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Abstract: Metabolomics has started to embrace computational approaches for chemical interpretation
of large data sets. Yet, metabolite annotation remains a key challenge. Recently, molecular networking
and MS2LDA emerged as molecular mining tools that find molecular families and substructures
in mass spectrometry fragmentation data. Moreover, in silico annotation tools obtain and rank
candidate molecules for fragmentation spectra. Ideally, all structural information obtained and
inferred from these computational tools could be combined to increase the resulting chemical insight
one can obtain from a data set. However, integration is currently hampered as each tool has its
own output format and efficient matching of data across these tools is lacking. Here, we introduce
MolNetEnhancer, a workflow that combines the outputs from molecular networking, MS2LDA,
in silico annotation tools (such as Network Annotation Propagation or DEREPLICATOR), and the
automated chemical classification through ClassyFire to provide a more comprehensive chemical
overview of metabolomics data whilst at the same time illuminating structural details for each
fragmentation spectrum. We present examples from four plant and bacterial case studies and show
how MolNetEnhancer enables the chemical annotation, visualization, and discovery of the subtle
substructural diversity within molecular families. We conclude that MolNetEnhancer is a useful tool
that greatly assists the metabolomics researcher in deciphering the metabolome through combination
of multiple independent in silico pipelines.

Keywords: chemical classification; in silico workflows; metabolite annotation; metabolite
identification; metabolome mining; molecular families; networking; substructures

1. Introduction

Metabolomics has matured into a research field generating increasing amounts of metabolome
profiles of complex metabolite mixtures aiming to provide biochemical insights. Mass spectrometry
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has become the workhorse of metabolomics and typical untargeted experiments currently result in
qualitative and semiquantitative information on several thousands of molecular ions across tens to
hundreds of samples. Technical advances in the last decade have allowed researchers to fragment
increasing amounts of mass peaks that result in mass fragmentation spectra (MS/MS or MS2). Metabolite
annotation and identification tools have benefited from these advances as now more MS2 spectra per
sample can be queried in reference libraries in order to find candidate structures or submitted to in
silico tools that propose a putative structure [1-9].

Despite these tremendous advances, a key challenge remaining for metabolomics researchers
is to biochemically interpret large-scale untargeted metabolomics studies due to the complexity of
the metabolomes represented by mass fragmentation spectra to which actual chemical structures
need to be assigned, and for which reference spectra are not available. In biological samples, many
metabolites share molecular substructures and form structurally related molecular families (MFs) of
various chemical classes, which has inspired metabolome mining tools exploiting these biochemical
relationships. Based on the assumption that structurally similar molecules (analogs) generate similar
mass spectrometry fragmentation spectra, one can group analogs by comparing their fragmentation
spectra resulting in the construction of molecular families. To do this on a larger scale, computational
tools have been developed such as molecular networking (MN) [7]. However, to actually annotate
structural information additional sources are usually needed such as library matches, candidate
structures from libraries or chemical class annotations.

Indeed, since the molecular networking approach was proposed in 2012 [10], numerous
complementary metabolome mining workflows as well as annotation and classification tools have
been introduced including SIRIUS [3], CSI:FingerID [4], MetFusion [11], MetFamily [12], and many
others of which some also use molecular networks as basis [1,2,7,8,13-24] and their combined use for
natural product discovery was very recently reviewed [25]. Where tandem mass spectral molecular
networking efficiently can group molecular features in molecular families [10], MS2LDA can discover
substructures, not only based on common fragment peaks but also common neutral losses, which can
aid in further annotation of subfamilies and shared modifications [14]. These metabolome mining
tools typically take MS/MS spectra as input, such as the open formats Mascott Generic Format (MGF),
the mzML, or mzXML format, and generate tables where a fragmented mass feature is linked to
other fragmented mass features or substructure patterns. Reference fragmentation spectra in public
repositories are still very few. Thus, on average only 2-5% percent of MS2 spectra acquired in a typical
LC-MS/MS experiment can be matched to known molecules [26]. Complementary to library matching,
in silico tools such as Network Annotation Propagation (NAP) [8], DEREPLICATOR [1], VarQuest [2],
or SIRIUS+CSI:FingerID [4] predict fragmentation spectra in silico from known structures and allow for
effective searching in chemical databases for candidate structures. These metabolome annotation tools
also take MS/MS spectra as input and typically use precursor masses to find candidate structures in
compound databases followed by a ranking of those structures based on the similarity of the predicted
and experimental MS/MS data. The output is typically a table with candidate structures found for
each mass feature and associated score. These tools typically differ in the compound databases they
use to query for candidate structures, or the processing of mass spectrometry data. For example,
SIRIUS+CSI:FingerID first builds annotated fragmentation trees before searching molecular structures
inlarge compound databases. DEREPLICATOR and VarQuest are annotation tools that match structures
from a large database of Peptidic Natural Products to MS/MS spectra, whereby DEREPLICATOR looks
for exact matches and VarQuest also allows for one modified amino acid. It is important to realize that
each tool has its own set of parameters that will affect the number of annotated features.

The outputted structural information for each mass feature can be mapped on a molecular network,
for example, to show for which mass features library matches or in silico predicted structural matches
are available. The recently introduced Network Annotation Propagation (NAP) also exploits the
network topology to rerank candidate structure lists based on neighboring matches within molecular
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families [8]. Furthermore, when using multiple annotation tools, the structural information they
provide may support each other increasing confidence in the annotation.

To assess whether molecular families are of particular interest for your research question, knowing
their chemical class may provide sufficient information. The recently proposed ClassyFire tool [16]
takes molecular descriptors as SMILES or InchiKeys as input and outputs hierarchical chemical
ontology terms. Thus, the candidate structures outputted for each mass feature by the metabolome
annotation tools mentioned above can now be automatically chemically classified. When that is done
at larger scale for an entire molecular family, one can combine those chemical class terms and assess
whether particular terms are enriched.

Taken together, all these recent developments enable the discovery of relations between millions
of spectra and the listing of candidate structures from various spectral libraries or alternatively from
compound libraries using in silico approaches.

Whilst each of those tools produce useful structural information, their combined application has
been hampered by the use of different file formats, platforms, and the challenge to match molecular
features across the outputs of these tools. We postulate that whilst each tool provides complementary
insights, their combined use allows an increased level of biochemical interpretation, i.e., the sum
becomes greater than the individual parts. Furthermore, it would be practically advantageous to
combine all these results in one place. We have previously described the integration of Mass2Motifs
and chemical classifications with molecular networks to assess the chemical diversity within a subset
of species of the plant genus Euphorbia [27] and the plant family Rhamnaceae [28]. However, in those
studies, integration was achieved using custom in-house scripts in R, hampering adoption by the
community. Moreover, the results of the peptide annotation tools DEREPLICATOR and VarQuest were
not included in those custom scripts.

