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Abstract

We discuss the problem of approximating a deterministic function using Gaussian
Processes (GP). The role of response transformation in GP modeling is not well
understood. We argue that transformations can be used for making the deterministic
function approximately additive, which can then be easily estimated using an additive
GP. We call such a GP a Transformed Additive Gaussian (TAG) process. To capture
possible interactions which are unaccounted for in an additive model, we propose
an extension of TAG process called Transformed Approximately Additive Gaussian
(TAAG) process. We develop efficient techniques for fitting a TAAG process. In fact,
we show that it can be fitted to high-dimensional and big data much more efficiently
than the usual GP. Furthermore, we show that the use of TAAG process leads to

better estimation, interpretation, visualization, and prediction.

Keywords: Additive models; Computer experiments; Correlation function; High-dimensional

data; Kriging.



1 INTRODUCTION

Transformation of response is a common technique used in regression analysis, but not
so much in the modeling of deterministic functions. There are many reasons for this. In
regression analysis, transformations are used as a way to fix the violations in the statistical
modeling assumptions such as constant variance or normality of the errors. Since there are
no errors in a deterministic function, there does not seem to be any need for transformations!
From a function approximation point of view, there also does not seem to be any advantage
in transforming the response and therefore, transformations are rarely studied in numerical
analysis literature. To see this, suppose we are trying to approximate a function y =
f(x), € [0,1]7, using the data y = (y1,...,yn)" observed over an experimental design
D = {x,...,x,}. We can obtain the function approximation f (x|D,y) directly using
this data or g_l{m(w]D,g(y))} using the transformed data, where ¢(-) denotes the
transformation function, ¢(y) = (9(v1),---,9(ys)), and g o f(-) = g{f(-)}. Although
these two approximations can be quite different, they are asymptotically equivalent as long
as the technique used for function approximation converges (see, for example, Fasshauer
(2007) for the conditions on convergence). Since the quality of a function approximation is
assessed using its asymptotic convergence properties, the transformation does not seem to
play any role in the mathematical analysis and therefore, it is ignored. Yet practitioners
have often found it useful to transform the response, but its usage seems to be sporadic
with no proper guidelines. For example, a logarithmic transformation is used for making
the predictions nonnegative, but many times at the cost of accuracy.

Gaussian process (GP) models, also known as kriging, are widely adopted for modeling
deterministic functions (Sacks et al. (1989), Santner et al. (2013)). Because of its prob-
abilistic formulation, a case can be made for transforming the output. This approach is
known by the name Trans-Gaussian kriging in spatial statistics (Cressie (1992), De Oliveira
et al. (1997)) and warped Gaussian process in machine learning (Snelson et al. (2004),
Lazaro-Gredilla (2012)). However, GP is used in modeling mainly due to its mathematical
convenience and does not posses a strong justification as in the case of regression analysis.

Thus, transforming the response to make its distribution looks more like Gaussian does



look questionable. Stationarity is another common assumption for GP modeling. However,
since we observe only a single realization of the stochastic process, assessing the validity of
this assumption and achieving constancy of variance is not straightforward.

We propose transformation in GP modeling to improve additivity, that is, to find a
transformation so that the deterministic function becomes approximately additive in the
variables. An additive function is easier to approximate and therefore the approximation
obtained using such a transformation is expected to perform better. To illustrate the
idea, consider the functions f(x) = 1/(2? + z3) and f(x) = exp(z; + 22 + .0lz175). By
setting ¢g(y) = 1/y, the first function becomes perfectly additive in the two variables,
whereas ¢(y) = logy makes the second function approximately additive, both can be well-
approximated using fewer data points than what would be needed in the original scale.

Additive models is not a new concept and has a long history in statistics (see, for
example, Hastie and Tibshirani (1990)). An obvious disadvantage of additive models is
that they cannot entertain higher-order interactions among the variables. Friedman and
Stuetzle (1981) extended the additive modeling framework to include linear combinations
of the variables, which has the ability to capture interactions. Different from previous
works, we employ a GP model as the nonparametric smoother in the additive modeling
framework. In this sense our approach is closer to the additive GP models introduced by
Duvenaud et al. (2011), but there are major differences. Their objective was to decompose
the function into a sum of low-dimensional functions that include interactions, whereas
our objective is to identify a transformation so that the function can be represented by
a first-order low-dimensional function. The idea of transformation is also not new in ad-
ditive models. Tibshirani (1988) proposed additivity and variance stabilization (AVAS)
algorithm in conjunction with additive models, but variance stabilization is not relevant
to our problem because there is no error in deterministic computer experiments. Our ap-
proach is similar in spirit to the Alternating Conditional Expectation (ACE) method of
Breiman and Friedman (1985), but differs in terms of the smoothing method used for the
variables. Moreover, as we demonstrate in this paper, the use of GP models facilitate better

uncertainty quantification of deterministic functions.



