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Abstract

We discuss the problem of approximating a deterministic function using Gaussian

Processes (GP). The role of response transformation in GP modeling is not well

understood. We argue that transformations can be used for making the deterministic

function approximately additive, which can then be easily estimated using an additive

GP. We call such a GP a Transformed Additive Gaussian (TAG) process. To capture

possible interactions which are unaccounted for in an additive model, we propose

an extension of TAG process called Transformed Approximately Additive Gaussian

(TAAG) process. We develop efficient techniques for fitting a TAAG process. In fact,

we show that it can be fitted to high-dimensional and big data much more efficiently

than the usual GP. Furthermore, we show that the use of TAAG process leads to

better estimation, interpretation, visualization, and prediction.

Keywords: Additive models; Computer experiments; Correlation function; High-dimensional

data; Kriging.
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1 INTRODUCTION

Transformation of response is a common technique used in regression analysis, but not

so much in the modeling of deterministic functions. There are many reasons for this. In

regression analysis, transformations are used as a way to fix the violations in the statistical

modeling assumptions such as constant variance or normality of the errors. Since there are

no errors in a deterministic function, there does not seem to be any need for transformations!

From a function approximation point of view, there also does not seem to be any advantage

in transforming the response and therefore, transformations are rarely studied in numerical

analysis literature. To see this, suppose we are trying to approximate a function y =

f(x), x ∈ [0, 1]p, using the data y = (y1, . . . , yn)′ observed over an experimental design

D = {x1, . . . ,xn}. We can obtain the function approximation f̂(x|D,y) directly using

this data or g−1{ĝ ◦ f(x|D, g(y))} using the transformed data, where g(·) denotes the

transformation function, g(y) = (g(y1), . . . , g(yn))′, and g ◦ f(·) = g{f(·)}. Although

these two approximations can be quite different, they are asymptotically equivalent as long

as the technique used for function approximation converges (see, for example, Fasshauer

(2007) for the conditions on convergence). Since the quality of a function approximation is

assessed using its asymptotic convergence properties, the transformation does not seem to

play any role in the mathematical analysis and therefore, it is ignored. Yet practitioners

have often found it useful to transform the response, but its usage seems to be sporadic

with no proper guidelines. For example, a logarithmic transformation is used for making

the predictions nonnegative, but many times at the cost of accuracy.

Gaussian process (GP) models, also known as kriging, are widely adopted for modeling

deterministic functions (Sacks et al. (1989), Santner et al. (2013)). Because of its prob-

abilistic formulation, a case can be made for transforming the output. This approach is

known by the name Trans-Gaussian kriging in spatial statistics (Cressie (1992), De Oliveira

et al. (1997)) and warped Gaussian process in machine learning (Snelson et al. (2004),

Lázaro-Gredilla (2012)). However, GP is used in modeling mainly due to its mathematical

convenience and does not posses a strong justification as in the case of regression analysis.

Thus, transforming the response to make its distribution looks more like Gaussian does
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look questionable. Stationarity is another common assumption for GP modeling. However,

since we observe only a single realization of the stochastic process, assessing the validity of

this assumption and achieving constancy of variance is not straightforward.

We propose transformation in GP modeling to improve additivity, that is, to find a

transformation so that the deterministic function becomes approximately additive in the

variables. An additive function is easier to approximate and therefore the approximation

obtained using such a transformation is expected to perform better. To illustrate the

idea, consider the functions f(x) = 1/(x2
1 + x2

2) and f(x) = exp(x1 + x2 + .01x1x2). By

setting g(y) = 1/y, the first function becomes perfectly additive in the two variables,

whereas g(y) = log y makes the second function approximately additive, both can be well-

approximated using fewer data points than what would be needed in the original scale.

Additive models is not a new concept and has a long history in statistics (see, for

example, Hastie and Tibshirani (1990)). An obvious disadvantage of additive models is

that they cannot entertain higher-order interactions among the variables. Friedman and

Stuetzle (1981) extended the additive modeling framework to include linear combinations

of the variables, which has the ability to capture interactions. Different from previous

works, we employ a GP model as the nonparametric smoother in the additive modeling

framework. In this sense our approach is closer to the additive GP models introduced by

Duvenaud et al. (2011), but there are major differences. Their objective was to decompose

the function into a sum of low-dimensional functions that include interactions, whereas

our objective is to identify a transformation so that the function can be represented by

a first-order low-dimensional function. The idea of transformation is also not new in ad-

ditive models. Tibshirani (1988) proposed additivity and variance stabilization (AVAS)

algorithm in conjunction with additive models, but variance stabilization is not relevant

to our problem because there is no error in deterministic computer experiments. Our ap-

proach is similar in spirit to the Alternating Conditional Expectation (ACE) method of

Breiman and Friedman (1985), but differs in terms of the smoothing method used for the

variables. Moreover, as we demonstrate in this paper, the use of GP models facilitate better

uncertainty quantification of deterministic functions.
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The article is organized as follows. In Section 2, we develop the main methodology for

identifying transformations to make the function as additive as possible. Efficient estima-

tion techniques for the unknown parameters in the model are developed in this section. In

general, the additive model can only provide an approximation, whereas interpolation is

desired in deterministic computer experiments. In Section 3, we introduce approximately

additive GP models which can achieve interpolation. Some examples are provided in Sec-

tion 4 to illustrate the advantages of the proposed methodology. We conclude with some

remarks in Section 5.