Here, we introduce MolNetEnhancer a software package available in Python and R that unites the
output of many of the above-mentioned metabolome mining and annotation tools (GNPS molecular
networking, MS2LDA substructure discovery, and in silico annotation tools) independent of what
dataset it processes, thus making the algorithm accessible in an easy-to-use format to the community
(Figure 1). MolNetEnhancer discovers molecular families (MFs), subfamilies, and subtle structural
differences between family members. The workflow enhances the currently available molecular
networking methods based on either MS-Cluster [29] (classical) or MZmine2 [30] (also called
“feature-based molecular networking”) and results in annotated molecular networks that can be
explored in Cytoscape [31]. We applied MolNetEnhancer to publicly available mass spectrometry
fragmentation data ranging from marine-sediment and nematode-related bacteria, to Euphorbia and
Rhamnaceae plants. Illustrated by four case studies, we demonstrate how our integrative workflow
discovers dozens of MFs in large-scale metabolomics studies of these plant and bacterial extracts.
Moreover, discovered MFs can be divided into subfamilies using the mapped MS2LDA results.
Structural annotation of Mass2Motifs is facilitated by having chemical and structural annotations at
hand, for example by recognizing substructures in peptidic molecules. We conclude that our workflow
provides chemical refinement of metabolomics results beyond spectral matches through large-scale
MEF and substructure discovery and annotation by integrating outputs of various tools in one place
allowing for enhanced visualization. This also guides the metabolomics researcher in prioritizing MFs
to explore and in structurally annotating molecules.
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Figure 1. Schematic overview of the MolNetEnhancer workflow. Starting with mass spectrometry

data in the mzML format obtained from complex metabolic mixtures the user creates (1) mass

spectral molecular networks in GNPS, (2) performs in silico structure annotation (e.g., through NAP,
DEREPLICATOR or SIRIUS+CSI:FingerID), and (3) performs unsupervised substructure discovery
through MS2LDA. Steps 1-3 are performed prior to the MolNetEnhancer workflow within the respective

platforms. MolNetEnhancer is then used in (4) to map information layers obtained from all three

platforms independently on top of each other resulting in network-wide chemical class information

and more detailed substructure information within molecular families (as exemplified for the organic

acid conjugates in the enlarged part of the triterpenoid molecular family on the right).



Metabolites 2019, 9, 144 5 of 25

2. Materials and Methods

MolNetEnhancer is a software package available in Python and R that unites the output of several
metabolome mining and annotation tools, including mass spectral molecular networking through
GNPS, unsupervised substructure discovery through MS2LDA and in silico structure annotation,
for example through NAP, DEREPLICATOR, or SIRIUS+CSLFingerID (Figure 1). Before using the
MolNetEnhancer workflow, the user will run each metabolome mining tool separately:

1.  Perform mass spectral molecular networking analysis through the Global Natural Products Social
Molecular Networking platform (https://gnps.ucsd.edu).

2. Perform in silico chemical structural annotation using for example Network Annotation
Propagation (NAP) and DEREPLICATOR through the GNPS platform. Alternatively, other
in silico tools for putative chemical structural annotation (e.g., SIRIUS+CSI:FingerID) [3,4] can
also be used.

3. Perform unsupervised substructure discovery using MS2LDA (http://ms2lda.org).

For documentation of steps 1-3 the user is referred to the original publications and guidelines
for each tool [1,2,7,8,14]. Section 8 contains links to tutorials of the analysis tools used in this study.
Functions implemented in the MolNetEnhancer workflow can then be used to combine the outputs
created in step 1-3 such that

a  Substructure information retrieved through MS2LDA is integrated with mass spectral
molecular networks.

b Most abundant chemical classes per molecular family are retrieved based on GNPS structural
library hits and in silico chemical structural annotation and integrated within the mass spectral
molecular networks.

MolNetEnhancer is freely available on GitHub at https://github.com/madeleineernst/
pyMolNetEnhancer and https://github.com/madeleineernst/RMolNetEnhancer. Interactive Jupyter
example notebooks and a step by step tutorial guide the user to build enhanced mass spectral molecular
networks, which are outputted in the graphml format for visualization in Cytoscape.

Currently, two distinct methods from raw data to MNs exist. One method takes all MS2 spectra
found in the input files and uses MS-Cluster to prepare a set of representative “consensus” MS2
spectra for molecular networking, and the other method uses MZmine2 for data preprocessing,
which performs molecular feature detection at the MS1 level and associates each MS1 feature with its
respective MS2 spectra to send off to GNPS Molecular Networking. The here proposed MolNetEnhancer
workflow can enrich both these molecular networking methods with Mass2Motif presence and chemical
class annotations.

Substructural information retrieved through MS2LDA is integrated in two ways within the mass
spectral molecular networks. Shared substructures or motifs between two molecular features are
visualized as multiple edges connecting the nodes. Furthermore, motifs found within a molecular
feature can be visualized as pie charts, where the relative abundance of each motif represents the
overlap score, a score measuring how much of the motif is present in the spectrum [32]. Furthermore,
for each molecular family, the x most shared motifs are shown, where x is defined by the user. An
example of such a molecular family with motifs mapped is shown in Figure 6 in the results section.

To retrieve the most abundant chemical classes per molecular family, all chemical structures
obtained through GNPS library matching, and in silico chemical structural annotation are submitted
to automated chemical classification and taxonomy structure using ClassyFire [16]. This retrieves
chemical classes for each of the putative structures submitted organized in five hierarchical levels of
a chemical taxonomy (kingdom, superclass, class, subclass, and direct parent). For each level of the
chemical ontology, a score is calculated, which represents the most abundant chemical class found
for the structural matches within the molecular family. It is important to note that a high score does
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3. Results