The article is organized as follows. In Section 2, we develop the main methodology for
identifying transformations to make the function as additive as possible. Efficient estima-
tion techniques for the unknown parameters in the model are developed in this section. In
general, the additive model can only provide an approximation, whereas interpolation is
desired in deterministic computer experiments. In Section 3, we introduce approximately
additive GP models which can achieve interpolation. Some examples are provided in Sec-
tion 4 to illustrate the advantages of the proposed methodology. We conclude with some

remarks in Section 5.

2 TRANSFORMED ADDITIVE GAUSSIAN PRO-
CESS

Our aim is to find a transformation for the response g(y) so that the inverse transformed

additive model
y=g H{u+zle)+.. + 2} (1)

is a good approximation to y = f(x), where = (21,...,2,)’. We assume each function

2 (+) to follow a stationary GP:
2r(2k) ~ GP(0, 7 Ry (")),

for k =1,...,p, where 77 is the variance and Ry (h) = Cor{ fx(x), fx(x + h)} is the station-

ary correlation function. Let 72 = Y 7_, 77 and wy = 72/72. Then,
9(y) ~ GP(u, 7°R(")), (2)

where

R(h) =) wiRy(hy) (3)
k=1

with Y 7_ wp = 1. We call this model as Transformed Additive Gaussian (TAG) process.
The weights w;’s can be interpreted as the first-order Sobol indices of g{f(x)}, provided it
is an additive function (Sobol’, 1990).



Let z(x) = g{f(x)}. Given the data (x1,v1), -, (€n,yn), We can obtain the posterior
mean of g(y) as
2x) = p+r@)(R+0I)"(g(y) — pl), (4)
where r(x) is the vector of correlations (R(x — «),..., R(x — x,))’, R is the correlation
matrix with the ijth element R(x; —x;), 1 is a vector of 1’s, and g(y) = (g(v1), ..., 9(yn))"
We have intentionally added a nugget term § > 0 because R is guaranteed to be only semi-
positive definite even if we use positive definite correlation functions Ry (-). This is expected
because the function we are trying to approximate need not be additive and thus, we cannot
interpolate the observed data using the additive correlation function in (3).

Let
¢=(R+0I)"'(g(y) — pl). (5)

Then, (4) can also be written as the sum of n basis functions:
2x)=p+ Y GR(x— @) (6)
i=1

This basis function approximation view point of (4) is crucial for the estimation technique

that we devise below. It is easy to see that (5) is the solution to the optimization problem
arg min{g(y) — u1 — Re}' {g(y) — u1 — Re} + éc' Re.
c

Thus, (6) can be viewed as the posterior mean of fitting the normal linear model

g(y) = p+ Y cR(@—x;) +¢ €~ N(0,0°) (7)

i=1
using the prior ¢ ~ N(0,72R™"), where § = 02/72.
Now substituting (3) into (7), we obtain

p

g(y) = p+Y Y wR(ok —zi) +e

i=1 k=1

= p+ > wpk(zy) +e (8)

k=1

where

i=1
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Note that Zj(zx) is just a scaled version of zx(xy) in (1). Thus, given ¢, we can estimate
w = (wi,...,w,)" by fitting the normal linear model in (8) under the constraints w'l = 1

and w > 0. This can be done by solving the quadratic program:

min {g(y) — 1 - ZwY{g(y) — pl — Zw} (9)

we

where Z is an n x p matrix with kth column as Ric, where R, is the correlation matrix
corresponding to the kth variable and @ = {w : W'l = 1, w > 0}. This quadratic
program can be solved very efficiently and is the beauty of our procedure. The foregoing
developments suggest an iterative estimation of w and ¢, that is, given w, estimate ¢ using
(5) and given ¢, estimate w using (9). The proof of the convergence of such algorithm is
given in Appendix A.

There are many unknown parameters to estimate such as p, 72, and 6. Moreover, the
correlation function can have unknown parameters. A commonly used correlation function

in computer experiments is the Gaussian correlation function given by
Ry(h) = exp(—h*/s3),

where s is an unknown length-scale parameter. Thus, we also need to estimate s =
(s1,...,5p). Furthermore, we also need to estimate the transformation function g(-). Here

we use a parametric approach. A commonly used parametric transformation for nonnega-

tive data (y > 0) is the Box-Cox transformation (Box and Cox (1964)) given by
Ao

UELEA £ 0

: (10)
logy,if A\=0

n(y) =

This transformation contains an unknown parameter . A two-parameter Box-Cox model
can be used if the data is not restricted to be nonnegative. In this paper we will focus on
the foregoing one-parameter transformation, but the methods that we propose below are
general and can be applied to more general cases. We now discuss the estimation of all
these unknown parameters: pu, 72, 02, s, and .