2 TRANSFORMED ADDITIVE GAUSSIAN PRO-

CESS

Our aim is to find a transformation for the response g(y) so that the inverse transformed

additive model

y = g−1{µ+ z1(x1) + . . .+ zp(xp)} (1)

is a good approximation to y = f(x), where x = (x1, . . . , xp)
′. We assume each function

zk(·) to follow a stationary GP:

zk(xk) ∼ GP (0, τ 2
kRk(·)),

for k = 1, . . . , p, where τ 2
k is the variance and Rk(h) = Cor{fk(x), fk(x+h)} is the station-

ary correlation function. Let τ 2 =
∑p

k=1 τ
2
k and ωk = τ 2

k/τ
2. Then,

g(y) ∼ GP (µ, τ 2R(·)), (2)

where

R(h) =

p∑
k=1

ωkRk(hk) (3)

with
∑p

k=1 ωk = 1. We call this model as Transformed Additive Gaussian (TAG) process.

The weights ωi’s can be interpreted as the first-order Sobol indices of g{f(x)}, provided it

is an additive function (Sobol’, 1990).
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Let z(x) = g{f(x)}. Given the data (x1, y1), · · · , (xn, yn), we can obtain the posterior

mean of g(y) as

ẑ(x) = µ+ r(x)′(R+ δI)−1(g(y)− µ1), (4)

where r(x) is the vector of correlations (R(x− x1), . . . , R(x− xn))′, R is the correlation

matrix with the ijth element R(xi−xj), 1 is a vector of 1’s, and g(y) = (g(y1), . . . , g(yn))′.

We have intentionally added a nugget term δ > 0 because R is guaranteed to be only semi-

positive definite even if we use positive definite correlation functions Rk(·). This is expected

because the function we are trying to approximate need not be additive and thus, we cannot

interpolate the observed data using the additive correlation function in (3).

Let

ĉ = (R+ δI)−1(g(y)− µ1). (5)

Then, (4) can also be written as the sum of n basis functions:

ẑ(x) = µ+
n∑
i=1

ĉiR(x− xi). (6)

This basis function approximation view point of (4) is crucial for the estimation technique

that we devise below. It is easy to see that (5) is the solution to the optimization problem

arg min
c
{g(y)− µ1−Rc}′{g(y)− µ1−Rc}+ δc′Rc.

Thus, (6) can be viewed as the posterior mean of fitting the normal linear model

g(y) = µ+
n∑
i=1

ciR(x− xi) + ε, ε ∼ N(0, σ2) (7)

using the prior c ∼ N(0, τ 2R−1), where δ = σ2/τ 2.

Now substituting (3) into (7), we obtain

g(y) = µ+
n∑
i=1

ci

p∑
k=1

ωkRk(xk − xik) + ε

= µ+

p∑
k=1

ωkz̃k(xk) + ε, (8)

where

z̃k(xk) =
n∑
i=1

ciRk(xk − xik).
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Note that z̃k(xk) is just a scaled version of zk(xk) in (1). Thus, given c, we can estimate

ω = (ω1, . . . , ωn)′ by fitting the normal linear model in (8) under the constraints ω′1 = 1

and ω ≥ 0. This can be done by solving the quadratic program:

min
ω∈Ω

{g(y)− µ1− Z̃ω}′{g(y)− µ1− Z̃ω} (9)

where Z̃ is an n × p matrix with kth column as Rkc, where Rk is the correlation matrix

corresponding to the kth variable and Ω = {ω : ω′1 = 1, ω ≥ 0}. This quadratic

program can be solved very efficiently and is the beauty of our procedure. The foregoing

developments suggest an iterative estimation of ω and c, that is, given ω, estimate c using

(5) and given c, estimate ω using (9). The proof of the convergence of such algorithm is

given in Appendix A.