3.1. MolNetEnhancer Workflow

MolNetEnhancer requires inputs from independent metabolome mining tools including mass
spectral molecular networking through GNPS, unsupervised substructure discovery through MS2LDA
and in silico structure annotation, for example through NAP, DEREPLICATOR or SIRIUS+CSI:FingerID
(Figure 1). Provided with these inputs, MolNetEnhancer consists of two independent steps. During
the first step, molecular substructures detectable by co-occurring fragment ions or neutral losses, so
called Mass2Motifs, are mapped onto a Molecular Network. Each node in the network represents a
molecular feature, whereas Mass2Motifs represent substructural features. Most fragmented mass peaks
(precursor ions) represent molecular ions, although fragmented mass peaks may also represent adducts
of one and the same molecule, in source fragments or doubly-charged peaks [33]. For simplicity, we
will refer to any fragmented mass peak as molecular feature throughout the manuscript. Mass2Motifs
contained within each molecular feature can be visualized as pie charts on the nodes. Alternatively,
Mass2Motifs shared across multiple molecular features can be visualized as multiple lines (edges)
connecting the nodes. In a second step, most abundant chemical classes per molecular family based on
candidate structures from in silico annotation tools as well as GNPS library matches can be mapped
through chemical classification using ClassyFire [16]. A chemical classification score is calculated
representing what percentage of nodes within a molecular family are attributed to a given chemical
class (see Section 2 and Figure 2 therein). In Sections 3.2-3.5 we show how MolNetEnhancer can
accelerate and enrich chemical information retrieval in 4 case studies, comprising two plant and two
bacterial publicly accessible datasets. The MolNetEnhancer workflow results in one graphml network
file that contains all the structural information obtained from the individual tools. Such a file can
be easily imported into network visualization tools such as Cytoscape [31], an environment where
additional metadata on the molecular features can be added. In addition, all structural information is
also available as tab delimited text files.

3.2. Case Study 1: Annotation of Euphorbia Specialized Metabolites Using MolNetEnhancer

With more than 2000 species worldwide, the plant genus Euphorbia is among the most species-rich
and diverse flowering plants on earth [34,35]. Besides exhibiting an extreme diversity in its growth forms
and habitat types, the genus has also attracted interest within natural products drug discovery [36,37].
Euphorbia species are chemically highly diverse, particularly within macro- and polycyclic diterpenoids,
biosynthetically derived from a head-to-tail cyclization of the tetraprenyl pyrophosphate precursor,
which have been found to exhibit a range of biological activities with pharmaceutical interest, such
as antitumor, antimicrobial or immunomodulatory activity [36]. Ingenol mebutate for example,
a diterpenoid originally isolated from Euphorbia peplus L. is marketed for the topical treatment of actinic
keratosis, a precancerous skin condition [38], however production through plant extraction or chemical
synthesis is inefficient and expensive [39,40].

A key interest is therefore to find species within the genus producing higher quantities of ingenol
mebutate or other close diterpenoid analogs exhibiting biological activities with pharmaceutical
interest. We have previously assessed chemical diversity within a representative subset of species of
the plant genus Euphorbia [27]. A major challenge is the rapid identification of known and unknown
Euphorbia diterpenoid structures. Using MolNetEnhancer, we were able to significantly accelerate
manual annotation of diterpenoids and retrieve chemical structural information, even for molecular
families with no structural matches in the GNPS spectral libraries.

An example of how MolNetEnhancer increases chemical structural information throughout two
molecular families is highlighted in Figure 3. Using GNPS spectral library matching, chemical structural
information for only one molecular feature was obtained, and manual propagation of the annotation
throughout molecular family (i) was limited given that the annotated ion exhibited one neighbor only.
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Massirnsboraldnfeamationrgoukshbe retrieved for family (ii), where no chemical structural informasion
was retrieved through GNPS library matching (Figure 3a).
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unambiguously, as many Euphorbia diterpenoid skeletons are isomeric and their respective MS2 spectra
are identical or very similar. A Euphorbia backbone skeleton with masses at m/z 313, 295, 285 can
either result from a jatrophane, deoxy tigliane, or ingenane ester like skeleton [41,42]. Furthermore, we
were able to see that molecular family (ii) contains substructural Mass2Motifs related to a nicotinoyl
side chain. Manual annotation of these Mass2Motifs was possible by comparing chemical structures
retrieved through NAP in silico structure annotation with mass fragments found in the Mass2Motifs.
Motifs 432 and 180 were both found to contain mass peaks at m/z 106 and 124, possibly resulting from
a nicotinoyl side chain and a hydroxylation (Figure 3b). Chemical structures retrieved through in silico
annotation or library matching can aid the manual annotation of Mass2Motifs and vice versa annotated
Mass2Motifs can aid the propagation of chemical structural information throughout the network.
Additionally, chemical structural hypotheses can be reinforced by taking into consideration both
substructural information as well as chemical class information obtained through in silico annotation
and library matching. Most chemical structures retrieved for molecular family (i) and (ii) were
diterpenoids of the jatrophane, tigliane or ingenane type and substructures related to these Euphorbia
diterpenoid backbone skeletons were also found within the Mass2Motifs (Figure 3c).

In conclusion, using MolNetEnhancer we were able to significantly increase chemical structural
annotations obtained from retrieving chemical structural information of one molecular feature through
GNPS library matching (Figure 3a), to retrieving chemical structural information at an annotation
level 3 (putatively characterized compound classes) according to the Metabolomics Standard Initiative’s
reporting standards [43] of two molecular families comprising 73 molecular features (Figure 3b—d).
Finally, this information allowed us to conclude that within the investigated subset of molecular
families Euphorbia diterpenoid skeletons of the jatrophane, deoxy tigliane, or ingenane ester type are
found within all Euphorbia subgeneric clades, whereas nicotinoyl sidechain modifications are unique to
subgenus Esula (Figure 3d).

3.3. Case Study 2: Annotation of Rhamnaceae Specialized Metabolites

Another case where we demonstrate the efficiency of MolNetEnhancer for enhancing the chemical
annotation of metabolomics data is our previous study on the plant family Rhamnaceae [28].
Rhamnaceae is a cosmopolitan family including about 900 species, and Rhamnaceae species are
known for their exceptional morphological and genetic diversity, which are thought to be caused by
the wide geographic distribution and different habitats [44]. We applied an MS2-based untargeted
metabolomics approach to get insights on the metabolomic diversity of this highly-diversified family,
and MolNetEnhancer was used as a key to provide fundamental annotations for MS2 spectra.

As shown in Figure 4a, MolNetEnhancer provided the putative chemical classification of molecular
families within the Rhamnaceae molecular network. After combining this chemical class annotations
with taxonomic information of each molecular feature, the normalized distribution pattern of different
classes of metabolites were analyzed. This revealed that the taxonomic clade Rhamnoid exhibits more
diversified flavonoids, carbohydrates, and anthraquinones, while the Ziziphoid clade produces various
triterpenoids and triterpenoid glycosides [28].

