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Abstract

Computer experiments may involve not only continuous input factors but also nominal factors, dis-

crete numeric factors, and ordinal factors. Most existing literature in designing computer experiments

focus only on continuous factors. Some works have further considered nominal factors, but the cases

that also contain discrete numeric or ordinal factors are almost overlooked. In this work, we propose a

new optimal design criterion that can accommodate all these types of factors. The proposed design is

flexible in run size and number of factors, and can also achieve good space-filling properties in the full

design space and in all possible low-dimensional projections.
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1



Introduction

Modern computing technology enables the use of computers to simulate sophisticated physical sys-

tems with high fidelity, which are widely used for scientific discovery, technology innovation, and quality

improvement. Although much cheaper than experimenting with a real physical system, each run of a

computer simulation can take hours or days to complete. Due to this high computational cost, it is of-

ten necessary to employ experimental design techniques to strategically choose the input factor settings

for running the simulation so that maximum information can be learned from the system with minimum

number of runs (Sacks, Welch, Mitchell and Wynn 1989, Santner, Williams and Notz 2003).

Computer experiments can involve both qualitative and quantitative input factors. The qualitative

factors can be nominal or ordinal and the quantitative factors can be continuous or discrete numeric. As

an example consider a solid end milling process, which can be simulated using the Production Module

software of Third Wave Systems. The software accepts several parameter specifications such as the cutting

tool parameters shown in Figure 1. These parameters: rake angle, relief angle, helix angle, and corner

radius are quantitative factors which are continuous. On the other hand, we can also specify the number

of flutes for the end mill cutting tool, which can take values 2, 3, or 4. This is a discrete numeric-

type quantitative factor. We can also specify the type of workpiece material such as high-speed steel

or Titanium alloy, which is a nominal-type qualitative factors. Although not currently available in this

particular software, one can also imagine other types of factors such as the condition of the tool rated as

poor, fair, or good. This is a qualitative factor, but is of ordinal-type.

Figure 1: Solid end milling cutting tool parameters

Most existing literature on designing computer experiments focus only on continuous input factors, and
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some recent works have further considered the case of nominal factors. When the computer experiments

also involve discrete numeric and ordinal factors, however, the optimal design strategy remains largely

unresolved. Practitioners often have to ignore the ordinal information and treat them as nominal factors.

Sometimes the discrete numeric factors are also handled by either treating them as nominal factors, or as

continuous factors and then rounding to the nearest integer values, which can lead to sub-optimal designs.

In this work, we propose an optimal design criterion that can distinguish and incorporate all these different

types of input factors and produce much better designs.

Existing Works and Limitations

The majority of literature in computer experiments assume all input factors to be continuous. Space-

filling designs, which spreads out design points evenly throughout the input space, are widely used for such

factors. See Joseph (2016) for a recent review of space-filling designs. Let D = {x1, . . . ,xn} denote an

n-run experimental design, where each point xi ∈ X = [0, 1]p. A popular space-filling criterion is the

maximin distance criterion (Johnson, Moore and Ylvisaker 1990), which tries to maximize the minimum

inter-point distance between design points:

max
D

min
xi,xj∈D

d(xi,xj), (1)

where d(xi,xj) is the Euclidean distance between points xi and xj .

Among the many input factors in a computer experiment, usually only a few of them are important.

This is often called the effect sparsity principle in the literature (Wu and Hamada 2009). Since computer

experiment outputs are deterministic, any replicated design points would lead to wastage of computational

resources. As a result, a good design for computer experiments also needs to be non-collapsing, which

requires the projections of design points onto any lower-dimensional subspace to be non-overlapping.

The most popular non-collapsing design in computer experiments is the Latin hypercube design (LHD)

(McKay, Beckman and Conover 1979), whose projections onto each input dimension always have n dis-

tinct levels. However, non-collapsing designs are not necessarily space-filling. To improve the space-filling

property of a randomly generated LHD, Morris and Mitchell (1995) proposed to construct the maximin
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LHD (Mm LHD), which is obtained by minimizing

φk(D) =

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1

dk(xi,xj)

}1/k

, (2)

where k is nonnegative and usually a large value.

The maximin LHD ensures space-fillingness in the full dimensional space and also uniformity in all

one-dimensional projections. However, its projection properties for subspaces with dimensions 2, . . . , p−1

are not optimized. To remedy this problem, Joseph, Gul and Ba (2015) proposed the following maximum

projection (MaxPro) criterion:

min
D

ψ(D) =

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1∏p
l=1 (xil − xjl)2

}1/p

, (3)

which can simultaneously optimize the space-filling properties of the design points with respect to all

possible subsets of factors. Whenever any two points have the same coordinate in a single dimension, (3)

would become∞, and thus the MaxPro criterion automatically justifies the necessity of having n distinct

level for each factor of the design, as required by the LHD structure.

