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1. Introduction

Parameter estimation of (stochastic) dynamical systems is an exciting area of

research with ubiquitous applications in many areas in science and technology,

where it usually requires incorporating data into a model. This is often known as

data assimilation (see Ref. 41 for a mathematical introduction) in particular in the

context of numerical weather forecast. It is also known as system identification in

the control literature (see for example Chaps. 11 and 12 of Ref. 40 for applica-

tions for modeling robots). In such problems, a physical model of the form of a

dynamical system is derived from (partial) empirical observations and is usually

calibrated with and improved by experimental data. The problem is also related to

uncertainty quantification, which is important as it enables the building of more

realistic models and making better predictions of their behavior in the future. In

the modeling of self-organized systems, different ways to qualify uncertainties have

been studied (see for example Refs. 2, 8, 15, 19, 37 and 49).

In this work, we are interested in the parameter estimation problems arising

from a particular class of physical systems that can be modeled by interacting

particle systems. This means that the dynamics of the system is determined by

interactions between agents (particles) together with some intrinsic or extrinsic

random effects. Such systems are widely used to establish different mathematical

models describing collective behaviors of organisms and social aggregations, for

instance flocks of birds,28 aggregation of bacteria,4 schools of fish,27 swarms formed

by insects,5 opinion dynamics43 and robotics and space missions.36 Various types of

diffusion are considered in these models: While linear diffusion is more commonly

used,18 the diffusion can be slow in areas with few particles, known as the degenerate

(slow) diffusion model48; and similarly, the diffusion can also be fast.47 One may

also consider the nonlocal diffusion, where organisms adopt Lévy process search

strategies which have continuous paths interspersed with random jumps.29 Thus

qualifying the type of the diffusion can significantly reduce the uncertainty in model

predictions and is hence a very important step in many applications. This paper

focuses on the case of Brownian diffusion with unknown diffusion parameter. We

study the diffusion parameter estimation of such interacting particle systems with

partial observed data.

More precisely, the microscopic agent-based model investigated here describes

the evolution of positions of N agents, denoted by {Xt
i} ⊂ Rd, i = 1, . . . , N , whose

evolution is governed by a system of stochastic differential equations (SDEs) of the

type

dXt
i =

1

N − 1

N∑
j 6=i

F (Xt
i −Xt

j)dt+
√

2νdBti , i = 1, . . . , N, (1.1)

where F models some pairwise interaction between the agents and Bti are indepen-

dent realizations of Brownian motions which count for extrinsic random perturba-

tion of the agent positions. In such systems, the agents are assumed to be identical,
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so that the noise level ν is the same for each agent. In this work, we assume that

the interaction kernel F between agents is known, while the noise level ν is to

be determined. More specifically, we will focus on the case when the interaction

between agents is given by Newtonian type interaction for dimension d ≥ 2, or

more precisely, a regularized Newtonian interaction, to be specified below. Suppose

we observe or track the trajectories of K agents on the time interval [0, T ], where

1 � K � N , the question we address in this work is how to estimate ν and to

quantify the error of the estimator.

A more general situation one may consider is the problem for which the inter-

action kernel is also to be determined, this will be left for future works. In Ref. 21,

authors solved the following inverse problem for aggregation equations: given an

equilibrium state, they constructed a corresponding force F to ensure that equilib-

rium. We also note the recent work8 which considers learning the interaction kernel

for a deterministic interacting particle systems through a variational approach.

While admittedly that we have taken a simple scenario and a somewhat simplistic

model for interacting agents, already many interesting issues arise from both math-

ematical and application point of view. For instance, how accurate one can make

the estimation by only observing/tracking a few agents. How the potential singu-

larities of the interacting potential (such as Coulomb or Newtonian type) impact

the estimation accuracy.

Observe that the scaling of (1.1) is chosen such that we are in the mean-

field regime, as the interaction strength decreases as 1/N as the number of agents

N→∞. It is thus expected that in the limit N → ∞, the system can be well

described by a mean-field dynamics, which can be described as the following non-

linear partial differential equation (PDE):

∂tρ = ν∆ρ−∇ · (ρF ∗ ρ), x ∈ Rd, t > 0, (1.2a)

ρ(x, 0) = ρ0(x), (1.2b)

where the noise level ν > 0 enters the PDE system as a diffusion parameter. In

particular, here the interaction kernel is chosen as Newtonian:

F (x) = ∓C∗x
|x|d

, ∀x ∈ Rd\{0}, d ≥ 2, (1.3)

with C∗ = Γ(d/2)
2πd/2

. Here the sign ∓ indicates that the interaction between individuals

can either be attraction or repulsion. Specifically, when the mechanism of interaction

is attraction, the mean field equation (1.2) becomes the parabolic–elliptic Keller–

Segel equation,38,44 which is a prototypical model for chemotaxis and has been used

in many related modeling scenarios. The analysis of the scaling limit of interacting

particle system (1.1) is usually called the mean-field limit, which passes limits from

microscopic discrete particle systems to macroscopic continuum models.

While it would be intriguing to study the parameter identification problem for

the particle system (1.1) with the Newtonian interaction (1.3), such microscopic

system is however ill-posed, as shown by the recent deep result by Fournier and
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Jourdain (see Proposition 4 of Ref. 23): For any N ≥ 2 and T > 0, denote {Xi(t); t ∈
[0, T ], i = 1, . . . , N} the solution to (1.1) with F given in (1.3), then

P(∃ s ∈ [0, T ], ∃ 1 ≤ i < j ≤ N : Xi(s) = Xj(s)) > 0,

i.e. the singularity cannot be avoided in any finite time with a positive probability

and thus the particle system is not well-defined.

Classical results of the mean-field limit require the kernel F ∈ W 1,∞(Rd). One

possible way to overcome singularity is to regularize the kernel F . In particular, in

this work we consider the regularized kernel FN :

FN = F ∗ ψN , ψN (x) = Ndδψ(N δx), (1.4)

where δ the cut-off index and 0 ≤ ψ(x) ∈ C∞0 (Rd) is a cut-off function, which

satisfies ψ(x) = ψ(|x|) and
∫
Rd ψ(x)dx = 1. Then we have the regularized stochastic

particle system {Xt
i}Ni=1 satisfying

dXt
i =

1

N − 1

N∑
j 6=i

FN
(
Xt
i −Xt

j

)
dt+

√
2ν dBti , i = 1, . . . , N, (1.5)

where the initial data {X0
i }Ni=1 are independently identically distributed (i.i.d.) with

the common density function ρ0. Since the regularized kernel is Lipschitz for any

fixed N , the system above has a unique global strong solution. The corresponding

aggregation equation has the form

∂tρ = ν∆ρ−∇ · (ρFN ∗ ρ), x ∈ Rd, t > 0, (1.6a)

ρ(x, 0) = ρ0(x). (1.6b)

Classical results for mean-field limit with globally Lipschitz forces were obtained

by Braun and Hepp10 and Dobrushin.16 Then Bolley, Cañizo and Carrilo7 presented

an extension of the classical theory to the particle system with only locally Lipschitz

interacting force. The last few years have seen great progress in mean-field limits

for singular forces by treating them with an N -dependent cut-off. In particular, the

mean-field limit for the Keller–Segel model has been rigorously proved in Refs. 22,

23, 24, 30 and 31. And the deterministic particle method for aggregation equations

can be found in Refs. 11 and 13. For a general overview of this topic we refer readers

to Refs. 12, 25, 34, 35 and 46.

