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 Abstract: 41 

In our daily lives, we consume foods that have been transported, stored, prepared, cooked, or 42 

otherwise processed by ourselves or others. Food storage and preparation have drastic 43 

effects on the chemical composition of foods. Untargeted mass spectrometry analysis of food 44 

samples has the potential to increase our chemical understanding of these processes by 45 

detecting a broad spectrum of chemicals. We performed a time-based analysis of the 46 

chemical changes in foods during common preparations, such as fermentation, brewing, and 47 

ripening, using untargeted mass spectrometry and molecular networking. The data analysis 48 

workflow presented implements an approach to study changes in food chemistry that can 49 

reveal global alterations in chemical profiles, identify changes in abundance, as well as 50 

identify specific chemicals and their transformation products. The data generated in this study 51 

are publicly available, enabling the replication and re-analysis of these data in isolation, and 52 

serve as a baseline dataset for future investigations.  53 

  54 

Keywords: Untargeted mass spectrometry, Metabolomics, Molecular networking, LC-MS/MS, 55 

Food, Fermentation, Tea; Yogurt 56 

 57 
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1. Introduction: 60 

We consume a variety of foods and beverages during any given day, such as fruits, 61 

vegetables, dairy products and meats. The chemical composition of these foods is influenced 62 

by factors such as the source, processing method, storage or other handling before 63 

consumption, which has been a central focus of the food science field. However, new 64 

measurements and data analysis methods can help expand and clarify our understanding of 65 

the molecular composition of foods. Within the food science field, there is significant interest 66 

and awareness of dietary habits of human populations (Lewis et al., 2009; Schulze et al., 67 

2015-2020 Dietary Guidelines for Americans) and the nutritional composition of food 68 

(Thirumdas et al., 2018). Resultant findings can generate policies and nutritional 69 

recommendations with the end goal of improving public health (Berger et al, 2019).  70 

Mass spectrometry (MS) is an analytical tool that detects ionized molecules and can be 71 

used for identification and quantification. The majority of food MS studies employ targeted 72 

analysis of a set of predefined compounds via gas and liquid chromatography-mass 73 

spectrometry (GC-MS and LC-MS). Many food MS studies monitor chemicals that are harmful 74 

when consumed, but the chemical composition of food and its impact on health is not limited 75 

to these chemicals (Giorio et al., 2017, Scalbert et al., 2014). Furthermore, the utilization of 76 

MS is significant and expected to grow (Yoshimura et al., 2016) in areas such as food 77 

monitoring during processing (Marshall et al., 2017), due in part to the cost per data volume of 78 

MS having decreased by two orders of magnitude over the past 15 years, and the prediction 79 

that it is expected to continue to decrease, presenting MS as a feasible method for large 80 

datasets (Aksenov et al., 2017). We present an untargeted approach using liquid 81 

chromatography-tandem mass spectrometry (LC-MS/MS) to illustrate the effects of storage 82 
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and processing on different food types and, for the first time, pair this methodology with 83 

emerging MS-based computational analysis approaches, such as mass spectral molecular 84 

networking to assess changes based on processing. 85 

         Mass spectral molecular networking enables a broad overview of molecular information 86 

that can be inferred from MS/MS data (Watrous et al., 2012). In molecular networking, all 87 

identical MS/MS spectra are merged giving a list of unique MS/MS spectra (Watrous et al., 88 

2012). These are then subjected to spectral alignment allowing for spectral matching with 89 

offsets based on the precursor mass differences. Molecules generating similar MS/MS 90 

spectra are clustered due to similarities in their fragmentation patterns and are referred to as 91 

molecular families. A molecular family is a set of MS/MS spectra that are structurally related 92 

(Nguyen et al., 2013). In addition, the MS/MS spectra are putatively annotated against 93 

reference spectra within the Global Natural Products Social Molecular Networking (GNPS) 94 

platform (Yang et al., 2013, Wang et al., 2016). Matches against the reference libraries 95 

constitute level 2 or 3 annotations according to the 2007 metabolomics standards initiative 96 

(Sumner et al., 2007). The reference libraries that can be searched, as their spectra are 97 

publicly available or available for purchase, include: NIST17, Massbank Europe and North 98 

America, ReSpect, CASMI, EMBL metabolomics library, HMDB, and GNPS contributed 99 

MS/MS spectra (Wang M et al., 2016, Aksenov et al., 2017, Blaženović et al., 2018). The 100 

resulting molecular networks visualize chemical relationships of compounds and provide a 101 

powerful tool for in-depth interpretation of chemical transformations. One example of this is 102 

the use of molecular networking to help characterize a large number of triterpene saponins in 103 

Siberian ginseng (Ge et al., 2017)  104 
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         We hypothesize that the untargeted metabolomics approach presented provides 105 

information within a gap between targeted molecular analysis and elemental and 106 

macronutrient analysis used in food chemistry. We demonstrate the utility of molecular 107 

networking and other analysis tools, such as multivariate statistics, in analyzing untargeted 108 

metabolomics data collected to assess the chemical impact of food handling techniques. The 109 

potential for untargeted mass spectrometry to augment the knowledge of chemical processes 110 

was assessed using the following well studied processes: 1) the impact of starter cultures on 111 

the fermentation of yogurts, 2) the effects of brewing time on tea, 3) the effect of roasting 112 

coffee on molecular composition, 4) how improper meat storage affects changes in chemistry, 113 

and 5) how the molecular composition of tomato changes, depending on whether it was 114 

ripened on or off the vine or the cultivar selected. All of these scenarios represent typical 115 

processing situations that might occur in commonly consumed foods.  116 

2. Materials and Methods: 117 

We provide a general overview of the materials used and methodology for the five food types. 118 

Details are provided where these are shared between most sample types - experimental 119 

details for each food type as well as brand information can be found in the Supplementary 120 

Information S1.1 - S2.2 and Table S1. 702 samples were considered in the final analysis. 121 

 122 

2.1 Sample collection 123 

Milk, yogurt, tea leaves, brewed tea, coffee beans, brewed coffee, turkey, beef, and tomato 124 

were all sampled in duplicate; one replicate was extracted for analysis (see Supplemental 125 