Since our aim is to find a transformation to make the function as additive as possible,

it makes sense to estimate A from (8). The likelihood is proportional to

n

% exp{—(9A(y) = p1 = Z&N))'(9a(y) — pl = Z&(V)/ (207} [ i, (11)

i=1



where the last term is due to the Jacobian of transformations. We have used w(\) to

explicitly show its dependence on A. Maximizing (11) with respect to o2 gives

() = {oa(y) — pl — ZE()) oaly) — 1 ~ Zo(N)}. (12)

Substituting this in (11) gives the profile likelihood for A. By maximizing the profile

likelihood, we obtain

A =argmin PL(A) = nlogd(\) — (A — 1) Zlog Y. (13)
A i=1
Since ga(y)|c ~ N(ul + Re,0%I) and ¢ ~ N(0,72R™"), we can easily integrate out c
to obtain
9(y) ~ N(u1, 7’R + 0°I).
This gives empirical Bayes estimates of u, 72, § = 02/72, and s as

. VRED )

V(R+0I)-'1 (14)
. 1 S _ .
7= —(oa(y) — A1) (R +0T) Hoa(y) — A1),
(6,8) = argminEB(4,s) = log |R + 0I| + nlog72. (15)
5,8

Although motivated differently, all these estimates agree with the estimates that one would
obtain by fitting the GP model in (2).

The whole estimation procedure is shown as Algorithm 1. The procedure may look more
complicated than the usual estimation in GP. But note that we are fitting a correlation
function involving 2p correlation parameters (w and s), which is twice as that in the
usual GP modeling with say, using a product Gaussian correlation function. The extra
parameters (w) in our correlation function makes our modeling more flexible as we discuss
later. The most attractive feature of the procedure is that these extra parameters can be
obtained without much additional computational cost, thanks to the quadratic program.

Because of the possibility of multiple local optima, it is important to choose a good
initialization of the parameters in the algorithm. There are efficient implementations avail-
able for fitting an additive model using the backfitting algorithm (Breiman and Friedman,
1985). So we start by fitting an additive model using the mgcv package (Wood (2017)) in

7



R and then estimate all the parameters using the fitted additive model. The details are

described in the Appendix B.

Algorithm 1 Estimation of Transformed Additive Gaussian (TAG) process

1:

2:

3:

4.

10:

11:

12:

procedure TAG(y,D, e > 0) >

Obtain initial estimates A(?), w©® s© §©) using Algorithm 3.

Set t =0 and A = {\© — 0.5\ \© 405}

while max |w®) — w®| > ¢ do
t<t+1
For each A € A, obtain j from (14), ¢ from (5), and @w(A) from (9).
A« arg min,_, PL(A), where PL()) is from (13) and () is from (12).
W) G(A®)
Update (6®,s®) using (15).

end while

return (@,8,6,\) = (w®,s® 50O \O),

end procedure

TRANSFORMED APPROXIMATELY ADDITIVE
GAUSSIAN PROCESS

Even with the best possible transformation, we may not be able to make the function

additive and thus the approximation that we obtain using TAG can be unsatisfactory. In

this section, we propose a simple extension of TAG to improve the approximation.

The main limitation of the additive correlation function in (3) is that it is not positive

definite and thus cannot be used for interpolating arbitrary functions. But we can make it

positive definite by adding a positive definite correlation function L(h) to R(h). Thus the

GP model becomes

9(y) ~ GP(p, 7{(1 = n)R(-) + nL(-)}), (16)

where 1 € [0, 1] and R(-) is as in (3). The resulting predictor is only approximately additive.



Therefore we call this model as Transformed Approzimately Additive Gaussian (TAAG)
Process. Plate (1999) proposed a closely related GP model, but the motivation behind
TAAG process and its estimation techniques are completely different. TAAG process is
also related to some of the other ideas proposed in the literature such as that of using a
convex combination of GPs (Harari and Steinberg (2014)) and composite GPs (Ba and
Joseph (2012)).

Since the additive part is expected to capture most of the functional characteristics of

the output, we may choose L(h) based on the R(-), k=1,...,p. So we let

L(h) = H Ry (hy) -

A common choice for Ry(-) is the Gaussian correlation function. Then L(h) becomes

p h2
L(h) =exp | — 0—5
k=1 'k

with length-scale parameters 6 = (0y,--- ,6,), where 0y, is for the k-th kernel.