Considering the parameter estimation problem for diffusion processes, there is

a huge literature in statistics and econometrics, often related to the estimation of

volatility in financial models. A complete literature review is beyond our scope and

we refer the readers to Ref. 45 for an overview. To make the scenario more realis-

tic, instead of assuming the availability of some trajectories {Xt
i}Ni=1 for all time

t ∈ [0, T ], we consider the case that trajectories are only observed at discrete time

snapshots during the time interval. Diffusion parameter estimation problems based

on discrete observations have been discussed by many authors.1,3,6,14,17,20,33,39,50
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However, to our knowledge, no previous work has been done for diffusion estimation

in the context of interacting particle systems. Specifically, there are a few differ-

ences between our work and these works: (1) We consider parameter estimation of

an interacting particle system, however authors mentioned above studied a single

diffusion process. (2) Our estimator (1.8) concerns the information of interacting

particles, but they only investigated one trajectory and take the expectation value

of this stochastic process. (3) In our setting, the interacting force F is singular,

while the drift function is assumed to be regular enough in usual statistics lit-

erature as mentioned earlier. Our main result, given below in Theorem 1.1 after

we make precise the estimator ν̂, quantifies the estimation error of the proposed

estimator.

Take a time step ∆t > 0 and let tn := n∆t and M := T
∆t (we assume that T

∆t

is an integer). Denote X
(n)
i := Xtn

i as the solution to (1.5) at time tn. Namely,

one has

X
(n+1)
i −X(n)

i =

∫ tn+1

tn

1

N − 1

N∑
j 6=i

FN
(
Xs
i −Xs

j

)
ds+

√
2ν(B

tn+1

i −Btni )

=

∫ tn+1

tn

1

N − 1

N∑
j 6=i

FN
(
Xs
i −Xs

j

)
ds+

√
2ν∆tN (n)

i , (1.7)

where N (n)
i ∼ N (0, 1)d, i.e. the standard Gaussian distribution in dimension d.

Then we are ready to define our estimator for the diffusion parameter

ν̂ :=
1

2dKT

K∑
i=1

M−1∑
n=0

∣∣X(n+1)
i −X(n)

i

∣∣2, (1.8)

where 1� K � N , which means we only have partial observations.

Our main result quantifies the estimation error of the proposed estimator (1.8),

which is summarized as below.

Theorem 1.1. Suppose the initial data 0 ≤ ρ0(x) ∈ L1 ∩ L∞(Rd) and let ρ(x, t)

be the regular solution of the aggregation equation (1.2) up to the time T such that

ρ ∈ L∞(0, T ;L1 ∩ L∞(Rd)). Take a time step ∆t > 0 and let tn := n∆t and

M := T
∆t . Assume {X(n)

i }
K,M
i=1,n=0 be the K (1 � K � N) sample trajectories

satisfying (1.7) with the cut-off index 0 < δ < 1
d at time tn. For any α > 0, there

exists some constant N0 > 0 depending only on ν, α, T and ‖ρ0‖L1∩L∞(Rd), such

that for N ≥ N0, the estimator ν̂ defined in (1.8) is an approximation of ν, and the

following estimate holds :

P(|ν̂ − ν| ≤ Cαν
1
2 ∆t

1
2 (1 + ν

1
2N−δ log(N)) + γν) ≥ 1−N−α − 2e−

dKMγ2

8 , (1.9)

for any γ ∈ (0, 1), where Cα > 0 depends only on α, T and ‖ρ0‖L1∩L∞(Rd).
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Let us remark on two simple consequences from (1.9). If we consider N → ∞,

(1.9) simplifies to

P(|ν̂ − ν| ≤ Cαν
1
2 ∆t

1
2 + γν) ≥ 1− 2e−

dKMγ2

8 (1.10)

for any γ ∈ (0, 1). Thus despite that we are dealing with an interacting system,

when N is large the accuracy of the estimator is similar to that based on using K

(independent) trajectory observations of a non-interacting particle system. More-

over, to get from (1.9) a simpler looking error bound, we can choose ∆t
1
2 = γ

(assuming we are able to adjust the frequency of observations) and get

P(|ν̂ − ν| ≤ (Cαν
1
2 + ν)∆t

1
2 ) ≥ 1− 2e−

dKT
8 , (1.11)

where we used the fact that Mγ2 = T
∆tγ

2 = T . Estimate (1.11) indicates that

increasing the number K of the observed data improves the accuracy of our esti-

mator ν̂ (the probability increase as K becomes larger).

To prove the theorem on the error of the estimator, we defined an intermediate

estimator

νK,N :=
1

2dKT

K∑
i=1

M−1∑
n=0

∣∣∣∣∣∣X(n+1)
i −X(n)

i −
∫ tn+1

tn

1

N − 1

N∑
j 6=i

FN
(
Xs
i −Xs

j

)
ds

∣∣∣∣∣∣
2

,

then we split the error into two parts

|ν̂ − ν| ≤ |ν̂ − νK,N |+ |νK,N − ν|. (1.12)

Let us denote

ani := X
(n+1)
i −X(n)

i , bni :=

∫ tn+1

tn

1

N − 1

N∑
j 6=i

FN
(
Xs
i −Xs

j

)
ds,

then

|νK,N − ν̂|

=
1

2dKT

K∑
i=1

M−1∑
n=0

∣∣|ani − bni |2 − |ani |2∣∣
≤ 1

2dKT

K∑
i=1

M−1∑
n=0

|bni |2 +
1

dKT

K∑
i=1

M−1∑
n=0

|ani bni |

≤ 1

2dKT

K∑
i=1

M−1∑
n=0

|bni |2 +

(
1

dKT

K∑
i=1

M−1∑
n=0

|ani |2
) 1

2
(

1

dKT

K∑
i=1

M−1∑
n=0

|bni |2
) 1

2

≤ 1

2dKT

K∑
i=1

M−1∑
n=0

|bni |2 + (2ν̂)
1
2

(
1

dKT

K∑
i=1

M−1∑
n=0

|bni |2
) 1

2

.
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Notice that

1

2dKT

K∑
i=1

M−1∑
n=0

|bni |2 =
1

2dKT

K∑
i=1

M−1∑
n=0

∣∣∣∣∣∣
∫ tn+1

tn

1

N − 1

N∑
j 6=i

FN
(
Xs
i −Xs

j

)
ds

∣∣∣∣∣∣
2

≤ 1

dKT

K∑
i=1

M−1∑
n=0

∣∣∣∣∣∣
∫ tn+1

tn

 1

N − 1

N∑
j 6=i

FN
(
Xs
i −Xs

j

)

−
∫
Rd
FN (Xs

i − y)ρ(y, s)dy

ds
∣∣∣∣∣∣
2

+
1

dKT

K∑
i=1

M−1∑
n=0

∣∣∣∣∫ tn+1

tn

∫
Rd
FN (Xs

i − y)ρ(y, s)dyds

∣∣∣∣2
:= |I2|+ |I3|,

which implies

|νK,N − ν̂| ≤ |I2|+ |I3|+ (2ν̂)
1
2 (2|I2|+ 2|I3|)

1
2 .

Collecting above inequality and (1.12), we conclude

|ν̂ − ν| ≤ (1 + 2ν̂
1
2 )(|I2|

1
2 + |I3|

1
2 ) + |νK,N − ν|, (1.13)

when |I2|, |I3| < 1.

Moreover, notice that

ν̂ =
1

2dKT

K∑
i=1

M−1∑
n=0

|ani |2 ≤
1

dKT

K∑
i=1

M−1∑
n=0

|ani − bni |2 +
1

dKT

K∑
i=1

M−1∑
n=0

|bni |2

≤ 2νK,N + 2|I2|+ 2|I3|

≤ 2|νK,N − ν|+ 2|I2|+ 2|I3|+ 2ν ≤ 6 + 2ν, (1.14)

when |νK,N − ν|, |I2|, |I3| < 1. Combining (1.14) with (1.13), it yields that

|ν̂ − ν| ≤ Cν 1
2 (|I2|

1
2 + |I3|

1
2 ) + |νK,N − ν|, (1.15)

where C is a positive number.

