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Despite extensive research and remarkable advancements in the control of complex dynamical networks,
most studies and practical control methods limit their focus to time-invariant control schedules (TICS).
This is both due to their simplicity and the fact that the benefits of time-varying control schedules (TVCS)
have remained largely uncharacterized. In this article, we study networks with linear and discrete-time
dynamics and analyse the role of network structure in TVCS. First, we show that TVCS can significantly
enhance network controllability over TICS both in small and large networks. Through the analysis of a
scale-dependent notion of nodal centrality, we then show that optimal TVCS involves the actuation of the
most central nodes at appropriate spatial scales at all times. Consequently, it is the scale-heterogeneity of
the central nodes in a network that determine whether, and to what extent, TVCS outperforms conventional
policies based on TICS. Here, scale-heterogeneity of a network refers to how diverse the central nodes
of the network are at different spatial (local vs. global) scales. Several analytical results and case studies
support and illustrate this relationship.

Keywords: complex dynamical networks; control scheduling; time-varying actuation; scale heterogeneity.

1. Introduction

Many natural and man-made systems, ranging from the nervous system to power and transportation grids
to societies, exhibit dynamic behaviours that evolve over a sparse and complex network. The ability
to control such network dynamics is not only a theoretically challenging problem but also a barrier
to fundamental breakthroughs across science and engineering. While multiple studies have addressed
various aspects of this problem, several fundamental questions remain unanswered, including to what
extent the capability of controlling a different set of nodes over time can improve the controllability of
large-scale, complex networked systems.
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660 E. NOZARI ET AL.

Controllability of a dynamical network (i.e., a network that supports the temporal evolution of a well-
defined set of nodal states) is classically defined as the possibility of steering its state arbitrarily around
the state space through the application of external inputs to (i.e., actuation of) certain control nodes [1].
This raises a fundamental question: how does the choice of control nodes affect network controllability?
Hereafter, we refer to this as the control scheduling problem [2–4]. Notice that in this classical setting,
attention is only paid to the possibility of arbitrarily steering the network state, but not to the difficulty
and energy cost of doing so. This has motivated the introduction of several controllability metrics to
quantify the required effort in the control scheduling problem [5–9]. While a comprehensive solution
has remained elusive, these works have collectively revealed the role of several factors in the control
scheduling problem such as the network size and structure [6], nodal dynamics [3] and centralities [2, 7],
the number of control nodes [6] and the choice of controllability metric [8]. This problem has also close
connections with the optimal sensor scheduling problem, see e.g., [10–13] and the references therein.

The majority of the above literature, however, implicitly relies on the assumption of time-invariant
control schedules (TICS), namely, that the control node(s) is fixed over time. Depending on the specific
network structure, this assumption may come at the expense of a significant limitation on its control-
lability, especially for large-scale systems where distant nodes inevitably exist relative to any control
node. Intuitively, the possibility of time-varying control schedules (TVCS), namely, the ability to control
different nodes at different times, allows for targeted interventions at different network locations and can
ultimately decrease the control effort to accomplish a desired task. On the other hand, from a practical
standpoint, the implementation of TVCS requires the ability to geographically relocate actuators or the
presence of actuation mechanisms at different, ideally all, network nodes, and more sophisticated control
policies. This leads to a critical trade-off between the benefits of TVCS and its implementation costs
which has not received enough, if any, attention in the literature.

The significant potential of time-varying schedules for control (and also sensing, which has a dual
interpretation to control) has led to the design of (sub)optimal sensor [14, 15] and control [16, 17]
scheduling algorithms in recent years. While constituting a notable leap forward and the benchmark for
the methods developed in this article, these works are oblivious to the fundamental question of whether,
and to what extent, TVCS provides an improvement in network controllability compared with TICS. Our
previous work [18] has studied the former question (i.e., whether TVCS provides any improvement over
TICS) in the case of undirected networks, but did not consider directed networks or, more importantly,
addressed the latter question of how large the relative improvement in network controllability is. Given
the trade-off between benefits and costs of TVCS, a clear answer to this question is vital for the practical
application of TVCS in real-world complex networks.

In this article, we address these two questions in the context of discrete-time linear dynamics evolving
over directed networks. Since the implementation costs of TVCS are greatly domain-specific and do not
follow any common pattern of dependence on the control schedule, we here provide an in-depth analysis
of the benefits of TVCS. This provides the necessary information for comparison with the costs of
implementing TVCS in any specific application in order to decide between TICS and TVCS.

To this end, we show that 2k-communicability, a new notion of nodal centrality that we define here,
plays a fundamental role in TVCS. This notion measures the centrality of each node in the network at
different spatial scales. Throughout this work, the spatial scale (or simply scale) of any notion of centrality
is defined as the maximum topological distance between pairs of nodes that allows them to affect the
centrality of each other, where topological distance between a pair of nodes refers to the minimum number
of edges in the graph of the network that should be traversed to go from one to the other. In particular, the
spatial scale of degree centrality is 1, while the spatial scale of eigenvector centrality is ∞. Based on the
distinction between local and global nodal centralities (i.e., centralities with small and large spatial scales,
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TIME-VARYING CONTROL SCHEDULING 661

respectively), we show that the optimal control node at every time instance is the node with the largest
centrality at the appropriate scale (i.e., the node with the largest 2k-communicability at an appropriate k).
Accordingly, our main conclusion is that the benefit of TVCS is directly related to the scale-heterogeneity
of central nodes in the network: the most benefit is gained in networks where the highest centrality is
attained by various nodes at different spatial scales, while this benefit starts to decay as fewer nodes
dominate the network at all scales (i.e., scale-homogeneity).

Moreover, we provide an extensive discussion of how the dynamical adjacency matrix of a network
can (and should) be extracted from its static connectivity, a vital step that is often ignored in the literature.
Indeed, our simulation results show that this step has a significant effect on the benefit of TVCS, with
transmission networks (networks with states that represent physical quantities transmitted over the net-
work) benefiting significantly more than induction networks (those with non-physical states that induce
state dynamics over the network) from TVCS.

2. Notation and preliminaries

In this section, we introduce our notation and briefly review some preliminary concepts that will be used
throughout the work. We use R and N to denote the set of reals and positive integers, respectively. Given
x ∈ R

n, xi and (x)i refer to its i’th component. Similarly, aij and (A)ij refer to the (i, j)th entry of A, and ai

refers to its i’th column. Given a matrix M ∈ R
n×n, its trace, determinant, and eigenvalue with smallest

magnitude are denoted by tr(M), det(M) and λmin(M), respectively.

2.1 Graph theory

A weighted undirected graph G = (N , E , A) consists of a vertex set N = {1, . . . , n}, an edge set

E = {{i, j} | i is connected to j},

and an adjacency matrix A ∈ R
n×n
≥0 where, for any i, j ∈ N , aij ≥ 0 is the weight of the edge from node j

to node i. A path in G from node i to j is a finite sequence �0, �1, . . . , �p of nodes where �0 = i, �p = j, and
{�m−1, �m} ∈ E for � ∈ {1, . . . , p}. A cycle is a path with �0 = �p. For k ≥ 1, (Ak)ij gives the (weighted)
number of paths of length k between nodes i and j. A regular graph of degree k is a graph where all
the vertices have k neighbours. A strongly regular graph with parameters (n, k, λ, μ) is a regular graph
of n nodes with degree k where any two adjacent vertices have λ common neighbours and any pair of
non-adjacent vertices have μ neighbours in common. Given a network G with n nodes, a cone on G is a
network with n + 1 nodes where the last one is connected to all others.

2.2 Network centrality

We briefly review here three centrality measures with spectral characterizations. Consider a network of
size n represented by the adjacency matrix A.

Eigenvector centrality [19, 20]:

Let vi ∈ R≥0 denote the centrality value of node i ∈ N . Eigenvector centrality is based on the idea that the
influential nodes are the ones that are connected to other influential nodes. In other words, vi ∝ ∑n

j=0 aijvj

for all i. This requires the existence of a constant λ > 0 such that λvi = ∑n
j=0 aijvj for all i. In matrix
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662 E. NOZARI ET AL.

notation, v = [v1 · · · vn]T , this becomes Av = λv, which is an eigenvalue problem. Since A is non-negative,
by the Perron-Frobenius Theorem [21, Fact 4.11.4], there always exists a pair (λ, v) ∈ R>0 × R

n
≥0 such

that Av = λv. This vector v is thus defined as the vector of (right) eigenvector centralities. The same
argument can be repeated by reversing the direction of influence flow in the network, leading to the vector
of left eigenvector centralities (i.e., a positive vector u such that uT A = λuT ).

Exponential and resolvent communicability [22, 23]:

The communicability of a node measures its ability to communicate with the rest of the network. Different
notions of communicability have been proposed for complex networks. For a given node i, these include
exponential communicability (eβA)ii and the resolvent communicability ((I−βA)−1)ii, respectively, where
β > 0. From the power series expansion of eβA and (I−βA)−1, it follows that the exponential and resolvent
communicabilities count the total number of cycles that pass through node i, weighting the “importance”
of cycles of length k by βk/k! and βk , respectively. Thus, the role of β is to determine how local/global
these measures are: increasing β increases the weights of longer cycles. One can show [23] that in the
extreme cases of β → ∞ in the exponential case and β → 1

λmax(A)
in the resolvent case, both notions

result in the same rankings of nodes as eigenvector centrality.

Degree centrality:

The degree centrality of node i is the sum of the i’th row (or column) of A and provides a measure of the
immediate influence of node i on its neighbours.