The unknown parameters in the new GP model (1, 7% \,w, 8,0, 7, $) can be estimated
using maximum likelihood or cross validation methods. But since A\, w, and s should be
chosen so that the function becomes as additive as possible, it makes sense to fix those
parameters at the estimates that we obtained earlier using the additive GP. The length
scale parameter 8 of L(-) can also be estimated conviniently from a standard GP. Therefore,
we only estimate the new parameter 7 along with y and 72. Their estimates can be obtained
as Santner et al. (2013) with a prior on 7 following a beta distribution with parameters

5+ 1 and 2.
n = argmin M(n) =log|(1 —n)R + nL| + nlog 72 + 210g(77‘§(1 - 7)), (17)
n

where

1'{(1-=n)R+nL} 'g(y)
1"{(1—-n)R+nL} 1~

7 = %(g(y) — 1) {(1 = n)R+nL} " (g(y) — jil),

>
I

and L is the n x n matrix with ijth element L(x; — ;). The estimation procedure is shown

in Algorithm 2.



Algorithm 2 Estimation of Transformed Approximated Additive Gaussian (TAAG) Pro-

Cess

1: procedure TAAG(y, D) >
2: Obtain 4§, \,w, and & using Algorithm 1 and 6 from a standard GP model.

3: 1) < argmin, M(n), using an initial value n(® = /(14 6), where M(n) is from (17).
4: return 7

5: end procedure

The prediction and uncertainty quantification can be done as follows. The posterior

distribution of z(x) for given p and 72 is given by

2@y, p 7 ~ N(E(2), V(2)), (18)

Hx) = p+ {1 —nr(@) +nl)}{(1-nR+nL}  (g(y) — p1)
Vizg) = 7 [1-{1-nr(@) +nlx)}{1—nR+nL} {1 -nr() +nl()}].
We can either plug-in the estimates of u and 72 or integrate them out (Santner et al.

(2013)), but for simplicity we will use the plug-in approach. From (18), we can obtain the

probability density function of f(x)|y, u, 7% as

: 1 ~
19(f ()| === exp{—(2(z) - Z(x))*/(2V(x))},
21V ()
where ¢(-) is the derivative of g(-). In general, this can be a nonstandard distribution and
computing its mean and variance may require numerical integration. Cressie (1992) derives

an approximate expression for the mean using Taylor series expansion. But as Snelson et al.

(2004) pointed out, it is much easier to use the median, which is given by
fl@) =g {Z(x)}.
Similarly, we can obtain a 95% credible interval for the prediction as
o7 {Z@) -2V} o {2@) + 20V )}

Note that when using a Box-Cox transformation (10), we need constraints y > 0 and

gx(y) > —1/X to make sure that g(-) is one-to-one. Therefore we force the lower bound to
be 0 if Z(x) — 2/V(x) < —1/A.
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4 SOME ADVANTAGES OF TAAG

In this section we discuss the many advantages of TAAG using numerical examples.

4.1 New Correlation Function

Although our aim was not to develop a new correlation function, the one that came out

of our modeling

p p
(1=n) Zkak(hké Sk) + 77H Ry (ha; Ok)
k=1 k=1

is of independent interest. It has certain properties not possessed by any of the exist-
ing correlation functions in the literature. To illustrate its advantages, consider a simple
function

y = exp {2sin(0.57x1) + 0.5 cos(2.5mxy) } (19)

where x € [0, 1]2. The marginal plots of the function are shown in Figure 1.

Fixx, =0 Fixxq =0
o~ o
~— | (\iﬁ
o |
T 0 |
wa ~
> © - >~Sa
<t 4
0
iy
Na
og[ T T T T T ggI T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 10
X1 X2

Figure 1: Marginal plots of the function in (19).

Suppose we generate data using a randomized Sobol’ sequence (Christophe and Petr
(2018)) of n = 20 points. First we fit a GP using the commonly used Gaussian product
correlation function R(h) = exp(—Y.:_, h}/s}). We used a standard R package milegp
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(Dancik and Dorman (2008)) for obtaining the maximum likelihood estimates of the pa-
rameters. The left panel of Figure 2 shows boxplots of s; and sy from 100 repetitions
of the randomized Sobol” sequence. The length scale parameters have long been used for
identifying important variables (Neal (2012), Williams and Rasmussen (1996), Linkletter
et al. (2006)). Smaller s; implies the variable z; is more important to the output. As s;
increases, the importance of the variable decreases and in the limit s; — oo, the variable
gets eliminated from the model. Thus, Figure 2 suggests that x5 is more important than
x1. This is a complete contradiction to the reality as the marginal plot in Figure 1 shows
x71 is at least four times more important than x5! The function is less wiggly in z; than in
xo and therefore, s; is estimated to be larger than sy. But, clearly, this does not capture

the importance of these two variables.