MolNetEnhancer allowed us to visualize and discover the subtle substructural diversity within the
molecular families. In the molecular family of triterpenoid esters, for example, substructural differences
of phenolic moieties such as protocatchuate, vanillate, and coumarate were easily recognized by
analyzing the distribution of Mass2Motifs 28, 117, 120, and 191 (Figure 4b). Two flavonoid aglycone
substructures, kaempferol and quercetin, were also distinguished by analyzing the distribution of
Mass2Motifs 86, 130, and 149 in the molecular family of flavone 3-O-glycosides (Figure 4c). Mass2Motif
130 contained mass peaks at m/z 284, 255, and 227, while Mass2Motifs 86 and 149 covered mass peaks
at m/z 300, 271, and 255. These fragment ions are well-known as characteristic fragments of kaempferol
3-O-glycosides and quercetin 3-O-glycosides [45-47], so these Mass2Motifs could be easily annotated.
This case study shows how MolNetEnhancer facilitates the interpretation process and our knowledge
on MS2 fragmentation, previously mainly applied manually by experts.
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N,N-dimethyl-pyrrolosamine (lomaiviticin) which have overlapping fragment ions and are therefore
characterized by the same Mass2Motif. With a frequency of more than 70 throughout the entire
molecular network (using probability and overlap score thresholds of 0.1 and 0.3, respectively, for the
molecular feature—Mass2Motif connections), the amino sugar Mass2Motif can be used as a handle to
identify known and potential novel natural products throughout network. Indeed, the Mass2Motif
was found in all members of the Rosamicin MF (Figure 6a) and the Lomaiviticin MF (Supplementary
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sharing the Tryptophan Mass2Motif, and (d) actinomycin-related molecular family—found through
GNPS library hits and further validated with help of DEREPLICATOR results—sharing an Actinomycin
related motif across most of its members. The actinomycin D (Daptomycin) structure is depicted
with the Mass2Motif substructure highlighted in color: the peptide lactone ring present twice in the
molecule. In all MFs, nodes are colored based on Mass2Motif overlap scores and the edges show if
cosine score-connected nodes share similar Mass2Motifs. It can be seen that in all families multiple

motifs are shared across some of its members.
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Another MF displayed in Figure 6¢ did not return any GNPS library hits; however, all its members
shared Mass2Motif 154. Due to its indicative fragment ions, we could annotate this Mass2Motif as
tryptophan-related, indicating that all these molecules contain a tryptophan core structure. Based
on their shared Mass2Motif, the masses of the molecular features, and their fragmentation patterns,
with the help of MolNetEnhancer we could now tentatively annotate this MF as tryptophan-related
containing molecules such as small peptides or N-acyltryptophans. Figure 6d shows the peptidic MF
of actinomycin-related molecules. The annotation of this MF was guided by DEREPLICATOR and
VarQuest annotations as well as the Mass2Motif that 10 of its members shared. We could annotate
this Mass2Motif as the peptide lactone ring (depsipeptide moiety) present twice in actinomycins
using reference data from literature [49]. The unique combination of four actinomycin-related mass
fragments was only present in the 10 MF members, thereby reinforcing the DEREPLICATOR and
VarQuest annotations.

Furthermore, mapping the Mass2Motifs on the molecular network means that we can more
easily track neutral loss-based motifs such as the loss of an acetyloxy group that was only found in
Streptomyces MFs. Moreover, inspection of the MFs without annotated chemical classes revealed that
they contained some Mass2Motifs with relatively low frequency throughout the data set—something
that could point to a unique substructure or scaffold possibly from a unique biosynthesis enzymatic
function. For example, Mass2Motif 35 has a frequency of 43 and was present in all four members of
the MF in Supplementary materials Figure S3c. It is a mass-fragment-based Mass2Motif and with
masses of 142, 100, and 58 Da it could be related to a polyamine-like structural feature. Finally, the MF
in Supplementary materials Figure S3d shares the two still unknown loss-based Mass2Motifs 250 and
261 that have frequencies of 26 and 50, respectively. These are examples of Mass2Motifs representing
potential novel chemistry that can now be easily tracked in the molecular network.

3.5. Case Study 4: Annotating Peptidic Motifs in Peptide-Rich Xenorhabdus/Photorhabdus Extracts

Xenorhabdus and Photorhabdus are Gammaproteobacteria that live in symbiotic association with
soil-dwelling nematodes of the genus Steinernema [50,51]. Eventually as a consequence thereof, they
spend a large amount of their resources to the production of specialized metabolites, in particular
nonribosomal peptides and polyketides. Tobias and coworkers recently published metabolomics
data of 25 Xenorhabdus and five Photorhabdus strains to explore metabolic diversity amongst these
strains [50]. Here, we applied MolNetEnhancer on this publicly available molecular networking data
to further probe the chemical diversity previously found. The 6228 network nodes were analyzed with
MS2LDA to discover 300 Mass2Motifs. Furthermore, we also submitted the Xenorhabdus/Photorhabdus
molecular networking data to NAP, DEREPLICATOR, and VarQuest to run the MF chemical class
annotation pipeline. By far the majority of the 46 annotated motifs were peptide, amino acid, or likely
to be peptidic-related which fits with the ClassyFire predicted peptide-related MFs present in the
Xenorhabdus/Photorhabdus extracts with “Carboxylic acids and derivatives” and “Peptidomimetics” as
most frequently occurring annotations (see Figure 7, with corresponding chemical classification scores
in Supplementary materials Figure S4). We could also annotate an indole-related Mass2Motif which
can be part of peptides/amino acids. An exception is the ethylphenyl-related Mass2Motif that was
found in 478 molecules (out of 6228 nodes, corresponding to 7.7%) of the Xenorhabdus/Photorhabdus
extracts. This can be explained by the reported production of phenylethylamides, dialkylresorcinoles,
and cyclohexadions derivatives by the studied strains [52].

Annotations included Mass2Motifs that form peptidic substructures related to well-known
Xenorhabdus peptidic families such as the commonly found bioactive rhabdopeptides and the related
xenortides [52,53]. We could annotate two rhabdopeptide-related motifs with frequencies of 231 and 186
(3.7% and 3.0% of nodes, respectively). Compared to the structurally less diverse xentrivalpeptides [54]
which the Mass2Motif had a frequency of 28, corresponding to 0.45% of the nodes, we can conclude
that rhabdopeptide-related molecules are widespread in the Xenorhabdus/Photorhabdus extracts. The
PAX peptides constitute another well-known Xenorhabdus/Photorhabdus lysine-rich peptide class [55].