3. Problem statement: comparison of time-varying and time-invariant control scheduling

We consider a network of n nodes that communicate over a graph G = (N , E , A) that is in general
weighted and directed (see Appendix A for methods of obtaining A from network connectivity structure).
Each node i has a state value xi ∈ R that evolves over time through the interaction of node i with its
neighbours in G and an external control u. Assuming that these interactions are linear and time-invariant,
we have

x(k + 1) = Ax(k) + b(k)u(k), k ∈ {0, . . . , K − 1}, (1)

where x = (x1, . . . , xn) ∈ R
n is the network state, u(k) ∈ R is the control input, b(k) ∈ R

n is the time-
varying input vector and K is the time horizon. For simplicity of exposition, we consider only one control
input at a time, but the discussion is generalizable to multi-input networks (cf. Appendix E). Define

ιk ∈ N , (2)

to be the index of the node to which the control signal u(k) is applied at time k. Then, b(k) is equal to
the ιk’th column of the identity matrix. For the sake of simplicity, we here assume that all the network
nodes are actuatable, so ιk ∈ N . If a subset of nodes are latent, (i.e., not actuatable), further challenges
arise and thus we postpone the analysis of this case to Section 4.4.
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TIME-VARYING CONTROL SCHEDULING 663

The dynamical network (1) is controllable if its state can be steered from arbitrary x(0) = x0 to
arbitrary x(K) = xf using the control input {u(k)}K−1

k=0 or, equivalently, if the controllability Gramian

WK =
K−1∑
k=0

Akb(K−1−k)b(K−1−k)T (AT )k , (3)

is non-singular [24]. In general, the eigenvalues of WK determine how large the unit-energy reachability
set (the set of states xf that can be reached from the origin x0 = 0 using controls with unit energy) is (cf.
Appendix B for derivation). Therefore, various measures of controllability based on the eigenvalues of
WK have been proposed, most notably tr(WK), tr(W−1

K )−1, det(WK), λmin(WK). Each metric has its own
benefits and limitations, on which we elaborate more in the following.

Assume, for now, that f (WK) ≥ 0 is any of the aforementioned controllability measures. In optimal
control scheduling, we seek to choose the control nodes {ιk}K−1

k=0 (or, equivalently, {b(k)}K−1
k=0 ) optimally.

The conventional approach in the literature [2–9] is to assume a constant control node, thus called the
time-invariant control scheduling (TICS) problem:

TICS: max
ι0,...,ιK−1∈N

f (WK) (4a)

s.t. ι0 = · · · = ιK−1 (4b)

The main advantage of TICS is its simplicity, from theoretical, computational and implementation per-
spectives. However, this simplicity comes at a possibly significant cost in terms of network controllability,
compared with the case where the control nodes {ιk}K−1

k=0 are independently chosen, namely,

TVCS: max
ι0,...,ιK−1∈N

f (WK). (5)

This approach, namely, time-varying control scheduling (TVCS), is at least as good as TICS, but has the
potential to improve network controllability significantly. Figure 1(a and b) illustrates a small network
of n = 5 nodes together with the optimal values of equations (4) and (5) and the relative advantage of
TVCS over TICS, defined as

χ = f TV
max − f TI

max

f TI
max

. (6)

Three observations are worth highlighting. First, the value of χ is extremely dependent on the choice
of controllability measure f , and different choices lead to orders of magnitude change in χ . Second, the
relative advantage of TVCS over TICS is significant for all choices of the controllability measure, with
the minimum improvement of χ = 35% for the choice of f (·) = tr(·). The fact that f (·) = tr(·) results
in the smallest value of χ relative to other measures is consistently observed in synthetic and real-world
networks, and stems from the fact that tr(WK) has the smallest sensitivity (greatest robustness) to the
choice of control schedule. Finally, even with optimal TVCS, λmin(WK) is orders of magnitude less than
1, indicating the inevitable existence of very hard-to-reach directions in the state space. This shows that
efficient controllability cannot be maintained in all directions in the state space even using TVCS and even
in very small networks with control over 1/5 = 20% of the nodes. Except for tr(WK), all the measures
rely heavily on this least-controllable direction, while tr(WK) trades this off for improved controllability
in the most efficient directions in the state space. See Appendix B for further discussion of this trade-off.
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664 E. NOZARI ET AL.

(a) (c)

(f)

(b)

(d)

(e)

Fig. 1. Advantage of TVCS in dynamic networks. (a) A small example network of n = 5 nodes. The thickness of each edge (i, j)
illustrates its weight aij . (b) The optimal values of TICS and TVCS (equations (4) and (5), respectively) and the relative TVCS
advantage (equation (6)) for the network in (a). (c) An air transportation network among the busiest airports in the United States
(see ‘air500’ in Table 1 for details). The network is undirected, and the dynamical adjacency matrix A is computed from static
connectivity using the transmission method (cf. Appendix A). This is an example of a network that significantly benefits from
TVCS with χ � 20%. (d) A small example network of the same size as (a) but with no benefit from TVCS. (e) The optimal values
of TICS and TVCS (equations (4) and (5), respectively) and the relative TVCS advantage (equation (6)) for the network in (d).
We see that the network does not benefit from TVCS independently of the choice of controllability metric. (f) A social network of
students at the University of California, Irvine (see ‘UCI Forum’ in Table 1 for details). Similar to (c), the network is undirected and
the adjacency matrix is computed using the transmission method. This network, however, does not benefit from TVCS (χ = 0). In
(c) and (f), the controllability measure of equation (7) is used due to the large size of the network. In both cases, the colour intensity
and size of nodes represent their values of Ri(1) and Ri(K − 1), respectively (K = 10). While there is a close correlation between
nodal size and colour intensity in (f) (i.e., the darkest nodes are also the largest), this is not the case in (c), which is the root cause
for the difference in their χ -values. The interested reader can find comprehensive discussions of the network control problem for
air transportation in [25–28], social opinion in [29–33] and social epidemic dynamics in [34–39] and references therein.

Despite the significant increase in size and complexity, the same core principles outlined above apply to
controllability of real-world networks. The large size of these networks, however, imposes new constraints
on the choice of the controllability measure f that make the use of f (·) = λmin(·), tr((·)−1)−1 and det(·)
numerically infeasible and theoretically over-conservative, as discussed in detail in Appendix B. As a
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TIME-VARYING CONTROL SCHEDULING 665

result, we resort to the particular choice of controllability measure

f (WK) = tr(WK), (7)

for networks beyond n � 15. Since this measure has the smallest sensitivity to the choice of {ιk}K−1
k=0

(Fig. 1(b)), we expect any network that benefits from TVCS using the choice of equation (7) to also
benefit from it using other Gramian-based measures (while the converse is not necessarily true, i.e.,
there are networks that significantly benefit from TVCS using other measures but show no benefit in
terms of tr(WK)). Figure 1(c) illustrates an air transportation network among the busiest airports in the
United States, comprising of n = 500 nodes. Using (7), we see χ � 20% improvement in controllability,
verifying our expectation about the benefits of TVCS.

In spite of this potential benefit, TVCS has usually higher computational and implementation costs.
These include the higher computational cost of computing the optimal TVCS, and that of installing an
actuator at several (ideally all) nodes of the network. Further, not all networks benefit from TVCS alike.
A simple directed chain network with the same size as that of Fig. 1(a) gains absolutely no benefit from
TVCS, independently of the choice of f (Fig. 1(d and e)). Similarly, χ = 0 is also observed in larger,
complex networks, indicating that the optimal TVCS and the optimal TICS are the same (Fig. 1(f)).

These observations collectively raise a fundamental question that constitutes the main problem studied
in this article. Before formally stating the problem, we need a definition for ease of reference.

Definition 3.1 (Class V and I networks). Consider a dynamical network described by (1) and the
measure χ introduced in (6). We say that the network belongs to class V if it has χ > 0 and we say it
belongs to class I otherwise (χ = 0).

In words, class V networks are those that benefit from TVCS and class I networks are those that do
not. Our main problem of interest is then as follows.

Problem 1 Given the set of all dynamical networks described by dynamics of the form (1), characterize
the sets V and I in terms of the network structure A and develop efficient and interpretable methods for
distinguishing between them.

In the following, we restrict our attention to the choice of controllability measure in equation (7) due
to its applicability to all network sizes and carry a thorough analysis of its properties in order to address
Problem 1.

4. Main results

In this section, we present our main results regarding Problem 1. First, we introduce a new notion of
communicability that is pivotal to the solution of Problem 1. Then, we present our results regarding the
characterization of class V and I networks and, finally, study the case of networks with latent nodes
declared earlier.
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4.1 2k-Communicability and scale-heterogeneity

Consider the TVCS problem in equation (5) with f (·) = tr(·). Using the definition of the controllability
Gramian in (3) and the invariance property of trace under cyclic permutations, we can write

tr(WK) =
K−1∑
k=0

b(K−1−k)T (Ak)T Akb(K−1−k).

Therefore,

max
ι0,...,ιK−1

tr(WK) =
K−1∑
k=0

max
ιK−1−k

b(K−1−k)T (Ak)T Akb(K−1−k),

where each term b(K−1−k)T (Ak)T Akb(K−1−k) is the ιK−1−k’th diagonal entry of (Ak)T Ak (cf. equation (2)).
Therefore, the optimization in (5) boils down to finding the largest diagonal element of (Ak)T Ak and
applying u(K−1−k) to this node. On the other hand, for the TICS problem in (4) we have

tr(WK) = bT

( K−1∑
k=0

(Ak)T Ak

)
b,

so one has to instead find the largest diagonal entry of
∑K−1

k=0 (Ak)T Ak and apply all the control inputs
u(0), . . . , u(K −1) to this same node, which is clearly sub-optimal with respect to TVCS. This discussion
motivates the following definition.

Definition 4.1 (2k-communicability). Given the network dynamics (1), the 2k-communicability of a
node i ∈ N is defined as

Ri(k) = ((Ak)T Ak)ii, i ∈ N , k ≥ 0. (8)

Figure 2(a and b) illustrates the evolution of Ri(k) as a function of k for all i ∈ N for a sample network
of n = 20 nodes.

Perhaps the most salient property of 2k-communicability is the extent to which it relies on the local
interactions among the nodes. Recall, cf. [40], that for any k, the (i, j) entry of Ak equals the total number
of paths of length k from node i to j (if the graph is weighted, each path counts as its weight, equal to the
product of the weights of its edges). From equation (8), we see that Ri(k) equals the sum of the squares
of the total (weighted) number of paths of length k ending in node i. In other words, Ri(k) only depends
on connections of node i with its k-hop out-neighbours and is independent of the rest of the network.
Therefore, Ri(k) is a local notion of centrality for small k and it incorporates more global information as
k grows. In particular, as shown in Appendix C, Ri(k) is closely related to

• the out-degree centrality of node i for k = 1;

• the left eigenvector centrality of node i for k → ∞.