When the computer experiments also involve nominal input factors, Qian (2012) proposed the Sliced

Latin hypercube design (SLHD). Suppose t is the number of all possible combinations of levels of the

nominal factors, then an n-run SLHD is defined as a special type of LHD that can be partitioned into t

slices with each slice being an LHD of size n/t runs which is used as the design for continuous factors

corresponding to each level combination of the nominal factors. Obviously, as the number of nominal

factors increases, the value of t would increase exponentially. As a result, the SLHD can only accommo-

date a small number of nominal factors. Recently, Deng, Hung and Lin (2015) proposed the marginally

coupled design (MCD) which can accommodate a larger number of nominal factors. The MCD structure

combines an orthogonal array (OA) (see, e.g., Wu and Hamada 2009) for nominal factors with an LHD

for continuous factors in such a way that the LHD can be partitioned by the levels of any single nominal

factor into multiple smaller LHDs. In other words, the LHD for continuous factors combined with any

single nominal factor column in an MCD forms an SLHD. Because the MCD uses an OA instead of a

full factorial combination for the nominal factors, it can achieve more economic run size than the SLHD.
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Nevertheless, the existing condition of an MCD is restrictive : it requires not only the existence of an OA

of a given size, but also the existence of a special LHD which can form an SLHD when paired with each

single column of the OA.

The SLHD and MCD structures can guarantee maximum uniformity in any one-dimensional projec-

tion. However, they are not optimized for the overall space-filling properties or for the projection properties

in more than one dimensional subspace. Ba, Brenneman and Myers (2015) proposed to generate an opti-

mal SLHD by modifying the maximin criterion in (2) as follows:

min
D

φMm(D) =
1

2

{
φr(D) +

1

t

t∑
i=1

φr(Di)

}
, (4)

whereDi represents the ith slice ofD. Although it is overall space-filling, the optimal SLHD still cannot

accommodate a large number of nominal factors and does not guarantee good space-filling properties when

projected onto lower dimensional subspaces other than the single dimensions. Improvements to MCD are

proposed in He, Lin, and Sun (2017) and He, Lin, Sun, and Lv (2017), but the flexibility of run size and

number of factors is still a concern. In the next section, we will present a new optimal design criterion that

can overcome these problems.

How to efficiently design computer experiments that contain not only continuous and nominal factors

but also discrete numeric and ordinal factors is a challenging problem. The LHD structure cannot accom-

modate discrete numeric factors since it requires each factor to have n distinct levels. Using an SLHD to

accommodate discrete numeric factors would ignore the quantitative distance between their factor levels.

As discussed earlier, when engineers encounter discrete numeric factors in practice, they often apply a

trick by first treating them as continuous factors to generate a space-filling LHD and then collapsing their

levels to the nearest discrete numeric levels. This trick may not work well always. For example, Fig-

ure (2a) illustrates a 25-run space-filling LHD with three continuous factors. The design after collapsing

the 25 levels in each of its columns to five equally spaced levels is shown in Figure (2b). We can see that

it creates unnecessary gaps in the design space. Thus, better methods are needed to incorporate discrete

numeric as well as ordinal factors in the experimental design.

Even in the realm of physical experiments, optimal designs with multiple types of factors is rarely
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Figure 2: Illustration of the level-collapsing approach: (a) A 25-level space-filling LHD with three contin-
uous factors, and (b) Collapsing the space-filling design from (a) into a five-level design.

studied. Most existing works in physical experimental designs uses combinatorial constructions which are

suitable only for nominal-type factors. Cheng and Ye (2004) tried to extend factorial designs to include

continuous factors, but their method cannot handle a mix of continuous and nominal factors. Joseph, Ai,

and Wu (2009) have considered a mix of continuous and nominal factors, but only for the case of two and

four-level fractional factorial designs. On the other hand, most response surface designs deal with only

continuous factors. A few have considered the case of nominal factors (Draper and John 1988, Wu and

Ding 1998), but their construction methods are limited in terms of number of factors and levels. Moreover,

we have not seen any works that considers ordinal and discrete numeric factors and a mix of all of these

different types of factors. Thus, although here we focus on computer experimental designs, there is a

potential to extend the proposed ideas to physical experimentation.

Maximum Projection Criterion for Multiple Types of Factors

In this section, we will develop a new criterion for designing computer experiments, which extends

the MaxPro criterion in (3) to accommodate continuous, nominal, discrete numeric, and ordinal types of

factors. First we convert the ordinal factors into discrete numeric factors through the well-known scoring
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method (see, e.g., Wu and Hamada 2009). That is, if the ordinal factor has levels, “poor”, “fair” and

“good”, then depending on the nature of the classification, the experimenter can choose some discrete

numeric levels such as 1, 4, and 5 to represent the three ordinal levels. Thus, for the rest of the paper, we

will only consider continuous, nominal, and discrete numeric factors assuming that the ordinal factors are

already converted to discrete numeric factors through scoring.

