5) and (2.1) respectively with the initial data Xo = Yo, which
is 4.i.d. sharing the common density po satisfying (2.2). Then for any o > 0, there
exists some constant Ny > 0 depending only on v, o, T and C,,, such that for

N > Ny, the following estimate holds with the cut-off index 0 < § < %

P sup [|[X; = Yifloo < N°) >1—-N"“
t€[0,T]

Proof. We can prove the convergence result by using the consistency from Propo-

sition 2.1, the stability from Proposition 2.2 and Lemma 2.7. Denote the event

C:= { sup [|FN (V) = F (Y)]loe € Coar PN 1og<N>}.
te(0,T]

Consider the quantity e(t) defined as

e(t) = [ X = Vi -
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Computing under the event C N S(Cj3 ) and using the fact d“m”‘x’ < || %], one has

de(t)
dt

< [|FN (X)) = F (V) oo

—N
< FY(X0) = FY ()loe + 17 (V) = F (1) o
< C3,010g(N) [| Xy — Vil o + Cs,al/% log(N )N*%T

+ Cgval/% S log(N)
< C(a, T, Cy) log(Ne(t) + Cla, T, Cp ) N5 log(N).  (2.28)
According to Proposition 2.2 one has
M-1
cn () B, N"HNACCNS(Csa). (2.29)
n=0

Thus it follows from (2.28) that for any 0 < T3 < T, it holds

de(t)

I < Clog(N)e(t) + C(a, T, CpO)V%N*)‘log(N) for all t € (0,T7],

under the event C N ﬂf‘f;ol B, NH N A, where

_§(d-2) -1
A= S

And for 0 < 6 < % we have —)\ < —4.
Recall the event

te[0,T) t€[0,1y]

.A::{ sup e(t)gN_‘;}g{ sup e(t)SN_‘; for any0<T1§T}.

We deliberately take the event A out as the condition (2.25) in Lemma 2.7. Hence
it yields that

sup e(t) < N7°
t€[0,T]

under the event C N 071\14:—01 B:, NH. Then we arrive at that

]P’( Sup X — Vil > N—5>
tel0,T

M-—1
< 37 B(BE) + BOH) + B(C)

n=0

<TNT~® 4 OpN3 exp(—~CpN T )+ N™® < N~
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by using Proposition 2.1, Lemmas 2.6 and 2.5. Since o > 0 is arbitrary and so is
o', we have proved Theorem 2.1. m|

2.3. The error estimate on interaction

Using Theorem 2.1, we obtain the error estimate on interaction.

Theorem 2.2. Under the same assumption as Theorem 2.1, let p(x,t) be the
regular solution to the aggregation equation (1.6) up to time T such that p €
L>(0,T; L* N L>(R%)). Assume that { X!} | satisfy the particle system (1.5) and
FY satisfies (1.4). Then for any o > 0, there exists some constant Cy o > 0 depend-

ing only on o, T and C,, such that the following estimate holds with the cut-off
index 0 < 0 < %:

N
1
P| sup sup / FN(X!—y)p(y, t)dy — N1 E FN(Xf — X;)

te[o,T] i=1,...,N |Jra — 14

< Cyav?Nlog(N) | >1-N—°.

Proof. For i =1, let us denote

N
1
¢ N + N th Xt
e} = /RdF (Xl—y)P(yi)dy—ﬁE:F (X1 - j)7

Jj=2

then one splits it into two parts

N
1
e < y FY(XT = y)p(y, t)dy — N_1 ZFN(Xf ~Y})

Jj=2

N N
1 1
NS MR IR S DR(C R

i=2
Lt t
=:eqp + ey,

where Y; = (Y;!);=1,... n satisfies (2.1).