This scaling property of 2k-communicability is illustrated in Fig. 2(a–d) for an example network of
n = 100 nodes. Accordingly, we take the left eigenvector centrality squared as the definition of Ri(∞)

in the sequel.
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TIME-VARYING CONTROL SCHEDULING 667

(a)(a)

(b)

(c) (d)

(e) (f)

Fig. 2. 2k-communicability of dynamical networks. (a) An example network of n = 20 nodes for illustration of the dependence
on k of nodal 2k-communicabilities. The thickness of the edges is proportional to their weights. (b) The evolution of the functions
{Ri(k)}n

i=1. Although these functions are originally only defined over integer values of k, we have extended their domain to real
numbers for better illustration of their crossings and oscillatory behaviour. Oscillatory behaviour only arises when A has complex-
valued eigenvalues (otherwise, Ri(k) is strictly convex). (c) An example network of n = 100 nodes for illustration of the scaling
property of 2k-communicability. The node whose 2k-communicabilities are to be computed (i.e., “node i”) is depicted in red. (d–f)
The 2-, 4- and 14-communicability of the node depicted in red, as determined by its 1-, 2- and 7-hop incoming paths. We see that
Ri(1) only depends on the immediate (out-)neighbours of i, but as k grows, Ri(k) encodes more global information.

The scaling property of 2k-communicability also plays an important role in Problem 1. For ease of
reference, let

r(k) ∈ N

denote the index of the node that has the largest Ri(k). Then, according to the discussion above,

ι∗k = r(K − 1 − k), (9)

which forms the core connection between 2k-communicability and TVCS. From this, we see that the
optimal TVCS involves the application of u(0) to the node r(K − 1) with the highest global centrality
and gradually moving the control node until we apply u(K − 2) to the node r(1) with the highest local
centrality (the control node at time K − 1 is arbitrary as Ri(0) = 1 for all i). The intuition behind this
procedure is simple. At k = 0, the control input has enough time to propagate through the network,
which is why the highest globally-central node should be controlled. As we reach the control horizon K ,
the control input has only a few time steps to disseminate through the network, hence the optimality of
locally-central nodes. This further motivates our definition of scale-heterogeneity, as follows.

Definition 4.2 (Scale-heterogeneity of dynamical networks). Consider the network dynamics (1) sub-
ject to the TVCS problem (5) with 2k-communicability as defined in Definition 4.1. The network is called
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scale-homogeneous if r(1) = r(2) = · · · = r(∞) and scale-heterogeneous otherwise. Accordingly, the
more varied {r(k)}∞

k=1 and {Rr(k)(k)}∞
k=1 are, the more scale-heterogeneous the network is.

Based on this definition, we see that the scale-heterogeneity is the main factor in the benefit of TVCS
over TICS. In fact, scale-homogeneous and scale-heterogenous networks are the same as class I and V
networks, respectively, due to (9). Further, note that the degree of scale-heterogeneity provides a geometric
and qualitative characterization of the amount of benefit TVCS has over TICS and distinguishes between
networks in V that only marginally benefit from TVCS and those the benefit significantly (while 2k-
communicability is a more quantitative notion used for computational assignment of networks to class
V or I).

It follows immediately from Definition 4.2 that determining the scale-heterogeneity of a network
requires computation of all {r(k)}∞

k=1 which is expensive for large networks. Next, we seek simple and
computationally efficient conditions to be used as a proxy for scale-heterogeneity.

4.2 Identifying class V networks

In this section, we discuss a sufficient condition for scale-heterogeneity that, when satisfied, ensures
that a network belongs to class V . This condition, given next, relies on the fact that r(1) and r(∞) are
particularly important elements of {r(k)}∞

k=1 in determining scale-heterogeneity. The proof of this theorem
is given in Appendix G.

Theorem 4.3 (Class V networks). Consider the TVCS problem (5) for the network dynamics (1). Assume
that the adjacency matrix A is irreducible, aperiodic and diagonalizable. If

arg max
i∈N

Ri(1) ∩ arg max
i∈N

Ri(∞) = ∅,

then the network belongs to class V for sufficiently large K . �

The condition of A being irreducible is equivalent to the network being strongly connected, and thus
not restrictive. Likewise, A being aperiodic is not restrictive as it requires that there exists no integer
number greater than 1 that divides the length of every cycle in the network (satisfied, in particular, if
any self-loops exist). Finally, A is almost always diagonalizable in the Lebesgue sense, i.e., the set of
non-diagonalizable A has Lebesgue measure zero.

Consider again the networks of Fig. 1(c and f). Here, the colour intensity of each node indicates its
value Ri(1), while its size corresponds to its value Ri(K − 1). Clearly, the first few largest and darkest
nodes are distinct in Fig. 1(c), while there is a close correlation between nodal size and darkness in
Fig. 1(f), illustrating the root cause of their difference in benefiting from TVCS.

If a network has r(0) = r(K − 1), it is still possible that the network belongs to class V . In fact, about
half of the networks with r(0) = r(K − 1) still belong to V (Fig. 3(a)). However, these networks have a
value of χ of no more than 3% on average, and in turn this value quickly decreases with the dominance
of the node r(0) over the rest of the network nodes (Fig. 3(b)). This is a strong indication that, for
most practical purposes, the test based on 2k-communicability is a valid indicator of whether a network
benefits from TVCS. Furthermore, in the case of undirected networks, it is possible to analytically prove
that a network belongs to class I (χ = 0) if certain conditions based on the eigen-decomposition of the
adjacency matrix A are satisfied, as shown next.
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(a) (b) (c)

Fig. 3. The role of 2k-communicability in distinguishing between networks of class V (χ > 0) and I (χ = 0). (a) The proportion
of random networks in V and I. A total of 105 random connectivity matrices were generated with logarithmically-uniform n in
[101, 103], uniform sparsity p in [0, 1], and uniform pairwise connectivity weight in [0, 1], and then transformed to adjacency
matrices A using the transmission method (cf. Appendix A). A time-horizon of K = 10 is used for all networks. While more
than 80% of all networks belong to class V , this number drops to less than 50% among networks with r(1) = r(K − 1) (i.e.,
networks where the same node has the greatest local and global centralities). (b) The χ -value of the same networks as in (a) that
have r(1) = r(K − 1) as a function of the dominance of the node r(0). For the node r(0), its dominance (over the rest of the
network) is a measure of how distinctly Rr(0)(1) and Rr(0)(K −1) are larger than Ri(1) and Ri(K −1), respectively, for i �= r(0) (cf.
Appendix D). Each grey square represents one randomly generated network, so the darkness of each area represents the probability
of observing random networks with that value of (dominance, χ ). A rapid decay of χ with dominance is clear, such that networks
with positive dominance have very low probability of having χ > 0. (c) A Venn diagram illustrating the decomposition of dynamical
networks based on the extent to which they benefit from TVCS. The colour gradient is a depiction of this extent, as measured by χ

(equation (6)), where darker areas correspond to higher χ . As shown in (a) and (b), the class of networks for which r(0) �= r(K −1)

is only a subset of V but provides a good approximation for it.

4.3 Identifying class I networks

Complementary to Section 4.2, here we discuss some necessary conditions for scale-heterogeneity based
on the eigen-structure of the network that characterize subsets of I. Let A = V�V T be the eigen-
decomposition of A, where V = [vij]n×n and � = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues
with |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Further, let W = [wij]n×n be the doubly stochastic matrix such that wij = v2

ij

for all i, j ∈ {1, . . . , n}. The next result, proven in Appendix G, characterizes three undirected sub-classes
of I.

Theorem 4.4 (Class I networks). Consider the TVCS problem (5) for the network dynamics (1). Assume
that the network is undirected (i.e., A = AT ) and that, without loss of generality, the node with the largest
eigenvector centrality is labelled as node 1. If any of the following conditions holds:

(i) 1−w11
w11

≤ |λ1|−|λ2|
|λ1|−|λn| ,

(ii) w11 + w12 = 1,

(iii) the network has three or fewer nonzero eigenvalues with different absolute values and 1 ∈
arg maxi Ri(1),

then,

1 ∈ arg max
1≤i≤n

Ri(k), ∀k ∈ {0, . . . , K − 1}, (10)

i.e., selecting the node with the largest eigenvector centrality at every time step is the solution to (5). �
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The conditions in Theorem 4.4 are based on the eigen-decomposition of the network adjacency matrix
A and thus abstract. However, these conditions can be interpreted as follows:

(i) Condition (i) holds for networks where there is a sufficiently distinct central node, in the sense of
eigenvector centrality, and the network dynamics is dominated by the largest eigenvalue. An extreme
case of such networks is a totally disconnected network where W = I and the highest authority is
the node with the largest self-loop.

(ii) Condition (ii) holds for networks where the eigenvector centrality of all nodes is determined by the
weight of the link to the most eigenvector-central node. To see this, note that we have w1j = 0 for
j ≥ 3, implying v1j = 0, j ≥ 3. Since the rows of V are orthogonal, we deduce vi2 = αvi1 for all
i ≥ 2, where α = −v11/v12 is constant. Using A = V�V T , we have

a1i = λ1v11vi1 + λ2v12vi2 = (v11λ1 + αv12λ2)vi1,

so vi1 ∝ a1i for all i ≥ 2. Examples of such networks are star networks with no (or small-weight)
self-loops (cf. Proposition F.3).

(iii) Regarding condition (iii), the most well-known families of networks with three distinct eigenvalues
are the complete bipartite networks and connected strongly regular networks. Moreover, cones on
(n, k, λ, μ)-strongly regular graphs satisfying λmin(A)(λmin(A) − k) = n are also known to have
three distinct eigenvalues [41]. The other condition 1 ∈ arg maxi Ri(1) holds when the node with
the largest eigenvector centrality (i.e., r(∞)) has also the largest 2-communicability. The simplest
example of a network with these properties is the star network (with no or equal self-loops).

The general abstraction from these cases is that a network belongs to class I if it contains a sufficiently
distinct central node, which reinforces our main conclusion that V is the class of networks with multiple
scale-heterogeneous central nodes. The inclusion relationships between the various classes of networks
introduced in this section are summarized in Fig. 3(c).