MaxPro criterion has an optimality connection with Gaussian process (GP) modeling (Joseph, Gul, and

Ba 2015). We exploit this connection to extend the criterion to include continuous, nominal, and discrete

numeric factors. First consider the case of continuous factors. Let there are p1 of them. The GP model

is defined as Y (x) = µ + Z(x), where µ is the overall mean and Z(x) is a Gaussian process with mean

zero and covariance function σ2R(·) (Santner, Williams and Notz 2003). A popular choice for R(·) is the

Gaussian correlation function given by

R(xi − xj;α) = exp{−
p1∑
l=1

αl(xil − xjl)2}, (5)

where αl ∈ (0,∞) for l = 1, . . . , p1 are the correlation parameters. SupposeR(α) is the n×n correlation

matrix whose (i, j)th element is R(xi − xj;α). Assuming a noninformative prior distribution for the

correlation parameters, Joseph, Gul and Ba (2015) showed that the MaxPro design minimizes the expected

sum of off-diagonal elements of the correlation matrix given by E{
∑n

i=1

∑
j 6=iRij(α)}. Minimizing the

off-diagonal elements of the correlation matrix tends to increase the determinant of the correlation matrix.

Thus, a MaxPro design is expected to perform well under the maximum entropy criterion (Shewry and

Wynn, 1987) as well.

Now consider the case of nominal and discrete numeric factors. Let there are p2 discrete numeric

factors and p3 nominal factors. The key to incorporate them in the design criterion is to properly define

a correlation function for them in the GP model. Qian, Wu and Wu (2008) proposed several correla-

tion construction schemes along with a general framework for building GP models with quantitative and

nominal-type qualitative factors. Here we assume the following exchangeable correlation structure for the

nominal factor which was also used by Joseph and Delaney (2007):

R(wi −wj;α,β,γ) = exp

{
−

p1∑
l=1

αl|xil − xjl| −
p2∑
k=1

βk|uik − ujk| −
p3∑
h=1

γhI(vih 6= vjh)

}
, (6)
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wherewi = (xi,ui,vi), x represent the p1 continuous factors, u represent the p2 discrete numeric factors

(including ordinal factors), v represent the p3 nominal factors, and I(vih 6= vjh) is the indicator function

that takes values 1 if vih 6= vjh and 0 otherwise. Assume that the discrete numeric factors are also scaled

in [0, 1] so that the correlation parameters of the three types of factors are in the same scale. Different

from Joseph, Gul, and Ba (2015), we use an exponential correlation function for the continuous factors

instead of a Gaussian correlation function. We will show that using an informative prior on the correlation

parameters of the exponential correlation function, we can derive the same MaxPro criterion as with the

Gaussian correlation function. This modification using an informative prior is crucial for the discrete

numeric factor because they cannot have n levels in the design.

Assume the following priors for the correlation parameters:

αl ∼iid Gamma(2, ᾱl), l = 1, . . . , p1,

βk ∼iid Gamma(2, β̄k), k = 1, . . . , p2,

γh ∼iid Gamma(2, γ̄h), h = 1, . . . , p3.

Then, it is easy to show that:

E{
n∑
i=1

∑
j 6=i

Rij(α,β,γ)}

=

∫ ∫ ∫ n∑
i=1

∑
j 6=i

R(wi −wj;α,β,γ)

p1∏
l=1

ᾱ2
l αle

−ᾱlαl

p2∏
k=1

β̄2
kβke

−β̄kβk
p3∏
h=1

γ̄2
hγhe

−γ̄hγh dα dβ dγ

=
n∑
i=1

∑
j 6=i

p1∏
l=1

ᾱ2
l

{|xil − xjl|+ ᾱl}2

p2∏
k=1

β̄2
k

{|uik − ujk|+ β̄k}2

p3∏
h=1

γ̄2
h

{I(vih 6= vjh) + γ̄h}2
. (7)

This gives a new design criterion, which is to minimize

1(
n
2

) n∑
i=1

∑
j 6=i

1∏p1
l=1{|xil − xjl|+ ᾱl}2

∏p2
k=1{|uik − ujk|+ β̄k}2

∏p3
h=1{I(vih 6= vjh) + γ̄h}2

. (8)

It is preferable to choose smaller values for ᾱl, β̄k and γ̄h in (8) in order to increase its sensitivity in

comparing different designs. For continuous factors, we can simply set ᾱl = 0 (l = 1, . . . , p1) because this

would force each continuous factor to have n distinct levels. For nominal and discrete numeric factors,
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however, the total available number of levels is less than n for each factor. Therefore, we must have

β̄k > 0 (k = 1, . . . , p2) and γ̄h > 0 (h = 1, . . . , p3) to prevent the denominator in (8) to become zero when

uik = ujk or vih = vjh for some (i, j) values. LetLh denote the number of distinct levels of the hth nominal

factor, h = 1, . . . , p3. Because P{I(vih 6= vjh) = 0} = 1/Lh, we have E{I(vih 6= vjh)} = 1 − 1/Lh

for h = 1, . . . , p3. This suggests choosing γ̄h = 1/Lh, which is the smallest possible value of γ̄h to

make E{I(vih 6= vjh) + γ̄h} independent of Lh. Similarly, for discrete numeric factors, we can also set

β̄k = 1/mk , where mk is the number of levels of the kth discrete numeric factor. It can be seen that as

mk increases, the corresponding discrete numeric factor behaves more like a continuous factor, and the

corresponding β̄k → 0 as desired.