Material Table S1.) and the other was archived for future uses. Unique barcode numbers 126 
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were assigned to each sample. Liquid samples (defined here as milk, brewed tea, and 127 

brewed coffee) were collected into two identical empty 2 mL round bottom tubes (Qiagen, 128 

Hilden, Germany). All other sample types were collected in 2 mL round bottom tubes pre-filled 129 

with 1.0 mL room temperature ethanol-water (95:5 v/v), (ethyl alcohol, pure, 200 proof 130 

(Sigma-Aldrich, Saint Louis, MO, USA)) and deionized Water (Invitrogen UltraPureTM, Grand 131 

Island, NY, USA)). Duplicate samples were collected in empty 2 mL round bottom tubes and 132 

archived. Sample tubes were weighed before and after sample collection, unless otherwise 133 

noted in the metadata. All samples were stored at -80oC until downstream sample preparation 134 

for MS-based metabolomics. Figure 1 highlights representative examples of images 135 

associated with the five food types that were sampled. 136 

Pasteurized whole milk (Horizon Organic Vitamin D Milk; Broomfield, CO, USA) and 137 

three yogurts (Oikos Plain Greek Nonfat Yogurt (Dannon, Horsham, PA, USA), Voskos Plain 138 

Greek Yogurt (Sun Valley Dairy, Sun Valley, CA, USA) and Kroger Plain Nonfat Greek Yogurt 139 

(Kroger, Cincinnati, OH, USA)) were sampled in biological triplicates and used to culture three 140 

separate batches of home-fermented yogurt, which were sampled over 6 days for a total of 141 

126 samples (see section S1.1 for culturing and sampling description). The yogurts from 142 

Oikos and Voskos contained the same live active cultures (S. thermophilus; L. bulgaricus; L. 143 

acidophilus; Bifidus; L. casei), whereas Kroger contained L. acidophilus, B. bifidum, and L. 144 

casei.  145 

Twelve teas representing six varieties of tea leaves (Oolong, white, black, green, pu’er 146 

and matcha green) were purchased (see supplemental for detailed brand information) and 147 

sampled in biological triplicate before brewing, 10 water blanks, and at 0.5 min, 1 min, 4 min 148 

and 240 min after addition of hot water, giving a total of 185 brewed tea samples.  149 
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38 unique types of coffee were purchased, representing different roasts, brands, and 150 

origins. Coffee beans and brewed coffee were sampled in biological duplicates. There was a 151 

total of 152 samples.  152 

There was a total of 119 meat samples; two types of turkey (certified organic and 153 

conventional) as well as two types of beef (certified organic and conventional) were sampled 154 

in biological triplicates over a 5-day time course to investigate meat spoilage. Each meat 155 

product was sampled into two petri dishes: one sample was spiked with tetracycline (final 156 

concentration of 300 ppb residual tetracycline) while the other was treated with the vehicle 157 

(i.e. 70% EtOH). Although tetracycline is used commonly as a growth promoter for livestock in 158 

some countries, here, it was added to see the effects of this antibiotic on a 5-day food 159 

spoilage test (Granados-Chinchilla & Rodríguez, 2017).  160 

120 tomato samples were sampled from 8 different types of tomatoes (3 brands of 161 

conventional cherry tomato, 1 organic cherry tomato, 1 home-grown cherry tomato, 1 roma 162 

tomato from a San Diego [CA, USA] farmers’ market, purchased canned tomatoes and 163 

sundried tomatoes) as well as a 5-day ripening time course of organic cherry tomatoes (see 164 

Supplemental for detailed brand information). The private garden-grown tomatoes were 165 

naturally grown, ripened on the vine and were not treated with any pesticides/herbicides. The 166 

farmers’ market tomatoes were also indicated as not treated with pesticides/herbicides. We 167 

investigated the effect of origin and storage time (at room temperature) on the molecular 168 

composition. 169 

Samples were collected according to detailed procedures outlined in the 170 

Supplementary Information (S1.1 and Table S1.) and depicted in Figure 1. 171 

 172 
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2.2 Metadata 173 

Metadata were entered manually for all samples. Images were used to capture key sample 174 

information including unique barcode IDs, packaging information and time of sample 175 

collection. Metadata consisted of 142 different descriptive categories including but not limited 176 

to: ingredients, packaging type, location of food production, location of sample collection, 177 

store and brand names, UPC codes, NDB numbers and descriptions, cheese and dairy types, 178 

fermented and non-fermented food, botanical definitions and genus names of plant samples, 179 

conventional vs organically produced, type of animal meat, and presence of common 180 

allergens and additives. Sample information entries were standardized using a metadata 181 

dictionary that explained the types of information needed for each category as well as the 182 

correct formatting. The metadata spreadsheet and dictionary are publicly available (see Data 183 

and Code Availability in Appendix). 184 

 185 

2.3 Sample processing 186 

All samples were extracted in ethanol, centrifuged, dried by centrifugal evaporation and 187 

resuspended in 50% MeOH / 50% Water (Optima LC-MS grade; Fisher Scientific, Fair Lawn, 188 

NJ, USA) containing 2μM sulfadimethoxine (Analytical Standard, Sigma-Aldrich), as an 189 

injection control. Detailed sample processing information can be found in the Supplemental 190 

Section S1.2. 5 µL of resuspended extract was injected for LC-MS/MS analysis. Untargeted 191 

metabolomics was carried out using an ultra-high-performance liquid chromatography system 192 

(UltiMate 3000, Thermo Scientific, Waltham, MA) coupled to a Maxis Q-TOF (Bruker 193 

Daltonics, Bremen, Germany) mass spectrometer with a Kinetex C18 column (Phenomenex 194 

Torrance, CA, USA). Data were collected using a data dependent acquisition method outlined 195 
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in the Supplementary Information (Section S2.1). Electrospray ionization in positive mode was 196 

used. Data were assessed for quality as described in Section S2.2 prior to data analysis. 197 

 198 

2.4 Data analyses 199 

2.4.1 Molecular networking and small molecule annotations 200 

GNPS molecular networking parameters were set to a minimum requirement of 4 ions to match 201 

and a cosine score of >0.7 (https://gnps.ucsd.edu). Parent mass tolerance was 0.1 Da and MS/MS 202 

was set to 0.1 Da (these parameters were used as many reference type spectra are low resolution). 203 