While Theorem 4.4 is only applicable to undirected networks, it has a straightforward extension to
normal networks (i.e., directed networks with normal A). Using the same proof technique as in Theo-
rem 4.4, it can be shown that the exact same results hold if one replaces the eigenvalues and eigenvectors
with singular values and singular vectors of A. Interestingly in this case, Ri(∞) coincides with HITS
hub/authority centrality of node i squared [42].

4.4 Networks with latent nodes

As mentioned in Section 3, in many real-world applications of TVCS not all the nodes are avail-
able/accessible for control. In this case, we call a node manifest if it can be actuated and latent if it
cannot. The natural solution would then be to choose the control nodes optimally among the manifest
nodes. If the adjacency matrix A of the network is fixed and given, this is the best solution. However,
there are cases where A itself can be changed, at least among the manifest nodes. We call such a change of
structure an (edge) manipulation. Edge manipulations are primarily possible in man-made (power, trans-
portation, etc.) networks, since the edges are originally engineered, but are also becoming increasingly
feasible in biological networks due to advances in bioengineering, see e.g., [43, 44] for brain and [45, 46]
for gene networks. When manipulation is possible in a network with latent nodes, another solution to
TVCS is to manipulate the network among the manifest nodes such that the optimal control nodes (when
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computed without any restrictions on control scheduling) lie among the manifest nodes for all time.
The following result provides a guarantee that this is always possible, provided that the manipulation is
sufficiently strong and not acyclic.

Theorem 4.5 (Network manipulation and TVCS in networks with latent nodes). Consider the optimal
node selection problem (5) over a time horizon K . Given a network of n nodes with adjacency matrix
A0 ∈ R

n×n, let E ∈ R
n×n be a non-negative matrix of the form

E =

[
� 0

0 0

]}
n1}
n−n1

{n1 {n−n1

,

corresponding to the manifest subnetwork involving the first n1 < n nodes (this is without loss of
generality, since nodes can be renumbered) and consider the dynamic network described by (1) with
adjacency matrix A = A0 + αE, where α > 0. Then, if E is not acyclic, there exists α > 0 such that for
α > α,

r(k) ∈ {1, . . . , n1}, (11)

for all k ∈ {0, . . . , K − 1}. Furthermore, if A0 and E are symmetric (the corresponding networks are
undirected), ᾱ can be found in closed form and (11) holds for all k ≥ 1. �

Both requirements of Theorem 4.5 (that αE is sufficiently strong and acyclic) have clear interpre-
tations. First, depending on how large the size of the manifest subnetwork is and how central its nodes
already are (pre-manipulation), larger manipulation may be necessary to turn them into central nodes at
various scales (i.e., r(k) for k = {0, . . . , K − 1}). Second, for the manifest nodes to become central at
arbitrarily global scales (i.e., r(k) for k ∼ K → ∞), the manipulation must contain paths of arbitrarily
long lengths, which are absent in acyclic networks.

According to Theorem 4.5, manipulation of the manifest subnetwork is effective even when the
manifest nodes are among the least central nodes of the network (before the manipulation). In this case,
as we increase α from 0, the manifest nodes usually first turn into the most locally-central nodes (α �≥ ᾱ

yet), and then also into globally-central nodes (α > ᾱ). The following example illustrates this phenomenon
in a simple star network where the centre node is latent and the peripheral nodes are manifest.

Example 4.6 (Undirected star networks with varying self-loop weights). Consider an undirected uniform
star network given by

A0 =
[

lpIn−1 acp1n−1

acp1T
n−1 lc

]
,

where 1n−1 denotes the (n − 1)-dimensional vector of all ones and the positive constants lc, lp and acp are
the central self-loop weight, peripheral self-loop weight and the link weight between the centre node and
any peripheral node, respectively. The 2k-communicabilities of this network are computed analytically
in Proposition F.3 (nodes are re-labeled here for conformity with Theorem 4.5). It follows from (F.9) that
for any i ∈ {1, . . . , n − 1},

Rn(1) − Ri(1) = l2
c − l2

p + (n − 2)a2
cp. (12)
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Therefore, if lp ≤ lc, then Rn(k) > Ri(k) for all k ≥ 1, i.e., the centre node is the optimal control node at
all times. However, when lc < lp, the network can exhibit different behaviours. From (F.9), we can also
see that

lim
k→∞

Rn(k) > lim
k→∞

Ri(k) ⇔ λ1 − lp > acp. (13)

Define lp =
√

l2
c + (n − 2)a2

cp and lp = lc + (n − 2)acp. Using (12)–(13) and after some computations,

one can see that

r(k) = n for all k, if lp ≤ lp,

r(1) = {1, . . . , n − 1} but r(k) = n for large enough k, if lp < lp < lp,

r(k) = {1, . . . , n − 1} for all k, if lp ≥ lp.

In other words, when the manipulation is weak, the (latent) centre node is the optimal control node at all
times. As the manipulation gains strength, scale-heterogeneity emerges, making the (manifest) peripheral
nodes the optimal control node at local scales, while the centre node remains still the optimal control
node at global scales. Finally, when the manipulation is strong enough, scale-heterogeneity vanishes,
leaving the (manifest) peripheral nodes as the optimal control nodes at all scales. Notice that with the
terminology of Theorem 4.5,

E =
[

In−1 0
0 0

]
, n1 = n − 1, α = lp, and α = lp. �

A fair concern, however, exists regarding the minimum size of the manipulation needed to make the
TVCS all-manifest. If this is excessively high, the prescribed approach may be infeasible in practice.
Nevertheless, among networks of various size and structure, random manipulations with norm of about
10% of the norm of A are on average sufficient (Fig. 4). Here, we see that the largest manipulations are
needed for manifest subnetworks of about 10% the total size of the network. This is because when the size
of the manifest subnetwork is extremely small, manipulations are focused on this small subset of nodes
and thus more efficient, while with extremely large manifest subnetworks, the majority of the nodes are
accessible for control and there is little restriction on the TVCS.

Finally, Fig. 4 also shows the comparison, in terms of controllability, of the manipulation-based
approach against the alternative approach of selecting an optimal TVCS with the additional constraint that
control nodes must be manifest (without any manipulation of the dynamics), which results in a sub-optimal
all-manifest TVCS. For the comparison to be fair, we normalize each network by its spectral radius (largest
magnitude of its eigenvalues), and then compare the optimal value of their TVCS (equation (5)). We see
that the amount of relative advantage produced by manifest subnetwork manipulation is comparable to
the relative size of the manipulation, except for medium-sized manifest subnetworks (5 ∼ 20% of nodes),
where the manipulation advantage is about two times its size.

5. Case study: TVCS in synthetic and real networks

Here, we discuss the benefits of TVCS and its relation to network structure for several examples of
synthetic and real networks. We start with the classical deterministic examples of undirected line, ring
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TIME-VARYING CONTROL SCHEDULING 673

Fig. 4. Manipulation of manifest subnetworks in order to obtain an all-manifest optimal TVCS. The horizontal axis represents the
percentage of manifest nodes in the network. In red, we show the minimum size of manipulation needed for the optimal TVCS to
only include manifest nodes, relative to the size of the initial adjacency matrix (both measured by induced matrix 2-norm). In blue,
we depict the optimal (i.e., maximal) value of tr(WK ) for the case where the minimal manifest manipulation is applied, relative
to the maximal value of tr(WK ) subject to the constraint that all the control nodes are manifest (the former is with manipulation
and without constraints on the control nodes, while the latter has no manipulation but control node constraints). Results are for 103

random networks of logarithmically-uniform sizes in [101, 103] but otherwise similar to Fig. 3. Markers (circles/squares) represent
average values and error bars represent standard error of the mean (s.e.m). In both cases, the overall adjacency matrix is normalized
by its spectral radius for fairness of comparison. We see that medium-sized manifest subnetworks (5 ∼ 20%) are the hardest yet
most fruitful to manipulate.

(a) (b) (c)

Fig. 5. Simple networks with closed-form 2k-communicabilities. (a) A line network, (b) a ring network and (c) a star network.
All networks are undirected and have homogeneous edge weights a. The 2k-communicabilities of these networks are analytically
computed (cf. Appendix F), concluding that all networks belong to class I, with the optimal control node depicted in red in each
case (the optimal control node is arbitrary in a ring network due to its symmetry).

and star networks (Fig. 5). Due to their simple structure, the 2k-communicabilities of these networks can
be analytically computed in closed form (cf. Appendix F). Using these results, it follows that for the line
and star networks, the optimal control node is always the centre node (or any of the two centre nodes if
a line has even number of nodes), while the optimal control node is arbitrary in a ring network. Notice
that in all cases, it is the homogeneity of these networks that results in a single node having the greatest
centrality at all scales (cf. Example 4.6 for non-homogeneous star networks that have scale-heterogeneous
central nodes and thus belong to class V).

Next, we analyse the role of TVCS in three classes of probabilistic complex networks that are widely
used to capture the behaviour of various dynamical networks. These include the Erdös-Rényi (ER) random
networks, Barabási–Albert (BA) scale-free networks, and Watts-Strogatz (WS) small-world networks.
Each network has its own characteristic properties, and these properties lead to different behaviours
under TVCS. The average χ -values of these networks are computed for various values of n and network
parameters (Fig. 6). For ER networks, χ is in general small, and decays with n. This is because ER
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674 E. NOZARI ET AL.

(a) (b) (c)

Fig. 6. The average χ -value for (a) ER, (b) BA and (c) WS probabilistic networks. The horizontal axis determines the size of
the network n in all cases, while the vertical axis determines the values of the corresponding parameters for each network: edge
probability p for ER, growth (link attachment) rate ma for BA, and rewiring probability β for WS. After constructing the unweighted
connectivity according to each algorithm (ER, BA, or WS), standard uniformly random weights are assigned to each edge, which
is then converted to A using transmission method (cf. Appendix A). For each value of n and network parameter over a coarse mesh
(∼ 100 points), 100 networks are generated and the average of their χ -value is computed, which is then smoothly interpolated over
a fine mesh (MATLAB csaps).

networks, especially when n is large, are extremely homogeneous. This homogeneity is further increased
during the transmission method, leading to a network matrix A that is extremely insensitive to the choice
of control nodes.

