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Abstract The Trojan Y Chromosome strategy (TYC) is a genetic biocontrol strategy designed to alter the
sex ratio of a target invasive population by reducing the number of females over time. Recently an alternative
strategy is introduced, that mimics the TYC strategy by harvesting females whilst stocking males (Lyu et al.,
2020) (FHMS). We consider the FHMS strategy, with a weak Allee effect, and show that the extinction boundary
need not be hyperbolic. To the best of our knowledge, this is the first example of a non-hyperbolic extinction
boundary in mating models, structured by sex. Next, we consider the spatially explicit model and show that
the weak Allee effect is both sufficient and necessary for Turing patterns to occur. We discuss the applicability
of our results to large scale biocontrol, as well as compare and contrast our results to the case with a strong
Allee effect.
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1 Introduction

Invasive aquatic species are an imminent threat to marine biodiversity. The rate of invasions due to alien species
worldwide continues to rise (Havel et al., 2015a). Due to the various harmful effects of these species, their control
is a paramount issue in ecology. Invasive species, upon effectively building up in another condition, can be hard
to manage and the control expenses can get extreme. Gutierrez and Teem (Gutierrez and Teem, 2006) proposed
an autocidal biocontrol TYC strategy to wipe out invasive species with XX/XY sex chromosomes via a constant
release of Y Y males referred to as supermales. Exogenous sex hormones are utilized broadly to control sex in
the aquaculture fishes. Male fish exposed to certain sex hormones can become feminized (Scott et al., 1989).
Mating of a XY phenotypic female fish and a wild-type XY male fish produce supermale fish-bearing two
Y chromosomes. Y Y supermales crossing to XX females yield all XY male offspring. The production of Y Y
broodstock of Nile tilapia (Mair et al., 1997; Vera Cruz et al., 1999), yellow catfish (Liu et al., 2013), and brook
trout (Schill et al., 2016a) has been proven successful by using TYC strategy. Further, for the production of
Y Y supermales, supplying feminized Y Y supermales into an undesired population was proposed by Gutierrez
and Teem (Gutierrez and Teem, 2006). There is a large literature on the TYC strategy

(Parshad and Gutierrez, 2010; Parshad, 2011; Gutierrez et al., 2013; Teem et al., 2014; Wang et al., 2014,
2016; Zhao et al., 2012; Parshad and Gutierrez, 2011; Gutierrez et al., 2012). Essentially,
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2 Eric M. Takyi et al.

– For the classical four species TYC model, given any initial condition for the invasive wild-type males and
females, there exist initial conditions for the introduced feminised supermales, and a threshold introduction
rate, such that for an introduction greater than this rate, extinction of the wild-type occurs (Gutierrez et al.,
2012; Wang et al., 2014; Parshad and Gutierrez, 2011).

– The recent seminal work of Schill and collaborators (Schill et al., 2016a; Perrin, 2009; Havel et al., 2015b),
makes it evident that biocontrol of TYC type rests purely on the introduction of the supermale - not

feminized supermales, as these are still not in existence (and certainly not in mass production). Thus the
three species TYC, with a one-time introduction of supermales, via the initial condition, is what occurs/is
occurring in practice (Havel et al., 2015b).

– The three species TYC has been investigated in detail mathematically. The literature is rife with several
results on well-posedness, and the long time dynamics of the system, under the assumptions of positive
solutions (solutions that remain positive if they start from positive initial data) (Gutierrez et al., 2013;
Parshad, 2011). Essentially, here again, a sufficient introduction of the supermale can always yield extinction.
However, the three species TYC model is now known to be ill-posed - and solutions to the female component
can blow-up in finite time (Parshad et al., 2019), if the introduction of supermales is too large.

– In order to circumvent the issues of blow-up or “unphysical” solutions, and due to the paucity of supermales,
recent investigations into TYC type biocontrol have focused on (1) remodeling mating dynamics in TYC type
models (Beauregard et al., 2020; Bhattacharyya et al., 2020) and (2) investigation models that “mimic” the
TYC dynamics without using supermales such as using selective harvesting strategically (Lyu et al., 2020;
Lyu, 2018).

– The consequences of a strong Allee effect on TYC type dynamics have also been recently investigated
(Beauregard et al., 2020; Bhattacharyya et al., 2020). However, the impact of a weak Allee effect on the
population dynamics in case of a TYC type strategy and/or a FHMS strategy is adopted, has not been
investigated.

Harvesting in practice, is tricky to say the least. Although it has been used in invasive species management
along with chemical and biological control measures, and can result in non-random removals of individuals
from targeted populations (Britton et al., 2011; Myers et al., 2000). The potential selectivity of these methods
therefore has strong ecological and evolutionary implications. Consequently, we suggest that Palkovacs et al.s
(Palkovacs et al., 2018) framework could be applied to invasive species management. Indeed, harvest-driven
trait changes in invasive species might induce unexpected and potentially counterproductive results that may
not have been explicitly considered by ecosystem managers. The work of Lyu (Lyu, 2018; Lyu et al., 2020),
demonstrates the potential for harvest as an effective strategy that can mirror the TYC strategy. In theory linear
harvesting (and harvesting at various density dependent rates), seem to work better than a mimic of TYC where
males are stocked and females harvested (FHMS) (Lyu, 2018; Lyu et al., 2020). However, the impact of Allee
effects on the overall success or failure of such a class of strategies remains unexplored.

Allee effects are positive relationships between individual fitness and population density. These can be
strong, where there is a threshold, below which the population growth rate is negative. They could also be
weak, where the growth rate is always positive, but smaller at lower densities (Courchamp et al., 1999; Stephens
and Sutherland, 1999). In the context of marine fishes, researchers observe that an Allee effect is significant at
very low population size and with bias in sex ratio (Perälä and Kuparinen, 2017; Wedekind, 2012). Researchers
(Neuenhoff et al., 2019; Perälä and Kuparinen, 2017) observed that extinction of Atlantic cod (Gadus morhua)
in the southern Gulf of St. Lawrence and the depletion of Atlantic herring (Clupea harengus) population in the
North Sea are due to predation-driven Allee effect. For a population with male-biased sex ratio would lead to
difficulty in finding a mate, even for species that use powerful sex pheromones. Such skewed sex ratios fortify
Allee effects on account of mating failure, prompting the risk of populace extinction. In sex structured (into
male and female) population models, specially in fishes, having a weak Allee effect only on the female is quite
feasible, as at low female densities, we would expect smaller clutch sizes - however a few males could fertilize a
large number of females - so clutch sizes could still be large (Alonzo and Mangel, 2004).