GP TAG length scale TAG weights
S ; S
R — £
é : © o
)| o
i3 L S| _—— 2
—
. r —
_t ©
: =
o ‘ o |
R — r o
i < |
° o
§
0 | T v ;
= . . o — —
c B N —_— -
e kS N 5
L S
Q.
£ £
o »
o | o o o | g
o = o o =
S‘1 S‘2 S‘1 S‘2 "1 “2

Figure 2: Parameter estimates for GP and TAG for the function in (19).

Now consider the new correlation function in (16). The middle panel shows the boxplots
of s; and sy from the same 100 randomized Sobol” sequences estimated using Algorithm

1. The right panel shows the boxplots of w; and wy. In the new correlation function s;’s

12



can be used to understand how wiggly the function is and w;’s can be used to understand
the importance of the variables. Since s; is larger than s,, the function is expected to be
less wiggly in x; than x5, which agrees with Figure 1. Moreover, since w; is more than ws,
TAG process correctly identifies x; to be more important than x,.

There are other correlation functions proposed in the literature with more parameters
such as the power exponential and Matérn correlation functions. But the extra parameters
in them only controls the smoothness or roughness of the function. The function consid-
ered in this example is very smooth and infinitely differentiable in both the variables and
therefore, those correlation functions cannot rectify the confounding issues between scale

and importance.

4.2 Prediction Performance

TAAG is expected to perform well in the example function in (19) becuase it becomes

perfectly additive under log-transformation. So consider a slightly modified version
exp {2sin(0.57x1) + 0.5 cos(2.5mz2) } + 0.25 sin(7xy) cos(0.5mxs), (20)

which cannot be made additive through transformation. We will use this function to assess
the prediction performance of TAAG process.

As before, we generate data using a randomized Sobol’ sequence of n = 20 points and
fit TAG and TAAG processes. Predictions are made on 1,000 test points in [0, 1]? and the
root mean squared prediction error (RMSPE) is computed. This is repeated 100 times
by generating a new randomized Sobol’ sequence each time. The resulting RMSPEs are
shown as boxplots on the left side of Figure 3. We also fitted the commonly used GP with
product Gaussian correlation function on the original data as well as the transformed data.
Their RMSPESs are also shown in the same figure denoted as “GP” and “Transformed GP”,
respectively. As a further check, we also fitted an additive model on the original data and
the transformed data (“AM” and “Transformed AM”) using the R package mgcv. We can
see that AM does not perform well, but surprisingly the transformed AM does well, even

better than GP. This clearly shows the benefit of transformations. On the other hand,
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TAG improves over the Transformed AM and Transformed GP. TAAG performs better

than TAG and seems to be the best among the six methods.

o | ;
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_ : _
- E :
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© T T T T T T
TAG TAAG GP Transformed GP AM Transfomred AM

methods

Figure 3: Prediction performance of TAG, TAAG, GP, transformed GP, AM, and trans-
formed AM using the example function in (20), where the simulation is performed by

randomizing the design.

As mentioned before, uncertainty quantification is one of the main advantages of the
TAG/TAAG processes. To assess their performance, we computed the interval score (Gneit-
ing and Raftery (2007)), which is defined as (u — ¢) + (2/a)({ — z)[{z < (} + (2/a)(z —
w)l[{z > u} with o = 95%. A smaller interval score indicates a better prediction interval.
The interval scores for the 100 simulation cases are shown as boxplots in Figure 4. Clearly,

TAAG is again the best among the six methods.

4.3 Interpretation and Visualization

Another advantage of the TAAG process is that it enables better interpretation and
visualization of the effects. The weights, w;’s, can be used to quickly understand the impor-

tance of each variable, which represent the first-order Sobol’ indices when the transformed
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Figure 4: Interval scores (smaller-the-better) of TAG, TAAG, GP, transformed GP, AM,
and transformed AM using the example function in (20), where the simulation is performed

by randomizing the design.

response is perfectly additive (Sobol’, 1990). If f(x) is not additive, n will be greater than
0 and its value can be used to understand the overall interaction effect. Moreover, the main

effects of the variables in the transformed scale can be quickly visualized using

n
Zk(Tg) = wi Z ¢ Ry (v — i),

i=1
which does not require any extra computations. On the other hand, one needs to use
the computationally intensive functional ANOVA decomposition to get the main effects if
we were to fit the usual GP. Of course, the main effects are meaningful only if there are
no higher order interactions. Because we use transformation to minimize the interaction
effects, the main effects that we obtain using TAAG process are more trustworthy:.