The connectivity structure of BA networks, in contrast, is extremely inhomogeneous, with one (some-
times 2) highly central nodes and a hierarchy down to peripheral leafs. As one would expect, this implies
a small χ -value since the centre node has the highest centrality at all scales (Fig. A.2). However, when the
connectivity matrix is transformed to A using the transmission method, the incoming links to all nodes
are made uniform (adding up to 1). This in turns make the centrality levels of all the nodes comparable,
leading to high χ -values observed (notice that the underlying connectivity structures are still highly inho-
mogeneous, distinguishing them from the homogeneous ER networks). Notice that as the growth rate ma

is increased, smaller networks tend towards complete graphs and high χ values shift to larger n.
As our last class of probabilistic networks, WS networks have the broadest range of size-parameter

values with significant χ . As one would expect, χ is low near β = 0, 1, corresponding to regular ring lattice
and ER networks, respectively. For β ∼ 0.2, there is a sufficiently high probability of having multiple
nodes that are close to many rewired links (increasing their centrality), yet there is a low probability that
these nodes, and the nodes close to them, are rewired all alike, resulting in heterogeneous central nodes
and high χ -values. This heterogeneity is increased with n as larger networks have more possibilities of
rewiring every edge.

Finally, we used the tools and concepts introduced so far to analyse TVCS in several real-world
dynamical networks (Table 1). These networks are chosen from a wide range of application domains,
from neuronal networks to transportation and social networks. According to the type of dynamics evolving
over each network, we have used either the transmission or induction method to obtain its dynamical
adjacency matrix from its static connectivity (the “C → A” column, cf. Appendix A).

We have computed the χ -value for each network using a variable time horizon K ≤ 50, with the
results ranging from 0 to more than 30% for different networks. These large variations even within each
category signify both the potential benefits of TVCS and the possibility of its redundancy, a contrast
that has been pivotal to our discussion. In particular, four facts about these results worth highlighting.
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Table 1 Characteristics of the real-world networks studied in the article

Category Name n |E| Directed C → A χ(%)
r(0) =

r(K − 1)

Dominance of
r(0) (×10−3)

ref.

Neuronal BCTNet fMRI 638 37 250 N T 1.8 N N/A [47]
Cocomac 58 1078 Y T 5.5 N N/A [48]
BCTNet Cat 95 2126 Y T 1.9 N N/A [47]
C. elegans 306 2345 Y T 0 Y 0 [49]

Transportation air500 500 5960 N T 22.4 N N/A [50]
airUS 1858 28 236 Y T 0 Y 0 [51]
airGlobal 7976 30 501 Y T 0 Y 0 [51]
Chicago 1467 2596 N T 0 Y 0 [52, 53]

Gene Regulatory E. coli 4053 127 544 N T 0 Y 0 [54]

PPI Yeast 2361 13 828 N T 0 Y 0 [55]
Stelzl 1706 6207 Y T 0 Y 0 [56]
Figeys 2239 6452 Y T 0 Y 0 [57]
Vidal 3133 12 875 N T 0 Y 0 [58]

Power WesternUS 4941 13 188 N T 33.7 Y 0 [49]

Food Florida 128 2106 Y T 34.6 N N/A [59]
LRL 183 2494 Y T 27.3 N N/A [60]

Social Facebook group 4039 176 468 N I 0.4 N N/A [61]
E-mail 1005 25 571 Y I 0 Y 40.5 [62, 63]
Southern Women 18 278 N I 0 Y 1.6 [64]
UCI P2P 1899 20 296 Y I 0 Y 5.5 [65]
UCI Forum 899 142 760 N I 0 Y 2.8 [66]
Freeman’s EIES 48 830 Y I 0 Y 1.4 [67]
Dolphins 62 318 N I 0 Y 0.7 [68]

Trust Physicians 241 1098 Y I 8.8 N N/A [69]
Org. Consult Advice 46 879 Y I 0 Y 0.1 [70]
Org. Consult Value 46 858 Y I 0 Y 1.2 [70]
Org. R&D Advice 77 2228 Y I 6 × 10−3 N N/A [70]
Org. R&D Aware 77 2326 Y I 0 Y 0.3 [70]

For each network, we have reported the number of nodes n, number of edges |E | (with each bidirectional edge counted twice),
whether the network is directed, the method used for obtaining dynamical adjacency matrix A from static connectivity C (A → C),
the χ value (equation (6)), and whether the most local and global central nodes coincide (r(0) = r(K − 1)). Since the value of
χ is a function of K , we have chosen the value of K ≤ 50 that has the largest χ for each network. Detailed descriptions of these
datasets are provided in Appendix H.

(i) As measured by tr(WK), the majority of networks tested do not benefit from TVCS, but a few do so
significantly. (ii) Despite coming from various domains, the networks that do significantly benefit from
TVCS share scale-heterogeneity as their common qualitative property (cf. Section 4.1). (iii) Networks
with inductive C → A transformation benefit significantly less from TVCS than those with transmission
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C → A transformation. (iv) Significantly higher values of χ are expected for all networks if using
λmin(WK) or similar measures for controllability, cf. Appendix B.

In the last column, we have also indicated whether the most local and most global central nodes
coincide in each network. Recall that this is a sufficient but not necessary condition for a network to be
in class V (Theorem 4.3 and Fig. 3). Though only sufficient, this simple metric can correctly classify
class members of V from I among these networks, except for the WesternUS power network, for which
r(0) = r(K − 1) only marginally holds (the dominance of r(0) is 0) (cf. Fig. 3(b)).

6. Conclusions and discussion

Despite the breadth and depth of existing literature on the controllability of complex networks and control
scheduling, the significant potential of TVCS has been greatly overlooked. This work strives to explore the
advantages of TVCS in linear dynamical networks and obtaining theoretical and computational relation-
ships between these advantages and network structure. Using Gramian-based measures of controllability,
we showed that TVCS can significantly enhance the controllability of many but not all synthetic and real
networks. This motivated the pursuit of identifying properties based on network structure that explain
when, why and by how much TVCS is beneficial.

Using the newly introduced notion of 2k-communicability, we showed that the scale-heterogeneity of
central nodes in a network is the main cause and correlate of TVCS advantages. If a network has several
distinct central nodes at different scales, the optimal TVCS involves starting the control from the most
global central nodes and gradually moving towards most local ones as the time horizon is approached.
If, on the other hand, a single node acquires the highest centrality at all scales, optimal TVCS prescribes
the sole control of this node over the entire horizon, leading to optimality of TICS.

A striking finding that defied our expectations is the effect of network dynamics, beyond its raw
connectivity structure, on TVCS. Here, we differentiated between the raw connectivity structure of a
network (obtained using specific field knowledge and measure the relative strength of nodal connections)
and its dynamical adjacency matrix which determines the evolution of network state over time. Depending
on the nature of network state, we proposed two methods, transmission and induction, for obtaining the
dynamical adjacency matrix from static connectivity. The effects of these methods, however, is noteworthy
on the benefits of TVCS, even though the underlying network connectivity is the same (Table 1 and
Fig. A.2). While the transmission method significantly enhances the merit of TVCS, the induction method
depresses it (both compared with raw connectivity). We believe the reason for the former is the additional
homogeneity that the transmission method introduces among the nodes, while the latter is due to the
conversion from continuous to discrete-time dynamics, which enables long-distance connections even
over small sampling times (due to the fact that interactions occur over infinitesimal intervals in continuous
time) (cf. Section A and Fig. A.1). These results suggest that controllability of network dynamics is not
only a function of its structural connectivity, but also greatly relies on the type of dynamics evolving
over the network, an aspect that has received little attention in the existing literature and warrants future
research.

Our discussion so far applies to networks with and without self-loops alike. However, it follows from
the results in Section 4 that self-loops play an important role in TVCS. This is because (i) the self-loop
of each node directly adds to its 2k-communicability for all k, and (ii) the self-loop of each node also
contributes indirectly to the 2k-communicability of its neighbours less than k − 1 hops away. As a result,
the self-loop of any node has the largest effect on its own 2k-communicability for all k, but also a lesser
effect on the 2k communicability of all other nodes in the network. This latter effect becomes smaller
and limited to higher k for more distant nodes. A clear demonstration of the effects of self-loops can be
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seen in Example 4.6, where as the self-loops of the peripheral nodes get stronger, they gradually become
the central nodes in the network, first at local scales (small k) and eventually at all scales.

Further, the focus of our discussion has so far been on single input networks where one node is
controlled at a time, in order to enhance the simplicity and clarity of concepts. Nevertheless, our results
have straightforward generalizations to multiple-input networks (cf. Appendix E). If m denotes the number
of control inputs, the optimal TVCS involves applying these control inputs to the m nodes with the highest
centralities at the appropriate scale at every time instance (i.e., the m nodes with the largest Ri(K −1− k)

have to be controlled at every time instance k). It is clear that the additional flexibility due to the additional
inputs makes V larger, i.e., more networks have χ > 0. Nevertheless, this additional flexibility also makes
TICS significantly more efficient. Therefore, it is not immediately clear whether this enlargement of V
also entails larger χ for networks with the same size and sparsity. In fact, increasing m reduces average
χ for all the classes of ER, BA and WS networks (Fig. E.1), suggesting that the additional flexibility is
more advantageous for TICS than TVCS.