In the sequel, we will see that the estimate of |I3| is a direct result from the

property of regularized kernel FN (see estimate (3.2)). And the estimate of |I2|
is an estimate of interaction (see Theorem 2.2), which follows from the mean-field

limit result (see Theorem 2.1). As for the estimate of |νK,N − ν|, it can be deduced

from a concentration inequality of Chi-squared distribution (see Theorem 3.1).

The work is organized as follows: In Sec. 2, we will give a rigorous proof of the

mean-field limit for aggregation equations with Newtonian potential. Based on this,

we also obtain an error estimate on interaction. Section 3 is devoted to prove that

our estimator ν̂ is a good approximation of ν and the convergence rate between
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them is achieved. Then in Sec. 4 we further extend our result to the case where the

aggregation equation has a bounded Lipschitz interacting force.

2. Mean-Field Limit and Estimate on Interaction

In this section, we will prove the mean-field limit for particle system (1.5). Namely,

given the solution ρ := ρ(x, t) to the mean-field equation (1.6), we construct a

mean-field trajectories {Y ti }Ni=1 from (1.6), then we prove the closeness between

Xt = (Xt
1, . . . , X

t
N ) and Yt = (Y t1 , . . . , Y

t
N ). To do this, we shall consider again a

Newtonian system with noise. However, this time not subject to the pair interaction

but under the influence of the external mean field FN ∗ ρ(x, t)

dY ti =

∫
Rd
FN
(
Y ti − y

)
ρ(y, t)dy dt+

√
2ν dBti , i = 1, . . . , N, (2.1)

here we let {Y ti }Ni=1 have the same initial condition as {Xt
i}Ni=1 (i.i.d. with the

common density ρ0). Since the particles are subject to an external field, the inde-

pendence is conserved. Therefore, the {Y ti }Ni=1 are distributed i.i.d. according to

the common probability density ρ. We remark that the aggregation equation (1.6)

is Kolmogorov’s forward equation for any solution of (2.1), and in particular their

probability distribution ρ solves (1.6).

2.1. Preliminaries

Notations. The generic constant will be denoted generically by C, even if it is

different from line to line. The notation ‖·‖p represents the usual Lp-norm of a

function for any 1 ≤ p ≤ ∞. For a vector Xt = (Xt
1, . . . , X

t
N ), we denote

‖Xt‖∞ := sup
i=1,...,N

|Xt
i |.

Since error estimates obtained later are valid when the solution of PDE (1.6) is

regular enough, we assume that

0 ≤ ρ0 ∈ L1 ∩ L∞(Rd), (2.2)

then Eq. (1.6) has a unique local solution with the following regularity:

‖ρ‖L∞(0,T ;L1∩L∞(Rd)) ≤ C(‖ρ0‖L1∩L∞(Rd)) =: Cρ0 ,

where Cρ0 is independent of N and T > 0 depends only on ν and ‖ρ0‖L1∩L∞(Rd).

The proof of this result is a standard process (see for example Proposition 4.1 of

Ref. 22).

Let us recall some estimates of the regularized kernel FN defined in (1.4).

Lemma 2.1. ([30, Lemma 2.1]) (1) FN (0) = 0, FN (x) = F (x) for any |x| ≥ N−δ
and |FN (x)| ≤ |F (x)| for any x ∈ Rd;

(2) |∂βFN (x)| ≤ CN (d+|β|−1)δ for any x ∈ Rd;
(3) ‖FN‖2 ≤ CN ( d2−1)δ.
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Next we define a cut-off function LN , which will provide the local Lipschitz

bound for FN .

Definition 2.1. Let

LN (x) =


6d

|x|d
if |x| ≥ 6N−δ,

Ndδ else,

(2.3)

and LN : RdN → RN be defined by (LN (Xt))i := 1
N−1

∑N
i6=j L

N (Xt
i−Xt

j). Further-

more, we define LN (Yt) by (LN (Yt))i :=
∫
Rd L

N (Y ti − x)ρ(x, t)dx.

Denote

(FN (Y t))i :=
1

N − 1

N∑
j 6=i

FN (Y ti − Y tj ), (2.4)

then we have the local Lipschitz continuity of FN .

Lemma 2.2. (Lemma 2.3 of Ref. 32) If ‖Xt − Yt‖∞ ≤ 2N−δ, then it holds that

‖FN (Xt)−FN (Yt)‖∞ ≤ C‖LN (Yt)‖∞‖Xt − Yt‖∞, (2.5)

for some C > 0 independent of N .

The following observations of FN and LN turn out to be very helpful in the

sequel.

Lemma 2.3. (Lemma 2.4 of Ref. 32) Let LN (x) be defined in Definition 2.1 and

ρ ∈ L1 ∩ L∞(Rd). Then there exists a constant C > 0 independent of N such that

‖LN ∗ ρ‖∞ ≤ C log(N)(‖ρ‖1 + ‖ρ‖∞),

‖(LN )2 ∗ ρ‖∞ ≤ CNdδ(‖ρ‖1 + ‖ρ‖∞);
(2.6)

and

‖FN ∗ ρ‖∞ ≤ C(‖ρ‖1 + ‖ρ‖∞),

‖∇FN ∗ ρ‖∞ ≤ C log(N)(‖ρ‖1 + ‖ρ‖∞).
(2.7)

Also, we need the following concentration inequality to provide us the probabil-

ity bounds of random variables.

Lemma 2.4. Let Z1, . . . , ZN be i.i.d. random variables with E[Zi] = 0, E[Z2
i ] ≤

g(N) and |Zi| ≤ C
√
Ng(N). Then for any α > 0, the sample mean Z̄ = 1

N

∑N
i=1 Zi

satisfies

P

(
|Z̄| ≥

Cα
√
g(N) log(N)√

N

)
≤ N−α,

where Cα depends only on C and α.

The proof can be seen in Lemma 1 of Ref. 26, which is a direct result of the

Taylor expansion and the Markov’s inequality.
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2.2. Mean-field limit for the aggregation equation with Newtonian

potential

In this section, we obtain the maximal distance between the exact microscopic

dynamics (1.5) and the approximate mean-field dynamics (2.1). Denote

(FN (Yt))i :=

∫
Rd
FN (Y ti − x)ρ(x, t)dx, (2.8)

then we can introduce the following lemma of law of large numbers.

Lemma 2.5. At any fixed time t ∈ [0, T ], suppose that Yt = (Y ti )i=1,...,N satisfies

the mean-field dynamics (2.1) with i.i.d initial data sharing the common density ρ0

satisfying (2.2). Assume that FN and FN are defined in (2.4) and (2.8) respectively,

LN and LN are showed in Definition 2.1. For any α > 0 and 0 < δ ≤ 1
d , there

exists a constant C1,α > 0 depending only on α, T and Cρ0 such that

P(‖FN (Yt)−F
N

(Yt)‖∞ ≥ C1,αN
δ(d−2)−1

2 log(N)) ≤ N−α, (2.9)

and

P(‖LN (Yt)− L
N

(Yt)‖∞ ≥ C1,αN
dδ−1

2 log(N)) ≤ N−α. (2.10)

Proof. We can prove this lemma by using Lemma 2.4. Due to the exchangeability

of the particles, we are ready to bound

(FN (Yt))1 − (FN (Yt))1 =
1

N − 1

N∑
j=2

FN (Y t1 − Y tj )−
∫
R3

FN (Y t1 − x)ρ(x, t)dx

=
1

N − 1

N∑
j=2

Zj ,

where

Zj := FN (Y t1 − Y tj )−
∫
Rd
FN (Y t1 − x)ρ(x, t)dx.