We illustrate the foregoing advantages using the borehole function (Morris et al. (1993)):

27T, (H, — H))

log(2) [1 4 g2 + B

Tw

Y
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where the ranges for the eight variables are r, : (0.05,0.15), r = (100,50000), T, =
(63070, 115600), H, = (990,1110), 7; = (63.1,116), H;, = (700,820), L = (1120, 1680),
and K, = (9855,12045). Suppose we generate n = 80 data using the MaxPro design
(Joseph et al. (2015)) and fit the TAAG process. It identified a log-transform for the
response (A = 0). The w;’s and s;’s from the fit are given in Table 1. The first-order Sobol’
indices of the log-borehole function is also given in the same table. We can see that w;’s

are very close to the first-order Sobol’ indices. This is not a coincidence and happened here

because the transformed response is approximately additive.

Input variables Tw r T, H, T; H,; L K,
w 0.882 | 0.003 | 0.002 | 0.035 | 0.001 | 0.037 | 0.032 | 0.009
0 1.502 | 36.233 | 1.672 | 2.878 | 63.946 | 2.902 | 1.795 | 3.454

First-order Sobol” indices | 0.889 | 0.000 | 0.000 | 0.036 | 0.000 | 0.035 | 0.032 | 0.008

Table 1: The w;’s and s;’s from the TAAG process for the Borehole function and the

first-order Sobol” indices of the log-borehole function

The centered main effects z(xy) — Zx, where Zj is the mean value of z(-) are shown in
the left panel of Figure 5. The right panel of the figure shows the main effects computed
using the borehole function without using any transformation. We can see that the TAAG
process approximates the main effects quite well. Moreover, 17 = 0.00158 is very small
showing that the interaction effects are negligibly small in the transformed scale. We can
use the difference of Sobol’s total index and first-order index to understand the interaction
effects. This is shown in Figure 6 for the original and transformed responses. We can see
that the log-transformation has greatly helped in reducing the interaction effects. This
clearly shows that the main effects plots of log y are much more meaningful to look at than

those of y.

4.4 Big and High-Dimensional Data

Fitting GP models to big and high-dimensional data is always a challenging problem.

This is because the likelihood function requires the inversion of the correlation matrix,
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Figure 5: The main effects from TAAG with logarithmic transformation of the response

and the true main effects for the original (untransformed) response in the borehole function.

whose computational complexity is O(n?). Moreover, thousands of evaluations of the like-
lihood function is needed to optimize it, especially in high dimensions. To understand the
computational complexity with respect to the number of dimensions, first note that O(n?p)
computations are needed to construct the correlation matrix. Consider a gradient-based
optimization with a fixed number of iterations. Once the correlation matrix is inverted, the
gradient of the likelihood can be calculated in O(n?p) (Williams and Rasmussen (2006),
pp.114). So the total computational cost is still O(n® + n?p). However, because the likeli-
hood is likely to be multimodal, the number of initial points for optimization should be at
least O(p) to have a fair chance of finding the global optimum (MacDonald et al. (2015)).
Thus the computational complexity of optimizing the likelihood is at least O(n®p + n?p?).
Since n should be increased at least proportional to p to get a meaningful approximation,
the computational complexity with respect to p is at least O(p*), which can be quite heavy
for large p. Much of the recent research in GP modeling has focused on the big n problem,
for example, using iterative kriging (Haaland and Qian (2011)) and local GPs (Gramacy
and Apley (2015)). But we are not aware of any attempts to extend GP fitting to large
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The Difference of Total and First—Order Sobol Indices
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Figure 6: The difference of Sobol’s total index and first-order index for the original and

log-transformed responses. Large difference shows large interaction effects.

p problems. The additive GP model framework introduced here offers a pathway to fit
high-dimensional GP models efficiently.