Regardless of the number of inputs (1 or more), an important implicit assumption of TVCS is that
this number is limited, i.e., no more than m nodes can be controlled at every time instance. This may at
first seem over-conservative since TVCS requires, by its essence, the installation of actuators at all (or
many) nodes of the network. Therefore, one might wonder why limit the control to only m nodes at every
time instance when all the nodes are ready for actuation. The answer lies within the practical limitations
of actuators. For ideal actuators, distributing the control energy over as many nodes as possible is indeed
optimal. However, this is not possible in many scenarios, including when (i) actuators exhibit nonlinear
dead-zone behaviours, so that each one requires a sizable activation energy. In many applications ranging
from distributed industrial processes to opinion dynamics in social networks, nodes cannot be actuated
with arbitrarily small amounts of control energy. If Emin is the minimum activation energy of any actuator,
at least mEmin is required for actuation of m nodes at a time. Thus, when Emin is sizable and n is large,
simultaneous actuation of all nodes (m = n) requires a significant amount of control energy which is
often infeasible (notice that the dead-zone behaviour of actuators does not violate the linearity assumption
in (1) as one can replace u with v = φ(u), where φ denotes dead-zone nonlinearity); (ii) actuators are
geographically disperse so that precise coordination becomes difficult or time-consuming. A familiar
example of this is the social opinion dynamics in pre-election times during political campaigns, where
rallies and speeches by candidates act as control inputs to the network. Even though all nodes may be
actuatable, at most one node can be actuated at every time; (iii) simultaneous control of proximal nodes
results in actuator interference. This is the case in many biological networks. In neuronal networks, for
instance, common control technologies such as transcranial magnetic stimulation (TMS) do not allow
for simultaneous actuation of all cortical areas due, in part, to electromagnetic interference between
multiple sources of actuation (note that TVCS is still possible by installation and sequential activation of
multiple coils at different locations); and when (iv) actuators are controlled via communication channels
with limited capacity, so that only a small number of devices can be simultaneously operated. This may
be the case in industrial applications where large numbers of geographically distributed actuators are
remotely (and centrally) controlled over shared communication channels with limited bandwidth. In all
these scenarios, TVCS has the potential to significantly enhance network controllability, conditioned on
the scale-heterogeneity of the central nodes in the network.

Although the dynamics of all real networks have some degrees of nonlinearity, the analysis of
linear(ized) dynamics is a standard first step in analysis of dynamical properties of complex networks [2–
9, 14–17]. This is mainly due to the fact that stability and controllability of linearized dynamics of a
nonlinear network implies the same properties locally for the original nonlinear dynamics, making lin-
ear dynamics a powerful tool in analysing many dynamical properties that are in general intractable for
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nonlinear dynamics. The local validity of linearization, however, is a main limitation of this work, par-
ticularly in networks where the change of state is significant relative to the size of the domain over which
the linearization is valid. For these networks, whether the nonlinearity enhances or decreases the benefits
TVCS with respect to its linearization is in general dependent on the type of nonlinearity. However, for
saturation nonlinearities, being perhaps the most widespread, we expect TVCS to be more beneficial than
linear counterparts. This is because in TICS all the control input is injected through a fixed node, requiring
the state of that node to potentially undergo large over- and undershoots in order to convey sufficient
input to the rest of the network. Saturation clearly prevents this from happening, further limiting the scope
of TICS. The generalization of this work to nonlinear dynamics with saturation and linear time-varying
dynamics (namely, A(k) instead of A in equation (1)) is a warranted next step for future exploration of
the role of TVCS in general nonlinear networks.
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Appendix

A. Obtaining dynamical adjacency matrix from static connectivity

A standard starting point for the analysis of network dynamics of the form (1) is the assumption that the
network adjacency matrix A is known. While this is a valid assumption (as the construction of A is itself
the subject of vast research in network identification and corresponding field sciences), care should be
taken in how one interprets raw network connectivity matrices. Usually, the network structure is described
not by its dynamic adjacency matrix A (which determines the evolution of network state according to (1))
but rather by its static connectivity matrix C (our implicit assumption is that each node has a well-defined
state that evolves over time through network dynamics, so our discussion is not applicable to completely
static networks). While for any i, j ∈ N , aij describes the impact of xj on xi over one time step (relative to
xj), cij often describes the strength of the link (i, j) in arbitrary units (e.g., number of synapses between
two neurons, capacity of high-voltage lines between two generators, or number of seats on a flight).
In particular, multiplying C by a positive constant results in an equivalent description of the network
structure, yet multiplying A by a constant significantly alters network dynamics. Here, we outline two
methods for obtaining A from C, and describe example domains where each method seems more relevant.
Consider an arbitrary link (i, j) ∈ E .

• Transmission: This method applies to dynamical networks where at each time step, the value of the
state of node i is itself affected (reduced) as a result of interaction with neighbour node j. Here, the
state of each node corresponds to a physical quantity that is transmitted to its neighbours in order
to affect their states. Neuronal, transportation, food, gene regulatory, protein–protein interaction and
power networks are all examples of this type of interaction. If the sampling time is chosen long enough
such that “current” state of a node is completely diffused through the network until the next time step,
we can obtain A from C using

A = CD−1
C,in,
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TIME-VARYING CONTROL SCHEDULING 679

Fig. A.1. The average value of χ for the induction method and varying values of γind (corresponding to varying discretization step
sizes Ts). Each point represents the average value of χ for 50 realizations of ER networks with n = 100 and p = 0.2 and vertical
bars (when visible) show one standard error of the mean (s.e.m.). For each network, the value of K ≤ 103 that gives the largest
value of χ is chosen. The average value of χ drops with γind, showing the effect of discretization on χ and the merit of TVCS. The
red point corresponds to γind = 0.2 used throughout this work.

where DC,in is the augmented in-degree matrix of C (a diagonal matrix with the sum of the columns
of C on its diagonal, except where the sum of a column of C is zero, in which case the corresponding
diagonal element of DC,in is 1). This means that over each time step, xi is transmitted to the in-
neighbours of node i proportionally to their connectivity strength, if i has any in-neighbours, and
preserved otherwise.

• Induction: This method is appropriate for networks in which nodal states are not physical quantities
and thus do not reduce as a result of network interactions. Opinion or epidemic dynamics evolving
over social and/or trust networks have such properties. Here, in order to compute A from C, we start
from the underlying continuous-time dynamics ẋ = (−αI + C)x where α > 0 is chosen such that
−αI + C is stable (Hurwitz), and then discretize it to obtain (1), where

A = e(−αI+C)Ts ,

and Ts is the sampling time [24, eq. (4.17)]. From the expansion of matrix exponential (eM = I +
M + M2

2 + M3

3! + · · · ), we see that A does not inherit the sparsity pattern of C (and G) since nodes
interact in continuous time. However, if ‖(−αI + C)2T 2

s /2‖ � ‖(−αI + C)Ts‖, then the sparsity
pattern of C is almost preserved in A. Therefore, in this work we use Ts = γind/‖αI + C‖ for the
induction method with γind = 0.2 unless otherwise stated. Further, Fig. A.1 shows the effect of γind

on the value of χ when using the induction method. As expected, the larger γind, the larger Ts, the
closer A gets to limk→∞ Ak , the more similar 2k-communicabilities for different k become, and the
smaller χ becomes.

Unless otherwise stated, we use the transmission method in this work. Nevertheless, it is to be noted
that the method used for obtaining A from C can have profound effects on network controllability and
should thus be chosen carefully. Figure A.2 illustrates this concept by showing the mean χ -value of ER,
BA and WS networks for a number of different choices for this transformation.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/7/5/659/5364042 by guest on 25 O
ctober 2020



680 E. NOZARI ET AL.

Fig. A.2. Average value of χ for different methods of obtaining dynamical adjacency matrix A from static connectivity C. The
plots show the effect of these methods on TVCS. The details on how to obtain the plots are similar to Fig. 6 in the main text. All
matrices are normalized by their spectral radius for uniformity and comparison. The plots show a sizable enhancement (respectively
depression) of χ by the transmission (respectively induction) method compared with raw connectivity, except for Erdös-Rényi
networks whose χ maintains a robust pattern irrespective of the method of obtaining the dynamic adjacency matrix A from the raw
static connectivity C.

B. Comparison between Gramian-based measures of controllability

In this section, we first derive and elaborate on the relationship between the eigenvalues of the Gramian
and control energy. Then, we discuss the different Gramian-based measures of controllability and their
respective properties.
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Assume that WK is invertible (the network dynamics (1) is controllable). Then, for any xf ∈ R
n, among

the (usually infinitely many) choices of {u(k)}K−1
k=0 that take the network from x(0) = 0 to x(K) = xf , the

one that has the smallest energy is given by [24, Theorem 6.1]

u∗(k) = b(k)T (AT )K−1−kW−1
K xf , k ∈ {0, . . . , K − 1}.

Similar expression holds for arbitrary x0, but it is customary to evaluate control energy starting from
the network’s unforced equilibrium x = 0. It is immediate to verify that this gives the minimal energy∑K−1

k=0 u∗2(k) = xT
f W−1

K xf . Therefore, the unit-energy reachability set is given by

{xf ∈ R
n | xT

f W−1
K xf ≤ 1}.

Since W−1
K is positive definite, this is a hyper-ellipsoid in R

n, with axes aligned with the eigenvectors of
WK . Let (λi, vi) be an eigen-pair of WK and xf = cvi. Then,

xT
f W−1

K xf ≤ 1 ⇔ c2λ−1
i ≤ 1 ⇔ |c| ≤ λ

1/2
i ,

showing that the axis lengths of this hyper-ellipsoid are given by the square roots of the eigenvalues
of WK . Intuitively, the “larger” the reachability hyper-ellipsoid, the “more controllable” the network
dynamics (equation (1)) are. To quantify how large the hyper-ellipsoid is, several measures based on the
eigenvalues of WK have been proposed in the literature [6, 8, 71]. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote
the eigenvalues of WK . The most widely used Gramian-based measures are

• tr(WK) = λ1 + λ2 + · · · + λn,

• tr(W−1
K )−1 = (λ−1

1 + λ−1
2 + · · · + λ−1

n )−1,

• det(WK) = λ1λ2 · · · λn,

• λmin(WK) = λn.

It is clear from these relationships that all these measures, except for tr(WK), approach 0 if λn → 0.
This property, i.e., the behaviour of a measure as λn → 0, is the most critical difference between tr(WK)

and the other three measures. For the rest of this discussion, let fc(·) be any of tr((·)−1)−1, det(·), or
λmin(·). Since the network is (Kalman-) controllable if and only if λn > 0, having fc(WK) > 0 guarantees
network controllability while tr(WK) > 0 does not. This is a major disadvantage of tr(WK) for small
networks, where controllability in all directions in state space is both achievable and desirable. As the
size of the network grows, however, λn typically decays exponentially fast to zero [6], irrespective of
network structure. This exponential decay of worst-case controllability is even evident in the example
network of Fig. 1(a) comprising of only n = 5 nodes.