1
To estimate e!;, we use the law of large number estimates. In particular, similar

to the estimate (2.9) in Lemma 2.5, we can prove that at any fix time ¢ € [0, T]

N
s(d—2)—1

1
N t N t t —_—
P /R FN(X] = y)ply. )y — ;ZQ:F (X{-Y/)|>CN"7 log(N)

<N (2.30)
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where C' depends only on «, T' and C),. Then following the procedure in Proposi-
tion 2.1, we can get the estimate of e}, for all the time ¢ € [0, 7). Hence one has

1 §(d—2)—1
P| sup ey >CrvzN~— = log(N)| < N~ % (2.31)
te[0,T]

where C' depends only on «, T" and C,.
To estimate e!,, we shall use the result from Theorem 2.1. Let us recall the

A:{ bup | X — Yt||oo§N5},
tel0,T

then it follows from Theorem 2.1 that

event

P(A°) < N~

For any ¢ € R? with |¢| < 4N 0, it follows from [42, Lemma 6.3] that
[FN (2 +&) — FY(2)| < CLY (2)[¢],

where LY is defined in (2.3). Therefore, it holds

N
DO IFN (X - Y)) - FN(X] - X))

Jj=2

N
1
> LN =YX, - Y]]

N-1

}—‘

<
=2
< CLZN:LN(Xt YY) X, - Vi
= N—1j=2 1 j t tlloo
< ON—‘SLXN:LN(Xt -Y)) (2.32)
= N —1 & voah

under the event A. Next we denote the event

N

1
Bi:=4 sup |—— LN(xt —vy! —/ LY (Xt —y)p(y, t)dy
V= g P [ O et

<CviN“T log( )

Similar to the law of large numbers estimate (2.10) in Lemma 2.5, we can prove
that

P(B) < N~



Math. Models Methods Appl. Sci. 2019.29:1-29. Downloaded from www.worldscientific.com

by NEW YORK UNIVERSITY on 02/26/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

Learning interacting particle systems 21
Hence it follows from (2.32) and Lemma 2.3 that

sup ely <C (
te(0,T]

[ 20t = ot ] + A o) )

< Cvs log(N)N~°,
under the event A N By, which implies that
P( sup e}y < Cv? log(N)N7° | >1- N, (2.33)
te[0,7)

where C' depends only on v, a, T and C),.
Collecting estimates (2.31) and (2.33), it yields that

P( sup e} < C’V%N_‘Slog(N) >1-N"9 (2.34)
t€[0,T]

where C' depends only on o, T'and C),. Similarly, we can arrive at the same estimate
for i = 2,..., N, which finishes the proof. O

3. Parameter Estimation and the Proof of Theorem 1.1

In this section, we obtain the diffusion parameter estimation and prove our main
theorem (Theorem 1.1).
Let us recall (1.15) that

o —v| < CvE(|T2|? + |T5|%) + |vi,n — v,

where
2
1 R T B S A SR
= X" -x" - — NTFPN(X: - X%)d
view = s 2 2 |Xi i /t N1 2 P X)ds|
i=1 n=0 n J#i
(3.1)
and
1 KMo 1N
Tl = —— — Y FN(Xy-Xs
=gzl 2| [ (g e -x)
=1 n=0 n VE)
2
— [ F = sy | s
R
and
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According to Lemma 2.3, one has
|Z5| < CAt, (3.2)
where C' depends only on 1" and C,,. Then it follows from Theorem 2.2 that
P(|Z3| < CvAEN 2 log?(N)) >1— N~°, (3.3)

where C' depends only on «, T" and C,,,. It is left to estimate the error between
v,y and v, which can be done by using the concentration property of x? random
variable.

Theorem 3.1. Under the assumption as in Theorem 1.1. Suppose that vi n sat-
isfies (3.1), then the following estimate holds:

dK M~?

P(lvgny —v| >v) <2e” 5 for any v € (0,1). (3.4)

Proof. Recall that
1 trnt1 1 N
X = x4 / T O PN (X = X ds + VEALN, =1, K,
tn T
then we know

n+1 n tn N s s
XX i S N (g - X

tn ~ N(0,1)%.
2UAL
Notice that the random variable
K M-1 ) i1 2
n+1 n N XS
o F d
QVAt Z Z Xi /t N-1 Z X3)ds
i=1 n=0 n VED)

is distributed according to the chi-squared distribution with dNM degrees of free-
dom. This is usually denoted as

S ~ x*(dKM).
Recall a simple fact from probability theory, we know E[S] = dKM and
Var[S] = E[(S — dKM)?| = 2dK M.