Since Y t1 and Y tj are independent when j 6= 1 and FN (0) = 0, let us consider Y t1 as

given and denote E′[·] = E[·|Y t1 ]. It is easy to show that E′[Zj ] = 0 since

E′
[
FN
(
Y t1 − Y tj

)]
=

∫
Rd
FN (Y t1 − x)ρ(x, t)dx.

To use Lemma 2.4, we need a bound for the variance

E′[|Zj |2] = E′
[∣∣∣∣FN (Y t1 − Y tj )−

∫
R3

FN (Y t1 − x)ρ(x, t)dx

∣∣∣∣2
]
.

Since it follows from Lemma 2.3 that∫
R3

FN (Y t1 − x)ρ(x, t)dx ≤ C(‖ρ‖1 + ‖ρ‖∞),
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it suffices to bound

E′
[
FN
(
Y t1 − Y tj

)]
=

∫
Rd
FN (Y t1 − x)ρ(x, t)dx ≤ C(‖ρ‖1 + ‖ρ‖∞) ≤ C(T,Cρ0),

and

E′
[
FN
(
Y t1 − Y tj

)2]
=

∫
Rd
FN (Y t1 − x)2ρ(x, t)dx

≤ ‖ρ‖∞‖FN‖22 ≤ C(T,Cρ0)N δ(d−2),

where we have used ‖FN‖2 ≤ CN δ( d2−1) in Lemma 2.1(iii). Hence one has

E′[|Zj |2] ≤ CN δ(d−2).

So the hypotheses of Lemma 2.4 are satisfied with g(N) = CN δ(d−2). In addi-

tion, it follows from (ii) in Lemma 2.1 that |Zj | ≤ CN δ(d−1) ≤ C
√
Ng(N). Hence,

using Lemma 2.4, we have the probability bound

P(|(FN (Yt))1 − (FN (Yt))1| ≥ C(α, T,Cρ0)N
δ(d−2)−1

2 log(N)) ≤ N−α.

Similarly, the same bound must also apply to the cases where i = 2, . . . , N ,

P(‖FN (Yt)−F
N

(Yt)‖∞ ≥ C(α, T,Cρ0)N
δ(d−2)−1

2 log(N)) ≤ N1−α. (2.11)

Let C1,α be the constant in (2.11), we conclude (2.9).

To prove (2.10), we follow the same procedure above

(LN (Yt))1 − (LN (Yt))1 =
1

N − 1

N∑
j=2

LN (Y t1 − Y tj )−
∫
Rd
LN (Y t1 − x)ρ(x, t)dx

=
1

N − 1

N∑
j=2

Zj ,

where

Zj = LN (Y t1 − Y tj )−
∫
R3

LN (Y t1 − x)ρ(x, t)dx.

It is easy to show that E′[Zj ] = 0. To use Lemma 2.4, we need a bound for the

variance. One computes that

E′
[
LN
(
Y t1 − Y tj

)]
=

∫
Rd
LN (Y t1 − x)ρ(x, t)dx ≤ C log(N)(‖ρ‖1 + ‖ρ‖∞)

≤ C(T,Cρ0) log(N),

and

E′
[
LN
(
Y t1 − Y tj

)2]
=

∫
Rd
LN (Y t1 − x)2ρ(x, t)dx ≤ CNdδ(‖ρ‖1 + ‖ρ‖∞)

≤ C(T,Cρ0)Ndδ,
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where we have used the estimates of LN in Lemma 2.3. Hence one has

E′[|Zj |2] ≤ CNdδ.

So the hypotheses of Lemma 2.4 are satisfied with g(N) = CNdδ. In addition,

it follows from Definition 2.1 that |Zj | ≤ CNdδ ≤ C
√
Ng(N). Hence, we have the

probability bound

P(|(LN (Yt))1 − (LN (Yt))1| ≥ C(α, T,Cρ0)N
dδ−1

2 log(N)) ≤ N−α,

by Lemma 2.4, which leads to

P(‖LN (Yt)− L
N

(Yt)‖∞ ≥ C(α, T,Cρ0)N
dδ−1

2 log(N)) ≤ N1−α. (2.12)

Thus, (2.10) follows from (2.12).

Next we improve the consistency error to all time. To do this, we need the

following lemma, where we temporarily set the time step size ∆t = tn+1−tn = N−
β
d

with β > 2, which is only for the purpose of proving Propositions 2.1 and 2.2. Here

N−
β
d will not influence the choice of the ∆t in Theorem 1.1.

Lemma 2.6. Assume that the time step size ∆t = tn+1 − tn = N−
β
d for β > 2

and Yt satisfies the mean-field dynamics (2.1). There exists some constant CB > 0

depending only on T and Cρ0 , such that it holds

P

(
sup
n

sup
t∈[tn,tn+1]

‖Yt − Ytn‖∞ ≥ CBν
1
2N−

β+2
2d

)
≤ CBN

2+β
2d exp(−CBN

β−2
d ).

Proof. Notice that for t ∈ [tn, tn+1]

Yt − Ytn =

∫ t

tn

∫
Rd
FN
(
Y si − y

)
ρ(y, s)dy ds+

√
2ν∆t(Bt −Btn)

=: I1(t) + I2(t). (2.13)

It follows from Lemma 2.3 that

sup
tn≤t≤tn+1

‖I1(t)‖∞ ≤ C∆t ≤ CN−
β
d , (2.14)

where C depending only on T and Cρ0 . To estimate I2(t), recall a basic property

of the Brownian motion (Lemma 2.7 of Ref. 31):

P
(

sup
t≤s≤t+∆t

‖Bs −Bt‖∞ ≥ b
)
≤ C1(

√
∆t/b) exp(−C2b

2/∆t), (2.15)

where C1 and C2 depend only on d. Choosing b = N−
1
d in (2.15), it leads to

P

(
sup

tn≤t≤tn+1

‖I2(t)‖∞ ≥
√

2νN−
β+2
2d

)
≤ C1N

2−β
2d exp(−C2N

β−2
d ). (2.16)
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Collecting (2.14) and (2.16), it yields that

P

(
sup
n

sup
t∈[tn,tn+1]

‖Yt − Ytn‖∞ ≥ Cν
1
2N−

β+2
2d

)
≤ C1N

2+β
2d exp(−C2N

β−2
d ),

for β > 2, which concludes the proof.

Now we can prove the consistency error in all time.

Proposition 2.1. (Consistency) Let Yt = (Y ti )i=1,...,N satisfies the mean-field

dynamics (2.1) with i.i.d initial data sharing the common density ρ0 satisfying (2.2).

Assume that FN and FN be defined in (2.4) and (2.8), respectively. For any α > 0

and 0 < δ ≤ 1
d , there exists a constant C2,α > 0 depending only on α, T and Cρ0

such that

P

(
sup
t∈[0,T ]

‖FN (Yt)−F
N

(Yt)‖∞ ≥ C2,αν
1
2N

δ(d−2)−1
2 log(N)

)
≤ N−α, (2.17)

and

P

(
sup
t∈[0,T ]

‖LN (Yt)− L
N

(Yt)‖∞ ≥ C2,αν
1
2N

dδ−1
2 log(N)

)
≤ N−α. (2.18)

Proof. Denote events

H :=

{
sup
n

sup
t∈[tn,tn+1]

‖Yt − Ytn‖∞ ≤ CBν
1
2N−

β+2
2d

}
, (2.19)

and

Ctn := {‖FN (Ytn)−FN (Ytn)‖∞ ≥ C1,αN
δ(d−2)−1

2 log(N)},

where CB and C1,α are used in Lemmas 2.5 and 2.6, respectively. According to

Lemmas 2.5 and 2.6, one has

P(Cctn) ≤ N−α, P(Hc) ≤ CBN
2+β
2d exp(−CBN

β−2
d )

for any α > 0 and β > 2.