The dynamics of sex structured two species mating models, even with the inclusion of Allee effects, is
generically like Fig. 1 (a). There are typically two interior equilibria, one unstable (saddle) and one locally
stable, also the extinction equilibrium is locally stable. The stable manifold of the saddle (separatrix) splits the
phase space into two sections, delineated by the extinction boundary, also called the allee threshold or threshold
manifold in the literature (Boukal and Berec, 2002; Jiang and Shi, 2009). If one picks initial data on one side
of this curve, solutions tend to the stable interior equilibrium, and if one picks initial data on the other side of
the boundary, solutions tend to the extinction equilibrium. Note, although the curve is seen to be of hyperbolic
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shape (that is monotone with respect to initial conditions, in the phase space), the general shape of this curve,
even in two species mating models, with or without Allee effects, is an open problem in ecology.

Also, by considering Allee effect in invasive fish population and a continued harvesting/stocking, the rarity of
wild-type females would lead to difficulty in finding mates, and so the invasive fish population would eventually
become locally extinct. However, it is not economically viable to harvest/stock indefinitely. Thus determining
the time for terminating harvesting/stocking is critical as the wild-type invasive species would either go extinct
or recover, such as in the absence of supermale invasive fish (Wang et al., 2014).

In the current manuscript we show that,

– Both a saddle-node and Homoclinic bifurcation can occur in the FHMS model with weak Allee effect via
Lemma 9 and see Fig. 7. We show limit cycle dynamics is not possible without the weak Allee effect in place,
via Lemma 4, however the weak Allee effect can lead to limit cycle dynamics, via Lemma 10.

– The FHMS model with a weak Allee effect, can exhibit an extinction boundary (Allee threshold) that is
non-hyperbolic. Such dynamics can enable extinction, essentially for any initial data. This is completely
different when a weak Allee effect is not in place. See Fig. 6. A non-hyperbolic extinction boundary is also
possible via a strong Allee effect, see Fig. 8, but the “bending” of the boundary is not as pronounced as in
the weak Allee effect case.

– We show when/if harvesting/stocking can be terminated at certain finite time, and when the population of
invasive fish is below some threshold, to yield extinction. See Figs. 4 - 5.

– We consider the spatially explicit FHMS model with weak Allee effect. We show that the weak Allee effect
can cause Turing instability, and impossibility without it, via Lemma 11, and Theorem 4.

– We discuss the implications of our results to biocontrol, via these strategies.

2 Background

Here we recap the basic TYC and FHMS models as presented in (Lyu, 2018) and (Parshad and Gutierrez,
2010).

2.1 The TYC Model

In the TYC strategy, supermales (S) of the invasive species with two Y Y Chromosomes, are introduced into
the wild-type invasive fish population having wild-type males (M) and females (F ). The rate of injection of
supermale invasive fish is taken as µ0 (population time−1). The reproduction rate of wild-type invasive fish
species due to the interactions between male and female wild-type invasive fish species is β1 (population−1

time−1), whereas the reproduction rate of wild-type invasive fish due to the interactions between wild-type
female invasive fish and supermale invasive fish is β2 (population−1 time−1). The death rates of wild-type and
the supermale invasive fish are taken as δ1 (time−1) and δ2 (time−1) respectively. The carrying capacity of
the system is K1 (population), and the logistic term L = 1 − F+M+S

K1
is used to constrain the invasive fish

population. The equations describing the TYC model are:

dF

dT
=

1

2
β1FML− δ1F

dM

dT
= F

(
1

2
β1M + β2S

)
L− δ1M (1)

dS

dT
= µ0 − δ2S,

where F (0) ≥ 0, M(0) ≥ 0 and S(0) ≥ 0.

2.2 Existence and stability of equilibria when µ0 = 0

We refer the reader to (Wang et al., 2014) for detailed analysis on the existence and stability of equilibria to
system (1). The equilibria to system (1) after nondimensionalization are E0 = (0, 0) and E1,2 = (f∗±,m

∗
±) with

f∗ = m∗ where

f∗± =
1

4

(
1±
√

1− Φ
)
,where Φ =

8

ρ
.

We recap some standard results on the model (Wang et al., 2014),
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Theorem 1 . If Φ < 1,

(i) the extinction state E0 is locally stable.

(ii) the equilibrium point E1 is locally stable.

(iii) the equilibrium point E2 is locally unstable.

Remark 1 . When ρ = 8, the two interior equilibrium points E1 and E2 collide with each other giving rise to a
saddle-node bifurcation.

2.3 The FHMS Model

A key issue in the implementation of the TYC strategy is the production of supermales. Estrogen-induced
feminization of the wild-type male fish has often proven inefficient to obtain sex-reversed XY physiological
females. In such a situation, we can implement a sex-skewing strategy by removing a fraction of wild-type
females by means of harvesting whilst adding in the wild-type males by means of stocking. This strategy is
called female harvesting male stocking (FHMS), first proposed by Lyu (Lyu, 2018; Lyu et al., 2020).

For the FHMS model described below, the primary sex ratio in offspring is denoted by r (0 < r < 1). The
harvesting rate of females and the stocking rate of the males are denoted by hF and sM respectively. Also, we
assume that 0 ≤ sM < δ. The equations describing the FHMS system are:

dF

dT
= rβFML− (δ + hF )F

dM

dT
= (1− r)βFML+ (sM − δ)M, (2)

where F (0) ≥ 0 and M(0) ≥ 0.

In order to reduce the number of parameters, we introduce dimensionless variables

f =
F

K1
, m =

M

K1
, t = Tδ,

and the dimensionless parameters

α =
βK1

δ
, h =

hF
δ
, s =

sM
δ
.

With these substitutions, the equations describing the system become:

df

dt
= rαfm (1− f −m)− (1 + h)f ≡ F1(f,m)

dm

dt
= (1− r)αfm (1− f −m) + (s− 1)m ≡ F2(f,m), (3)

where f(0) ≥ 0 and m(0) ≥ 0.