Computationally, this means that λn (and in turn fc(WK)) can quickly drop below machine precision
as n grows. In fact, for K = 10 and double-precision arithmetics, this happens for n ∼ 15, making the
TVCS (equation (5)) with f = fc numerically infeasible (as it involves the comparison of fc(WK) for
different {bk}K−1

k=0 , which may be zero up to machine accuracy). Further, notice that the computational
complexity of TVCS for f = fc grows as nK due to the NP-hardness of TVCS, enforcing the use of
sub-optimal greedy algorithms even if machine precision was not a concern (see [16] and the references
therein for details).
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In addition to the computational aspects of TVCS, the exponential decay of λn also has theoretical
implications for the choice of f . When using f = fc, TVCS seeks to assign the control nodes {ιk}K−1

k=0 such
that controllability is maintained in all directions in the state space, with special emphasis on the hardest-
to-reach directions. The use of tr(WK), on the other hand, involves maximizing the average of Gramian
eigenvalues, which usually strengthens the largest eigenvalues and spares the few smallest ones. In large
networks, the latter is in general more realistic as controllability is hardly needed in all n directions of the
state space. As discussed in detail in [72], this seems to be the case in the resting-state structural brain
networks: this article shows that tr(WK) is maximized by controlling specific brain regions that have long
been identified as the structural ‘core’ or ‘hubs’ of the cerebral cortex, while the Gramian is itself close
to singular.

Further, due to the same strong dependence of fc(WK) but not tr(WK) on λn, we often observe that
tr(WK) is significantly less sensitive to the choice of the control nodes {ιk}K−1

k=0 , leading to orders of
magnitude smaller χ than that of fc(WK) (Fig. 1(b)). This means that V is only a small subclass of
networks that benefit from TVCS measured by fc. This also has a clear interpretation, since maintaining
controllability in all directions in the state space requires a broader distribution of the control nodes that
facilitates the reach of the control action {u(k)}K−1

k=0 to all the nodes in the network.
Finally, we highlight the need for development and analysis of measures that are neither strongly

reliant on the least controllable directions (such as fc(WK)) nor mainly ignore them (such as tr(WK)).
Two such candidates are:

• tr(CTWK C) where C is a matrix (or vector) with columns that point towards some particular directions
of interest in the state space. This measure is a modular set function similar to tr(WK) [8], but the
extensions of the notion of 2k-communicability and the relationship between class I/V networks and
scale-heterogeneity are unclear;

• appropriate approximations of log(fc(WK)). While computing the exact value of log(fc(WK)) is
subject to the same issues as fc(WK) itself, approximations can be used that provide a mitigation of
the effects of the smallest eigenvalues of WK . In the case of fc(·) = det(·), e.g., various algorithms
have been proposed to approximate log det of large matrices, see e.g., [73–79]. These algorithms,
however, are predominantly designed with the aim of reducing the computational complexity of
determinant calculation and not mitigation of the effects of its high condition number, and often rely
on assumptions (such as sparsity or knowledge of lower and upper bounds on matrix eigenvalues) that
do not apply to WK . Thus, development of appropriate approximations of log(fc(WK)) constitutes a
warranted direction for future research.

C. Relationships between 2k-communicability, degree and eigenvector centrality

The notion of 2k-communicability introduced in this article has close connections with the degree and
eigenvector centrality in the limit cases of k = 1 and k → ∞, respectively. Recall that the out-degree
centrality and 2-communicability of a node i ∈ N are defined as, respectively,

dout
i =

n∑
j=1

aji,

Ri(1) =
n∑

j=1

a2
ji.
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Therefore, if the network is unweighted (i.e., all the edges have the same weight), then Ri(1) ∝ dout
i , so

2-communicability and out-degree centrality result in the same ranking of the nodes (in particular, r(1)

is the node with the largest out-degree). As edge weights become more heterogenous, these two rankings
become less correlated, with 2-communicability putting more emphasis on stronger weights.

A similar relation exists between ∞-communicability and left eigenvector centrality, as we show
next. Let v1, u1 ∈ R

n be the right and left Perron-Frobenius eigenvectors of A, respectively, normalized
such that vT

1 v1 = uT
1 v1 = 1 (notice that u1 has unit inner product with v1 but does not in general have unit

length). Since the network is by assumption strongly connected and aperiodic, we have

lim
k→∞

( 1

ρ(A)
A
)k = v1uT

1 . (C.1)

Thus for any i ∈ N ,

lim
k→∞

( 1

ρ(A)

)2k

Ri(k) = lim
k→∞

( 1

ρ(A)

)2k(
(Ak)T Ak

)
ii

= (u1vT
1 v1uT

1 )ii = u2
1,i.

Given that dividing Ri(k) by ρ(A)2k for all i does not change the ranking of nodes, we define Ri(∞) =
u2

1,i for all i. Since squaring non-negative numbers preserves their order, nodal rankings based on ∞-
communicability and left eigenvector centrality are identical.

D. Nodal dominance

Among the networks where the nodes with the greatest Ri(1) and Ri(∞) coincide (i.e., r(0) = r(∞)),
there is a higher chance (than in general) that any network belongs to class I. However, about half of
these networks still belong to class V , meaning that there exists 1 < k < ∞ such that r(k) �= r(0). To
assess the importance of this time-variation of optimal control nodes, we define the dominance of the
node r(0) (over the rest of the network) as follows. Let r ′(0) be the index of the node with the second
largest Ri(1) (largest after removing r(0)). Similarly, let r ′(∞) be the index of the second largest Ri(∞).
We define

Dominance of r(0) = min
{Rr(0)(0) − Rr′(0)(0)

Rr(0)(0)
,

Rr(0)(∞) − Rr′(∞)(∞)

Rr(0)(∞)

}
.

A small dominance indicates that another node has very similar value Ri(0) or Ri(∞) to r(0), while a
large dominance is an indication of a large gap between Rr(0)(k) and the next largest Ri(k) for both k = 0
and k → ∞.

E. Networks with multiple inputs

Consider a multiple-input network, namely, a network in which m ≥ 1 nodes are controlled at every time
step. Let ι1

k , . . . , ιm
k ∈ N denote the indices of the control nodes at every time k, and ιk = {ι1

k , . . . , ιm
k }.

Then, the corresponding TICS and TVCS are defined as

max
ι0,...,ιK−1∈N

f (WK) (E.1a)

s.t. ι0 = · · · = ιK−1 (E.1b)
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and

max
ι0,...,ιK−1∈N

f (WK), (E.2)

respectively. Accordingly, a multiple-input network is said to belong to class I if the solution of (E.2)
satisfies (E.1b), and to class V otherwise.

Clearly, for a multiple-input network to belong to class V , any of the first m largest of {Ri(k)}n
i=1 should

change over time, which is often implied by (but does not imply) a change in r(k). Therefore, the condition
of Theorem 4.3 can still be used as a tight proxy for networks in V , but is too conservative and can be
relaxed as follows: assume that A is irreducible, aperiodic and diagonalizable. Let {rd

j ∈ R
n | j ∈ J d} be

the set of nodes with the m highest 2-communicabilities, where the index set J d accounts for different
choices of rankings if there are nodes with equal 2-communicabilities. Similarly, let {rc

j ∈ R
n | j ∈ J c}

be the set of nodes with the m highest centralities. Then, if rd
j1

�= rc
j2

for all (j1, j2) ∈ J d × J c, the
network belongs to class V when K is sufficiently large. The proof of this statement is a straightforward
generalization of the proof of Theorem 4.3 and thus omitted.

Similarly, the three conditions in Theorem 4.4 can be generalized to undirected multiple-input
networks as follows (with similar proofs as the proof of Theorem 4.4):

(i) For all i ∈ {1, . . . , m},
1 − wi1∑

�≤m+1,� �=i+1 w�1
≤ |λ1| − |λ2|

|λ1| − |λn| .

This condition can be simplified, at the expense of being more conservative, to 1−wi1
iwi1

≤ |λ1|−|λ2|
|λ1|−|λn| , for

all i ∈ {1, . . . , m},
(ii) for all i ∈ {1, . . . , m}, wi2 = 1 − wi1,

(iii) the network has three or fewer nonzero eigenvalues with different absolute values and

R1(1) ≥ R2(1) ≥ · · · ≥ Rm(1) ≥ Ri(1),

for all i ∈ {m + 1, . . . , n}.
Finally, Fig. E.1 illustrates the effect of m on χ -values of ER, BA and WS networks discussed in the

main text.

F. 2k-Communicabilities of simple networks

As mentioned in the main text, cf. Fig. 5, the simple structure of homogeneous undirected line, ring and
star networks allows us to compute their 2k-communicabilities analytically in closed form, as derived in
the following. Throughout, Z denotes the set of integers and for a, b ∈ Z, a |b denotes that a divides b.

Proposition F.1 (2k-communicabilities of line networks). Consider a line network of n nodes with
uniform link weights a (and no self-loops). Then, for i ∈ N and k ∈ N,

Ri(k)=a2k
∑
p∈I

[(
2k

k+p(n+1)

)
−
(

2k

k+p(n+1)−i

)]
, (F.1)
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TIME-VARYING CONTROL SCHEDULING 685

Fig. E.1. Average value of χ for networks with increasing number of inputs. The plots show the effect of multiple inputs on TVCS.
The details on how to obtain the plots are similar to Fig. 6 in the main text. The dynamic adjacency matrix A is obtained from the
raw static connectivity C using the transmission method in all cases. These plots show a slight depression in the benefit of TVCS as
the number of control nodes grows, despite the fact that networks with more control nodes have a higher probability of belonging
to V (namely, having χ > 0).

where I = {−� k
n+1�, . . . , � k

n+1�} and
(n

k

)
� 0 if k /∈ {0, . . . , n}. In particular, if i ≤ � n

2� and k ≤ � n
2� − 1,

Ri(k) = a2k

[(
2k

k

)
−
(

2k

k − i

)]
. (F.2)

Proof. From [80, Lemma 1.77], we have

λj = 2a cos
jπ

n + 1
and wij ∝ sin2 ijπ

n + 1
,
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for i, j ∈ {1, . . . , n} where ∝ accounts for normalization. In order to normalize the eigenvectors, we use
the identities sin2 α = 1

2 (1 − cos 2α) and

n∑
j=1

cos
2sjπ

n + 1
= −1 for all s� | n + 1, (F.3)

to get wij = 2
n+1 sin2 ijπ

n+1 for all i, j ∈ {1, . . . , n} (one can show (F.3) by multiplying and dividing the
LHS by sin sπ

n+1 and using the identity 2 sin α cos β = sin(α + β) + sin(α − β) for each term). Thus, by

substitution, we have Ri(k) = 2a2k

n+1

∑n
j=1 τ 2

ijk where

τijk = 2k sin
ijπ

n + 1
cosk jπ

n + 1
.