Furthermore, we denote

Btn := {‖LN (Ytn)− LN (Ytn)‖∞ ≤ C1,αN
dδ−1

2 log(N)}, (2.20)

then under the event Btn , it holds that

‖LN (Ytn)‖∞ ≤ ‖L
N

(Ytn)‖∞ + C1,αN
dδ−1

2 log(N) ≤ C(α, T,Cρ0) log(N) (2.21)

and P(Bctn) ≤ N−α by Lemma 2.5.
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For all t ∈ [tn, tn+1], under the event Btn ∩ Ctn ∩H, we obtain

‖FN (Yt)−F
N

(Yt)‖∞

≤ ‖FN (Yt)−FN (Ytn)‖∞ + ‖FN (Ytn)−FN (Ytn)‖∞

+ ‖FN (Ytn)−FN (Yt)‖∞

≤ C‖LN (Ytn)‖∞‖Yt − Ytn‖∞ + C1,αN
δ(d−2)−1

2 log(N)

+C log(N) ‖Yt − Ytn‖∞

≤ C(α, T,Cρ0)ν
1
2 log(N)N−

β+2
2d + C1,αN

δ(d−2)−1
2 log(N)

≤ C(α, T,Cρ0)ν
1
2N

δ(d−2)−1
2 log(N), (β > (d− 2)(1− dδ)),

where in the second inequality we have used the local Lipschitz bound of FN∥∥FN (Yt)−FN (Ytn)
∥∥
∞ ≤ C‖L

N (Ytn)‖∞‖Yt − Ytn‖∞,

under the event H (see in Lemma 2.2). It yields that

sup
t∈[0,T ]

‖FN (Yt)−F
N

(Yt)‖∞ ≤ C(α, T,Cρ0)ν
1
2N

δ(d−2)−1
2 log(N),

holds under the event
⋂M−1
n=0 (Btn ∩ Ctn) ∩H. Therefore,

P

(
sup
t∈[0,T ]

‖FN (Yt)−F
N

(Yt)‖∞ ≥ C(α, T,Cρ0)ν
1
2N

δ(d−2)−1
2 log(N)

)

≤
M−1∑
n=0

P (Bctn) +

M−1∑
n=0

P (Cctn) + P (Hc)

≤ TN−
dα−β
d + TN−

dα−β
d + CBN

2+β
2d exp(−CBN

β−2
d ) ≤ N−α

′
. (2.22)

Denote C2,α′ to be the constant C(α, T,Cρ0) in (2.22). Since α > 0 is arbitrary and

so is α′, hence (2.17) holds true. The proof of (2.18) can be done similarly.

In order to prove the convergence, we still need the stability result which states

the following.

Proposition 2.2. (Stability) Assume that trajectories Xt = (Xt
i )i=1,...,N , Yt =

(Y ti )i=1,...,N satisfy (1.5) and (2.1) respectively with the initial data X0 = Y0, which

are i.i.d. sharing the common density ρ0 satisfying (2.2). Let events Btn and H be

defined in (2.20) and (2.19) respectively, FN be defined in (2.4). Denote events

A :=

{
sup
t∈[0,T ]

‖Xt − Yt‖∞ < N−δ

}
, (2.23)
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and

S(Λ) := {‖FN (Xt)−FN (Yt)‖∞ ≤ Λ log(N) ‖Xt − Yt‖∞ + Λν
1
2 log(N)N−

β+2
2d ,

∀ t ∈ [0, T ]}.

For any α > 0, there exists some C3,α > 0 depending only on α, T and Cρ0 such

that

M−1⋂
n=0

Btn ∩ A ∩H ⊂ S(C3,α).

Here the event S(C3,α) can be seen as the stability result and the events Btn , A and

H can be treated as the stability conditions.

Proof. First, we split S(Λ) into the union of non-overlapping sets {Sn(Λ)}M−1
n=0 (Λ),

where

Sn(Λ) := {‖FN (Xt)−FN (Yt)‖∞ ≤ Λ log(N) ‖Xt − Yt‖∞

+ Λ log(N)N−
β+2
2d , ∀ t ∈ [tn, tn+1]}.

Notice that for any t ∈ [tn, tn+1], under the event A ∩H, one has

sup
t∈[tn,tn+1]

‖Xt − Ytn‖∞ ≤ sup
t∈[tn,tn+1]

‖Xt − Yt‖∞ + sup
t∈[tn,tn+1]

‖Yt − Ytn‖∞

≤ N−δ + CBν
1
2N−

β+2
2d < 2N−δ (β > 2dδ − 2)

and

sup
t∈[tn,tn+1]

‖Yt − Ytn‖∞ < CBν
1
2N−

β+2
2d < N−δ (β > 2dδ − 2).

Then applying the local Lipschitz bound of FN (see in Lemma 2.2) leads to

‖FN (Xt)−FN (Yt)‖∞

≤ ‖FN (Xt)−FN (Ytn)‖∞ + ‖FN (Ytn)−FN (Yt)‖∞

≤ C‖LN (Ytn)‖∞(‖Xt − Ytn‖∞ + ‖Ytn − Yt‖∞)

≤ C‖LN (Ytn)‖∞ ‖Xt − Yt‖∞ + 2C‖LN (Ytn)‖∞ ‖Ytn − Yt‖∞

under the event A ∩H.

Furthermore, under the event Btn , it follows from (2.21) that

‖LN (Ytn)‖∞ ≤ C log(N),
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Hence, for all t ∈ [tn, tn+1] one has

‖FN (Xt)−FN (Yt)‖∞ ≤ C(α, T,Cρ0) log(N) ‖Xt − Yt‖∞

+C(α, T,Cρ0)ν
1
2 log(N)N−

β+2
2d ,

under event A∩H∩Btn . Denote the C(α, T,Cρ0) in the above as C3,α. This implies

A ∩H ∩ Btn ⊂ Sn(C3,α), which yields

M−1⋂
n=0

Btn ∩H ∩A ⊂ S(C3,α).

Thus, the proposition has been proved.

Before proving the result on mean-field limit, let us recall a Gronwall-type

inequality in Ref. 32.

Lemma 2.7. For any T > 0, let e(t) be a non-negative continuous function on

[0, T ] with the initial data e(0) = 0 and λ, δ be two universal constants satisfying

the following differential inequality that holds

de(t)

dt
≤ C log(N)e(t) + C log(N)N−λ, 0 < t ≤ T1, (2.24)

provided that

sup
t∈[0,T1]

e(t) ≤ N−δ (2.25)

holds. Then e(t) is uniformly bounded on [0, T ]. Furthermore, there is a N0 ∈ N
depending only on C and T such that for all N ≥ N0

sup
t∈[0,T ]

e(t) ≤ N−δ. (2.26)

Proof. This lemma has been proved in Lemma 3.3 of Ref. 32. For completeness,

we provide a proof here, which is done by contradiction. We assume that there is a

t ∈ [0, T ] with e(t) ≥ N−λ2 and show that for N ≥ N0 with some N0 ∈ N specified

below, we get a contradiction.

It follows that the infimum over all times t where e(t) is larger than or equal to

N−λ2 exists and we define

T∗ = inf{0 ≤ t ≤ T : e(t) ≥ N−λ2}.

We get by continuity of e(t) together with e(0) = 0 that T ∗ > 0,

e(T∗) = N−λ2 and max
0≤t≤T∗

e(t) = N−λ2 . (2.27)

Since (2.25) implies (2.26), we get for T1 = T∗ that

de(t)

dt
≤ C

√
log(N)e(t) + C log2(N)N−λ3 , 0 < t ≤ T∗.
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Gronwall’s Lemma gives that

e(t) ≤ eC
√

log(N)t log2(N)N−λ3 ,

in particular

e(T∗) ≤ eC
√

log(N)T∗ log2(N)N−λ3 .