There are many unknown parameters to estimate such as µ, τ 2, and δ. Moreover, the

correlation function can have unknown parameters. A commonly used correlation function

in computer experiments is the Gaussian correlation function given by

Rk(h) = exp(−h2/s2
k),

where sk is an unknown length-scale parameter. Thus, we also need to estimate s =

(s1, . . . , sp)
′. Furthermore, we also need to estimate the transformation function g(·). Here

we use a parametric approach. A commonly used parametric transformation for nonnega-

tive data (y > 0) is the Box-Cox transformation (Box and Cox (1964)) given by

gλ(y) =


yλ−1
λ
, if λ 6= 0

log y, if λ = 0
. (10)

This transformation contains an unknown parameter λ. A two-parameter Box-Cox model

can be used if the data is not restricted to be nonnegative. In this paper we will focus on

the foregoing one-parameter transformation, but the methods that we propose below are

general and can be applied to more general cases. We now discuss the estimation of all

these unknown parameters: µ, τ 2, σ2, s, and λ.

Since our aim is to find a transformation to make the function as additive as possible,

it makes sense to estimate λ from (8). The likelihood is proportional to

1

σn
exp{−(gλ(y)− µ1− Z̃ω̂(λ))′(gλ(y)− µ1− Z̃ω̂(λ))/(2σ2)}

n∏
i=1

yλ−1
i , (11)
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where the last term is due to the Jacobian of transformations. We have used ω̂(λ) to

explicitly show its dependence on λ. Maximizing (11) with respect to σ2 gives

σ̂2(λ) =
1

n
{gλ(y)− µ1− Z̃ω̂(λ)}′{gλ(y)− µ1− Z̃ω̂(λ)}. (12)

Substituting this in (11) gives the profile likelihood for λ. By maximizing the profile

likelihood, we obtain

λ̂ = arg min
λ

PL(λ) ≡ n log σ̂(λ)− (λ− 1)
n∑
i=1

log yi. (13)

Since gλ(y)|c ∼ N(µ1 +Rc, σ2I) and c ∼ N(0, τ 2R−1), we can easily integrate out c

to obtain

g(y) ∼ N(µ1, τ 2R+ σ2I).

This gives empirical Bayes estimates of µ, τ 2, δ = σ2/τ 2, and s as

µ̂ =
1′(R+ δI)−1gλ(y)

1′(R+ δI)−11
, (14)

τ̂ 2 =
1

n
(gλ(y)− µ̂1)′(R+ δI)−1(gλ(y)− µ̂1),

(δ̂, ŝ) = arg min
δ,s

EB(δ, s) ≡ log |R+ δI|+ n log τ̂ 2. (15)

Although motivated differently, all these estimates agree with the estimates that one would

obtain by fitting the GP model in (2).

The whole estimation procedure is shown as Algorithm 1. The procedure may look more

complicated than the usual estimation in GP. But note that we are fitting a correlation

function involving 2p correlation parameters (ω and s), which is twice as that in the

usual GP modeling with say, using a product Gaussian correlation function. The extra

parameters (ω) in our correlation function makes our modeling more flexible as we discuss

later. The most attractive feature of the procedure is that these extra parameters can be

obtained without much additional computational cost, thanks to the quadratic program.

Because of the possibility of multiple local optima, it is important to choose a good

initialization of the parameters in the algorithm. There are efficient implementations avail-

able for fitting an additive model using the backfitting algorithm (Breiman and Friedman,

1985). So we start by fitting an additive model using the mgcv package (Wood (2017)) in
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R and then estimate all the parameters using the fitted additive model. The details are

described in the Appendix B.

Algorithm 1 Estimation of Transformed Additive Gaussian (TAG) process

1: procedure TAG(y,D, ε > 0) .

2: Obtain initial estimates λ(0),ω(0), s(0), δ(0) using Algorithm 3.

3: Set t = 0 and Λ = {λ(0) − 0.5, λ(0), λ(0) + 0.5}.

4: while max |ω(t+1) − ω(t)| > ε do

5: t← t+ 1

6: For each λ ∈ Λ, obtain µ̂ from (14), ĉ from (5), and ω̂(λ) from (9).

7: λ(t) ← arg minλ∈Λ PL(λ), where PL(λ) is from (13) and σ̂(λ) is from (12).

8: ω(t) ← ω̂(λ(t))

9: Update (δ(t), s(t)) using (15).

10: end while

11: return (ω̂, ŝ, δ̂, λ̂) = (ω(t), s(t), δ(t), λ(t)).

12: end procedure

3 TRANSFORMED APPROXIMATELY ADDITIVE

GAUSSIAN PROCESS

Even with the best possible transformation, we may not be able to make the function

additive and thus the approximation that we obtain using TAG can be unsatisfactory. In

this section, we propose a simple extension of TAG to improve the approximation.

The main limitation of the additive correlation function in (3) is that it is not positive

definite and thus cannot be used for interpolating arbitrary functions. But we can make it

positive definite by adding a positive definite correlation function L(h) to R(h). Thus the

GP model becomes

g(y) ∼ GP (µ, τ 2{(1− η)R(·) + ηL(·)}), (16)

where η ∈ [0, 1] and R(·) is as in (3). The resulting predictor is only approximately additive.
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Therefore we call this model as Transformed Approximately Additive Gaussian (TAAG)

Process. Plate (1999) proposed a closely related GP model, but the motivation behind

TAAG process and its estimation techniques are completely different. TAAG process is

also related to some of the other ideas proposed in the literature such as that of using a

convex combination of GPs (Harari and Steinberg (2014)) and composite GPs (Ba and

Joseph (2012)).