We recap the following results (Lyu, 2018; Lyu et al., 2020),

Lemma 1 . If f(0) and m(0) are positive, then all possible solutions of the system (3) are non-negative.

Lemma 2 . All the solutions of the system (3) are contained in some bounded subset in the plane

{
(f,m) ∈ R2 : f ≥ 0, m ≥ 0

}
.
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2.4 Equilibria and their stability

The equilibria and stability analysis of system (3) are presented in Appendix A. We state some results on (3)
that were not shown in (Lyu et al., 2020),

Lemma 3 . For h∗ < h < h∗, the invasive species get eliminated from the system (3) via saddle-node bifurcation

when s is decreased through s = s∗.

Proof . At s = s∗, we have f∗ = 1
2(1+µ) where µ = (1−r)(1+h)

r(1−s) and so Det(J∗)|s=s∗
= 0, where J∗ is the Jacobian

of system (3). Since Tr(J∗i ) < 0, it follows that J∗i has a simple eigenvalue at s = s∗.

Let F (f,m; s) = (F1 F2)T and V and W are the eigenvectors corresponding to the zero eigenvalue for J∗|s=s∗

and J∗T |s=s∗ respectively. Then we have Fs(f,m; s) =
(

0 µ
2(1+µ)

)T
, U = (1 µ)T and V =

(
1 r

µ(1−r)

)T
.

This gives V TFs (E∗i ; s∗) = r
2(1+µ)(1−r) 6= 0 and V T

[
D2F (E∗i ; s∗) (U,U)

]
= −rα(1 + µ) 6= 0. Therefore, by

Sotomayor’s theorem (Perko, 2013) it follows that the system (3) undergoes a saddle-node bifurcation at E∗i
when s crosses s∗.

Lemma 4 . System (3) has no limit cycles.

Proof . We use the Dulac theorem to show the non-existence of limit cycles in (3). Let us consider the Dulac
function

Ψ(f,m) =
1

fm
(4)

where f 6= 0 and m 6= 0. Then,

∂(F 1Ψ)

∂f
+
∂(F 2Ψ)

∂m
=

∂

∂f

(
rα(1− f −m)− 1 + h

m

)
+

∂

∂m

(
(1− r)α(1− f −m) +

s− 1

f

)
= −rα− (1− r)α
= −α < 0.

Hence the system (3) has no limit cycles. This completes the proof.

Lemma 5 . If h = 0 = s, then system (3) has no limit cycles.

Proof . Suppose h = 0 = s in system (3). We use the Dulac theorem again and consider the Dulac function in
Eq.(4). Then,

∂(F 1Ψ)

∂f
+
∂(F 2Ψ)

∂m
=

∂

∂f

(
rα(1− f −m)− 1

m

)
+

∂

∂m

(
(1− r)α(1− f −m)− 1

f

)
= −rα− (1− r)α = −α < 0.

Hence the system (3) has no limit cycles for h = 0 = s. This completes the proof.

3 The FHMS Model with a weak Allee Effect

We modify the system (3) by considering Allee effect in the population. The equations describing the FHMS
system with a weak Allee effect are given by:

dF

dT
= rβF 2ML− (δ + hF )F

dM

dT
= (1− r)βF 2ML+ (sM − δ)M, (5)

where F (0) ≥ 0 and M(0) ≥ 0.

We introduce dimensionless variables

f =
F

K1
, m =

M

K1
, t = Tδ,
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Fig. 1 The separatrix divides the phase plane into the regions of extinction and recovery for the (a) FHMS
system (3) without Allee and (b) FHMS system (6) with weak Allee

and the dimensionless parameters

α =
βK2

1

δ
, h =

hF
δ
, s =

sM
δ
.

With these substitutions, the equations describing the system become:

df

dt
= rαf2m (1− f −m)− (1 + h)f ≡ F̄1(f,m)

dm

dt
= (1− r)αf2m (1− f −m) + (s− 1)m ≡ F̄2(f,m), (6)

where f(0) ≥ 0 and m(0) ≥ 0.

Lemma 6 . If f(0) and m(0) are positive, then all possible solutions of the system (6) are non-negative.

Proof . We have f(t) = f(0)e

∫ t

0

φ1(f,m; τ)dτ
and m(t) > m(0)e

∫ t

0

φ2(f,m; τ)dτ
, where

r {mφ2(f,m; t) + 1− s} = (1 − r) {fφ1(f,m; t) + 1 + h}. Here φ1 = rαfm (1− f −m) − (1 + h) and φ2 = (1 −
r)αf2 (1− f −m) + (s− 1).
This implies, all solutions of (6) remain within

{
(f,m) ∈ R2 : f ≥ 0,m ≥ 0

}
starting from an interior point of

it. Therefore, R2
+ =

{
(f,m) ∈ R2 : f > 0,m > 0

}
is an invariant region, and as long as f(t) > 0 and m(t) > 0

for all t, the local existence and uniqueness properties hold in R2
+. We now prove that the solutions of (6) with

initial values in R2
+ are bounded, so that the system (6) is biologically meaningful.

Lemma 7 . All the solutions of the system (6) are contained in some bounded subset in the plane{
(f,m) ∈ R2 : f ≥ 0, m ≥ 0

}
.

The proof is shown in section B.1.

3.1 Equilibria and their stability

System (6) has the nullclines F̄i = 0 (i = 1, 2). Solving these nullclines yields the following equilibria:

(i) Invasive fish-free equilibrium E0 = (0, 0) exists always and is locally asymptotically stable (as s < 1).

(ii) coexistence equilibria E∗i = (f∗i , µf
∗
i ), where µ = (1−r)(1+h)

r(1−s) and f∗i is a positive root of the equation

G(f) ≡ f3 − 1

1 + µ
f2 +

1 + h

rαµ(1 + µ)
= 0.
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Fig. 2 Bifurcation diagrams of the (a) FHMS model without Allee effect (3) and (a) FHMS model with weak
Allee effect (6), where h as the bifurcation parameter (XX and XY are in solid and dotted curves respectively).
The stable and unstable equilibrium are represented by the blue curve and the red curve, respectively

The stability of system (6) is determined by using eigenvalue analysis of the Jacobian matrix evaluated at
the appropriate equilibrium. The eigenvalues of the Jacobian matrix (J(E0)) of the system (6) at E0 are s− 1
and −(1 + h). Since 0 ≤ s < 1, all the eigenvalues of J(E0) are negative. This gives the following lemma:

Lemma 8 . The invasive fish-free equilibrium E0 is always locally asymptotically stable.