Since eC
√

log(N)T∗ and log2(N) are asymptotically bounded by any positive

power of N , we can find a N0 ∈ N depending only on C and T∗ such that for any

N ≥ N0

eC
√

log(N)T∗ log2(N) < Nλ3−λ2 for 0 < λ2 < λ3,

and hence

e(T∗) < N−λ2 for any N ≥ N0.

Thus we get a contradiction to (2.27) for all N ≥ N0 and the lemma is proven.

Our next theorem states that the N -particle trajectory Xt = (Xt
i )i=1,...,N

starting from X0 (i.i.d. with common density ρ0) remains close to the mean-

field trajectory Yt = (Y ti )i=1,...,N with the same initial configuration Y0 = X0.

More precisely, we prove that the measure of the set where the maximal distance

supt∈[0,T ]‖Xt−Yt‖∞ on [0, T ] exceeds N−δ decreases exponentially with the number

of particles N , as N grows to infinity.

Theorem 2.1. (Convergence) Assume that trajectories Xt = (Xt
i )i=1,...,N , Yt =

(Y ti )i=1,...,N satisfy (1.5) and (2.1) respectively with the initial data X0 = Y0, which

is i.i.d. sharing the common density ρ0 satisfying (2.2). Then for any α > 0, there

exists some constant N0 > 0 depending only on ν, α, T and Cρ0 , such that for

N ≥ N0, the following estimate holds with the cut-off index 0 < δ < 1
d

P

(
sup
t∈[0,T ]

‖Xt − Yt‖∞ ≤ N−δ
)
≥ 1−N−α.

Proof. We can prove the convergence result by using the consistency from Propo-

sition 2.1, the stability from Proposition 2.2 and Lemma 2.7. Denote the event

C :=

{
sup
t∈[0,T ]

‖FN (Yt)−F
N

(Yt)‖∞ ≤ C2,αν
1
2N

δ(d−2)−1
2 log(N)

}
.

Consider the quantity e(t) defined as

e(t) := ‖Xt − Yt‖∞ .
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Computing under the event C ∩S(C3,α) and using the fact d‖x‖∞
dt ≤ ‖dxdt ‖∞, one has

de(t)

dt
≤ ‖FN (Xt)−F

N
(Yt)‖∞

≤ ‖FN (Xt)−FN (Yt)‖∞ + ‖FN (Yt)−F
N

(Yt)‖∞

≤ C3,α log(N) ‖Xt − Yt‖∞ + C3,αν
1
2 log(N)N−

β+2
2d

+C2,αν
1
2N

δ(d−2)−1
2 log(N)

≤ C(α, T,Cρ0) log(N)e(t) + C(α, T,Cρ0)ν
1
2N

δ(d−2)−1
2 log(N). (2.28)

According to Proposition 2.2 one has

C ∩
M−1⋂
n=0

Btn ∩H ∩A ⊂ C ∩ S(C3,α). (2.29)

Thus it follows from (2.28) that for any 0 < T1 ≤ T , it holds

de(t)

dt
≤ C log(N)e(t) + C(α, T,Cρ0)ν

1
2N−λ log(N) for all t ∈ (0, T1],

under the event C ∩
⋂M−1
n=0 Btn ∩H ∩A, where

−λ :=
δ(d− 2)− 1

2
.

And for 0 < δ < 1
3 we have −λ < −δ.

Recall the event

A :=

{
sup
t∈[0,T ]

e(t) ≤ N−δ
}
⊆

{
sup

t∈[0,T1]

e(t) ≤ N−δ for any 0 < T1 ≤ T

}
.

We deliberately take the event A out as the condition (2.25) in Lemma 2.7. Hence

it yields that

sup
t∈[0,T ]

e(t) ≤ N−δ

under the event C ∩
⋂M−1
n=0 Btn ∩H. Then we arrive at that

P

(
sup
t∈[0,T ]

‖Xt − Yt‖∞ ≥ N
−δ

)

≤
M−1∑
n=0

P(Bctn) + P(Hc) + P(Cc)

≤ TN
β
d−α + CBN

2+β
2d exp(−CBN

β−2
d ) +N−α ≤ N−α

′
,
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by using Proposition 2.1, Lemmas 2.6 and 2.5. Since α > 0 is arbitrary and so is

α′, we have proved Theorem 2.1.

2.3. The error estimate on interaction

Using Theorem 2.1, we obtain the error estimate on interaction.

Theorem 2.2. Under the same assumption as Theorem 2.1, let ρ(x, t) be the

regular solution to the aggregation equation (1.6) up to time T such that ρ ∈
L∞(0, T ;L1 ∩L∞(Rd)). Assume that {Xt

i}Ni=1 satisfy the particle system (1.5) and

FN satisfies (1.4). Then for any α > 0, there exists some constant C4,α > 0 depend-

ing only on α, T and Cρ0 such that the following estimate holds with the cut-off

index 0 < δ < 1
3 :

P

 sup
t∈[0,T ]

sup
i=1,...,N

∣∣∣∣∣∣
∫
Rd
FN (Xt

i − y)ρ(y, t)dy − 1

N − 1

N∑
j 6=i

FN
(
Xt
i −Xt

j

)∣∣∣∣∣∣
≤ C4,αν

1
2N−δ log(N)

 ≥ 1−N−α.

Proof. For i = 1, let us denote

et1 :=

∣∣∣∣∣∣
∫
Rd
FN (Xt

1 − y)ρ(y, t)dy − 1

N − 1

N∑
j=2

FN
(
Xt

1 −Xt
j

)∣∣∣∣∣∣ ,
then one splits it into two parts

et1 ≤

∣∣∣∣∣∣
∫
Rd
FN (Xt

1 − y)ρ(y, t)dy − 1

N − 1

N∑
j=2

FN
(
Xt

1 − Y tj
)∣∣∣∣∣∣

+

∣∣∣∣∣∣ 1

N − 1

N∑
j=2

FN
(
Xt

1 − Y tj
)
− 1

N − 1

N∑
j=2

FN
(
Xt

1 −Xt
j

)∣∣∣∣∣∣
=: et11 + et12,

where Yt = (Y ti )i=1,...,N satisfies (2.1).

To estimate et11, we use the law of large number estimates. In particular, similar

to the estimate (2.9) in Lemma 2.5, we can prove that at any fix time t ∈ [0, T ]

P

∣∣∣∣∣∣
∫
Rd
FN (Xt

1 − y)ρ(y, t)dy − 1

N − 1

N∑
j=2

FN
(
Xt

1 − Y tj
)∣∣∣∣∣∣ ≥ CN δ(d−2)−1

2 log(N)


≤ N−α, (2.30)
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where C depends only on α, T and Cρ0 . Then following the procedure in Proposi-

tion 2.1, we can get the estimate of et11 for all the time t ∈ [0, T ]. Hence one has

P

(
sup
t∈[0,T ]

et11 ≥ Cν
1
2N

δ(d−2)−1
2 log(N)

)
≤ N−α, (2.31)

where C depends only on α, T and Cρ0 .

To estimate et12, we shall use the result from Theorem 2.1. Let us recall the

event

A =

{
sup
t∈[0,T ]

‖Xt − Yt‖∞ ≤ N
−δ

}
,

then it follows from Theorem 2.1 that

P(Ac) ≤ N−α.