Recall that the estimate of v is given by

| K Mo ) . . N
n n S S
iy = qap 2 2 | KT X - w72 P X))
i=1 n= n G#i

which leads to
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Hence we have

202
E[(VK,N — V)2] = dKM

Also by the concentration of x? variable, we have the following two sided tail
bound
S _dKMA?
P(M—l’>7)§2e 8 for any v € (0, 1),

which is a direct result from the Bernstein’s inequality as the form showed in Corol-
lary 2.11 of Ref. 9. And it leads to

dK M~2

P(lvg n —v| >yv) <2 s for any v € (0,1). (3.5)

Hence it concludes the proof. O

Collecting estimates (3.5), (3.3) and (3.2), one has

_ dKM~2
s

P70 —v| < Cv2At2(14+ 3N Clog(N)) +yw)>1—- N~ -2 5
for any v € (0,1). Hence Theorem 1.1 has been proved.

4. Extension to Regular Interacting Kernel F € W1 (R%)

In this section, we will extend our result to the particle system with regular inter-
acting force F', which satisfies
F € Whe(RY). (4.1)
Since F' is non-singular, there is no need to mollify the force F' anymore. To be
more specific, we consider trajectories { X!}, satisfying SDEs:
T X
d)(f:ﬁ F(X]—X})dt+V2vdB], i=1,...,N, (4.2)
J#i
where the initial data {X?}Y | are ii.d. sharing the common density py € L' N
L>(R%). Then the solution p to the mean field equation

op=vAp—V-(pFxp), zcRY t>0, (4.3a)

p(z,0) = po(x), (4.3b)
has the following regularity for any 7" > 0

ol Lo 0,752 n Lo rey) < C(T llpoll Lrnroe rays [ F llwioe ray) =2 CFpy-

Take a time step At > 0 and let ¢, := nAt and M := Alt (we assume that %

is an integer). Denote X\™ := X! = XAt a5 the solution to (4.2) at time f,.
Namely, one has

tni1 1 N
x D x M = / o D F (X - X)) ds + V2UrAINT,
tn T

where M(n) ~ N(0,1)%, i.e. the standard Gaussian distribution in dimension d.
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Then we are ready to define our estimator for the diffusion parameter as before
K M-1

2dKT Z Z |X (n+1) i(n)|2’ (4.4)

=1 n=0
where 1 < K < N, which means we only have partial observations.
The extended result can be described in the following theorem.

Theorem 4.1. Suppose that F(x) € WH>°(R9) and 0 < po( ye Ltn L”(Rd)
For any T > 0, take a time step At > 0 and define t, := nAt and M = At
Let {X(n)}l Ln—o be the sample trajectories satisfying (4.2) at time t,. Then
there exists some constant Nog > 0 depending only on v, o, T, ||[F||y1.00(ray and
llpoll 1AL ey, such that for N > Ny, the estimator U defined in (4.4) is an approzi-
mation of v, and the following estimate holds:

P(|p — v| < Cov2 At3(1 + 12 N~% log(N)) + vy)

dK M~2

>1-N"®—2 "5 | (4.5)

for any v € (0,1), where Co > 0 depends only on a, T, ||F|w1.ecmgay and

llpollLinLee(ray- In particular, let N goes to infinity and choose Atz =, it follows
from (4.5) that

dKT

P(|v —v| < C, (1/2 +1/)At2)>1—26_T. (4.6)