With the foregoing choices of the hyperparameter values, the new optimal design criterion for continu-

ous factors xl (l = 1, . . . , p1), discrete numeric factors (including ordinal factors) uk (k = 1, . . . , p2) and

nominal factors vh (h = 1, . . . , p3) can be formally defined as to minimize

ψ(D) =

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1∏p1
l=1(xil − xjl)2

∏p2
k=1{|uik − ujk|+

1
mk
}2
∏p3

h=1{I(vih 6= vjh) + 1
Lh
}2

} 1
p1+p2+p3

.

(9)

This new criterion contains the MaxPro criterion in (3) as a special case when there are only continuous

factors (p1 > 0, p2 = p3 = 0). As a result, it possesses all the desirable properties of a MaxPro design and

maximizes the space-filling properties not only in the full design space but also in all possible projections

to sub-dimensional spaces. For nominal factors, this criterion also shares similar ideas as the J2-Optimality

criterion proposed by Xu (2002) in constructing mixed-level OAs and near OAs through maximizing the

dissimilarity of rows, which is defined as min J2(D) =
∑n−1

i=1

∑n
j=i+1{

∑p3
h=1 I(vih = vjh)}2. Further-

more, if we have only one nominal factor with t levels and p continuous factors, then as shown in the

Appendix, the criterion in (9) is closely related to the criterion in (4) for finding optimal SLHDs.

Optimal Design Construction

In this section, we will discuss how to generate the optimal designs for computer experiments based

on the proposed MaxPro criterion in (9) for continuous, nominal, discrete numeric, and ordinal types of

factors.
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When the computer experiments only involve continuous factors (p1 > 0, p2 = p3 = 0), (9) reduces

to the original MaxPro criterion in (3). Thus, algorithms discussed in Joseph, Gul and Ba (2015) for

generating the MaxPro designs can be directly used.

When the computer experiments involve continuous factors and discrete numeric factors (ordinal fac-

tors) (p1 > 0, p2 > 0, p3 = 0), we can first randomly initialize a design matrix by generating a n×(p1+p2)

random LHD and collapsing the n levels in each of the last p2 columns to the nearest given discrete nu-

meric levels. Then, this initial design can be optimized with respect to criterion (9) using a version of the

simulated annealing algorithm (Morris and Mitchell 1995), which iteratively searches in the design space

in such a way that in each step two randomly chosen elements within a randomly selected column in the

design matrix are interchanged. Because the optimization steps only permute the order of the existing lev-

els in each column of the initial design matrix, the final optimal design still guarantees to consist n levels

for each of the continuous factors and mk levels for each of the discrete numeric factors (k = 1, . . . , p2).

When nominal factors are also present in the computer experiments (p1 > 0, p2 ≥ 0, p3 > 0), crite-

rion (9) can similarly be used to optimize the columns of nominal factors from a random initial design.

However, directly searching for the optimal design with all three types of factors is challenging. Because

vast amounts of literature have already been available in physical experiments for generating optimal de-

signs for nominal factors (e.g., Wu and Hamada 2009), we propose to leverage these existing results and

choose the optimal design matrix for nominal factors from the well-studied fractional factorial designs,

OAs, near OAs, D-optimal Designs, or I-optimal designs in the literature. This can save considerable

amounts of computational time and also give the practitioners the greatest flexibility in selecting the design

with the most suitable properties. The criterion (9) is then used to optimize the columns for continuous

factors and discrete numeric factors and also to optimize how these columns are joined with the fixed

design matrix for the nominal factors.

Our proposed design construction algorithm can be formally stated as follows:

I. Initialization Stage:

Step 1. If p1 > 0, generate a n× p1 random LHDDx for continuous factors.

Step 2. If p2 > 0, generate a n × p2 random LHD Du and collapse the n levels in each column to the

nearest given discrete numeric levels of each factor.
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Step 3. If p3 > 0, choose a n × p3 optimal design for nominal factors Dv from the existing physical

experiments’ literature or using a commercial statistical software such as JMP.

Step 4. Form the n× (p1 + p2 + p3) initial design matrixD = [Dx,Du,Dv], which consists n levels for

each of the p1 continuous factors, mk levels for the kth discrete numeric factor (k = 1, . . . , p2), and

Lh levels for the hth nominal factor (h = 1, . . . , p3).

II. Optimization Stage: Iteratively search in the design space to optimize the criterion (9) using a version

of the simulated annealing algorithm (Morris and Mitchell 1995).

Step 5. Denote the current design matrix as D = [Dx,Du,Dv]. Randomly choose a column from the

[Dx,Du] components, and interchange two randomly chosen elements within the selected column.