For any ξ ∈ Rd with |ξ| < 4N−δ, it follows from [42, Lemma 6.3] that

|FN (x+ ξ)− FN (x)| ≤ CLN (x)|ξ|,

where LN is defined in (2.3). Therefore, it holds

1

N − 1

N∑
j=2

|FN (Xt
1 − Y tj )− FN (Xt

1 −Xt
j)|

≤ 1

N − 1

N∑
j=2

CLN (Xt
1 − Y tj )|Xt

j − Y tj |

≤ C 1

N − 1

N∑
j=2

LN (Xt
1 − Y tj ) ‖Xt − Yt‖∞

≤ CN−δ 1

N − 1

N∑
j=2

LN (Xt
1 − Y tj ), (2.32)

under the event A. Next we denote the event

B1 :=

 sup
t∈[0,T ]

∣∣∣∣∣∣ 1

N − 1

N∑
j=2

LN (Xt
1 − Y tj )−

∫
Rd
LN (Xt

1 − y)ρ(y, t)dy

∣∣∣∣∣∣
≤ Cν 1

2N
dδ−1

2 log(N)

.
Similar to the law of large numbers estimate (2.10) in Lemma 2.5, we can prove

that

P(Bc1) ≤ N−α.
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Hence it follows from (2.32) and Lemma 2.3 that

sup
t∈[0,T ]

et12 ≤ C

(∣∣∣∣∫
Rd
LN (Xt

1 − y)ρ(y, t)dy

∣∣∣∣+ Cν
1
2N

dδ−1
2 log(N)

)
N−δ

≤ Cν
1
2 log(N)N−δ,

under the event A ∩ B1, which implies that

P

(
sup
t∈[0,T ]

et12 ≤ Cν
1
2 log(N)N−δ

)
≥ 1−N−α, (2.33)

where C depends only on ν, α, T and Cρ0 .

Collecting estimates (2.31) and (2.33), it yields that

P

(
sup
t∈[0,T ]

et1 ≤ Cν
1
2N−δ log(N)

)
≥ 1−N−α, (2.34)

where C depends only on α, T and Cρ0 . Similarly, we can arrive at the same estimate

for i = 2, . . . , N , which finishes the proof.

3. Parameter Estimation and the Proof of Theorem 1.1

In this section, we obtain the diffusion parameter estimation and prove our main

theorem (Theorem 1.1).

Let us recall (1.15) that

|ν̂ − ν| ≤ Cν 1
2 (|I2|

1
2 + |I3|

1
2 ) + |νK,N − ν|,

where

νK,N :=
1

2dKT

K∑
i=1

M−1∑
n=0

∣∣∣∣∣∣X(n+1)
i −X(n)

i −
∫ tn+1

tn

1

N − 1

N∑
j 6=i

FN
(
Xs
i −Xs

j

)
ds

∣∣∣∣∣∣
2

,

(3.1)

and

|I2| =
1

dKT

K∑
i=1

M−1∑
n=0

∣∣∣∣∣∣
∫ tn+1

tn

 1

N − 1

N∑
j 6=i

FN
(
Xs
i −Xs

j

)

−
∫
Rd
FN (Xs

i − y)ρ(y, s)dy

ds
∣∣∣∣∣∣
2

,

and

|I3| =
1

dKT

K∑
i=1

M−1∑
n=0

∣∣∣∣∫ tn+1

tn

∫
Rd
FN (Xs

i − y)ρ(y, s)dyds

∣∣∣∣2 .
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According to Lemma 2.3, one has

|I3| ≤ C∆t, (3.2)

where C depends only on T and Cρ0 . Then it follows from Theorem 2.2 that

P(|I2| ≤ Cν∆tN−2δ log2(N)) ≥ 1−N−α, (3.3)

where C depends only on α, T and Cρ0 . It is left to estimate the error between

νK,N and ν, which can be done by using the concentration property of χ2 random

variable.

Theorem 3.1. Under the assumption as in Theorem 1.1. Suppose that νK,N sat-

isfies (3.1), then the following estimate holds :

P(|νK,N − ν| > γν) ≤ 2e−
dKMγ2

8 for any γ ∈ (0, 1). (3.4)

Proof. Recall that

X
(n+1)
i = X

(n)
i +

∫ tn+1

tn

1

N − 1

N∑
j 6=i

FN
(
Xs
i −Xs

j

)
ds+

√
2ν∆tN (n)

i , i = 1, . . . ,K,

then we know

X
(n+1)
i −X(n)

i −
∫ tn+1

tn
1

N−1

∑N
j 6=i F

N
(
Xs
i −Xs

j

)
ds

√
2ν∆t

∼ N (0, 1)d.

Notice that the random variable

S :=
1

2ν∆t

K∑
i=1

M−1∑
n=0

∣∣∣∣∣∣X(n+1)
i −X(n)

i −
∫ tn+1

tn

1

N − 1

N∑
j 6=i

FN
(
Xs
i −Xs

j

)
ds

∣∣∣∣∣∣
2

is distributed according to the chi-squared distribution with dNM degrees of free-

dom. This is usually denoted as

S ∼ χ2(dKM).

Recall a simple fact from probability theory, we know E[S] = dKM and

Var[S] = E[(S − dKM)2] = 2dKM.

Recall that the estimate of ν is given by

νK,N =
1

2dKT

K∑
i=1

M−1∑
n=0

∣∣∣∣∣∣X(n+1)
i −X(n)

i −
∫ tn+1

tn

1

N − 1

N∑
j 6=i

FN
(
Xs
i −Xs

j

)
ds

∣∣∣∣∣∣
2

,

which leads to

E
[(νK,N

ν
− 1
)2
]

=
2

dKM
.
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Hence we have

E[(νK,N − ν)2] =
2ν2

dKM
.

Also by the concentration of χ2 variable, we have the following two sided tail

bound

P
(∣∣∣∣ S

dKM
− 1

∣∣∣∣ > γ

)
≤ 2e−

dKMγ2

8 for any γ ∈ (0, 1),

which is a direct result from the Bernstein’s inequality as the form showed in Corol-

lary 2.11 of Ref. 9. And it leads to

P(|νK,N − ν| > γν) ≤ 2e−
dKMγ2

8 for any γ ∈ (0, 1). (3.5)

Hence it concludes the proof.

Collecting estimates (3.5), (3.3) and (3.2), one has

P(|ν̂ − ν| ≤ Cν 1
2 ∆t

1
2 (1 + ν

1
2N−δ log(N)) + γν) ≥ 1−N−α − 2e−

dKMγ2

8 ,

for any γ ∈ (0, 1). Hence Theorem 1.1 has been proved.

4. Extension to Regular Interacting Kernel F ∈ W 1,∞(Rd)

In this section, we will extend our result to the particle system with regular inter-

acting force F , which satisfies

F ∈W 1,∞(Rd). (4.1)

Since F is non-singular, there is no need to mollify the force F anymore. To be

more specific, we consider trajectories {Xt
i}Ni=1 satisfying SDEs:

dXt
i =

1

N − 1

N∑
j 6=i

F
(
Xt
i −Xt

j

)
dt+

√
2ν dBti , i = 1, . . . , N, (4.2)

where the initial data {X0
i }Ni=1 are i.i.d. sharing the common density ρ0 ∈ L1 ∩

L∞(Rd). Then the solution ρ to the mean field equation

∂tρ = ν∆ρ−∇ · (ρF ∗ ρ), x ∈ Rd, t > 0, (4.3a)

ρ(x, 0) = ρ0(x), (4.3b)

has the following regularity for any T > 0

‖ρ‖L∞(0,T ;L1∩L∞(Rd)) ≤ C(T, ‖ρ0‖L1∩L∞(Rd), ‖F‖W 1,∞(Rd)) =: CF,ρ0 .

Take a time step ∆t > 0 and let tn := n∆t and M := T
∆t (we assume that T

∆t

is an integer). Denote X
(n)
i := Xtn

i = Xn∆t
i as the solution to (4.2) at time tn.