The library search was performed with min match peaks of 4 and a cosine >0.7. Due to the different 204 

small molecule compositions for each food, the annotations of all individual food analyses were 205 

impacted differently, as recently shown with Passatutto, a false discovery rate (FDR) estimator 206 

(Scheubert et al., 2017). Passatutto was used to estimate FDR for the annotations with our settings for 207 

each of the five sub-analyses. Passatutto uses a decoy database created using fragmentation trees 208 

and rebranching of fragments to estimate the FDR. With these analysis parameters, the estimated 209 

FDR of annotations, based on spectral matching, at level 3 for the milk to yogurt was 0.5%, 0.2% for 210 

tea, 0.09% for coffee, 1.5% for meat, and 4.8% for tomato. 211 

For the milk to yogurt analysis, 126 samples resulted in 78,203 MS/MS spectra, of 212 

which 63,241 passed the minimal requirement of four ions and minimum of two identical 213 

spectra (Supplementary Figure 6). After clustering identical spectra 4,142 nodes remained. 214 

147 of the nodes had spectral matches against the libraries searched (3.5% annotation rate). 215 

185 tea samples resulted in 50,547 MS/MS spectra, 44,505 of which passed filtering 216 

(Supplementary Figure 10-11). After merging identical spectra, 1,834 unique MS/MS 217 

spectra comprised a molecular network with 207 annotations (11.2% annotation rate). 146 218 

coffee samples resulted in a total of 50,929 MS/MS spectra. After filtering, 42,752 MS/MS 219 
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spectra remained, which condensed to 1,460 unique spectra in Supplementary Figure 7. Of 220 

the 1,460 unique spectra, 72 had spectral matches to the reference libraries within a cosine of 221 

0.7 (4.9% annotation rate). The meat analysis included 119 samples, resulting in 72,083 222 

MS/MS spectra, 54,663 of which passed the filtering step (Supplementary Figure 8-9). 223 

Merging all identical spectra resulted in 5,035 unique spectra of which 313 were annotated 224 

(6.2% annotation rate). MS of the 120 tomato samples resulted in 71,430 MS/MS spectra, 225 

62,263 passed the filtering for a minimum of 4 ions and a minimum of two identical MS/MS 226 

spectra in the dataset, which condensed to 2,611 unique spectra that are presented as nodes 227 

(Supplementary Figure 5). 212 of the nodes were putatively annotated using the GNPS 228 

libraries (8.1% annotation rate). All annotations are level 2 or 3 according to the 2007 229 

metabolomics standards initiative (Sumner et al., 2007).  230 

 231 

2.4.2 Feature finding using mzMINE 232 

MS1 feature detection was performed using mzMINE2 (http://mzmine.github.io/). Outputs of 233 

the feature matrix report area-under-the-curve. Parameters used for feature finding can be 234 

found in Supplemental Materials (Section S2.3). Samples that did not contain the internal 235 

standard, sulfadimethoxine, were re-injected. MS/MS belonging to the internal standard 236 

sulfadimethoxine were observed in all data included in the analysis; this feature was removed 237 

from the MS1 feature table prior to normalization by sample for downstream statistical 238 

analyses.  239 

 240 

 241 

 242 
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2.4.3 Multivariate statistical analysis and visualization 243 

We used principal coordinates analysis (PCoA) to observe broad molecular patterns and 244 

trends within the data. PCoA takes a dissimilarity matrix as input and aims to produce a low-245 

dimensional graphical representation of data, such that samples closer together have smaller 246 

dissimilarity values than those further apart.  PCoA plots are a beta diversity metric (diversity 247 

between samples) and consist of orthogonal axes where each axis (PC1, PC2, PC3) captures 248 

a percentage of the total variance. For PCoA, signal intensities of the MS1 features were 249 

normalized with Probabilistic Quotient Normalization (PQN) (Ejigu et al., 2013). PCoAs were 250 

calculated with the Canberra dissimilarity metric using QIIME (Caporaso et al., 2010) and 251 

visualized in EMPeror (Vázquez-Baeza et al., 2013).  252 

Heatmaps were created from the filtered and preprocessed MS1 feature tables, comprising 253 

both overall features as well as only features with a GNPS library hit. The Jupyter notebooks 254 

(R and python) used to create the heatmaps and perform the statistical analyses are publicly 255 

available at https://github.com/DorresteinLaboratory/supplementary-256 

MolecularChangesInFood. 257 

3. Results & Discussion 258 

Untargeted MS revealed molecular differences between food types as well as within a food 259 

category due to variations in source and the time-based processing methods of fermentation, 260 

brewing, roasting, spoilage, and ripening. A combination of molecular networking, based on 261 

MS/MS spectra, multivariate and univariate statistical analysis of MS1 features, and data 262 

visualization with principal coordinate analysis plots and heatmaps augmented current 263 
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chemical knowledge of these processes, and exemplified molecular differences on a global 264 

scale and individually for each food type. 265 

3.1 A beta diversity analysis of food types and their processing 266 

Visualization of the complex beta diversity matrix of our MS1 data, visualized using 267 

PCoA plots, showed clear separation by sample type, which was expected (Figure 2 and 268 

movie S1). Yogurt and milk samples formed distinct groups (blue). Tomato and meat 269 

samples formed tight groups, orange and red, respectively, while the tea had two groups 270 

representing the solid (tea leaves) and brewed samples (green). Coffee had three groups 271 

corresponding to extracts of whole or ground beans, depending on the variety, and brewed 272 

coffee. Sample groups that had tighter clustering were more chemically similar, regardless of 273 

sample collection and processing. Because dissimilarities within samples were smaller than 274 

the dissimilarities between food types, each sample type was processed separately to 275 

maximize separations in PCoA space within a single food type.  276 

PCoA analysis of the yogurt and milk samples showed separation based on brand, 277 

despite the fact that they contained similar live active cultures and ingredients (Figure 3a). 278 

The home fermentation time courses of milk inoculated with different yogurts, as starter 279 

culture, are displayed in Figure 3b and Figure S1a-S1b. The fermentation process and 280 

associated molecular changes were visualized by all three home ferments becoming more 281 

yogurt-like, as illustrated by increases in distance between the Kroger yogurt and the starting 282 

milk in PCoA space, corresponding to transition of the home ferment (milk + starter yogurt) 283 

through time, becoming more similar to the original starter culture (Figure 3b). Voskos 284 

contained Grade A pasteurized milk and cream, in addition to nonfat milk found in the Oikos, 285 
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possibly contributing to differences between these yogurts and the corresponding home 286 

ferments, despite containing the same live active cultures (Figure 3a, Figure S1a-S1b). 287 