Since the additive part is expected to capture most of the functional characteristics of

the output, we may choose L(h) based on the Rk(·), k = 1, . . . , p. So we let

L(h) =

p∏
k=1

Rk (hk) .

A common choice for Rk(·) is the Gaussian correlation function. Then L(h) becomes

L(h) = exp

(
−

p∑
k=1

h2
k

θ2
k

)
with length-scale parameters θ = (θ1, · · · , θp), where θk is for the k-th kernel.

The unknown parameters in the new GP model (µ, τ 2, λ,ω, s,θ, η, φ) can be estimated

using maximum likelihood or cross validation methods. But since λ, ω, and s should be

chosen so that the function becomes as additive as possible, it makes sense to fix those

parameters at the estimates that we obtained earlier using the additive GP. The length

scale parameter θ of L(·) can also be estimated conviniently from a standard GP. Therefore,

we only estimate the new parameter η along with µ and τ 2. Their estimates can be obtained

as Santner et al. (2013) with a prior on η following a beta distribution with parameters

δ̂ + 1 and 2.

η̂ = arg min
η

M(η) ≡ log |(1− η)R+ ηL|+ n log τ̂ 2 + 2 log(ηδ̂(1− η)), (17)

where

µ̂ =
1′{(1− η)R+ ηL}−1g(y)

1′{(1− η)R+ ηL}−11
,

τ̂ 2 =
1

n
(g(y)− µ̂1)′{(1− η)R+ ηL}−1(g(y)− µ̂1),

and L is the n×n matrix with ijth element L(xi−xj). The estimation procedure is shown

in Algorithm 2.
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Algorithm 2 Estimation of Transformed Approximated Additive Gaussian (TAAG) Pro-

cess
1: procedure TAAG(y,D) .

2: Obtain δ̂, λ̂, ω̂, and ŝ using Algorithm 1 and θ̂ from a standard GP model.

3: η̂ ← arg minη M(η), using an initial value η(0) = δ̂/(1 + δ̂), where M(η) is from (17).

4: return η̂

5: end procedure

The prediction and uncertainty quantification can be done as follows. The posterior

distribution of z(x) for given µ and τ 2 is given by

z(x)|y, µ, τ 2 ∼ N(ẑ(x), V (x)), (18)

where

ẑ(x) = µ+ {(1− η)r(x) + ηl(x)}′{(1− η)R+ ηL}−1(g(y)− µ1)

V (x) = τ 2
[
1− {(1− η)r(x) + ηl(x)}′{(1− η)R+ ηL}−1{(1− η)r(x) + ηl(x)}

]
.

We can either plug-in the estimates of µ and τ 2 or integrate them out (Santner et al.

(2013)), but for simplicity we will use the plug-in approach. From (18), we can obtain the

probability density function of f(x)|y, µ, τ 2 as

|ġ(f(x))| 1√
2πV (x)

exp{−(z(x)− ẑ(x))2/(2V (x))},

where ġ(·) is the derivative of g(·). In general, this can be a nonstandard distribution and

computing its mean and variance may require numerical integration. Cressie (1992) derives

an approximate expression for the mean using Taylor series expansion. But as Snelson et al.

(2004) pointed out, it is much easier to use the median, which is given by

f̂(x) = g−1 {ẑ(x)} .

Similarly, we can obtain a 95% credible interval for the prediction as[
g−1

{
ẑ(x)− 2

√
V (x)

}
, g−1

{
ẑ(x) + 2

√
V (x)

}]
.

Note that when using a Box-Cox transformation (10), we need constraints y > 0 and

gλ(y) > −1/λ to make sure that g(·) is one-to-one. Therefore we force the lower bound to

be 0 if ẑ(x)− 2
√
V (x) ≤ −1/λ.
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4 SOME ADVANTAGES OF TAAG

In this section we discuss the many advantages of TAAG using numerical examples.

4.1 New Correlation Function

Although our aim was not to develop a new correlation function, the one that came out

of our modeling

(1− η)

p∑
k=1

ωkRk(hk; sk) + η

p∏
k=1

Rk(hk; θk)

is of independent interest. It has certain properties not possessed by any of the exist-

ing correlation functions in the literature. To illustrate its advantages, consider a simple

function

y = exp {2 sin(0.5πx1) + 0.5 cos(2.5πx2)} (19)

where x ∈ [0, 1]2. The marginal plots of the function are shown in Figure 1.
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Fix x1 = 0

x2

y

Figure 1: Marginal plots of the function in (19).