Denote the new design matrix asDtry.

Step 6. IfDtry = D, repeat Step (5).

Step 7. If ψ(Dtry) < ψ(D), replace the current designD withDtry; otherwise, replace the current design

D with Dtry with probability π = exp{−[ψ(Dtry) − ψ(D)]/T}, where T is a preset parameter

known as “temperature”.

Step 8. Repeat Step (5) to Step (7) until some convergence requirements are met. Report the design matrix

with the smallest ψ(D) value as the optimal design with respect to criterion (9).

In the above algorithm, design for the continuous factors Dx is initialized using a random LHD, and

design for the discrete numeric factors Du is initialized using the level-collapsing method. The design

matrix for the nominal factors Dv is chosen from the existing optimal design literature or statistical soft-

ware and is fixed in the algorithm. The optimization steps permute the order of existing levels in columns

of the Dx and Du matrices as well as the order of their rows when joined with the fixed Dv matrix. The

simulated annealing parameters can be set similarly as in Lundy and Mees (1986) for which convergence

is already established. Also, similar to the computational shortcut used by Jin, Chen and Sudjianto (2005),

an updating formula can be used to compute ψ(Dtry) based on the existing ψ(D) value of the preceding

design, which avoids re-computing all the summation terms in criterion (9).
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In a special case when p1 > 0, p2 = 0, p3 = 1, the optimal design found by the proposed algorithm may

not have an exact SLHD structure, but our numerical study in the next section shows it can have similar

one-dimensional uniformity properties. In addition, the proposed algorithm can generate an optimal design

even when n is not a multiple of Lh for which an SLHD does not exist. When p1 > 0, p2 = 0, p3 > 1,

similar to the MCD structure, the proposed design can also accommodate a large number of nominal

factors with economic run size. Nevertheless, the new design does not have the strict run size restrictions

as the MCD does and can achieve much superior space-filling properties as we will illustrate in the next

section. When all p1 > 0, p2 > 0, p3 > 0, the proposed algorithm becomes the only solution so far in the

literature to generate optimal designs suitable for computer experiments.

The continuous factors constructed above have an LHD structure with n equally spaced levels. As

discussed in Joseph, Gul and Ba (2015), although criterion (9) justifies using n distinct levels for each

continuous factor, their levels do not have to be equally spaced. After obtaining the optimal design from

the above algorithm, we can improve it further through a local optimization of the continuous factors. The

gradient of the objective function in (9) with respect to the continuous factor is

∂ψ(p1+p2+p3)(D)

∂xrs
=

2(
n
2

)∑
i6=r

1∏p1
l=1(xil − xrl)2

∏p2
k=1{|uik − urk|+

1
mk
}2
∏p3

h=1{I(vih 6= vrh) + 1
Lh
}2

1

(xis − xrs)
,

(10)

which can be used to implement a fast derivative-based algorithm to optimize the n levels of the continuous

factors.

Numerical Studies

The proposed MaxPro design generated by the algorithm from the previous section imposes no con-

straint on the structure of the continuous factors and thus the design exists for any run size and number of

factors. On the other hand, as discussed before, the MCD has strict existence conditions because it further

requires that for each level of any nominal factors, the corresponding design points for the continuous

factors form a small LHD. When there is only one nominal factor, the MCD contains SLHD as a special

case. In this section, we use numerical examples to show that although the proposed MaxPro design does

not impose the restricted MCD structure, through optimizing the criterion (9), it can still approximately
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Figure 3: Compare the MaxPro design with MCD in Example 1. (a)-(c): Scatter plots of x1 versus x2

of the 25-run MCD. The five types of symbols represent the five different levels of: (a) the first nominal
factor; (b) the second nominal factor; (c) the third nominal factor. (d)-(f): Scatter plots of x1 versus x2

of the 25-run MaxPro design. The five types of symbols represent the five different levels of: (d) the first
nominal factor; (e) the second nominal factor; (f) the third nominal factor.

achieve similar one-dimensional uniformity when the columns for continuous factors are sliced by the lev-

els of any nominal factor. Moreover, we will also show that the proposed MaxPro design can have much

better space-filing properties than the MCD.

Example 1: 25-run design with two continuous factors and three nominal factors each with five levels

(p1 = 2, p2 = 0, p3 = 3).

To illustrate that the MaxPro design can have similar one-dimensional properties as an MCD, we

consider this simple example with only two continuous factors. As discussed in Deng, Hung and Lin

(2015), a 25-run OA with six five-level factors can be used to construct the MCD, where three columns

from the OA are directly used for the p3 = 3 nominal factors and another two columns from the OA are

used to form an 25-run OA-based LHD (Tang 1993) for the p1 = 2 continuous factors. Scatter plots of
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the two continuous factors (x1 versus x2) of the resulting MCD are shown in Figure 3 (a)-(c), where the

symbols in each scatter plot are determined by the levels of one of the three nominal factors. Because

the original 25-run OA has strength two (every two columns have all 25 possible combinations of levels

appearing exactly once), it can be seen in Figure 3 (a), (b) or (c) that only one point appears in each of the

5× 5 grids and the projection of the 25 design points onto any dimension have exactly one type of symbol

in each of the five equally-spaced bins.