PCoA analysis of tea samples, Figure 3c, revealed unambiguous differentiation of tea 288 

leaves and brewed tea, as well as differences between tea types. Note, blank water samples 289 

were most differentiated from the solid extract samples along PC1 (Figure 3c). Twelve 290 

different teas were sampled at 0.5 min, 1 min, and 4 min to explore the brewing process with 291 

respect to time and emulate tea that has been left steeping for longer periods of time (240 292 

min). The tea samples, regardless of type, appeared most similar (in PCoA space and hence 293 

chemistry) to the water blanks at the earliest time points and became more similar to solid 294 

samples over time (along the PC1 axis which explained 25.9% of total variance), reflecting 295 

the typical brewing process while measuring empirically the release of compounds from the 296 

leaves (Figure 3c, Figure 3d. Figure S1c). The kinetics of tea extraction in the PCoA plot 297 

shared similar trends for all teas. We observed minor chemical differences between 240 min 298 

and 4 min for all tea types, which supports a steeping time rationale that appears to be 299 

effective for extraction of phytochemicals from tea. Differences, based on tea type, were also 300 

observed: white, green, matcha green, and black tea liquid samples were more similar to 301 

each other than to oolong and pu’er, which were differentiated along PC3 (6.81% of total 302 

variance) (Figure 3c); Figure 3d and Figure S1c illustrate clear differences in beta diversity 303 

across different American and British teas and Chinese teas (oolong and pu’er), respectively. 304 

It is noteworthy that, although PCoA enabled observation of overall trends, it did not display 305 

changes in individual molecule concentrations. Individual chemical changes are visualized in 306 

section 3.2 (Heatmaps) and discussed in section 3.3 (Molecular Networking and Annotations).  307 
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PCoA analysis of coffee revealed a clear trend among the sample types: brewed 308 

coffee (left hand side of PCoA) vs ground coffee (right hand side of PCoA) (Figure S1d). 309 

Besides samples clustering by sample type, different roast types could not be identified using 310 

PCoA but, as noted, changes in individual molecules are not captured using this approach. It 311 

is possible that molecular changes induced by roasting might be observed predominantly as 312 

volatile molecules, which were not assessed in this study. Indeed, changes in aroma, 313 

between the different roasting types, could be readily perceived.  314 

Figure S1e-1f shows the effects spoilage had on ground beef and turkey, in the 315 

presence and absence of tetracycline, visualized along PC1, 20.88%. A key driver of 316 

chemical differences in PCoA was the type of meat (turkey or beef) (Figure S1e; PC2 8.4%). 317 

As tetracycline is used in the cattle industry, in some countries/ regions, we sought to identify 318 

if it also resulted in differences in chemical composition over time, possibly due to changes in 319 

microbial colonization and degradation during spoilage. To control for factors such as source 320 

and treatment of the meat, we added exogenous tetracycline as a treatment and the vehicle 321 

to controls. Samples with and without tetracycline changed similarly over time indicating that, 322 

based on the untargeted LC-MS/MS analysis, addition of tetracycline did not greatly impact 323 

chemical changes during aging processes (Figure S1f). 324 

PCoA analysis of the tomato samples revealed that both source (Figure S1g) and 325 

storage time (Figure S1h) affected the molecular composition of tomatoes. As expected, 326 

processed tomato samples (canned and sundried) occupied very different PCoA spaces than 327 

fresh tomatoes (Figure S1g). Chemical differences between the processed and fresh tomato 328 

could be attributed to the contribution of processing (e.g. heating or addition of sugar and oil) 329 

as well as packaging materials and not just the chemical compositions of tomatoes. It was 330 
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also notable that differences existed for fresh tomatoes, with those from the farmers’ market 331 

most closely resembling home-grown tomatoes, and all store-bought tomatoes resembling 332 

one another, whether organic or not. It is likely that the close similarity of garden and farmers’ 333 

market roma tomatoes resulted from similar treatment, where the fruits are ripened on the 334 

vine and collected and sold without processing, including storage in different types of packing 335 

or washing (this is known for the garden tomatoes and presumed for the farmers’ market). 336 

Conversely, store-bought tomatoes are collected at an early stage, often not fully ripened for 337 

ease of transportation, transported over long distances, packaged, and treated with 338 

exogenous ethylene (depending on the supplier). This appears to have a more significant 339 

effect on the chemical compositions of tomatoes than the “organic” designation. When 340 

organic cherry tomatoes were left at room temperature to ripen, their molecular composition 341 

changed over time (Figure S1h), although the tomatoes did not notably change in either 342 

appearance or smell.  343 

3.2 Heatmaps for Identification of Chemical Changes by Food Group 344 

We created heatmaps to visualize molecular changes between samples for time 345 

course experiments, specifically brewing tea, yogurt fermentation, tomato ripening, and 346 

improper meat storage, and to gain insight into features that behave similarly over time or 347 

originate from different sample types.  348 

Complementary to a PCoA, heatmaps provide a visual overview of data to give more 349 

detailed information about molecular changes driving differences within and between sample 350 

types. Figure 4 shows tea and milk-to-yogurt time courses, which had the largest changes in 351 

abundance; heatmaps for other sample types are included in the Supplementary Information 352 

(Figure S2-S5). Consistent with the PCoA analysis, we observed different metabolite profiles 353 
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between tea leaves and brewed tea (Figure 4a). Furthermore, we observed an increase in 354 

relative intensities of molecular features due to longer brewing times, independent of the tea 355 

type. We assessed the correlation of relative intensity per feature and tea type with extraction 356 

time, which resulted in a total of 2,045 significantly correlated features (spearman correlation, 357 

p-value < 0.05). For example, we observed that the relative intensities of procyanidin B and 358 

theaflavin increased over time (Kruskal–Wallis, N=6, p-value ranging from 0.01 to 0.02, 359 

between brewing times 0.5 and 240) (Figure 4b and Figure S6a). We also assessed the 360 

correlation of relative intensity per feature and home ferment with different yogurt inoculums 361 

over time. For the Kroger yogurt, this resulted in a total of 1,587 significantly correlated 362 

features (spearman correlation, p-value < 0.05) (Figure 4c). Figure 4d and Figure S6b 363 

highlight selected molecular features for which we obtained putative structure annotations 364 

through GNPS library matching. For example, we observed that the relative intensity of 4-O-365 

beta-galactopyranosyl-D-mannopyranose decreased over time for each yogurt type 366 

individually as well as overall (Kruskal–Wallis, N=9, p-value=0.0023, between 0 and 58 hrs) 367 