The Jacobian of the system (6) evaluated at E∗i is given by

J∗i =

(
rαµf∗2i (1− 2f∗i − µf

∗
i ) rαf∗i (1− f∗i − 2µf∗i )

(1− r)αµf∗2i (2− 3f∗i − 2µf∗i ) −(1− r)αµf∗3i

)
.

The system (6) is locally asymptotically stable at E∗i if and only if Tr(J∗) < 0 and Det(J∗i ) > 0.

From Fig. 3 it is observed that as the harvesting rate (h) is increased, the female-male gender ratio drops
significantly. Once h crosses some critical threshold value, there leads to a sudden change of transition from
stable coexistence state to invasive fish-free state (cf. Fig. 2). Therefore, it is necessary to study the behaviour
of the system (6) by considering h as a bifurcation parameter.

Lemma 9 . The invasive species get eliminated from the system (6) via saddle-node bifurcation when h is increased

through h = h∗.

The proof is given in the appendix section B.2.

Lemma 10 . Consider the Jacobian of system (6). If the following hold

(i) Tr(J∗i )
∣∣
E∗

1
= 0,

(ii) Det(J∗i )
∣∣
E∗

1
> 0,

(iii)
d

ds
(Tr(J∗i ))

∣∣
E∗

1
6= 0 at s = shf,

then the system (6) exhibits periodic oscillation via a Hopf bifurcation when s is increased through s = s∗.

The proof is given in the appendix section B.3.
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Fig. 3 The changes in the female-male gender ratio with the changes in the scaled harvesting rate (h) and the
scaled stocking rate (s) for the (a) FHMS model without Allee effect (3) and (b) FHMS model with weak Allee
effect (6)

3.2 Intermediate Harvesting

As a result of the Allee effect in the invasive fish population, with the harvesting rate h ≥ h∗, the eradication of
invasive fish can be successfully achieved by stopping the harvesting and stocking once the female invasive fish
population fall below some threshold value. The minimum number of females needed for its survival would give
the minimum time of continuous harvesting and stocking in order to eradicate invasive fish species. Once the
harvesting and stocking of the invasive fish are stopped, the dynamics of the system will be governed by system
(6) with h = 0 and s = 0. Each of these systems has a stable fish-free boundary equilibrium. In the phase plane,
once the solution trajectories enter the basin of attraction of the boundary equilibrium, the fish species become
extinct. Determining the threshold of the female fish population is critical as after discontinuing the harvesting
and stocking, the invasive fish species would either go extinct or recover.

It has been observed that with the female-harvesting rate at h∗ and with different initial sex ratios, the
minimum threshold female population for survivability lies in between 0.1 and 0.15 (cf. Fig. 4). It is seen that
at a given supply rate, the minimum harvesting time of female invasive fish varies with the initial population
densities of invasive fish. While the minimum time for the continuous harvesting of females increases with the
initial population of equal sex ratio (cf. Figs. 4(a) & 4(b)), population densities initially sex-skewed towards
males require less harvesting time than the population sex-skewed towards females (cf. Figs. 4(c) & 4(d)). For
h = 0 = s and h = h∗, let the separatrices of extinction and recovery of the invasive fish population be in the
form f = Γ 0

h (m) and f = Γ ∗h (m) respectively. Then the regions of extinction for h = 0 = s and h = h∗ in the
fm-plane are given by:
R0
h =

{
(f, m) ∈ R2 : 0 ≤ f ≤ Γ 0

hs(m), 0 ≤ m ≤ 1
}

and

R∗h =
{

(f, m) ∈ R2 : 0 ≤ f ≤ Γ ∗h (m), 0 ≤ m ≤ 1
}

respectively.
The eradication strategy would be to discontinue harvesting and stocking of invasive fish once the invasive fish
population enters the region R0

h

⋂
R∗h (cf. Fig. 5).

At a given initial population density of the invasive fish species and the harvesting rate of female invasive
fish at its minimum admissible value h∗, this technique will give the least possible continuous harvesting or
(and) stocking time in order to eliminate the invasive fish species from the system. Fig. 5 gives the minimum
continuous harvesting or (and) stocking time of the invasive fish for the complete removal of the invasive fish
population with different initial population densities.
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Fig. 4 The time for extinction and recovery of invasive fish population with (a) low and (b) high initial
population densities at 1 : 1 sex-ratio. Time for extinction and recovery of invasive fish population with initial
wild-type population sex-ratio is (c) skewed towards males (f(0) : m(0) = 1 : 2) and (d) skewed towards females
(f(0) : m(0) = 2 : 1). The harvesting rate of the female species is kept at its minimum admissible value h∗ for
eradication. The plots for extinction and recovery are represented by solid and dashed lines, respectively

Fig. 5 The minimum continuous harvesting and stocking time for the elimination of the invasive fish population
with different initial population densities for the (a) FHMS system (3) without Allee and (b) FHMS system (6)
with weak Allee. The separatrices for the systems with h = h∗ and h = 0 = s are denoted by the curves Γ ∗h and
Γ 0
h respectively
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(a) s = 0.56 (b) s = 0.58 (c) s = 0.59

Fig. 6 Here we see the dynamics of a weak Allee effect in place. We notice in (a) and (b) the phase is split into
two regions by the separatrix/stable manifold of the saddle E2, with a large proportion of the initial data going
to the recovery state E1, which is a spiral sink. (c) shows this can change, as we vary the stocking parameter s -
the unstable manifold of E2 can loop around E1, and eventually lead to a homoclinic orbit. The other parameter
values are r = 0.5, α = 90, h = 0.24