Annotations included Mass2Motifs that form peptidic substructures related to well-known
Xenorhabdus peptidic families such as the commonly found bioactive rhabdopeptides and the related
xenortides [52,53]. We could annotate two rhabdopeptide-related motifs with frequencies of 231 and
186 (3.7% and 3.0% of nodes, respectively). Compared to the structurally less diverse

Metaboigpsvomlpepsides [54] which the Mass2Motif had a frequency of 28, corresponding to 0.45% of the 14 of 25
nodes, we can conclude that rhabdopeptide-related molecules are widespread in the
Xenorhabdus/Photorhabdus ~ extracts. The PAX peptides constitute another well-known

The donebplinefig!MEbdonbistsdrich [Bptidmbass; [3ridddd, dressphutiog MMassdMtiéfrafated to

lysin@'@bpin ihdpsdl oy sbarrch tsMapstiYiaty ralataskin dviingc e vRd doniye frosamesenainiilafivlecules
annotaiE e sVl ron el YRy ted ﬁ&&@g%ﬂhﬁ%lm&%ﬁeﬁepndlc
famlhesl ],&){6%28 th /]i? des l%omtm% g sevetr?I pel};tldlc am*htes %ﬁatlcontfm this ammo aci Eftp n.. ver

1 C; tor da Y

rast to t s amino ac hat is Very wide-sp rgad n enor a us

wide; 1%&3{8@(%elgl@é%?gphr%édﬁas{ﬂgéﬁf(%’aﬂyﬁo@e%l%%%31 OCIng RESRIRIN 240 modes ot using
the MalygtEnhansardostoianocmvgicenld anpatate k2 neptidisraatite ok whidk weosewdd Bpk 11 to
peptistesoknomviry bodaepiddusediby wiener abbthd?imtaviuladnsostiaiapresails b tbetathera] ivtagsMotifs
represbretdatbdtifinet pepsidiotnyairel ofciotsted 2 IBYptftivkis avatsaedly trese hitiss 2Mppifs Magassessed by
recogAtRIGATppeal feaknverit psatidester el asdentizchargodpprepideirns hatliigrdoubigeharged
precsBERUAL TS SRS sign of peptides in these extracts.

Benzene and substituted derivatives
Carboxylic acids and derivatives
Fatty Acyls
Glycerophospholipids

Indoles and derivatives
Organonitrogen compounds
Peptidomimetics

Polypeptides

Prenol lipids

Steroids and steroid derivatives
Others

No match

Figure 7. Nematode symbionts Photorhabdus/Xenorhabdus network colored by 10 selected chemical class
term$FiguiredicNeddtodheyegeiodtsIRHntal dddiferehitdas sbevwmgkwele adhythfest lvttdechetmicrk using
Mol N#aErbrmees ipdicaied dbdheveadnd. fhddiald? ditftoent slafsreiiis werwalingdated:iy Sinalley efolecular
famlﬂég\gﬂédﬁ%gﬁyme’h%a%@Pﬁéﬁ%ﬂﬁfﬁ%@ﬁ%@r@m&%ﬁ&%ﬁﬂo@yﬁﬁ RfAWI A Hvatives
nﬂlecular famuli ted w1tth F tidomimetics (purple) and  carboxylic acids and
(red) "PHIS TS cOMBistent WillTE ShEoreied sdth pentidomimetiss @ s? ionts"produce’a wide array of
% 1vatn(/fs (red). This is consistent with earher findings that these nématode symbionts produce a
peptiiopIodcl
array of peptidic products.

With the heln.of e dntegrative digplay of REREPHEATOR andyVasuest anngtation results, we
could,alsg AnnRtak m&ma&m&%@i@&mmm@%ﬁr@ $2H7) XX FNABHSLS frRpown to
be predisgeddycetenyrhabsnsiamseighiravianishayeheen deseribadnndatailvithivariantsd and B

present in peptidic databases [56]. Xenoamicin is a cyclic peptide consisting of a peptidic ring and
peptidic tail (see Figure 8d). Interestingly, in one of the annotated MFs, not one but two Mass2Motifs
were shared between most of its members (see Figure 8a). With help of DEREPLICATOR-predicted
annotations of the fragment ions, we could annotate the Mass2Motif shared by almost the entire MF
as being related to the xenoamicin A peptidic ring, whereas the other more abundant Mass2Motif
was related to the xenoamicin peptidic tail (Figure 8c, and Supplementary materials Figure S5a,b).
These Mass2Motifs are quite specific as we observed that 9 and 6 mass fragments, respectively, were
consistently present in more than 75% of the molecular features to which the ring and tail Mass2Motifs
were linked. A third Mass2Motif could be putatively annotated as xenoamicin B peptidic ring-related
as its masses are +14 Da as compared to the ring A motif and xenoamicin B differs from A with an
isobutyl replacing an isopropyl group. Based on the Mass2Motif presence/absence analysis in the
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Figure 8. Xenoamicin-related molecular families annotated by MolNetEnhancer with (a) MF of 32 nodes
of which 23 were annotated with at least one xenoamicin modified structure (xenoamicin A or B) b
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to xenoamicin structures with two ring and tail-related Mass2Motifs. Mass2Motif 265 contains mass
fragments related to xenoamicin A, whereas masses in Mass2Motif 51 are shifted with 14 Da pointing
towards xenoamicin B. The MF consists of singly charged molecular features. (b) Related MF of which
20 out of 22 nodes were annotated with xenoamicin modified structures (FDRs mostly < 2.5). This
MF only shares the Mass2Motif annotated as xenoamicin tail-related and consists of doubly-charged
precursor ions. (c) Xenoamicin A spectrum in the ms2lda.org environment with (top) ring-related
Mass2Motif highlighted and (bottom) tail-related Mass2Motif highlighted with the corresponding
blue and red colors as in (a) and (b). (d) VarQuest annotation of xenoamicin modified peptide where
a ring proline indicated in brown is likely methylated. All light blue peaks in the mass spectrum
were annotated by VarQuest. The red part in the xenoamicin structure corresponds to the selected
fragment of my/z 537.348, which includes the tail part, whereas the light blue amino acid is annotated
to be modified with a mass shift of 14.013 Da that likely corresponds to a methylation. Indeed, the
Mass2Motif related to the xenoamicin tail is found in this fragmentation spectrum, whereas the ring
Mass2Motif is absent.
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We could also find additional MFs and singletons in which the xenoamicin ring or tail Mass2Motif
was present, pointing to related peptidic molecules not linked through the modified cosine score.
Further inspection with help of VarQuest annotations strengthened these annotations as VarQuest
annotated modified amino acids in both rings (Figure 8, Supplementary materials Figure S5e,f) and the
tail region (Supplementary materials Figure S5c,d) of xenoamicin many of which, to our knowledge,
have not been reported yet, such as the one highlighted in Figure 8d where the ring-proline is likely
methylated (the ring A motif is not linked to this molecular feature). In fact, xenoamicin A was
annotated as variant from xenoamicin B (Supplementary materials Figure S5f) where the modified
amino acid (demethylation) corresponds to previous literature findings [56], further increasing our
trust in these in silico approaches. The smaller MF of 22 nodes consisted of doubly-charged precursor
ions where no ring-related Mass2Motifs were assigned. Some members like xenoamicin A appeared in
both MFs as singly and doubly charged precursor ions; the differences in motif distributions between
the two MFs indicates that the initial charge has an impact on the fragmentation pathways and thus
the acquired spectra given that we know the ring A is part of xenoamicin A.