(Figure 4d). 368 

Molecular changes during meat (beef and turkey) storage over five days were also 369 

visualized using a heat map (Figure S3a). When comparing antibiotic- vs non-antibiotic-370 

treated meat (beef and turkey), overall molecular differences, as seen in PCoA space, did not 371 

vary. However, there were some specific low intensity molecules that changed, although 372 

differences were minimal due to the addition of tetracycline, which was consistent with 373 

observations from the PCoA. We observed differences between organic and non-organic 374 

beef. For example, in non-organic beef, oleoyl-taurine increased during the 5 days but did not 375 

appear in organic samples, while concentrations acetyl-carnitine decreased in non-organic 376 
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beef but were consistent across all time points for organic beef. In turkey, the rates of 377 

appearance of oleoyl-taurine and disappearance of acetyl-carnitine were only slightly different 378 

(Figure S3b). The spectral match to the fungal molecule, termitomycamide E (Choi et al., 379 

2010), with parent mass difference 0.000 Da and very strong cosine match of 0.84, increased 380 

over time. The presence of three analogues, with mass differences pointing to different acyl 381 

chain lengths, and suppression with the addition of tetracycline, would be consistent with 382 

increased microbial (fungal) loads (Figure S5). 383 

Molecular differences between tomato samples were most striking when comparing 384 

sun dried, canned, and fresh tomatoes. In the heatmap, no clear-cut large-scale patterns 385 

were observed when visualizing molecular changes during ripening of fresh tomatoes (Figure 386 

S2). During the ripening process, some individual molecular features were found to decrease 387 

in relative abundance. For example, 5’-methylthioadenosine, a key ripening hormone for 388 

plants and precursor of plant-produced ethylene (North et al., 2017), was found to have 389 

decreased significantly in relative abundance over the 5-day time course. Also, plant 390 

flavonoids (including a level-3 annotation for naringenin) and tomatidine, a tomato-specific 391 

alkaloid (Brink and Folkers, 1951; Friedman, 2013), were found to have decreased 392 

significantly in relative intensity over time. This is informative as many of the health properties 393 

associated with consumption of polyphenol-containing foods are attributed to molecules like 394 

naringenin and our results, therefore, indicated tentatively that the nutritional value of 395 

tomatoes might change over the time period tomatoes are stored in the home environment.   396 

3.3 Molecular networking and identification of known and related compounds 397 

Mass spectral molecular networking provided additional information about molecular 398 

relationships that complemented global differences captured by PCoA and further explored 399 
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the molecules and molecular changes within each food type. In milk and yogurt, matches with 400 

six carbon sugars, disaccharides and oligosaccharides, vitamins, and acylated carnitines 401 

were observed (Figure 5b). In addition, large lipid molecular families, such as sphingolipids, 402 

and glycerol conjugated with fatty acids, such as monoolein and linoleoylglycerol, were 403 

identified. Delvocid, also known as the clinical antifungal ‘natamycin’, which is an additive 404 

used to preserve dairy products, was detected (Branen et al., 2001) and did not change in 405 

relative abundance over time. These annotations are all consistent with the animal origins of 406 

the samples (milk, yogurt). However, we also obtained unexpected annotations. A molecular 407 

family of bile acids, containing annotated glycocholic and cholic acids, was identified. This 408 

molecular family was not expected to be present in these samples, as they are primarily 409 

associated with the gut. Putative assignments were inspected and confirmed using manual 410 

inspection of raw data, accurate mass, fragmentation pattern, and retention time analysis, 411 

which further supported the presence of this molecular family. 412 

A large range of phytochemicals were annotated in tea samples (Figure 6c and 413 

Supplementary Figure 12), including large molecular families associated with flavonoids, 414 

with spectral matches to puerins, catechins, and apigenin (assignments are putative as 415 

isomers are difficult to differentiate in accordance with level 3 metabolite identification 416 

(Cuyckens & Claeys, 2004, Sumner et al., 2007, Borges et al., 2018). MS work on tea has 417 

been done primarily in negative ionization mode. Here, using the positive ionization mode, we 418 

corroborated earlier work finding molecular families containing flavonoid aglycones with 419 

MS/MS matches to quercetin, kaempferol, myricetin, and (epi)catechin – glycosides of which 420 

are abundant in tea (van der Hooft et al., 2012a) – and a large molecular family consisting of 421 

glycoside derivatives that had spectral matches with quercetin and kaempferol that were 422 
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bundled together with chlorogenic acids. Note, the majority of nodes for this family were 423 

annotated with GNPS community contributed library hits, indicating a greater library coverage 424 

for some compound classes, likely due to community contributed spectra. As expected, 425 

caffeine was also annotated in tea samples. Theaflavin, a polyphenol formed during fungal 426 

oxidation and its analogues, often associated with black tea (Zhang et al., 2018), were 427 

detected in white, green, black and oolong tea samples. Theaflavin increased in relative 428 

concentration over time, as shown in Figure 4 and Figure S13. These annotations were 429 

consistent with known processes that use polyphenol building blocks to create larger 430 

scaffolds like theaflavin and give black tea its typical color. Furthermore, fuzhuanins, 431 

polyphenol-derived molecules (Luo et al., 2013), which are beta-ring fission lactones of 432 

flavan-3-ols like epicatechin, were found at high abundance in tea samples. 433 

In coffee (Figure 5c), we also observed caffeine as well as methyl-caffeine (1,3,7,8-434 