The key idea is that the additive structure of the model will allow us to fit p one-
dimensional GPs instead of the one p-dimensional GP. One-dimensional GPs are easy to
fit even with big n. A careful examination of the algorithms described in Sections 2 and
3 reveal that the main time consuming step is the (p + 1)-dimensional optimization in
(15). But as we noted earlier, we have good initial estimates of s obtained by fitting p
one-dimensional GPs to the additive functions estimated by the back fitting algorithm.
So we let s = 1s(?), where x € (0,00) is a unknown parameter and s® is obtained from
Algorithm 3. Thus, the (p + 1)-dimensional optimization reduces to a two-dimensional
optimization, which is manageable. This considerably simplifies Algorithm 1, which now
has only a few one or two dimensional optimizations and a quadratic program, all of which
can be done quickly. Similarly, in Algorithm 2, instead of obtaining 6 from a standard GP,
we can use 0 = ¢s(®), where ¢ € (0,00), and then finding the optimizer of (1, ¢) through
optimizing (17). Of course, avoiding the optimization over the full s and @ can deteriorate

the performance, but we found that little is lost by doing this.
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To illustrate the idea, consider the function

P Az — 2| + ag
v 1} | 1+ c’L ’
where a; = i/2, i = 1,2,--- | p, with p = 10,20, 30,---,100 and n = 10p. The designs
are generated using Sobol” sequence. Besides the simplifications mentioned in the previous
paragraph, we use R function bam in package mgcv in Algorithm 3, which is similar to gam
except that the numerical methods are designed for large datasets. The left panel of Figure
7 shows the RMSPEs of GP and TAAG process and the right panel shows the estimation
time using a 2.6 GHz laptop. For fitting GP, we use the standard R packages mlegp (Dancik
and Dorman (2008)) , GPfit (MacDonald et al. (2015)), and DiceKriging (Roustant et al.
(2012)). To make the comparisons fair, we set the number of initial points for optimization
in DiceKriging to be 2p which is the default in GPfit. The time taken by GPfit for p = 30 is
very high (56 hours), so we did not run it for p > 30. We can see that the RMSPEs of TAAG
process are smaller than those from GP for all p = 10,20, ...,100 and the computational
time saving increases with p. For example, it takes about 2.7 hours to fit a 100-dimensional
GP with 1000 design points using mlegp, which takes only 30 minutes using the TAAG
process. Note that unlike mlegp and DiceKriging, our current implementation of TAAG
process is in R. So the actual computational saving in comparable implementations can
be even more substantial. We also run the local approximate Gaussian process regression
(Gramacy and Apley, 2015) through R package 1aGP (Gramacy, 2016) in this example:
the average of RMSPE is 0.934, which is greater than our results, with standard deviation
0.063, and the running time is from 0.02 to 8.65. Although the running time of laGP is
smaller than that of TAAG in this example, we may use their method or other GP based
method for large scale, such as Haaland and Qian (2011), to improve TAAG for fitting

larger scale data efficiently. Such works would be an interesting future research.

5 More Examples

In this section, we compare TAAG with GP over a broad class of examples of computer

simulations. These examples include 5 exemplar functions from Surjanovic and Bingham
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Figure 7: Computational time and root mean squared prediction errors of TAAG process

and GP.

(2019): franke function, OTL circuit function, piston simulation function, robot arm func-
tion, and wing weight function. The detailed information of all these examples is summa-
rized in the supplemental material. For comparison, each experiment of these functions
consists of 10p runs of simulations from maximum projection designs (Joseph et al., 2015)
for fitting TAAG and GP, and 1000 testing points generated from Sobol sequences with
scrambling. Then, over these 1000 test points, the mean square prediction errors (MSPEs)
from TAAG and GP are recorded.

The resulting MSPEs are summarized in the first 5 rows of Table 2, with the estimators
of A and 7 in TAAG. For all the cases, the outcomes of MSPEs from TAAG are better than
that from GP. In addition, the small 7 values imply, with the estimated transformations
(A), the interaction effects of the 5 transformed functions are small.

We also compare TAAG and GP on two datasets about a heat exchanger (HE) model
presented in Qian et al. They also provide a 14-run testing dataset. The results are sum-

marized in the last two rows of Table 2. We observe that the prediction performance of

TAAG are better than that of GP, and the 7 from TAAG are small. Overall, this simu-
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lation study confirms that, with an appropriate transformation, the deterministic function

becomes well-approximately additive in its input variables.

RMSPE Estimators from TAAG
Examples dimension | GP | TAAG | A i

Franke 2 0.035 | 0.031 |-0.5 238
OTL Circuit 6 0.046 | 0.026 | 0.5 029
Piston Simulation 7 0.012 | 0.00005 | 0 .000
Robot Arm 8 0.035 | 0.030 1 .010
Wing Weight 10 2.892 | 0.217 0 .0001
Approximated HE model 4 4.436 | 2.028 | 0.5 .004
Detailed HE model 4 2217 | 1.851 1 .001

Table 2: Summary of the results of the simulation examples described in Section 5. The
values reported are the dimension of input of each example functions, the MSPEs of GP
and TAAG, the estimators of transformed parameters, which is 5\, of TAAG, and 7 of
TAAG.