Altogether, this example highlights how the MolNetEnhancer approach facilitates fragmentation
based metabolomics analysis workflows by increasing the “structural resolution”, the discovery of
more xenoamicin variants than previously described, and highlighting previously unseen connections
between MFs and molecules. Furthermore, the integrative approach enabled straightforward annotation
of Mass2Motifs found in the xenoamicin MF by using the VarQuest fragment ion annotations as guide
for Mass2Motif feature annotation. Both Mass2Motif and VarQuest results strengthened each other
since when predicted amino acid changes occurred in the peptidic ring, the corresponding ring-related
Mass2Motif was absent, and vice versa—made possible by combining the outputs of several in silico
tools together.

4. Discussion

Although significant advances have been made in molecular mining workflows, chemical
annotation as well as classification tools [1-4,7,8,10,14-16], chemical structural annotation remains
the major and most challenging bottleneck in mass spectrometry-based metabolomics as most of
our biological interpretations rely on annotated structures [8,26,57]. MolNetEnhancer is a workflow
that combines chemical structural information retrieved from different in silico tools, thus increasing
structural information retrieved and enhancing biological interpretation. Here, we have chosen a
representative number of in silico tools covering mining, annotation, and chemical annotation to
provide the user with different chemical insights. Although we used DEREPLICATOR and NAP to
exemplify in silico annotation tools here, MolNetEnhancer is platform independent, meaning that
chemical structures retrieved from any in silico annotation platform could be used given the molecular
feature identities correspond across all molecular mining and annotation tools.

Particularly in natural products research, the rapid annotation of known (i.e., dereplication) as
well as unknown specialized metabolites from complex metabolic mixtures hinders interpretation
in an ecological, agricultural or pharmaceutical context. Many specialized metabolites from natural
sources are used as pharmaceuticals [58], in agriculture [59], or nutrition [60]; however, their discovery
is inherently slow due to the above-mentioned limitations. To highlight how MolNetEnhancer can
accelerate chemical structural annotation in complex metabolic mixtures from natural sources, we
exemplified its use on four plant and bacterial datasets.

In the plant genus Euphorbia, we were able to retrieve chemical structural information of previously
described pharmaceutically highly valuable diterpenoid skeletons corresponding to an annotation level
3 according to the Metabolomics Standard Initiative’s reporting standards [43]. The use of different tools
combined in one data format with MolNetEnhancer allowed both for the retrieval of complementary
information as well as the reinforcement of putative annotations, in cases where two independent
tools pointed to the same chemical structural conclusion. Used separately, none of the tools were
able to retrieve as much chemical structural information as when combined in MolNetEnhancer.
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Likewise, MolNetEnhancer allowed for the annotation of triterpenoids chemistries with several
distinct phenolic acid modifications (e.g., vanillate, protocatechuate) in the plant family Rhamnaceae.
In Salinispora and Streptomyces bacterial extracts, MolNetEnhancer aided the annotation of a previously
unreported tryptophan-based MF, and a xenoamycin-related MF in the Gammaproteobacteria of the
genus Xenorhabdus and Photorhabdus could be studied in more detail than in previous studies.

It is of utmost importance to note that results retrieved from MolNetEnhancer summarize results
retrieved from third-party software and manual inspection and validation of all structural hypotheses
remain essential. However, MolNetEnhancer significantly aids the manual inspection and validation
process conducted by the expert, by making substructural as well as chemical class information readily
available and visible within one data resource. As exemplified in the case studies, MolNetEnhancer
can for example help in prioritizing molecular families within a molecular network, which consists of
many hundreds to thousands of molecular features, be it by highlighting different chemical classes
of interest or molecular families, for which only very few structural hypotheses could be retrieved,
potentially highlighting novel chemistry.

Limitations introduced through data acquisition on different mass spectrometric instrument types
do also apply to MolNetEnhancer. Acquiring data on different instruments can cause different MS2
fragmentation patterns, thus in some cases leading to different structural hypotheses through library
matching or in silico structure prediction [61]. Also, the presence of low quality and/or chimeric MS2
spectra is a challenge for mass spectrometry annotation tools as the one described here, and methods
that are capable of filtering-out these spectra before proceeding with in silico annotation tools will
improve our confidence in in silico spectral annotation [62].

These limitations highlight the importance of good practices during data acquisition and processing
to minimize the time spent analyzing mass spectrometry artefacts and improving the confidence in
any downstream annotations. Here, the use of feature-based molecular networking could also help to
focus the analysis on those molecular features that are very likely molecular ions [63]—and it has the
added benefit that MS1 differential abundance information from LC-MS peak picking is available on
the molecular features as well.

Apart from limitations caused by experimental conditions, analysis bias can be introduced for
structural predictions based on chemical structures available in public databases, which are still limited
especially for particular compound classes. This is particularly true for the chemical class annotations
provided through ClassyFire, which rely on collecting correct or structurally closely related candidate
structures from compound databases. The chemical annotation score was implemented to guide the
researcher in assessing how consistent the chemical annotations are and for how many molecular
features at least one candidate structure is found. The peptidic annotations by DEREPLICATOR and
VarQuest come with scores, p-values, and false discovery rates to assess confidence in the annotations.
Using MolNetEnhancer, it is now also possible to explore the consistency in peptidic annotations
within MFs, along with their associated Mass2Motifs, which also assist in improving confidence in the
annotations, as we have shown for the xenoamicin MFs in the nematode symbiont bacteria where the
majority of the MFs were annotated with xenoamicin variants.

One limitation of the use of MS2LDA on the bacterial datasets is that most noncyclic peptidic
molecular families do not share any motifs as typically analogues differ by modifications such
as methylation or hydroxylation causing a shift in m/z in most of their mass fragment peaks.
Incorporation of amino acid-related mass differences as features for MS2LDA could be a route
to also discover Mass2Motifs for noncyclic peptides. As it is, cyclic peptides do often contain one or
more Mass2Motifs and peptides containing positively charged amino acids such as lysine and leucine
have this structural information represented by Mass2Motifs. Furthermore, many Mass2Motifs are
currently still unannotated, which hampers fast structural analysis. To partially solve this bottleneck,
MotifDB (www.ms2lda.org/motifdb) was recently introduced [64] and the here annotated Mass2Motif
sets from the four case studies are made available through MotifDB for matching against Mass2Motifs
found in other MS2LDA experiments. Furthermore, this will allow to use a combination of “supervised”
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(annotated) Mass2Motifs and “unsupervised” (free) Mass2Motifs in future MS2LDA experiments on
data of related samples thereby accelerating structural annotation since part of the motifs already
discovered do not need to be reannotated.