Suppose we generate data using a randomized Sobol’ sequence (Christophe and Petr

(2018)) of n = 20 points. First we fit a GP using the commonly used Gaussian product

correlation function R(h) = exp(−
∑2

k=1 h
2
k/s

2
k). We used a standard R package mlegp
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(Dancik and Dorman (2008)) for obtaining the maximum likelihood estimates of the pa-

rameters. The left panel of Figure 2 shows boxplots of s1 and s2 from 100 repetitions

of the randomized Sobol’ sequence. The length scale parameters have long been used for

identifying important variables (Neal (2012), Williams and Rasmussen (1996), Linkletter

et al. (2006)). Smaller si implies the variable xi is more important to the output. As si

increases, the importance of the variable decreases and in the limit si → ∞, the variable

gets eliminated from the model. Thus, Figure 2 suggests that x2 is more important than

x1. This is a complete contradiction to the reality as the marginal plot in Figure 1 shows

x1 is at least four times more important than x2! The function is less wiggly in x1 than in

x2 and therefore, s1 is estimated to be larger than s2. But, clearly, this does not capture

the importance of these two variables.

• •

•
•

•

Figure 2: Parameter estimates for GP and TAG for the function in (19).

Now consider the new correlation function in (16). The middle panel shows the boxplots

of s1 and s2 from the same 100 randomized Sobol’ sequences estimated using Algorithm

1. The right panel shows the boxplots of ω1 and ω2. In the new correlation function si’s
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can be used to understand how wiggly the function is and ωi’s can be used to understand

the importance of the variables. Since s1 is larger than s2, the function is expected to be

less wiggly in x1 than x2, which agrees with Figure 1. Moreover, since ω1 is more than ω2,

TAG process correctly identifies x1 to be more important than x2.

There are other correlation functions proposed in the literature with more parameters

such as the power exponential and Matérn correlation functions. But the extra parameters

in them only controls the smoothness or roughness of the function. The function consid-

ered in this example is very smooth and infinitely differentiable in both the variables and

therefore, those correlation functions cannot rectify the confounding issues between scale

and importance.

4.2 Prediction Performance

TAAG is expected to perform well in the example function in (19) becuase it becomes

perfectly additive under log-transformation. So consider a slightly modified version

exp {2 sin(0.5πx1) + 0.5 cos(2.5πx2)}+ 0.25 sin(πx1) cos(0.5πx2), (20)

which cannot be made additive through transformation. We will use this function to assess

the prediction performance of TAAG process.

As before, we generate data using a randomized Sobol’ sequence of n = 20 points and

fit TAG and TAAG processes. Predictions are made on 1,000 test points in [0, 1]2 and the

root mean squared prediction error (RMSPE) is computed. This is repeated 100 times

by generating a new randomized Sobol’ sequence each time. The resulting RMSPEs are

shown as boxplots on the left side of Figure 3. We also fitted the commonly used GP with

product Gaussian correlation function on the original data as well as the transformed data.

Their RMSPEs are also shown in the same figure denoted as “GP” and “Transformed GP”,

respectively. As a further check, we also fitted an additive model on the original data and

the transformed data (“AM” and “Transformed AM”) using the R package mgcv. We can

see that AM does not perform well, but surprisingly the transformed AM does well, even

better than GP. This clearly shows the benefit of transformations. On the other hand,
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TAG improves over the Transformed AM and Transformed GP. TAAG performs better

than TAG and seems to be the best among the six methods.

TAG TAAG GP Transformed GP AM Transfomred AM

0.
0
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0.
4

0.
6
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8

1.
0

methods

R
M

SP
E

Figure 3: Prediction performance of TAG, TAAG, GP, transformed GP, AM, and trans-

formed AM using the example function in (20), where the simulation is performed by

randomizing the design.

As mentioned before, uncertainty quantification is one of the main advantages of the

TAG/TAAG processes. To assess their performance, we computed the interval score (Gneit-

ing and Raftery (2007)), which is defined as (u − `) + (2/α)(` − x)I{x < `} + (2/α)(x −

u)I{x > u} with α = 95%. A smaller interval score indicates a better prediction interval.

The interval scores for the 100 simulation cases are shown as boxplots in Figure 4. Clearly,

TAAG is again the best among the six methods.

4.3 Interpretation and Visualization

Another advantage of the TAAG process is that it enables better interpretation and

visualization of the effects. The weights, ωi’s, can be used to quickly understand the impor-

tance of each variable, which represent the first-order Sobol’ indices when the transformed
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Figure 4: Interval scores (smaller-the-better) of TAG, TAAG, GP, transformed GP, AM,

and transformed AM using the example function in (20), where the simulation is performed

by randomizing the design.

response is perfectly additive (Sobol’, 1990). If f(x) is not additive, η will be greater than

0 and its value can be used to understand the overall interaction effect. Moreover, the main

effects of the variables in the transformed scale can be quickly visualized using

ẑk(xk) = ωk

n∑
i=1

ĉiRk(xk − xik),

which does not require any extra computations. On the other hand, one needs to use

the computationally intensive functional ANOVA decomposition to get the main effects if

we were to fit the usual GP. Of course, the main effects are meaningful only if there are

no higher order interactions. Because we use transformation to minimize the interaction

effects, the main effects that we obtain using TAAG process are more trustworthy.