Namely, one has

X
(n+1)
i −X(n)

i =

∫ tn+1

tn

1

N − 1

N∑
j 6=i

F
(
Xs
i −Xs

j

)
ds+

√
2ν∆tN (n)

i ,

where N (n)
i ∼ N (0, 1)d, i.e. the standard Gaussian distribution in dimension d.
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Then we are ready to define our estimator for the diffusion parameter as before

ν̂ :=
1

2dKT

K∑
i=1

M−1∑
n=0

∣∣X(n+1)
i −X(n)

i

∣∣2, (4.4)

where 1� K � N , which means we only have partial observations.

The extended result can be described in the following theorem.

Theorem 4.1. Suppose that F (x) ∈ W 1,∞(Rd) and 0 ≤ ρ0(x) ∈ L1 ∩ L∞(Rd).
For any T > 0, take a time step ∆t > 0 and define tn := n∆t and M := T

∆t .

Let {X(n)
i }

K,M
i=1,n=0 be the sample trajectories satisfying (4.2) at time tn. Then

there exists some constant N0 > 0 depending only on ν, α, T, ‖F‖W 1,∞(Rd) and

‖ρ0‖L1∩L∞(Rd), such that for N ≥ N0, the estimator ν̂ defined in (4.4) is an approxi-

mation of ν, and the following estimate holds :

P(|ν̂ − ν| ≤ Cαν
1
2 ∆t

1
2 (1 + ν

1
2N−

1
2 log(N)) + νγ)

≥ 1−N−α − 2e−
dKMγ2

8 , (4.5)

for any γ ∈ (0, 1), where Cα > 0 depends only on α, T, ‖F‖W 1,∞(Rd) and

‖ρ0‖L1∩L∞(Rd). In particular, let N goes to infinity and choose ∆t
1
2 = γ, it follows

from (4.5) that

P(|ν̂ − ν| ≤ Cα(ν
1
2 + ν)∆t

1
2 ) ≥ 1− 2e−

dKT
8 . (4.6)

Proof. Again, we defined an intermediate estimator

νK,N :=
1

2dKT

K∑
i=1

M−1∑
n=0

∣∣∣∣∣∣X(n+1)
i −X(n)

i −
∫ tn+1

tn

1

N − 1

N∑
j 6=i

F
(
Xs
i −Xs

j

)
ds

∣∣∣∣∣∣
2

then we split the error into two parts

|ν̂ − ν| ≤ |ν̂ − νK,N |+ |νK,N − ν| (4.7)

and we can prove that there exists a positive number C such that

|ν̂ − ν| ≤ Cν 1
2 (|I2|

1
2 + |I3|

1
2 ) + |νK,N − ν| (4.8)

with

|I2| :=
1

dKT

K∑
i=1

M−1∑
n=0

∣∣∣∣∣∣
∫ tn+1

tn

 1

N − 1

N∑
j 6=i

F
(
Xs
i −Xs

j

)

−
∫
Rd
F (Xs

i − y)ρ(y, s)dy

ds
∣∣∣∣∣∣
2

,

and

|I3| :=
1

dKT

K∑
i=1

M−1∑
n=0

∣∣∣∣∫ tn+1

tn

∫
Rd
F (Xs

i − y)ρ(y, s)dyds

∣∣∣∣2 .
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According to Lemma 2.3, one has

|I3| ≤ C∆t, (4.9)

where C depends only on T , ‖F‖W 1,∞(Rd) and ‖ρ0‖L1∩L∞(Rd). It follows from The-

orem 3.1 that

P(|νK,N − ν| > γν) ≤ 2e−
dKMγ2

8 for any γ ∈ (0, 1). (4.10)

Now it is left to get the estimate of I2. The main idea behind the proof is also

to construct a mean-field dynamic system
{
Y ti
}N
i=1

without interaction

dY ti =

∫
Rd
F
(
Y ti − y

)
ρ(y, t)dy dt+

√
2ν dBti , i = 1, . . . , N, (4.11)

here again we let {Y ti }Ni=1 has the same initial condition as {Xt
i}Ni=1 (i.i.d. with

common density ρ0). Consider the quantity e(t) defined as

e(t) := ‖Xt − Yt‖∞ .

Following the same procedure as in Lemma 2.5 and Proposition 2.1, one can

prove that there exists some C1,α depending only on α, T , ‖F‖W 1,∞(Rd) and

‖ρ0‖L1∩L∞(Rd) such that

P

(
sup
t∈[0,T ]

∥∥F(Yt)−F(Yt)
∥∥
∞ ≥ C1,αν

1
2N−

1
2 log(N)

)
≤ N−α,

where

(F(Yt))i :=
1

N − 1

N∑
j 6=i

F
(
Y ti − Y tj

)
,

and

(F(Yt))i :=

∫
Rd
F
(
Y ti − y

)
ρ(y, t)dy.

We denote the event

C :=

{
sup
t∈[0,T ]

∥∥F(Yt)−F(Yt)
∥∥
∞ ≤ C1,αν

1
2N−

1
2 log(N)

}
.

Then using the fact d‖x‖∞
dt ≤ ‖dxdt ‖∞, one concludes that under the event C

de(t)

dt
≤
∥∥F(Xt)−F(Yt)

∥∥
∞

≤ ‖F(Xt)−F(Yt)‖∞ +
∥∥F(Yt)−F(Yt)

∥∥
∞

≤ C‖Xt − Yt‖∞ + Cν
1
2N−

1
2 log(N), (4.12)

which leads to

sup
t∈[0,T ]

‖Xt − Yt‖∞ ≤ Cν
1
2N−

1
2 log(N), (4.13)

where C depends only on α, T , ‖F‖W 1,∞(Rd) and ‖ρ0‖L1∩L∞(Rd). Based on this

mean-field limit result, we can prove error estimate on interaction as in Theorem 2.2.
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Let us split the error∣∣∣∣∣∣
∫
Rd
F (Xt

1 − y)ρ(y, t)dy − 1

N − 1

N∑
j=2

F
(
Xt

1 −Xt
j

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
Rd
F (Xt

1 − y)ρ(y, t)dy − 1

N − 1

N∑
j=2

F
(
Xt

1 − Y tj
)∣∣∣∣∣∣

+

∣∣∣∣∣∣ 1

N − 1

N∑
j=2

F
(
Xt

1 − Y tj
)
− 1

N − 1

N∑
j=2

F
(
Xt

1 −Xt
j

)∣∣∣∣∣∣
=: et11 + et12.

Similar to estimates (2.31) and (2.33), it is easy to compute that

P

(
sup
t∈[0,T ]

et11 ≤ Cν
1
2N−

1
2 log(N)

)
≥ 1−N−α, (4.14)

and

P

(
sup
t∈[0,T ]

et12 ≤ Cν
1
2N−

1
2 log(N)

)
≥ 1−N−α. (4.15)

where C depends only on α, T , ‖F‖W 1,∞(Rd) and ‖ρ0‖L1∩L∞(Rd).

Combining (4.14) and (4.15), it leads to

P

 sup
t∈[0,T ]

∣∣∣∣∣∣
∫
Rd
F (Xt

1 − y)ρ(y, t)dy − 1

N − 1

N∑
j=2

F (Xt
1 −Xt

j)

∣∣∣∣∣∣ ≤ CN− 1
2 log(N)


≤ 1−N−α,

which yields

P(|I2| ≤ Cν
1
2 ∆tN−1 log2(N)) ≥ 1−N−α, (4.16)

where C depends only on α, T , ‖F‖W 1,∞(Rd) and ‖ρ0‖L1∩L∞(Rd).

Collecting (4.10), (4.16) and (4.9), we obtain our result

P(|ν̂ − ν| ≤ Cν 1
2 ∆t

1
2 (1 + ν

1
2N−

1
2 log(N)) + νγ) ≥ 1−N−α − 2e−

dKMγ2

8 ,

for any γ ∈ (0, 1).
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