Despite the limitations discussed above, MolNetEnhancer assists in metabolite annotations
by its combined analysis of chemical class annotations, structural annotations, and Mass2Motif
annotations. If these annotations support each other, as for example for the actinomycin MF in the
marine sediment bacteria, there is more confidence that these in silico annotations will indeed be
correct. It is noteworthy that the modularity of MolNetEnhancer allows for complementary sources
of structural information to be added on in future. We showed that MolNetEnhancer is a practical
tool to annotate the chemical space of complex metabolic mixtures using a panel of complementary in
silico annotation tools for mass spectrometry based metabolomics experiments. Although we have
highlighted the use of MolNetEnhancer using two plant and bacterial datasets, MolNetEnhancer is
sample type-independent and may be used for any mass spectrometry-based metabolomics experiment,
where chemical structural annotation and interpretation is of interest. Future work will focus on
making the complete MolNetEnhancer workflow available within the GNPS platform in order to
further increase its user friendliness. Currently, the chemical classification workflow is available to run
within the GNPS framework directly outputting an annotated network (see URL in code availability
Section 7). Furthermore, the integration of other existing and future metabolome mining and annotation
tools in the output of MolNetEnhancer is also planned to extend on the initial set of in silico tools that
it currently can combine.

5. Conclusions

MolNetEnhancer is a powerful tool to accelerate chemical structural annotation within complex
metabolic mixtures through the combined use of mass spectral molecular networking, substructure
discovery, in silico annotation as well as chemical classifications provided by ClassyFire. The
MolNetEnhancer workflow is presented both as an open source Python module and R package,
allowing easy access and usability by the community as well as the possibility for customization and
further development by integration into future collaborative modular tools and by integration of other
existing or future metabolome mining and annotation tools. Whilst its use was showcased using
natural product examples, we expect that MolNetEnhancer will also enhance biological and chemical
interpretations in other scientific fields such as clinical and environmental metabolomics.

6. Data Availability

Publicly available mass spectrometry fragmentation data sets from four studies were used for this
study. Details on how samples and data were collected can be found in the original studies [27,28,48,50].
Here, we list links to the different analyses that were done on each of the studies. Through these links,
all used settings and parameters can be retrieved.

Data from case studies 1 & 2 illustrating MolNetEnhancer applied to feature-based molecular
networking are publicly accessible through the links listed below.

Case study 1: Euphorbia study—combined analysis of 43 Euphorbia plant extracts

e MASSIVE: MSV000081082 https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
9f09d31a24c475e87a0al1{6e8889¢7

e GNPS Molecular Networking job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
26326¢233918419f8dc80e8af984cdae

e GNPS NAP jobs: https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
2ctddd3b8ble469181al3e7d3a867a6f and https://proteomics2.ucsd.edu/ProteoSAFe/status.
jsp?task=184a80db74334668ae1d0c0{852cb77c

e  MS2LDA experiment: http://ms2lda.org/basicviz/summary/390


https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=c9f09d31a24c475e87a0a11f6e8889e7
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=c9f09d31a24c475e87a0a11f6e8889e7
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=26326c233918419f8dc80e8af984cdae
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=26326c233918419f8dc80e8af984cdae
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=2cfddd3b8b1e469181a13e7d3a867a6f
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=2cfddd3b8b1e469181a13e7d3a867a6f
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=184a80db74334668ae1d0c0f852cb77c
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=184a80db74334668ae1d0c0f852cb77c
http://ms2lda.org/basicviz/summary/390
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Case study 2: Rhamnaceae study—combined analysis of 71 Rhamnaceae plant extracts

MASSIVE: MSV000081805 https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
36f154d1c3844d31b9732fbaa72e9284

GNPS Molecular Networking job:  https:/gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
€9e02c0ba3db473a9b1ddd36da72859b

GNPS NAP job: https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
6b515b235e0e4c76ba539524c8b4c6A8

MS2LDA experiment: http://ms2lda.org/basicviz/summary/566

GNPS example study used in Jupyter notebook to show MolNetEnhancer based on feature-based

molecular networking—subset of American Gut Project:

MASSIVE: MSV000082678 https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
de2d18fd91804785bce8c225cc94ad4

GNPS Molecular Networking job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
b817262cb6114€7295feedf73b22a3ad

GNPS NAP job: https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
c4bb6b8be9el4bdebe87c6ef3abellf6

MS2LDA experiment: http://ms2lda.org/basicviz/summary/907

Data from case studies 3 & 4 illustrating MolNetEnhancer applied to classical molecular networking

are publicly accessible through the links listed below.

Case study 3: Marine-sediment bacteria study—combined analysis of 120 Salinospora and

26 Streptomyces bacterial strain extracts

MASSIVE: MSV000078836, MSV000078839 https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?
task=9277186021274990a5e646874a435c0d https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
ab07232a787243a5afd69a6c6fale508
GNPS Molecular Networking job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
c36f90ba29fe44c18e96db802de0c6b9
GNPS NAP job: https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
60925078e0c148cbaba3593569e983d6
GNPS DEREPLICATOR 0.005 job:  https:/gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
0ad6535e34d449788f297e712f43068a
GNPS DEREPLICATOR 0.05 job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
e494a63be6d34747a4b8cdfb838ef96e

GNPS VARQUEST 0.005 job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
£1£00c1c20ba4f61ad471d340066df76
GNPS VARQUEST 0.05 job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

f5ffcc8f63ab4e6f96a97caabc11048b
MS2LDA annotation experiment: http://ms2lda.org/basicviz/summary/551
MS2LDA MolNetEnhancer workflow experiment: http://ms2lda.org/basicviz/summary/912