We illustrate the foregoing advantages using the borehole function (Morris et al. (1993)):

y =
2πTu(Hu −Hl)

log( r
rw

)
[
1 + 2LTu

log( r
rw

)r2wKw
+ Tu

Tl

] ,
15



where the ranges for the eight variables are rw : (0.05, 0.15), r = (100, 50000), Tu =

(63070, 115600), Hu = (990, 1110), Tl = (63.1, 116), Hl = (700, 820), L = (1120, 1680),

and Kw = (9855, 12045). Suppose we generate n = 80 data using the MaxPro design

(Joseph et al. (2015)) and fit the TAAG process. It identified a log-transform for the

response (λ̂ = 0). The ωi’s and si’s from the fit are given in Table 1. The first-order Sobol’

indices of the log-borehole function is also given in the same table. We can see that ωi’s

are very close to the first-order Sobol’ indices. This is not a coincidence and happened here

because the transformed response is approximately additive.

Input variables rw r Tu Hu Tl Hl L Kw

ω 0.882 0.003 0.002 0.035 0.001 0.037 0.032 0.009

θ 1.502 36.233 1.672 2.878 63.946 2.902 1.795 3.454

First-order Sobol’ indices 0.889 0.000 0.000 0.036 0.000 0.035 0.032 0.008

Table 1: The ωi’s and si’s from the TAAG process for the Borehole function and the

first-order Sobol’ indices of the log-borehole function

The centered main effects ẑk(xk)− z̄k, where z̄k is the mean value of ẑk(·) are shown in

the left panel of Figure 5. The right panel of the figure shows the main effects computed

using the borehole function without using any transformation. We can see that the TAAG

process approximates the main effects quite well. Moreover, η̂ = 0.00158 is very small

showing that the interaction effects are negligibly small in the transformed scale. We can

use the difference of Sobol’s total index and first-order index to understand the interaction

effects. This is shown in Figure 6 for the original and transformed responses. We can see

that the log-transformation has greatly helped in reducing the interaction effects. This

clearly shows that the main effects plots of log y are much more meaningful to look at than

those of y.

4.4 Big and High-Dimensional Data

Fitting GP models to big and high-dimensional data is always a challenging problem.

This is because the likelihood function requires the inversion of the correlation matrix,
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Figure 5: The main effects from TAAG with logarithmic transformation of the response

and the true main effects for the original (untransformed) response in the borehole function.

whose computational complexity is O(n3). Moreover, thousands of evaluations of the like-

lihood function is needed to optimize it, especially in high dimensions. To understand the

computational complexity with respect to the number of dimensions, first note that O(n2p)

computations are needed to construct the correlation matrix. Consider a gradient-based

optimization with a fixed number of iterations. Once the correlation matrix is inverted, the

gradient of the likelihood can be calculated in O(n2p) (Williams and Rasmussen (2006),

pp.114). So the total computational cost is still O(n3 + n2p). However, because the likeli-

hood is likely to be multimodal, the number of initial points for optimization should be at

least O(p) to have a fair chance of finding the global optimum (MacDonald et al. (2015)).

Thus the computational complexity of optimizing the likelihood is at least O(n3p+ n2p2).

Since n should be increased at least proportional to p to get a meaningful approximation,

the computational complexity with respect to p is at least O(p4), which can be quite heavy

for large p. Much of the recent research in GP modeling has focused on the big n problem,

for example, using iterative kriging (Haaland and Qian (2011)) and local GPs (Gramacy

and Apley (2015)). But we are not aware of any attempts to extend GP fitting to large
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Figure 6: The difference of Sobol’s total index and first-order index for the original and

log-transformed responses. Large difference shows large interaction effects.

p problems. The additive GP model framework introduced here offers a pathway to fit

high-dimensional GP models efficiently.

The key idea is that the additive structure of the model will allow us to fit p one-

dimensional GPs instead of the one p-dimensional GP. One-dimensional GPs are easy to

fit even with big n. A careful examination of the algorithms described in Sections 2 and

3 reveal that the main time consuming step is the (p + 1)-dimensional optimization in

(15). But as we noted earlier, we have good initial estimates of s obtained by fitting p

one-dimensional GPs to the additive functions estimated by the back fitting algorithm.