3.3 The Extinction Boundary

As mentioned earlier, the dynamics of sex structured two species mating models is generically like Fig. 1 (a). The
stable manifold of the saddle (separatrix) divides the phase space, delineated by an extinction boundary, also
called “Allee” threshold (when there are Allee effects included) (Boukal and Berec, 2002) or threshold manifold
(Jiang and Shi, 2009). If one picks initial data on one side of the boundary, solutions tend to the stable interior
equilibrium, and if on the other side, solutions tend to the extinction equilibrium. Note, it is always seen to be of
hyperbolic shape (monotone w.r.t initial data). The literature is rife with examples of such mating models - where
the extinction boundary always turns out to be hyperbolic (Courchamp et al., 2008; Boukal and Berec, 2002;
Berec, 2004). Notably, Schreiber rigorously proved, that there exists a hyperbolic extinction boundary in the
case that certain sufficient conditions on the system concerned are met (Schreiber, 2004) - strong monotonicity
of the system being one of them. The results have been proved for general monotone systems as well (Smith
and Thieme, 2001; Hirsch and Smith, 2006). In the event that the sufficient conditions of (Schreiber, 2004) are
not met, the shape of the Allee threshold remains an open problem (Berec, 2004). In particular, in cases where
a strong Allee effect has been introduced into TYC type mating dynamics, we still see a hyperbolic extinction
boundary (Beauregard et al., 2020; Bhattacharyya et al., 2020), but this might be due to a lesser exploration
of the parameter space.

Remark 2 . Consider a population system ẋ = xG(x), where x = (f,m). Then (Schreiber, 2004), requires that
if exp(G(0, 0)) is primitive (and some other technical conditions are met), then that implies that there exists a
hyperbolic extinction boundary. In our case,

exp(G(0, 0)) =

(
exp(−(1 + h)) 0

0 exp(s− 1)

)
. (7)

This is not primitive. Hence the shape of the exact extinction boundary in our case is unknown.

We show, via numerical simulation that the FHMS model with weak Allee effect, can exhibit interesting
dynamics in that the extinction boundary may not be hyperbolic. In Fig. 6, we increase the stocking parameter
s and observe that the extinction boundary changes from the standard hyperbolic shape, to a loop. In Fig. 7 we
see a limit cycle form, collide with the saddle, the stable manifold, the unstable manifold and form a homoclinic
orbit - via a homoclinic bifurcation.
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(a) s = 0.59318 (b) s = 0.59316 (c) s = 0.59314

Fig. 7 Phase space showing the path to the occurrence of a Homoclinic orbit for different stocking s values.
The stable and unstable manifolds are colored blue and red respectively. The unstable limit cycle is colored
pink. The parameter values are r = 0.5, α = 90, h = 0.24. E1 is spiral source at s = 0.59318, it gains stability
through a subcritical Hopf bifurcation, resulting in the occurrence of an unstable limit cycle at s = 0.59316. The
limit cycle grows at s is decreased further, and at s = 0.59314 it collides with the stable and unstable manifold
and the saddle E2 to form a homoclinic orbit

3.4 The case of strong Allee effect

Consider the scaled mating model without female harvesting and male stocking, but with a strong Allee effect

df

dt
=rαm(f −A)(1− f −m)− f

dm

dt
=rαm(f −A)(1− f −m)−m,

(8)

where f,m are the female and male population size and A is the Allee threshold. Our aim is to investigate
the extinction boundary as the Allee threshold A is varied. What we notice is that for small Allee thresholds,
A <≈ 0.3, the extinction boundary is non-hyperbolic again, see Fig. 8. However, it returns to a hyperbolic shape
once the Allee threshold is increased past 0.7.
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(a) A = 0.1 (b) A = 0.3 (c) A = 0.7

Fig. 8 Here we observe the dynamics with a strong Allee effect in place via (8). The phase space of scaled
mating model split into two regions by separatrix with different Allee thresholds. One can see that the extinction
boundary bends, and is thus non-hyperbolic. Although a complete loop is not formed such as Fig. 6. Also note
increasing the Allee threshold (when a strong Allee effect is present) typically results in initial data from a larger
region of the phase space, going to extinction. Here we notice an opposite effect, wherein increasing the Allee
threshold from 0.3 to 0.7, causes a larger portion of the initial data to go to the recovery state. The parameter
values r = 0.5 and α = 180 are used in the simulation
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4 Turing Instability

Species disperse due to various factors such as search for food, mates, to look for resources as well as to avoid
predators or competitors Murray (2001). Thus there is a rich history of spatially explicit models in mathematical
biology Okubo (2013). With a spatially explicit model, just as with an ODE model, one can analyze the steady
states. Herein, various additional dynamics are possible - in particular the states might not be homogenous
in space. This could be indicative of the populations spreading and/or living in varying densities in a spatial
domain. One might see the phenomenon of Turing instability per se Murray (2001), whereby large differences
in the diffusion coefficients can destabilize the spatially homogenous steady state. In this section, we explore
the possibility of a Turing instability in systems (3) and (6) by including a spatial component.

4.1 Spatially explicit FHMS

We consider the system,

∂f

∂t
=d1∆f + rαfm

(
1− (f +m)

)
− (1 + h)f

∂m

∂t
=d2∆m+ (1− r)αfm

(
1− (f +m)

)
+ (s− 1)m,

(9)

where f(x, t),m(x, t) are functions of both the spatial variable x and time t. ∆ is the standard Laplacian operator,
representing the diffusion of the species in space. We prescribe Neumann boundary conditions fx = 0,mx = 0
which represents no flux of the species into or out of the spatial domain. We also impose positive initial conditions
f(x, 0) > 0,m(x, 0) > 0. The positive constants d1 and d2 are the diffusion coefficients. We choose a suitable
domain Ω = [0, π] for our numerical simulations.

4.2 Spatially explicit FHMS with weak Allee effect

Consider the system

∂f

∂t
=d11∆f + rαf2m

(
1− (f +m)

)
− (1 + h)f

∂m

∂t
=d22∆m+ (1− r)αf2m

(
1− (f +m)

)
+ (s− 1)m,

(10)

subject to Neumann boundary conditions fx = 0,mx = 0 and positive initial conditions f(x, 0) > 0,m(x, 0) > 0.
The positive constants d11 and d22 are the diffusion coefficients. Similar to system (9), we choose the domain
Ω = [0, π].

Theorem 2 .(Turing instability condition) Let (f∗,m∗) be a non-trivial positive homogeneous steady state. For any

given set of parameters, if the Jacobian J∗i =

(
J11 J12
J21 J22

)
of the reaction terms evaluated at (f∗,m∗) and the diffusion

constants d1, d2 satisfy

J11 + J22 < 0, (11)

J11J22 − J21J12 > 0, (12)

d2J11 + d1J22 > 0, (13)

(d2J11 + d1J22)2 − 4d1d2(J11J22 − J21J12) > 0, (14)

then in the absence of diffusion, (f∗,m∗) is linearly stable and linearly unstable in the presence of diffusion.