Compared to the MCD, Figure 3 (d)-(f) show a MaxPro design in which the same three columns are

used for the three nominal factors but the two continuous factors are generated purely by optimizing the

criterion in (9) instead of leveraging other OA columns. Although not using an OA-based LHD structure

(exactly one point in each of the 5×5 grids), the MaxPro design points appear to be similarly space-filling

in the scatter plot of x1 versus x2 (the minimum inter-point distance gets even better than the MCD). In

addition, for each level of a nominal factor, projections of the corresponding MaxPro design points onto

any single dimension in the scatter plots are also well-spread out. In other words, without imposing any

structural constraints on the continuous factors, the proposed MaxPro design optimized by criterion (9)

can approximate an MCD in achieving one-dimensional uniformities under each level of a nominal factor.

In the next example, we will show that when the dimension of input factors becomes higher, the MaxPro

design would perform much better than the MCD, since the MCD is not optimized for space-filling prop-

erties higher than two dimensions.

Example 2: 49-run design with five continuous factors and three nominal factors each with seven levels

(p1 = 5, p2 = 0, p3 = 3).

In this example, an MCD can be constructed based on a 49-run strength-two OA with eight seven-

level factors. The first five columns in the OA can generate a 49-run OA-based LHD through random

level expansions (Tang 1993) and used for the p1 = 5 continuous factors of the MCD, and the last three

columns in the OA are directly used for the p3 = 3 nominal factors. Keeping the same three columns for the

nominal factors, a MaxPro design can be created through the proposed algorithm which generates five new

columns for the continuous factors. To demonstrate the effectiveness of criterion (9), we also combine the

same three columns for the nominal factors with a random LHD of five columns for the continuous factors.

Space-filling properties of the MCD, random LHD and the MaxPro design are compared in Figure 4 and 5.
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Figure 4: The minimum inter-point distances (larger-the-better) for each slice (block) of the MaxPro
design, MCD and random LHD. Each time one nominal factor (V1, V2 or V3) is used to partition the
columns of continuous factors in each design into seven slices (blocks) according to its seven different
levels.

In Figure 4, we partition the columns for continuous factors in each design into seven slices (blocks)

according to the levels of one of the nominal factors (V1, V2 or V3). The minimum inter-point distance of

each slice is plotted in Figure 4, from which we can see that all slices of the MaxPro design are consistently

space-filling and slices of the random LHD are always not good. Properties for the slices of the MCD,

however, vary a lot: some of its slices are space-filling while some others can behave poorly. These results

show that although the MCD structure guarantees one-dimensional uniformity when the columns of its

continuous factors are partitioned by the levels of any nominal factor, it may not be space-filling in more

than one dimensions.

In Figure 5(a), we compare the overall space-filling property and projection properties of the five con-

tinuous factors in each design. The minimum inter-point distances of the 49-run design with respect to all

the five continuous factors, as well as projections to any four, three, two or one factors are shown. Because

the MCD structure does not optimize the space-filing property other than ensuring the low-dimensional

uniformity, we can clearly see that the MCD behaves substantially worse than the MaxPro design in more

than two dimensions. Figure 5(b) further compares the projection properties of the three designs after

partitioning the columns of their continuous factors into slices by each of their nominal factors. The com-

parison results are similar: the MaxPro design performs consistently better than the MCD for all projection
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Figure 5: Plots of the minimum inter-point distances (larger-the-better) with respect to the continuous
factors versus the projection dimensions: (a) the 49-run MaxPro design, MCD and random LHD; (b)
the slices of the MaxPro design, MCD and random LHD, where the columns of continuous factors are
partitioned into slices by levels of each nominal factors.

dimensions, and the random LHD is the worst.

Example: Solid End Milling Process

In this section, we illustrate the proposed MaxPro designs using a more realistic example. Consider

the solid end milling process simulation described briefly in the introduction with six input factors. Three

factors are continuous cutting tool parameters: rake angle (x1), relief angle (x2) and helix angle (x3),

which are shown in Figure 1. Ranges of these factors are chosen to be: x1 ∈ [3.5, 6.5] deg, x2 ∈ [21, 39]

deg and x3 ∈ [7, 13] deg. The simulation also involves a discrete numeric factor, the number of flutes,

which can only take values 2,3, or 4. Two nominal factors in the study are the titanium alloy (z1) and the

tool path optimization type (z2). For them, six different types of titanium alloys that are commonly used

in the aerospace industry and four available tool path optimization types are considered, whose details are

given in Table 1. The simulation can be done on the Production Module software of Third Wave Systems

(Minneapolis, MN). Here we discuss only the design aspects of the simulation. The outputs and their

modeling using an experimental design for only the continuous factors are discussed in Gul et al. (2018).