So we let s = κs(0), where κ ∈ (0,∞) is a unknown parameter and s(0) is obtained from

Algorithm 3. Thus, the (p + 1)-dimensional optimization reduces to a two-dimensional

optimization, which is manageable. This considerably simplifies Algorithm 1, which now

has only a few one or two dimensional optimizations and a quadratic program, all of which

can be done quickly. Similarly, in Algorithm 2, instead of obtaining θ̂ from a standard GP,

we can use θ = φs(0), where φ ∈ (0,∞), and then finding the optimizer of (η, φ) through

optimizing (17). Of course, avoiding the optimization over the full s and θ can deteriorate

the performance, but we found that little is lost by doing this.
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To illustrate the idea, consider the function

y =

p∏
i=1

|4xi − 2|+ ai
1 + ai

,

where ai = i/2, i = 1, 2, · · · , p, with p = 10, 20, 30, · · · , 100 and n = 10p. The designs

are generated using Sobol’ sequence. Besides the simplifications mentioned in the previous

paragraph, we use R function bam in package mgcv in Algorithm 3, which is similar to gam

except that the numerical methods are designed for large datasets. The left panel of Figure

7 shows the RMSPEs of GP and TAAG process and the right panel shows the estimation

time using a 2.6 GHz laptop. For fitting GP, we use the standard R packages mlegp (Dancik

and Dorman (2008)) , GPfit (MacDonald et al. (2015)), and DiceKriging (Roustant et al.

(2012)). To make the comparisons fair, we set the number of initial points for optimization

in DiceKriging to be 2p which is the default in GPfit. The time taken by GPfit for p = 30 is

very high (56 hours), so we did not run it for p > 30. We can see that the RMSPEs of TAAG

process are smaller than those from GP for all p = 10, 20, . . . , 100 and the computational

time saving increases with p. For example, it takes about 2.7 hours to fit a 100-dimensional

GP with 1000 design points using mlegp, which takes only 30 minutes using the TAAG

process. Note that unlike mlegp and DiceKriging, our current implementation of TAAG

process is in R. So the actual computational saving in comparable implementations can

be even more substantial. We also run the local approximate Gaussian process regression

(Gramacy and Apley, 2015) through R package laGP (Gramacy, 2016) in this example:

the average of RMSPE is 0.934, which is greater than our results, with standard deviation

0.063, and the running time is from 0.02 to 8.65. Although the running time of laGP is

smaller than that of TAAG in this example, we may use their method or other GP based

method for large scale, such as Haaland and Qian (2011), to improve TAAG for fitting

larger scale data efficiently. Such works would be an interesting future research.

5 More Examples

In this section, we compare TAAG with GP over a broad class of examples of computer

simulations. These examples include 5 exemplar functions from Surjanovic and Bingham
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Figure 7: Computational time and root mean squared prediction errors of TAAG process

and GP.

(2019): franke function, OTL circuit function, piston simulation function, robot arm func-

tion, and wing weight function. The detailed information of all these examples is summa-

rized in the supplemental material. For comparison, each experiment of these functions

consists of 10p runs of simulations from maximum projection designs (Joseph et al., 2015)

for fitting TAAG and GP, and 1000 testing points generated from Sobol sequences with

scrambling. Then, over these 1000 test points, the mean square prediction errors (MSPEs)

from TAAG and GP are recorded.

The resulting MSPEs are summarized in the first 5 rows of Table 2, with the estimators

of λ and η in TAAG. For all the cases, the outcomes of MSPEs from TAAG are better than

that from GP. In addition, the small η̂ values imply, with the estimated transformations

(λ̂), the interaction effects of the 5 transformed functions are small.

We also compare TAAG and GP on two datasets about a heat exchanger (HE) model

presented in Qian et al. They also provide a 14-run testing dataset. The results are sum-

marized in the last two rows of Table 2. We observe that the prediction performance of

TAAG are better than that of GP, and the η̂ from TAAG are small. Overall, this simu-
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lation study confirms that, with an appropriate transformation, the deterministic function

becomes well-approximately additive in its input variables.

RMSPE Estimators from TAAG

Examples dimension GP TAAG λ̂ η̂

Franke 2 0.035 0.031 -0.5 .238

OTL Circuit 6 0.046 0.026 0.5 .029

Piston Simulation 7 0.012 0.00005 0 .000

Robot Arm 8 0.035 0.030 1 .010

Wing Weight 10 2.892 0.217 0 .0001

Approximated HE model 4 4.436 2.028 0.5 .004

Detailed HE model 4 2.217 1.851 1 .001

Table 2: Summary of the results of the simulation examples described in Section 5. The

values reported are the dimension of input of each example functions, the MSPEs of GP

and TAAG, the estimators of transformed parameters, which is λ̂, of TAAG, and η̂ of

TAAG.