We refer the reader to (Murray, 2001) for a more detailed derivation of the conditions necessary and sufficient
for the occurrence of Turing instability.

Theorem 3 . (Necessary condition for Turing instability) A necessary condition for the occurrence of Turing insta-

bility is either J11 < 0, J22 > 0 or J11 > 0, J22 < 0 of the Jacobian J∗i .

Lemma 11 . System (9) does not exhibit Turing instability.
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Proof . Clearly, J11 < 0, J22 < 0 in the Jacobian J∗i of the reaction terms in system (9) (that is, the Jacobian of
system (3) seen in Appendix A) and hence does not meet the necessary condition for the occurrence of Turing
instability. Hence proof.

In this section, we use the following set of parameters for all numerical experiments:

r = 0.5, α = 90, h = 0.24, s = 0.5931. (15)

Theorem 4 . System (10) exhibits Turing instabilty.

Proof . Consider the parameter set in Eq.(15). With these values, a homogeneous steady state of system (10) is

(f∗,m∗) = (0.165847, 0.505407). The Jacobian evaluated at (f∗,m∗) yields J∗i =

(
0.614441 −0.218659
1.85444 −0.625559

)
.

Clearly, J11 = 0.614441 > 0, J22 = −0.625559 < 0 of J∗i meets the necessary condition for Turing instability
occurrence. The eigenvalues of J∗i are λ1 = −0.00555889 + 0.145224i and λ2 = −0.00555889 − 0.145224i. The
real parts of λ1, λ2 are both negative and hence the steady state (f∗,m∗) is locally stable. Simple calculations
show that, J11 + J22 = −0.011118 < 0, J11J22 − J21J12 = 0.0211209 > 0, d2J11 + d1J22 = 0.0614 > 0 and
(d2J11+d1J22)2−4d1d2(J11J22−J21J12) = 0.00376685 > 0. All conditions for the occurrence of Turing instability
have been met. Hence proof.

We define a small perturbation around the positive homogeneous steady state as

f =f∗ + α1 sin2(nx)

m =m∗ + α2 sin2(nx),
(16)

where α1, α2, n ∈ R.
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Fig. 9 Turing instability in FHMS with weak Allee in system (10). (a) Turing patterns in female population. (b)
Spatial profile of female and male populations after simulation is run longer (t = 1000). The diffusion constants
are d11 = 0.0001, d22 = 0.1. We give the spatially positive homogeneous steady state a small perturbation as in
Eq.(16) where α1 = 0.01, α2 = 0.01 and n = 10

5 Discussion and Conclusion

In this work, we investigate models that mimic the TYC strategy, such as the FHMS models initiated in (Lyu,
2018; Lyu et al., 2020). These are critical research directions in biocontrol, given that supermale production has
been successfully achieved by only one group in the US (Perrin, 2009; Schill et al., 2016a), and the feminised
supermale is still not in existence. Furthermore, given strong evidence of weak Allee effects at low population
densities, it is important to incorporate them into models of biocontrol, particularly in those which attempt
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to reduce the female population density - as a means of driving the overall population to extinction. Here, the
weak Allee effect is apt, because it works on positive density dependence, and populations still grow at low
densities, only slower. So it is truly “weaker” than a strong Allee effect, which would imply negative density
dependence below the Allee threshold.

The interplay of the harvesting and stocking with the weak Allee effect is important for bi-stability. To
elucidate, let us focus on Fig. 3. Herein in (a), there is no weak Allee effect. At a harvesting level of h = 0.5,
one can increase stocking unboundedly, but the system will remain bi-stable. However if we observe (b), where
there is a weak Allee effect, at h = 0.5, if one increases stocking above s = 0.25, we have only mono stability,
and all initial conditions go to the extinction state. This raises the question of what exactly is the extinction
boundary in the FHMS system vs the one in the FHMS system with weak Allee effect.

To this end, we have derived various results with important implications for control. We show that the
FHMS model with weak Allee effect in conjunction with harvesting and stocking, can produce a non-hyperbolic
extinction boundary, see Fig. 6. This, to the best of our knowledge, is the first example of such a boundary in
2 species structured, mating models. The implication for control (for parameter choices say in Fig. 6) is that
in situations, where we raise the stocking by just 1%, we can get essentially any initial condition, driven to
the extinction state. It is important to note, that the weak Allee effect, and harvesting and stocking pressures
are not exclusively responsible for a non-hyperbolic shaped extinction boundary - one can see this shape or
“bending” even when a strong Allee effect is present, see Fig. 8. Although a complete loop is not formed such
as Fig. 6. This result is counter intuitive, in that typically increasing the Allee threshold (when a strong Allee
effect is present) results in initial data from a larger region of the phase space, going to extinction - but the
opposite is observed here, see Fig. 8.

Our goal to introduce the results with strong Allee effect here is purely motivational and as a conduit for
future investigations. We refrain from the mathematical analysis of the strong Allee effect presently, and relegate
it for detailed future work. Note current works in this vein, that consider strong Allee effects in TYC context
(Bhattacharyya et al., 2020; Beauregard et al., 2020), only find hyperbolic extinction boundaries, but this is
probably due to the parameter choices of simulations therein. This begets the question of how in general does
the extinction boundary look in mating models, with the inclusion of Allee effects, which seems to be an open
problem in ecology (Berec, 2004). For systems that are monotone, say of competitive or cooperative type, there
is a large body of results, see (Schreiber, 2004; Jiang and Shi, 2009; Smith and Thieme, 2001; Hirsch and Smith,
2006; Jiang et al., 2004) and the references within, that point to the hyperbolic shape of the threshold manifold.
However, the systems we consider are non-monotone (easily observed by checking the signs of the off-diagonal
terms of the jacobian matrix) - and the threshold boundary for such systems is less investigated.