Tetramethylxanthine) and another related compound with a delta mass of m/z 14.01 (CH2), 435 

corresponding to theobromine. Furthermore, we detected several flavonoids and a large 436 

number of hydroxycinnamic acids and chlorogenic acids, which are commonly observed in 437 

plants (Islam et al., 2018; Clifford et al., 2017; Pastoriza et al., 2017; Tajik et al., 2017; 438 

Naveed et al., 2018). In addition, library matching revealed the presence of mascarosides, 439 

molecules commonly observed upon roasting of coffee (Shu et al., 2014). The mascarosides 440 

were identified in the molecular network by m/z 162.053, 15.996 and 18.011 gains and 441 

losses, corresponding to mass shifts associated with six carbon sugars, oxygen, and water, 442 

respectively – all pointing consistently to the presence of glycosylated mascarosides. 443 

In the meat samples (Figure 6a), as expected, we observed MS/MS matches to 444 

tetracycline displayed as a single node (no related spectra were detected), which were more 445 
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abundant in turkey samples. Although tetracycline is used commonly as a growth promoter, 446 

here it was added to see the effects of this antibiotic on a 5-day food spoilage test (Granados-447 

Chinchilla & Rodríguez, 2017). We also observed spectral matches with carnosine as well as 448 

a large cluster of acyl carnitines with five spectral matches to different acylations. The acyl 449 

carnitines were observed predominantly in beef. However, we also found a molecular family 450 

of N-acyltaurines (NATs), a recently discovered class of lipids (Turman et al., 2008). Figure 451 

S3 shows how NAT concentrations increased, after two days of storage at room temperature, 452 

whereas levels of acylcarnitines (markers for beta-oxidation) dropped, suggesting these 453 

chemical changes were associated with decomposition over time. Ceramides, component 454 

lipids in eukaryotic cell membranes, were detected in both beef and turkey, but they only fell 455 

below the level of detection after 5 days in beef. Their presence suggested disintegration of 456 

cells within the tissue and the lability of ceramides would explain their disappearance over 457 

time. Oxidation in the presence of haem-iron may have contributed to increased degradation 458 

in red meat compared with turkey. In contrast, a molecular family containing carnosol, a 459 

metabolite from rosemary (Loussouarn et al., 2017), was observed in turkey, but not in beef. 460 

Only the packaging of turkey grown without antibiotics and growth hormones stated that 461 

rosemary was used (see study Metadata), yet it was observed in both conventionally grown 462 

as well as antibiotic-free meat. Both dipeptides and N-methyl histidine were detected during 463 

the 5-day aging process of the meat. Thus, the molecular families described here are 464 

consistent with these sample types. Additionally, the changes observed in chemical 465 

composition, emerging after 2 days of storage for a relatively small number of molecular 466 

features, suggested these might be used as signature compounds for decomposition in meat 467 

samples (Supplementary Figure 2).  468 
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Many known chemicals in tomatoes were detected, including chlorogenic acid 469 

derivatives and flavonoids (Figure 5a), both compound groups are found commonly in tomato 470 

cultivars (van der Hooft et al., 2012b; Floros et al., 2017). A molecular family of tomatidine-471 

related molecules was observed in all tomato samples. Tomatidine, a tomato-specific alkaloid, 472 

as the name suggests, and structural component of related glycoalkaloids, is abundant in 473 

tomato plant leaves and stems but is less concentrated in the fruits. Similarly, phenylethyl 474 

pyranosides were observed in all tomatoes. Only in sundried tomatoes did we observe a 475 

spectral match with glucose, perhaps added as a sweetener. In both sundried and fresh 476 

tomatoes, we detected azoxystrobin, a fungicide used in agriculture. Many molecules, 477 

including added oils, sugars, and preservatives, might explain the differences observed 478 

between processed and raw tomatoes in the PCoA (Figure S1g, Figure 5a). 5’-479 

methylthioadenosine, one source of ethylene, a ripening hormone in plants, was detected in 480 

all tomatoes, except sundried tomatoes (North et al., 2017). The relative concentrations of 5’-481 

methylthioadenosine were observed to decrease over time/ripening (Figure S2).   482 

  483 

3.4 Molecular transformations  484 

Heatmaps as well as molecular networks, while very different but complementary 485 

visualization techniques, confirmed and complemented one another and provide additional 486 

perspectives to augment current food analysis. For example, theaflavin increased significantly 487 

in relative abundance over time, which was visualized in the heatmap (Figure 4a,b) as well 488 

as the molecular network displaying brewing time (Figure S13). In Figure 6c, theaflavin is 489 

associated with two unannotated compounds, which allowed the presence of two analogues 490 

with mass shifts of 16 and 30 Da to be confirmed and are consistent with a hydroxylated as 491 
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well as a double de-hydroxylated analogues, and other further reduced analogues. These 492 

kinds of relationships facilitate interpretation and understanding of chemical processes 493 

without requiring the identity of molecules detected to be known. The molecular composition 494 

of tea samples changed over time, with changes observed in the abundance consistent with 495 

continued extraction of molecules as opposed to chemical modifications. While a range of 496 

compounds increased in many of the varieties, there were molecular features specific to tea 497 

type, such as increased relative abundance of coniferyl aldehyde in only oolong tea (Figure 498 

S6a panel 2 and Figure 6c cluster 8). The molecular composition and extraction kinetics of 499 

oolong tea might differ from other varieties as a result of extensive drying, physical changes in 500 

the leaves (e.g. twisting/curling), and oxidation during production. 501 

The changes observed in tea samples were in contrast to the yogurt samples, where 502 

chemical alterations over time varied significantly, likely due to microbial metabolism. We 503 

detected significant changes in PCoA, molecular networks, and heatmaps. In the PCoA, the 504 

home ferment inoculated with Kroger yogurt resembled the original starting culture, at a 505 

molecular level, and differed from other home ferments, possibly because it contained 506 

different yogurt cultures. Interestingly, when we focused our analysis on annotated 507 

compounds only, significant changes over time were not observed in the heatmap (Figure 4 508 

and Figure S4), indicating that many of the molecular transformations during fermentation 509 

have not been characterized yet or the reference spectra are not available in MS library 510 

databases. Consistent with the lack of reference spectra in public databases, the yogurt and 511 

milk samples also had the lowest annotation rate at 3.5%. Among the annotated features, we 512 

found a broad range of compounds (Figure S8), including food additives and sugars, which 513 