6 CONCLUSIONS

In this article we have shown that using transformation on the response can be highly
beneficial in GP modeling. It can make the deterministic function approximately additive,
which can be efficiently approximated using simpler models such as additive models. By
exploiting the underlying additive structure, we have developed efficient estimation tech-
niques for fitting the transformed additive GP model. In fact, it can be fitted using a few
one or two dimensional optimizations and a quadratic program with initializations provided
by the well-known back fitting algorithm. The estimation is so efficient that it can be ap-
plied to high-dimensional and big data problems which otherwise would not have been
possible with the usual GP models. The development has also led to a new correlation

function with much more interpretable parameters than the commonly used correlation
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functions such as Gaussian or Matérn. The fitted models can be immediately visualized
using main effects plots, which is another advantage of the proposed method. Moreover,
the main effects plots are more meaningful in TAG/TAAG processes compared to the usual
GP because of the minimization of the interaction effects.

Although we have focused on deterministic functions, the method can be extended to
noisy data. Gaussian noise can be addressed by adding a nugget term in the TAAG pro-
cess, but more work is needed for non-Gaussian data, which we leave as a topic for future
research. Another important direction for future research is regarding the transformation.
Here we have used the one-parameter Box-Cox transformation, which worked well in the
examples we have tried so far. But we anticipate that, in more complex problems, a non-
parametric transformation can perform better. The nonparametric transformation needs

to be monotonic and easily invertible, which makes this extension nontrivial.
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APPENDIX A: PROOF OF CONVERGENCE OF
ALGORITHM 1

In this Appendix, we want to show that the algorithm for fitting TAG presented in
section 2 converges to a stationary point. Recall that the algorithm is to iteratively update
¢ by optimizing (7) with w fixed at its current estimator, and update w by optimizing (7)
with c fixed at its current estimator. Such algorithm is based on an alternating optimization
(AO) process. The convergence of AO was shown in Section 4 of Grippo and Sciandrone
(2000). They showed that the sequence generated by an AO converges to a stationary
point if the sequence has limit points. Thus, to show the convergence of the algorithm for
fitting TAG, we need to show the sequence {(w®, c®)} generated by the TAG algorithm

has limit points.
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To show {(w®, c®)} has limit points, our strategy is to verify that the domains of w
denoted by W and c denoted by C are bounded. If this is true, we know the level set,
defined by {(w,c) € W x C : f(c,w) < f(wog,co)}, for all (wp,cp) € W x C is compact.
Since compactness of a set implies every subset of this set has limit points, we show that
{(w®, c®)} has limit points. Thus, we only need to show W and C are bounded.

The domain of w is bounded since W contains all w = (wy, - - - ,w,) satisfying > | w; =
land w; > 0 for i =1, -+, p. To show C is bounded, recall that, given data {(x1,y1)}",
each ¢ € C can be expressed as (R + 6I) 7' (y — p1). This means

lell = (R + D)~ (y — p1)|
p
= IO wiR; + L)~y — p1)]| (by definition of R)
i=1
p
< H(Z wiR; + 60)7H||[(y — u1)|] (the sub-multiplicative property of a norm)
i—1

P
< (Z |[(wiRs) | +1/8)||(y — p1)|| (the convex property of the inverse operator)
i=1

Since each element of R; is bounded for all ¢ = 1,--- ,p, we can find a bound M € (0, c0)

such that ||c|| < M. This implies C is bounded, and we complete the proof.

APPENDIX B: INITIALIZATION

The details of obtaining initial estimates of the unknown parameters in the TAG process
is shown in Algorithm 3. We use the gam function in the R package mgcv (Wood, 2017) to
fit the additive model and use mlegp (Dancik and Dorman, 2008) to fit the one-dimensional
GPs.
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Algorithm 3 Initialization
1: procedure INITIAL(y, D) >

2: For each A € {—2,—1.5,...,2}, fit an additive model gy (y) ~ hi(z1)+---+hy(z))
and obtain A that minimizes PL()) in (13).

3. mod < (gro (y) ~ ha(w1) + -+ hp(p)).

4: wi(o) = var {h;(x;)} /> b var {h;(z;)}, where var {h;(z;)} can be obtained from
from mod.

5. 00 =1/R? — 1, where R? is obtained from mod.

6: Use mod to predict h;(x;) at Xgest = {0,1/(m —1),...,1} with m = 101. Denote it
as ﬁi(xtest).

7 for i from 1 to p do

8: Obtain 350) by fitting a GP on {xyes, ﬁi(xtest)}.
9: end for
10: return w©®, s X0 and §©),

11: end procedure
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