Our other result concerns the stopping of harvesting or stocking, at various finite times, and initial densities
of the wild-type, so as to still yield extinction. This is elucidated via Figs. 4 - 5. Lastly, we would like to comment
on our results concerning spatial/Turing instability. Here again, we see via Lemma 11 and Theorem 4, that the
FHMS system cannot produce Turing patterns, whereas the FHMS system with weak Allee effect can. Thus
the weak Allee effect can cause the population of males and females to spread patchily in space. This has been
observed elsewhere in the literature as well (Parshad et al., 2016a,b).
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Perälä T, Kuparinen A (2017) Detection of allee effects in marine fishes: analytical biases generated by data
availability and model selection. Proceedings of the Royal Society B: Biological Sciences 284(1861):20171284

Perko L (2013) Differential equations and dynamical systems, vol 7. Springer Science & Business Media
Perrin N (2009) Sex reversal: a fountain of youth for sex chromosomes? Evolution: International Journal of

Organic Evolution 63(12):3043–3049
Schill DJ, Heindel JA, Campbell MR, Meyer KA, Mamer ER (2016a) Production of a yy male brook trout

broodstock for potential eradication of undesired brook trout populations. North American Journal of Aqua-
culture 78(1):72–83

Schreiber S (2004) On allee effects in structured populations. Proceedings of the American Mathematical Society
132(10):3047–3053

Scott A, Penman D, Beardmore J, Skibinski D (1989) The yysupermale in oreochromis niloticus (l.) and its
potential in aquaculture. Aquaculture 78(3-4):237–251

Smith H, Thieme H (2001) Stable coexistence and bi-stability for competitive systems on ordered banach spaces.
Journal of Differential Equations 176(1):195–222

Stephens PA, Sutherland WJ (1999) Consequences of the allee effect for behaviour, ecology and conservation.
Trends in ecology & evolution 14(10):401–405

Teem JL, Gutierrez JB, Parshad RD (2014) A comparison of the trojan y chromosome and daughterless carp
eradication strategies. Biological invasions 16(6):1217–1230

Vera Cruz E, Mair G, Marino R (1999) Feminization of genotypically yy-nile tilapia, oreochromis niloticus.
PCAMRD Book Series (Philippines)

Wang X, Walton JR, Parshad RD, Storey K, Boggess M (2014) Analysis of the trojan y-chromosome eradication
strategy for an invasive species. Journal of mathematical biology 68(7):1731–1756

Wang X, Walton JR, Parshad RD (2016) Stochastic models for the trojan y-chromosome eradication strategy
of an invasive species. Journal of biological dynamics 10(1):179–199

Wedekind C (2012) Managing population sex ratios in conservation practice: how and why. Topics in conservation
biology pp 81–96

Zhao X, Liu B, Duan N (2012) Existence of global attractor for the trojan y chromosome model. Electronic
Journal of Qualitative Theory of Differential Equations 2012(36):1–16

Appendix A Stability analysis for FHMS model without weak Allee effect

The system (3) has the nullclines Fi = 0 (i = 1, 2). Solving these nullclines yields the following equilibria:
(i) Invasive fish-free equilibrium E0 = (0, 0) exists always and is locally asymptotically stable (as s < 1).

(ii) coexistence equilibria E∗i = (f∗i , µf
∗
i ), where µ = (1−r)(1+h)

r(1−s) and

f∗i =
1

2(1 + µ)

{
1±

√
1− 4(1 + µ)(1 + h)

rαµ

}
, (i = 1, 2).

The following lemma gives the conditions for existence of the unique interior equilibrium E∗i (i = 1, 2):

Lemma 12 . The interior equilibrium E∗i of the system (3) exists if either one of the following two conditions holds:

(i) s ≥ s∗ and h∗ < h < h∗;

(ii) 0 ≤ h ≤ h∗ and α > 4
r(1−r) , where s∗ = 1

r +
(
1−r
4

) (
4h
r − α

)
, h∗ = r

4

{
α− 4

r(1−r)

}
and h∗ = r

4

(
α− 4

r

)
.

The linearized system of (3) about an equilibrium Ê is given by dX
dt = J(Ê)X, where X = (f m)T and J(Ê) is

the Jacobian matrix of the system (3) evaluated at Ê. We analyze the stability of system (3) by using eigenvalue
analysis of the Jacobian matrix evaluated at the appropriate equilibrium. At E0, the eigenvalues of the Jacobian
matrix of the system (3) are s − 1 and −(1 + h). Since 0 ≤ s < 1, all the eigenvalues of the Jacobian matrix
J(E0) are negative. This gives the following lemma:

Lemma 13 . The invasive fish-free equilibrium E0 is always locally asymptotically stable.
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The Jacobian of the system (3) evaluated at E∗i is given by

J∗i =

(
−rαµf∗2i rαf∗i (1− f∗i − 2µf∗i )

(1− r)αµf∗i (1− 2f∗i − µf
∗
i ) −(1− r)αµf∗2i

)
.

We have Tr(J∗i ) = −αµf∗2i < 0 and Det(J∗i ) = −r(1− r)α2µf∗2i {1− 2(1 + µ)f∗i } {1− (1 + µ)f∗i }.
Therefore, the system (3) is locally asymptotically stable at E∗i if and only if Det(J∗i ) > 0. This gives the
following lemma:

Lemma 14 . Assume that the conditions of Lemma 12 are satisfied. If r(1−s)
2{1+h−r(h+s)} < f∗i < r(1−s)

1+h−r(h+s) holds,

then the system (3) is locally asymptotically stable at E∗i .

Appendix B FHMS with weak allee

B.1 Proof of boundedness of FHMS model with weak Allee effect (6)

Proof . Case (i):
Let 0 ≤ f(0) < 1. If possible, let there exists t > 0 such that f(t) ≥ 1. We define t0 = min {t : f(t) ≥ 1}. Then
f(t0) = 1 and f(t) < 1 for 0 ≤ t < t0. Now, we have f ′(t0) = −rαm2(t0)− (1 +h) < 0. By the continuity of f ′(t),
there exists δ > 0 such that f ′(t) < 0 for all t ∈ (t0 − δ, t0 + δ).

Let t1 = t0− δ2 . Then t0−δ < t1 < t0 < t0+δ. Since f(t) is strictly decreasing function for all t ∈ (t0−δ, t0+δ),
we have f(t1) > f(t0) = 1 which contradicts to the definition of t0. Therefore, we can conclude that f(t) ≥ 1
cannot be true for any t > 0 when 0 ≤ f(0) < 1.