were also detected in other milk types within publicly available datasets on GNPS, such as 514 
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breast milk. The unexpected occurrence of bile acids in the milk and yogurt samples might 515 

originate from secretion from the cows’ mammary glands into the milk, as bile acids have 516 

been detected previously in human breast milk (Forsyth et al., 1983). 517 

4. Conclusion 518 

Our study presents the first large-scale food composition analysis using mass spectral 519 

molecular networking. The untargeted MS approach coupled with molecular networking 520 

allowed us to assess large-scale differences between sample types, find molecule-molecule 521 

links within and between sample types, and identify different compound classes found within 522 

a sample type - all useful in biochemical interpretations and understanding. We determined 523 

that foods undergo molecular changes caused by a variety of biological and chemical 524 

processes over different time periods, as exemplified by meat, tea and yogurt. Brewing time 525 

for tea altered its composition, increasing the diversity of molecules, whereas fermentation of 526 

yogurt from milk, spoilage of meat, and ripening of tomatoes were all dominated by biological 527 

transformations, altering the molecular composition over a longer period. Mass spectral 528 

molecular networking and spectral library search successfully identified key molecular 529 

features, which differed based on processing type, such as fermentation time in the yogurt 530 

samples and brewing time for tea. Our study provides a reference dataset freely accessible 531 

for feature mining in future food-related or other studies. One advantage of the GNPS 532 

molecular networking workflow is the search parameter 'Find Related Datasets'. As shown in 533 

this study, even the most traditional food types contain large numbers of unannotated 534 

molecules and, therefore, we expect that increasing depositions of MS datasets in the public 535 

domain would allow comparisons with other complex mixtures and narrow down the origins of 536 
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molecular features. This is the first large-scale food chemistry study, free and publicly 537 

accessible through the KnowledgeBase GNPS (Wang et al., 2016). Anyone who wishes to 538 

continue exploring these data can subscribe to the project, as it will be subject to living data 539 

analysis. Living data is a strategy introduced to metabolomics in Wang et al. (2016), where 540 

data are continuously re-analyzed, and updates are provided automatically to all subscribers. 541 

This allows future studies to exploit the mass spectral molecular networking data with the 542 

annotated food molecules, with the ability to propagate annotations across a new network to 543 

better understand the chemical space that foods occupy and how food handling and 544 

processing affect it. Given that 88-97% of all the MS/MS spectra are currently unannotated, 545 

as a community, we will need to increase our knowledge about the molecular compositions 546 

and molecular changes in our food. We have shown that, with our contribution to the food 547 

chemistry field, GNPS molecular networking promises to become a key repository and 548 

knowledgebase for untargeted MS-based food composition studies, and demonstrated the 549 

utility of combining molecular networking approaches with statistical measures to discern 550 

meaningful chemical transformations. 551 

  552 

Acknowledgments 553 

The result of this work was a part of a hands-on mass spectrometry course at UCSD called 554 

“System Wide Mass Spectrometry”. The authors were all participants or mentors of this 555 

course. We further acknowledge NIH number P41 GM103484, and NIH Grant 556 

GMS10RR029121 and Bruker for the shared instrumentation infrastructure that enabled this 557 

work and the UCSD Center for Microbiome Innovation. AMCR and PCD were supported by 558 

NSF grant IOS-1656481. FV and PCD were supported by the Office of Naval Research 559 



25 
 

Multidisciplinary University Research Initiative (MURI) Award, Award number N000014-15-1-560 

2809.  561 

 562 

Appendix 563 

 Supplementary data 564 

Supplementary data associated with this article can be found with the online version. 565 

 Data and code availability 566 

Data can be accessed via http://gnps.ucsd.edu via accession numbers for Milk/yogurt: 567 

MSV000082387; Tea: MSV000082388; Coffee: MSV000082386; Meat: MSV000082423; 568 

Tomato: MSV000082391. Metadata are uploaded with each dataset. All jupyter notebooks 569 

and scripts used for data pre-processing and analysis are publically available at: 570 

https://github.com/DorresteinLaboratory/supplementary-MolecularChangesInFood 571 

  572 

Links to networking jobs for GNPS networking jobs: Parameters are precursor and fragment 573 

ion tolerance set to 0.1 Da, min matched fragment ions: 4, cosine 0.7; library search min 574 

match peaks: 4; run with metadata, attributes assigned; NIST17 included. 575 

milk/yogurt samples only 576 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1f11fb76e15240a893e46e02d9c58cd2 577 

tea samples only 578 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f7569832b0d241f79812446d81cd5ca5 579 

coffee samples only 580 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=2c83502fefc0469ba79ba70a9461b9b5 581 

meat samples only 582 
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https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1520f7112d9f445384eb743ac4358c21 583 

tomato samples only 584 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=cf6e0347de8b48aeb8c700e45b4d3159 585 

All sample types: 586 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b881151839574f639ceaf06f9b11e464 587 

  588 

Links for jobs performed to obtain the feature MS1 and MS/MS linked table for PCoA and 589 

heatmaps and statistical analysis: Parameters are precursor and fragment ion tolerance set to 590 

0.1 Da, 4 min match peaks, cosine 0.7; inputs are the .mgf; .csv from mzMINE and the 591 

metadata file. 592 

Global: 593 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=25577f11a35c48cdb30dfc005cbd6638 594 

milk/yogurt: 595 

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f9ede96d9e694f9e8b6186991e289c17 596 

tea: 597 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=80fc6384e52b4fe18e13ebbb3a86b4d8 598 

coffee: 599 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=750cc6fe82dc4732b84b355904cf91d3 600 

meat: 601 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=85c7380ca7ee44b3a3ed448c9b4d09fa 602 

tomato: 603 

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=7a4031dd3ee146699ceecef919d7f668 604 

 Link to Clusterapp: 605 
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http://dorresteinappshub.ucsd.edu:3838/clusterMetaboApp0.9.1/ 606 
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 769 