Using a full factorial design for the two nominal factors, a 48-run MaxPro design is generated. The

two-dimensional projections of the design are shown in Figure 6, from which we can see that the 48-run
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Table 1: Nominal Factors and Levels

Level Titanium Alloy Tool Path Optimization

1 Ti-6AI-4V None
2 Ti-6AI-2Sn-4Zr-6Mo In-Cut
3 Ti-6AI-2Sn-4Zr-2Mo Air-Cut
4 Ti-6AI-6V-2Sn Both
5 Ti-4AI-4Mo-2Sn
6 Ti-10V-2Fe-3AI

MaxPro design is not only space-filling overall, but its design points for continuous factors are also space-

filling when they are sliced by the types of titanium alloys, by the levels of tool path optimization type

or by the levels of number of flutes. Under the settings of this study, an MCD does not exist because

an OA of similar size which can accommodate a six-level nominal factor, a four-level nominal factor, a

three-level discrete numeric factor, and three other continuous factors does not exist. An SLHD would

also require a much larger run size in this example, since it needs to generate an LHD under each unique

level combination of the qualitative factors. For example, even if we choose only five points for the small

LHD in each slice, the SLHD would require 5× 6× 4× 3 = 360 runs in total.

Another possible solution for this example is to use the Fast Flexible Filling (FFF) design (Leviketz

and Jones 2015) from JMP, which employs a clustering-based algorithm to generate space-filling designs

with both continuous and categorical factors. The design points for the continuous factors are selected

from each cluster using the original MaxPro criterion and thus this would make a fair comparison with

the proposed design. By treating the discrete numeric factor as nominal, we used JMP 13 to generate a

48-run FFF design with three continuous factors and three categorical factors containing three, six and

four levels. As shown in Figure 7, the space-filling property of the FFF design is clearly not as good as

that of the proposed MaxPro design in Figure 6. By using the more space-filling MaxPro design instead

of the FFF design, we can expect much higher accuracy of the resulting surrogate model in predicting the

tangential forces in the solid end milling process.
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Figure 6: Pairwise scatter plots of the three continuous factors in the 48-run MaxPro design for the solid
end milling process simulation (after standardizing each factor into the [0,1] unit region). (a)-(c): The six
types of symbols correspond to the six different titanium alloy types in Table 1. (d)-(f): The four types
of symbols represent the four different tool path optimization types in Table 1. (g)-(i): The three types of
symbols represent the three different levels of number of flutes.
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Figure 7: Pairwise scatter plots of the three continuous factors of the 48-run Fast Flexible Filling design
from JMP 13 (after standardizing each factor into the [0,1] unit region). (a)-(c): The six types of symbols
correspond to the six different titanium alloy types in Table 1. (d)-(f): The four types of symbols represent
the four different tool path optimization types in Table 1. (g)-(i): The three types of symbols represent the
three different levels of numbers of flutes.

Conclusions

In this work, we have extended the MaxPro criterion to accommodate not only continuous factors
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but also nominal, discrete numeric, and ordinal factors. Unlike the SLHD, the proposed MaxPro design

can accommodate larger number of nominal factors with an economic run size. Compared to an MCD,

the MaxPro design has better space-filling properties and has no restrictions on the run size and number

of factors. The proposed MaxPro criterion seems to be the first optimal design criterion in computer

experiments’ literature that can incorporate all these different types of factors. In fact, if one wishes to use

an SLHD or MCD, they can be optimized using the proposed criterion. A general algorithm to construct

the proposed MaxPro design has been developed and is shown to work well using several examples. The

implementation of the algorithm will be made available through the R package MaxPro (Ba and Joseph

2015).

Appendix: Equivalence of (4) and (9)

Here we show the equivalence of (4) and (9) for the case of a single nominal factor with t levels and p

continuous factors. Consider the criterion in (9) without the power:

ψ(D) =
1(
n
2

) n∑
i=1

∑
j 6=i

1∏p
l=1 (xil − xjl)2{I(zi 6= zj) + 1/t}

.

Let, for k 6= r, k, r = 1, ..., t and m = n/t,

ψ(Dx,k,Dx,r) =
1

m2

m∑
i=1

m∑
j=1

1∏p
l=1 (xil − xjl)2

,

where Dx,k and Dx,r are the sub-designs of Dx corresponding to the qualitative factor level k and r,

respectively. Let C is the set with 2-combinations of the set 1, . . . , t. Then,

ψ(D) =
1(
n
2

)
 m2t

1 + t

∑
(k,r)∈C

ψ(Dx,k,Dx,r) + t

(
m

2

) t∑
i=1

ψ(Dx,i)


=

t(
n
2

)
(1 + t)

m2
∑

(k,r)∈C

ψ(Dx,k,Dx,r) +

(
m

2

) t∑
i=1

ψ(Dx,i) + t

(
m

2

) t∑
i=1

ψ(Dx,i)


=

t

(1 + t)

{
ψ(Dx) +

(n− t)
(n− 1)

1

t

t∑
i=1

ψ(Dx,i)

}
,
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which is similar to (4) up to some scaling and with the maximin criterion φ(·) replaced with the MaxPro

criterion ψ(·).