Proof. Again, we defined an intermediate estimator

K M-1

1 (1) 3 / 1
= Xp =X = —— ) F(X;—X5)d
VK,N QdKTZZ i i ] N—].Z ( % J)S
i=1 n=0 n VES)
then we split the error into two parts
[0 —v| < |0 —vgNn|+|ven — V| (4.7)

and we can prove that there exists a positive number C such that

9= vl < CvE(ITa|® + |Ts]2) + vy — v (4.8)
with
K M=1| .4, ) N
12| _dKTZZ / mZF(Xf—X;)
i=1 n=0 tn i
2
= L EE —welyss)dy Jds|
and
1 M-1 tn+1
Bl = Gkr (X7 - dyd
| dKT;nZO /t X =)ol s)dyds



Math. Models Methods Appl. Sci. 2019.29:1-29. Downloaded from www.worldscientific.com

by NEW YORK UNIVERSITY on 02/26/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

Learning interacting particle systems 25

According to Lemma 2.3, one has
73| < CAt, (4.9)

where C' depends only on T, || F|[yy1,00 ray and ||po| ;1AL (re)- It follows from The-
orem 3.1 that

72
P(lvg n —v| > yv) < 2e” o for any v € (0,1). (4.10)

Now it is left to get the estimate of Z5. The 11\1;1ain idea behind the proof is also
to construct a mean-field dynamic system {Y;} ~ without interaction

int:/ F(Yffy)p(y,t)dydt+v21/dBf, i=1,...,N, (4.11)
Rd

here again we let {V;!}}¥, has the same initial condition as {X!}¥, (ii.d. with
common density pg). Consider the quantity e(t) defined as

e(t) = 1X; = Vil -

Following the same procedure as in Lemma 2.5 and Proposition 2.1, one can
prove that there exists some C, depending only on «, T, ||F|[y1.00ray and
Hp()HLlﬂLoc(]Rd) such that

P ( sup || F(Yy) — F(Yy)|| L = CraviN"z 1og(N)> <N,

t€[0,T]
where
1 N
(F(Y2))i == ﬁZF(Yf -Y/),
J#i
and

.
B
e
=
=
:

i

/Rd F(Y! —y)p(y, t)dy.

We denote the event

C:= { sup H]-"(Yt) —7(Yt)||oo < Cl,aV%Nié log(N)}.
t€[0,7]

Then using the fact % < |19, one concludes that under the event C

T < YF) - Fo)
< F(Xe) = FYD) |l + [|[F(Ye) = F(YD)|
< C||X¢ = Yilloo + Cv2 N2 log(N), (4.12)
which leads to
sup || X; — Yyl < Crz N~ log(N), (4.13)
te[0,7)

where C' depends only on «, T, ||F|lw1.c®ay and ||pollz1nzec(rae). Based on this
mean-field limit result, we can prove error estimate on interaction as in Theorem 2.2.
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Let us split the error
1 N
F(X{ = y)ply. )y — 57— D F(X{ - X))
Rd -l

N
1
<[ FPxt— Ny — —— S F(X! —Y?
_/Rd (X1 —y)p(y, t)dy N—1j§:2 (X1 -Y))

R R
T L F(XT=Y) = 5 2 F(XE - X))
Jj=2 j=2

+

.t t
=:ey; + €qs.

Similar to estimates (2.31) and (2.33), it is easy to compute that

P| sup e, <CviN-zlog(N)|>1-N"°, (4.14)
te(0,T]
and
P| sup e}, < CviN~2 log(N)| >1—-N—™. (4.15)
t€[0,T]

where C' depends only on «, T', || F[[y1.00 ray and ||pol|L1q 100 (ra)-
Combining (4.14) and (4.15), it leads to

N
1
P| sup / F(X{ = y)ply, t)dy — —— > F(X} — X!)| < CN "2 log(N)

t€[0,T] | /R4 N—-14 ’

s j=2

S 1- N_a7

which yields
P(|Z,| < Cv2 AtN~'1og?(N)) > 1 — N~°, (4.16)

where C' depends only on «, T', || F|[y1.00 (ray and ||pol|L1q 100 (ra)-
Collecting (4.10), (4.16) and (4.9), we obtain our result

_ dKM~?
s

P(o—v| < CviAt3 (143N 2 log(N)) +1vy) > 1 - N @ =2 " 5,
for any v € (0,1). O
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