Figure captions 770 

 771 

Figure 1. Representative images of foods sampled and timeline of sampling. From top to 772 

bottom: Yogurt preparation from milk, brewed and loose leaf tea, different coffees, 773 

representing diverse roasts, brands and origins as ground coffee and brewed, ground beef 774 

and ground turkey left out to spoil, image from 3 days of storage depicted on the far right, and 775 

tomato types and ripening timeline. RT denotes room temperature and // denotes a time 776 

break. [color reproduction] 777 

 778 

Figure 2. Global PCoA analysis to understand the molecular relationships among all samples 779 

analyzed. PC1 (10.43%); PC2 (5.96%); PC3 (5.86%). As a 2D image, the PCoA plot does not 780 

reveal the relationships clearly, a movie rotating this image is provided as supporting 781 

information [uploaded on massive.ucsd.edu MSV000083014]. MS1 features are TIC 782 

normalized per sample and the PCoA analysis was performed using Qiime1 and the 783 

Canberra distance metric. [color reproduction] 784 

 785 
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Figure 3. PCoA plots for the individual food types, color coded by metadata categories to 786 

visualize key drivers in molecular patterns. The three store bought yogurts containing live 787 

active cultures, the milk and the home ferments using the different yogurts as starter culture 788 

show distinct groupings. The spheres are colored based on milk and yogurt type (a) or 789 

fermentation time from 0 to 58 hrs (b). Tea samples differentiated based on tea type and 790 

brewed tea vs. tea leaves (c). The time course of tea extraction is displayed for American and 791 

British teas: black, green, matcha green, and white teas (d). [color reproduction] 792 

 793 

Figure 4. Metabolites changing over tea extraction time and during the fermentation process 794 

from milk to yogurt. a) Heatmap showing tea metabolites changing over extraction time 795 

across different tea types. b) Specific metabolites increase significantly in their relative 796 

intensity during tea extraction time. c) Heatmap showing metabolites changing during the 797 

fermentation process from milk to yogurt across different yogurt brands used as inocula, as 798 

well as the milk as control. d) Metabolites increasing or decreasing significantly during the 799 

fermentation process across different home ferments. Metabolite annotation was performed 800 

through mass spectral molecular networking and spectral matching to reference spectra.  801 

[color reproduction] 802 

  803 

Figure 5. Molecular network clusters of the a) tomato color coded by processing method, b) 804 

milk to yogurt, c) coffee data. The clusters are enlarged regions of specific molecular families 805 

observed within the full molecular network. The color coding for different samples groups are 806 

explained in the figure legend. Node sizes indicated relative precursor abundance and 807 

selected library identifications are annotated in the figure and shown through squared node 808 



33 
 

shape. The full size images of the entire network where one can zoom in to the molecular 809 

networks can be found as supporting information (Figure S7-S9) and the GNPS links to the 810 

analysis jobs are provided in the data availability section. All annotations shown are level 2 or 811 

3 according to the 2007 metabolomics standards guidelines (Sumner et al., 2007). [color 812 

reproduction] 813 

  814 

Figure 6. Molecular networks of the data. a) reflect the meat samples color coded by turkey 815 

or beef. b) same network as a) but color coded by aging time. c) molecular networks color 816 

coded by tea. The clusters are enlarged regions of specific molecular families observed within 817 

the full molecular network. The full size images of the entire molecular networks where one 818 

can zoom in molecular networks can be found as supporting information (Figures S10-S12) 819 

and the GNPS links to the analysis jobs are provided in the data availability section. All 820 

annotations shown are level 2 or 3 according to the 2007 metabolomics standards guidelines 821 

(Sumner et al., 2007). [color reproduction] 822 

 823 



1 whole milk (Horizon Organic Vitamin D 
Milk)
3 brands of yogurt: Oikos plain Greek
nonfat , Voskos plain Greek , Kroger plain
nonfat Greek

0          11          24         35           47        58

Milk + Yogurt Hours

6 tea types:
White, Green, Pu’er
Matcha Green , 
Oolong, Blackmin

//
0   0.5   1                                  4 240

Brewing

38 varieties of coffee
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0                         2

Brewing min

4 types of meat : 
Ground Beef
Ground Beef (certified organic)
Ground Turkey
Ground Turkey (certified organic)  

0                         24 48 72                      96

HoursLeft at RT

Organic cherry tomatoes
Non organic cherry tomatoes
Sun-dried tomatoes
Canned tomatoes
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HoursRipening at RT







Kr o g er y o g urt

 t
= 0

 t
= 1

1

 t
= 2

4

 t
= 3

5

 t
= 4

7

 t
= 5

8

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

ori
gi
n a
l

Oi k o s y o g urt

 t
= 0

 t
= 1

1

 t
= 2

4

 t
= 3

5

 t
= 4

7

 t
= 5

8

ori
gi
n a
l

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

V o s k o s y o g urt

 t
= 0

 t
= 1

1

 t
= 2

4

 t
= 3

5

 t
= 4

7

 t
= 5

8

ori
gi
n a
l

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

ori
gi
n a
l

R o w Z − S c or e

− 1 0

− 5

0

5

1 0

0. 5   1   4  2 4 0  sTi m e [ mi n]

bl a c k  gr e e n  m at c h a  o ol o n g p u’ er w hit ea)

b)

1. T h e afl a vi n

o ol o n g p u' er w hit e

b l a c k gr e e n m at c h a gr e e n

0. 5 1 4 2 4 0 0. 5 1 4 2 4 0 0. 5 1 4 2 4 0

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

Ti m e [ mi n]

P
e
ak

 
Ar

e
a

Ti m e [ h]

* 1

* 2

* 3

R o w Z − S c or e

− 5

0

5

mil k  Oi k o s y o g urt  V o s k o s y o g urt  Kr o g er y o g urt

 0   1 1  2 4  3 5  4 7  5 8

c)

d)
1.  4 − O − b et a − G al a ct o p yr a n o s yl −
          D − m a n n o p yr a n o s e

o = ori gi n al

 0   1 1  2 4  3 5  4 7  5 8   o 0   1 1   2 4  3 5   4 7  5 8  o  0   1 1   2 4  3 5  4 7  5 8   o

* 1

* 2

* 3

Ti m e [ h]0. 5   1  4  2 4 0  s 0. 5  1  4 2 4 0  s 0. 5 1   4  2 4 0  s 0. 5 1   4  2 4 0  s 0. 5  1   4  2 4 0  s

s = s oli d

P
e
ak

 
Ar

e
a

P
e
ak

 
Ar

e
a

P
e
ak

 
Ar

e
a