Acknowledgements

This research is supported by a U.S. Army Research Office grant W911NF-17-1-0007 and a U.S. National

Science Foundation grant DMS-1712642.

Bibliography

Ba, S. (2015). SLHD: Maximin-Distance (Sliced) Latin Hypercube Designs. R package version 2.1-1,

http://CRAN.R-project.org/package=SLHD

Ba, S., and Joseph, V. R. (2015). MaxPro: Maximum Projection Designs. R package version 3.1-2,

http://cran.r-project.org/web/packages/MaxPro

Ba, S., Brenneman, W. A., and Myers, W. R. (2015). Optimal Sliced Latin Hypercube Designs. Techno-

metrics 57(4), 479–487.

Cheng, S. W. and Ye, K. Q. (2004). Geormetric Isomorphism and Minimum Aberration for Factorial

Designs with Quantitative Fcators. The Annals of Statistics 32(5), 2168–2185.

Deng, X., Hung Y., and Lin C. D. (2015). Design for Computer Experiments with Qualitative and

Quantitative Factors. Statistica Sinica 25, 1567-1581.

Draper, N. R. and John, J. A. (1988). Response-Surface Designs for Quantitative and Qualitative Vari-

ables. Technometrics 30, 423–428.

Gul, E., Joseph, V. R., Yan, H., and Melkote, S. N. (2018). Uncertainty Quantification in Machining

Simulations Using In Situ Emulator. Journal of Quality Technology, to appear.

He, Y., Lin C. D., and Sun, F. (2017). On the Construction of Marginally Coupled Designs. Statistica

Sinica, to appear.

21



He, Y., Lin C. D., Sun, F, and Lv, B. (2017). Marginally Coupled Designs for Two-Level Qualitative

Factors. Journal of Statistical Planning and Inference 187, 103-108.

Jin, R., Chen, and Sudjianto, A. (2005). An Efficient Algorithm for Constructing Optimal Design of

Computer Experiments. Journal of Statistical Planning and Inference 134, 268–287.

Johnson, M., Moore, L., and Ylvisaker, D. (1990). Minimax and Maximin Distance Designs. Journal of

Statistical Planning and Inference 26, 131–148.

Joseph, V. R., and Delaney, J. D. (2008). Functionally Induced Priors for the Analysis of Experiments.

Technometrics 49, 1–11.

Joseph, V. R., Ai, M., and Wu, C. F. J. (2009). Bayesian-Inspired Minimum Aberration Two- and

Four-Level Designs. Biometrika 96, 95–106.

Joseph, V. R., Gul, E., and Ba, S. (2015). Maximum Projection Designs for Computer Experiments.

Biometrika 102, 371–380.

Joseph, V. R. (2016). Space-Filling Designs for Computer Experiments: A Review. Quality Engineering

28, 28–44.

Lekivetz, R., and Jones, B. (2015). Fast Flexible Space-Filling Designs for Non-rectangular Regions.

Quality and Reliability Engineering International 31(5), 829–837.

Lundy, M., and Mees, A. (1986). Convergence of an Annealing Algorithm. Mathematical Programming

34, 111–124.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A Comparison of Three Methods for Selecting

Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 21, 239–245.

Morris, M. D. and Mitchell, T. J. (1995). Exploratory Designs for Computer Experiments. Journal of

Statistical Planning and Inference 43, 381–402.

Qian, P. Z. G., Wu, H., and Wu, C. F. J. (2008). Gaussian Process Models for Computer Experiments with

Qualitative and Quantitative Factors. Technometrics 50, 383–396.

22



Qian, P. Z. G. (2012). Sliced Lating Hypercube Designs. Journal of the American Statistical Association

107(497), 393–399.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and Analysis of Computer

Experiments.Statistical Science 4, 409–423.

Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The Design and Analysis of Computer Experiments,

New York: Springer.

Shewry, M. C., and Wynn, H. P. (1987). Maximum Entropy Sampling. Journal of Applied Statistics 14,

165–170.

Tang, B. (1993). Orthogonal Array-Based Latin Hypercubes. Journal of American Statistical Association

88, 1392–1397.

Wu, C. F. J. and Ding, Y. (1998), Construction of Response Surface Designs for Qualitative and Quanti-

tative Factors. Journal of Statistical Planning and Inference, 71, 331–348.

Wu, C. F. J., and Hamada, M. (2009), Experiments: Planning, Analysis, and Parameter Design Opti-

mization, 2nd Edition, New York: Wiley.

Xu, H. (2002), An Algorithm for Constructing Orthogonal and Nearly-Orthogonal Arrays With Mixed

Levels and Small Runs. Technometrics 44, 356–368.

23