6 CONCLUSIONS

In this article we have shown that using transformation on the response can be highly

beneficial in GP modeling. It can make the deterministic function approximately additive,

which can be efficiently approximated using simpler models such as additive models. By

exploiting the underlying additive structure, we have developed efficient estimation tech-

niques for fitting the transformed additive GP model. In fact, it can be fitted using a few

one or two dimensional optimizations and a quadratic program with initializations provided

by the well-known back fitting algorithm. The estimation is so efficient that it can be ap-

plied to high-dimensional and big data problems which otherwise would not have been

possible with the usual GP models. The development has also led to a new correlation

function with much more interpretable parameters than the commonly used correlation
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functions such as Gaussian or Matérn. The fitted models can be immediately visualized

using main effects plots, which is another advantage of the proposed method. Moreover,

the main effects plots are more meaningful in TAG/TAAG processes compared to the usual

GP because of the minimization of the interaction effects.

Although we have focused on deterministic functions, the method can be extended to

noisy data. Gaussian noise can be addressed by adding a nugget term in the TAAG pro-

cess, but more work is needed for non-Gaussian data, which we leave as a topic for future

research. Another important direction for future research is regarding the transformation.

Here we have used the one-parameter Box-Cox transformation, which worked well in the

examples we have tried so far. But we anticipate that, in more complex problems, a non-

parametric transformation can perform better. The nonparametric transformation needs

to be monotonic and easily invertible, which makes this extension nontrivial.

ACKNOWLEDGMENTS

This research is supported by a U.S. National Science Foundation grant DMS-1712642 and

a U.S. Army Research Office grant W911NF-17-1-0007.

APPENDIX A: PROOF OF CONVERGENCE OF

ALGORITHM 1

In this Appendix, we want to show that the algorithm for fitting TAG presented in

section 2 converges to a stationary point. Recall that the algorithm is to iteratively update

c by optimizing (7) with ω fixed at its current estimator, and update ω by optimizing (7)

with c fixed at its current estimator. Such algorithm is based on an alternating optimization

(AO) process. The convergence of AO was shown in Section 4 of Grippo and Sciandrone

(2000). They showed that the sequence generated by an AO converges to a stationary

point if the sequence has limit points. Thus, to show the convergence of the algorithm for

fitting TAG, we need to show the sequence {(ω(k), c(k))} generated by the TAG algorithm

has limit points.
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To show {(ω(k), c(k))} has limit points, our strategy is to verify that the domains of ω

denoted by W and c denoted by C are bounded. If this is true, we know the level set,

defined by {(ω, c) ∈ W × C : f(c,ω) ≤ f(ω0, c0)}, for all (ω0, c0) ∈ W × C is compact.

Since compactness of a set implies every subset of this set has limit points, we show that

{(ω(k), c(k))} has limit points. Thus, we only need to show W and C are bounded.

The domain of ω is bounded sinceW contains all ω = (ω1, · · · , ωp) satisfying
∑p

i=1 ωi =

1 and ωi ≥ 0 for i = 1, · · · , p. To show C is bounded, recall that, given data {(x1, y1)}ni=1,

each c ∈ C can be expressed as (R + δI)−1(y − µ1). This means

||c|| = ||(R + δI)−1(y − µ1)||

= ||(
p∑
i=1

ωiRi + δI)−1(y − µ1)|| (by definition of R)

≤ ||(
p∑
i=1

ωiRi + δI)−1||||(y − µ1)|| (the sub-multiplicative property of a norm)

≤ (

p∑
i=1

||(ωiRi)
−1||+ 1/δ)||(y − µ1)|| (the convex property of the inverse operator)

Since each element of Ri is bounded for all i = 1, · · · , p, we can find a bound M ∈ (0,∞)

such that ||c|| ≤M . This implies C is bounded, and we complete the proof.

APPENDIX B: INITIALIZATION

The details of obtaining initial estimates of the unknown parameters in the TAG process

is shown in Algorithm 3. We use the gam function in the R package mgcv (Wood, 2017) to

fit the additive model and use mlegp (Dancik and Dorman, 2008) to fit the one-dimensional

GPs.
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Algorithm 3 Initialization

1: procedure Initial(y,D) .

2: For each λ ∈ {−2,−1.5, . . . , 2}, fit an additive model gλ(0)(y) ∼ h1(x1)+ · · ·+hp(xp)

and obtain λ(0) that minimizes PL(λ) in (13).

3: mod ← (gλ(0)(y) ∼ h1(x1) + · · ·+ hp(xp)).

4: ω
(0)
i = var {hi(xi)} /

∑p
i=1 var {hi(xi)} , where var {hi(xi)} can be obtained from

from mod.

5: δ(0) = 1/R2 − 1, where R2 is obtained from mod.

6: Use mod to predict hi(xi) at xtest = {0, 1/(m− 1), . . . , 1} with m = 101. Denote it

as ĥi(xtest).

7: for i from 1 to p do

8: Obtain s
(0)
i by fitting a GP on {xtest, ĥi(xtest)}.

9: end for

10: return ω(0), s(0), λ(0), and δ(0).

11: end procedure
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