Case study 4: Nematode symbionts study—combined analysis of 25 Xenorhabdus and 5 Photorhabdus

bacterial strain extracts

MASSIVE: MSV000081063 https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
dcc30b777¢344d668a5626d01£26¢9a0
GNPS Molecular Networking job:  https:/gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
aaff4721951b4d92b54ecbd2fe4b9b4f
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https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e9e02c0ba3db473a9b1ddd36da72859b
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=6b515b235e0e4c76ba539524c8b4c6d8
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=6b515b235e0e4c76ba539524c8b4c6d8
http://ms2lda.org/basicviz/summary/566
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https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=c4bb6b8be9e14bdebe87c6ef3abe11f6
http://ms2lda.org/basicviz/summary/907
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=9277186021274990a5e646874a435c0d
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=9277186021274990a5e646874a435c0d
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https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0ad6535e34d449788f297e712f43068a
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http://ms2lda.org/basicviz/summary/912
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e GNPS NAP job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
677f076eb04b4518958ca8cd56b4c753

e GNPS DEREPLICATOR 0.005 job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
338b422483d1432e82afd1bf848£1292

e GNPS DEREPLICATOR 0.05 job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
83bca3c45665470891d41ead275dcae7

e GNPS VARQUEST 0.005 job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
20cfb9afda244feeal02aa9c9da2651¢c
e GNPS VARQUEST 0.05 job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

a4ffdal169823476a9ble81616aeccbda
e  MS2LDA annotation experiment: http://ms2lda.org/basicviz/summary/570
e  MS2LDA MolNetEnhancer workflow experiment: http://ms2lda.org/basicviz/summary/917

GNPS example study used in Jupyter notebook to show MolNetEnhancer based on classical
molecular networking—drug metabolism in set of sputum samples:

e MASSIVE: MSV000081098 https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=
7c4b25d21a6348df9a6942d3071a4b1f&view=advanced_view

e GNPS Molecular Networking job:  https:/gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
b76dd5a123e54a7eb42765499f9163a5

e GNPS NAP job: https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
cb63770£e307410492468f62f9edb8f3

e VarQuest job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
4d971b8162644e869a68faa35f01b915

e DEREPLICATOR job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

62d3283752f4f98b1720d0a6d 1ee65b
e  MS2LDA experiment: http://ms2lda.org/basicviz/summary/909

7. Code Availability

The MolNetEnhancer package in R including Jupyter notebooks with an exemplary analysis
workflow for mapping Mass2Motifs and chemical class annotations onto classical and feature-based
molecular networks is publicly accessible at https://github.com/madeleineernst/RMolNetEnhancer
and the MolNetEnhancer package in Python including Jupyter notebooks with an exemplary analysis
workflow for mapping Mass2Motifs and chemical class annotations onto classical and feature-based
molecular networks is publicly accessible at https://github.com/madeleineernst/pyMolNetEnhancer. A
beta version of the MolNetEnhancer workflow is also available from within GNPS: https://gnps.ucsd.
edu/ProteoSAFe/index.jsp?params=%7B%22workflow %22:%22MOLNETENHANCER%22%7D. This
currently outputs the chemical class annotated molecular network by user provided task ids to the
individual jobs run within GNPS.

8. Tutorials

Tutorials to get familiar with individual tools from which the output is combined with
MolNetEnhancer can be found here.

GNPS molecular networking:
https://ccms-ucsd.github.io/GNPSDocumentation/networking
DEREPLICATOR/VarQuest:
https://ccms-ucsd.github.io/GNPSDocumentation/dereplicator
Network annotation propagation:
https://ccms-ucsd.github.io/GNPSDocumentation/nap
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ClassyFire:

http://classyfire.wishartlab.com

MS2LDA:

https://ccms-ucsd.github.io/GNPSDocumentation/ms2lda/
http://ms2lda.org/user_guide

MolNetEnhancer workflow tutorials in both R and Python can be found here:
https://github.com/madeleineernst/pyMolNetEnhancer
https://github.com/madeleineernst/RMolNetEnhancer

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/7/144/s1,
Figure S1: Mirror plot comparing molecular feature with m/z 614.30 and RT 373.17 (black) to GNPS reference
spectrum of a jatrophane diterpenoid (green), Figure S2: (a) Marine sediment Salinispora/Streptomyces molecular
network colored by chemical classification scores for annotated chemical class terms and (b) same molecular
network colored by chemical classification scores for annotated chemical kingdom terms. Light gray means no
database matches were found. The higher the class score, the more consistent the chemical annotations are. The
kingdom scores represent the database coverage of nodes across a molecular family with scores closer to zero
representing families with fewer nodes that have at least one database hit. Whilst most MFs do have database
matches for all or most nodes, the consistency in chemical class annotations is—apart from some exceptions—less
(indicated by the more orange/pink colors in the left panel). This indicates that for many MF family members the
right molecular structures might not yet be present in the structural databases used, Figure S3: Molecular families
from marine sediment bacteria with color coded Mass2Motif substructure information mapped on them, with (a)
lomaiviticin-related molecular family where all members contain an amino sugar related motif, (b) yet unknown
molecular family that shares an amino sugar related motif, (c) yet unknown molecular family sharing an unknown
fragment-based motif occurring 0.7% in the marine sediment data set, and (d) yet unknown molecular family
sharing unknown loss-based motifs occurring 0.4% (Mass2Motif 250) and 0.8% (Mass2Motif 261) in the marine
sediment data. In all MFs, nodes are colored based on motif overlap scores and the edges present similar colors to
show if cosine score-connected nodes share similar Mass2Motifs. It can be seen that in most families multiple
motifs are shared across some of its members, Figure S4: (a) Nematode symbionts Photorhabdus/Xenorhabdus
network colored by chemical classification scores for annotated chemical class terms, and (b) same molecular
network colored by chemical classification scores for annotated chemical kingdom terms. Light gray means
no database matches were found. The higher the class score, the more consistent the chemical annotations are.
The kingdom scores represent the database coverage of nodes across a molecular family with scores closer to
zero representing families with fewer nodes that have at least a database hit. We observe database coverages
of close to 1 for most molecular families; however, some molecular families have a lower coverage with a few
nodes that return candidate structures. Furthermore, we observe that the chemical class annotation is not always
consistent indicating that manual inspection and validation of those hits remains essential, Figure S5: Xenoamicin
Mass2Motif mass feature frequency plots for (a) Mass2Motif related to xenoamicin peptidic ring and (b) xenoamicin
peptidic tail. It can be observed that many mass fragments are present in at least 75% of the associated molecular
features (9 and 6 for ring and tail Mass2Motif, respectively) with a few mass fragments present in nearly all
associated molecular features. (c,d) Examples of annotated xenoamicin A modified structures in which only the
ring Mass2Motif was found. Indeed, we observe that VarQuest annotates a modified amino acid (addition and
loss of) in the tail region of xenoamicin A indicated in orange. (e,f) Examples of annotated xenoamicin B modified
structures in which only the ring Mass2Motif was found. Indeed, we observe that VarQuest annotates a modified
amino acid (double water addition, loss of methyl) in the ring region of xenoamicin B indicated in orange. The
structures of xenoamicin A and B differ in one methyl group on the amino acid highlighted in orange in (f) where
B has an isobutyl group and A an isopropyl group. In fact, the structure of xenoamicin A is correctly annotated by
VarQuest to this fragmented doubly charged ion.
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