Case (ii):
Let f(0) ≥ 1. We first assume that f(0) = 1. Then f ′(0) = −rαm2(0) − (1 + h) < 0 and so, there exists δ0 >
such that f ′(t) < 0 for all t ∈ [0, δ0). Therefore, for all t > δ0, we have f(t) < f(δ0) < f(0) = 1.

Next assume that f(0) > 1. Then f ′(0) < 0 implies there exists δ1 > 0 such that f ′(t) < 0 for all t ∈ [0, δ1).
Since f ′(t) is strictly decreasing for all t ∈ [0, δ1), it follows that f(δ1) < f(0). Suppose that there exists t > δ1
such that f(t) > f(0). Let t2 > δ1 be defined by t2 = min {t > δ1 : f(t) > f(0)}. Then f(t2) > f(0) > 1 implies
f ′(t2) = rαf2(t2)m(t2) (1− f(t2)−m(t2))− (1 + h)f(t2) < 0 and so, there exists δ2 > 0 such that f ′(t) < 0 for
all t ∈ (t2 − δ2, t2 + δ2).

One now sees that f ′
(
t2 − δ2

2

)
< 0 from which it follows that f

(
t2 − δ2

2

)
> f(t2) > f(0) > 1, contradicting

to the definition of t2. Therefore, for f(0) ≥ 1, there cannot exist t > t2 such that f(t) > f(0). Hence, all the
solutions of the system (6) are contained in some bounded subset in the first quadrant of the fm-plane.

B.2 Proof of saddle-node bifurcation in FHMS with weak Allee effect (6)

Proof . Solving G(g) = 0 = G′(f) we see that the equation G(f) = 0 has a double root 2
3(1+µ) satisfying

G′′
(

2
3(1+µ)

)
= 4

(1+µ) 6= 0. The two nontrivial nullclines φi(f,m) = 0 (i = 1, 2) intersect at the instantaneous

interior equilibrium E∗ =
(

2
3(1+µ) ,

2µ
3(1+µ)

)
. At E∗, the slopes of φi(f,m) = 0 (i = 1, 2) are equal and so

F̄1f

F̄1m

=
F̄2f

F̄2m

, which gives Det(J∗) = 0. Solving Det(J∗) = 0, the critical value of h, say, h = h∗ can be obtained.

At at h = h∗, if Tr(J∗) 6= 0, then the Jacobian of the system (6) has a simple zero eigenvalue.

Let F̄ (f,m; s) = (F̄1 F̄2)
T

and V ∗ and W ∗ are eigenvectors corresponding to the zero eigenvalue for J∗|h=h∗

and J∗T |h=h∗ respectively. We obtain F̄h(f,m;h) =
(
−2

3(1+µ) , 0
)T

, U∗ = (1 µ)T and V ∗ =
(

1 3r(1−µ)
4(1−r)µ

)T
so

that V ∗T F̄h (E∗;h∗) = −2
3(1+µ) and V ∗T (DF̄h)(U∗) = −1.

Due to the complexity in the algebraic expressions involved, we will use numerical simulations to verify
V ∗T

[
D2F̄ (E∗;h∗) (U∗, U∗)

]
6= 0. Under these conditions, the system (6) satisfies Sotomayor’s theorem for

a saddle-node bifurcation at E∗ when h crosses h∗. This gives the following lemma.
Keeping all parameters fixed and varying the harvesting parameter h we observe that the coexisting equilibria

E∗i (i = 1, 2) collide to each other, generating a unique instantaneous interior equilibrium. From Fig. 2(b), it is
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observed that the interior equilibria E∗i (i = 1, 2) cease to exist when h is increased through h∗ = 0.4.
At h = 0.4, we have E∗ = (0.2, 0.47) (i = 1, 2) and

J∗i =

(
0.56 −0.24
1.96 −0.84

)
has a simple zero eigenvalue. Also, we obtain U∗ = (1 2.33)T , V ∗ = (1 − 0.286)T , V ∗T F̄h (E∗;h∗) = −0.2,
V ∗T (DF̄h)(U∗) = −1 and V ∗T

[
D2F̄ (E∗;h∗) (U∗, U∗)

]
= −29.997, satisfying the conditions of a saddle-node

bifurcation at E∗ when h crosses h = h∗.

B.3 Proof of Hopf bifurcation in FHMS system with weak Allee effect (6)

Proof . We consider the following parameter set r = 0.5, α = 90, h = 0.24, s = 0.59317665. Then E∗1 =
(0.16534, 0.50397) is an interior equilibrium. Evaluating the Jacobian of system (6) at E∗1 , we obtain

J∗i =

(
0.62 −0.21318
1.86 −0.62

)
. (17)

The corresponding eigenvalues are given as λ1,2 = ±0.11005i. Clearly, the trace and determinant of Eqn. (17)

is 0 and 0.01211 > 0 respectively. Now, referencing the Jacobian of system (6) again, let µ =
λ

(1− s)
where

λ =
(1− r)(1 + h)

r
. Then

d

ds
(Tr(J∗i )) =

λrαf∗2i
(1− s)2

(
1− f∗i

(
1 +

1

r
+

2λ

(1− s)

))
. (18)

Now,
d

ds
(Tr(J∗i ))

∣∣
E∗

1
= −4.6446 6= 0 at s=0.59317665. Hence, the FHMS model with weak Allee effect undergoes

a Hopf bifurcation with respect to the bifurcation parameter s = shf = 0.59317665.
We now vary the stocking rate s. As seen in Fig. 7, when s = 0.59318, the interior equilibrium E∗1 =

(0.16531, 0.50388) is a spiral source. The eigenvalues associated to E∗1 are λ1 = 0.00033529 + 0.10753i and
λ2 = 0.00033529 − 0.10753i. When the stocking rate is decreased to s = 0.59316, E∗1 = (0.16548, 0.50436)
gains stability and becomes a spiral sink. It’s associated eigenvalues are λ1 = −0.0014934 + 0.12056i and
λ2 = −0.0014934− 0.12056i. Clearly, the pair of complex conjugate eigenvalues cross the imaginary axis of the
complex plane when the stocking rate s decreases from s = 0.59318 to s = 0.59316. This leads to a subcritical
Hopf bifurcation which gives rise to an unstable limit cycle.
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