By using the identity 2 sin α cos β = sin(α + β) + sin(α − β), k times and collecting terms, we get

τijk =
k∑

�=0

(
k

�

)
sin

(i + k − 2�)jπ

n + 1
.

Hence, by squaring τijk and substituting it in Ri(k), and using the identity 2 sin α sin β = cos(α − β) −
cos(α + β), we get

Ri(k) = a2k

n + 1

k∑
�,r=0

(
k

�

)(
k

r

)[ n∑
j=1

cos
2(� − r)jπ

n + 1
−

n∑
j=1

cos
2(i + k − � − r)jπ

n + 1

]
. (F.4)

However, by (F.3), the two sums in (F.4) cancel each other unless � − r |n + 1 or i + k − � − r |n + 1 (the
cases where both of these happen need not be excluded since they automatically cancel). Thus,

Ri(k) = a2k

[∑
I1

(
k

�

)(
k

r

)
−
∑
I2

(
k

�

)(
k

r

)]
, (F.5)

where

I1 = {(�, r) ∈ {0, . . . , k}2 | � − r |n + 1},
I2 = {(�, r) ∈ {0, . . . , k}2 | i + k − � − r |n + 1}.

Defining p = n+1
�−r in the first and p = i+k−�−r

n+1 in the second sum in (F.5), we get

Ri(k) = a2k
∑
p∈I

[ k∑
�=0

(
k

�

)(
k

�−p(n+1)

)
−

k∑
�=0

(
k

�

)(
k

�+p(n+1)−i

)]
, (F.6)

where we have used the identity
(k

s

) = ( k
k−s

)
. Equation (F.1) then follows by applying the formula∑k

�=0

(k
�

)( k
�±s

) = ( 2k
k±s

)
[81, Eq. 6.69-70] to each of the two sums in (F.6). To get (F.2), note that if i ≤ � n

2�
and k ≤ � n

2� − 1, then the only nonzero term in (F.1) is the one corresponding to p = 0. �
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According to this result, in the case of no self-loops, the value of Ri(k) increases with i until i = � n
2�

(i.e., the middle node) for k ≤ � n
2� − 1 (this can be observed from the expression (F.2)). For general

k, it can be shown that the value of the sum in (F.1) for Ri(k) is strongly dominated by the summand
corresponding to the index p = 0, which increases with i until i = � n

2� and decreases afterwards. Thus,
the optimal control node corresponds always to (one of) the centre node(s), i.e., b∗(k) = e� n

2 � for
all k. If nodes have uniform self-loops (i.e., self-loops all with the same weight), Ri(k) can no longer be
computed analytically but simulations show the exact same behaviour;

Proposition F.2 (2k-communicabilities of ring networks). Consider a ring network of n nodes and
uniform link weights a (with no self-loops). Then, for i ∈ N and k ∈ N,

Ri(k) = (2a)2k

n

[
1 + 2

� n
2 �−1∑
j=1

cos2k
(2jπ

n

)
+ δE

n

]
, (F.7)

where δE
n equals one if n is even and zero otherwise.

Proof. From [80, Lemma 1.77], we have λj = 2a cos 2jπ
n and (after normalization of eigenvectors),

wij =

⎧⎪⎨
⎪⎩

2
n cos2 2(i−1)jπ

n if 1 ≤ j < n
2 ,

2
n sin2 2(i−1)(n−j)π

n if n
2 < j < n,

1
n if j = n, or n ∈ Z even and j = n

2 ,

for i, j ∈ {1, . . . , n}. Note that to normalize the eigenvectors, we follow a similar procedure to the one
described in the proof of Lemma F.1 (setting s = 2i and substituting n by n − 1 in (F.3)). The result then
follows by substituting these expressions in Ri(k). �

We can infer from the preceding result that without self-loops, the value of Ri(k) is independent of
i (as shown by (F.7)) for a uniform ring network, so the optimal control node is arbitrary for all k.
Similar result can be proved analytically if the nodes have uniform self-loops.

Proposition F.3 (2k-communicabilities of star networks). Consider a star network given by

A =
[

lc aT

a lpIn−1

]
, (F.8)

where a ∈ R
n−1 contains the link weights between the centre node and peripheral nodes. Then

R1(k) = (λ1 − lp)
2

(λ1 − lp)2 + ‖a‖2
λ2k

1 + (lp − λ2)
2

(lp − λ2)2 + ‖a‖2
λ2k

2 ,

Ri(k) = a2
i−1

(λ1 − lp)2 + ‖a‖2
λ2k

1 + a2
i−1

(lp − λ2)2 + ‖a‖2
λ2k

2 + ‖a‖2 − a2
i−1

‖a‖2
l2k
p , (F.9)
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for all k ∈ N ∪ {0} and i ∈ {2, . . . , n}, where

λ1,2 = lc + lp ±√
(lc − lp)2 + 4‖a‖2

2
. (F.10)

Proof. Using the formula ∣∣∣∣ P Q
R S

∣∣∣∣ = (P − 1)|S| + |S − RQ|,

for scalar P, row vector Q, column vector R, and square matrix S, and some algebra, we get |sIn − A| =(
s2 − (lc + lp)s + lclp − ‖a‖2

)
(s − lp)

n−2, so the eigenvalues of A are given by

λ3,...,n = lp, (F.11)

and λ1,2 in (F.10). Note that we may or may not have |λ1| ≥ · · · ≥ |λn| as the order depends on the
values of the parameter. By solving (A − λjIn)vj = 0 for j = 1, 2, and then using the orthogonality of
eigenvectors, we get

v1,2 ∝
[

λ1,2 − lp

a

]
, (vj)1 = 0 ∀j ∈ {3, . . . , n}, (F.12)

where ∝ accounts for normalization. The result then follows by substituting (F.10)-(F.12) into Ri(1) =∑
j v2

ijλ
2
j separately for i = 1 and i ≥ 2, and simplifying. �

Using this result, if all self-loop weights are the same (lc = lp in (F.8)), then R1(1) > Ri(1) for all
i ≥ 2 from (12). Therefore Theorem 4.4(iii) implies that the centre node is the optimal control node at
all times.

G. Additional lemmas and proofs

In this section, we formulate and prove a number of lemmas that underlie the main results of this article
and also provide the proofs of the main results presented in the main text. Throughout, C denotes the set
of complex numbers and for M ∈ C

n×n, M and M∗ denote its complex conjugate and complex conjugate
transpose, respectively, and M−∗ = (M∗)−1. Further, for λ ∈ R

n and � ∈ N ∪ {0}, λ� � [λ�
1 · · · λ�

n]T and
|λ| � [|λ1| · · · |λn|]T .

Proof of Theorem 4.3. Define

U = V−�.

Notice that the columns of U are the left eigenvectors of A, with the same order as in � and V . Since for
any k,

(Ak)T Ak = (Ak)∗Ak = (V�kU∗)∗V�kU∗,

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/7/5/659/5364042 by guest on 25 O
ctober 2020
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it follows that for any i and k,

Ri(k) = (
(Ak)T Ak

)
ii

= (V�kU∗
i,:)

∗V�kU∗
i,: = ‖V�kU∗

i,:‖2
2,

where Ui,: denotes the ith row of U. For simplicity, define c(i,k) = V�kU∗
i,: ∈ C

n. It is straightforward to
check that

c(i,k)

� =
n∑

j=1

v�juijλ
k
j , � ∈ {1, . . . , n}

so

Ri(k) =
n∑

�=1

∣∣c(i,k)

�

∣∣2 =
n∑

�=1

c(i,k)

� c(i,k)

� =
n∑

�=1

n∑
j=1

n∑
m=1

v�jv�muijuimλk
j λ

k

m

=
n∑

j,m=1

(
n∑

�=1

v�jv�muijuim

)
︸ ︷︷ ︸

β
(j,m)
i

λk
j λ

k

m.

Dividing both sides by λ2k
1 and taking the limits as k → ∞, we see that for all i, β

(1,1)

i = u2
i1 = Ri(∞)

(notice that ui1 ∈ R for all i since λ1 ∈ R>0 according to the Perron-Frobenius Theorem [21, Fact 4.11.4]).
Choose r(1) ∈ arg maxi Ri(1) and r(∞) ∈ arg maxi Ri(∞). The network belongs to class V if for some
k > 1,

Rr(∞)(k) > Rr(1)(k) ⇔ Rr(∞)(∞)λ2k
1 +

∑
(j,m)�=(1,1)

β
(j,m)

r(∞)λ
k
j λ

k

m > Rr(1)(∞)λ2k
1 +

∑
(j,m)�=(1,1)

β
(j,m)

r(1) λk
j λ

k

m

⇔ [
Rr(∞)(∞) − Rr(1)(∞)

]
λ2k

1 >
∑

(j,m)�=(1,1)

[
β

(j,m)

r(1) − β
(j,m)

r(∞)

]
λk

j λ
k

m

(a)⇐ [
Rr(∞)(∞) − Rr(1)(∞)

]
λ2k

1 > λk
1|λ2|k

∣∣∣∣∣∣
∑

(j,m)�=(1,1)

β
(j,m)

r(1) − β
(j,m)

r(∞)

∣∣∣∣∣∣
⇔ [

Rr(∞)(∞) − Rr(1)(∞)
]
λ2k

1 > λk
1|λ2|k

∑
(j,m)�=(1,1)

∣∣∣β(j,m)

r(1)

∣∣∣+ ∣∣∣β(j,m)

r(∞)

∣∣∣
⇐ [

Rr(∞)(∞) − Rr(1)(∞)
]
λk

1 > |λ2|k · 2 max
i∈{1,...,n}

n∑
j,m=1

∣∣∣β(j,m)

i

∣∣∣ ,
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where in (a) we have used the fact that |λjλm| ≤ λ1|λ2| for any (j, m) �= (1, 1). Now, using the definition
of β

(j,m)

i ,

n∑
j,m=1

∣∣∣β(j,m)

i

∣∣∣ ≤
n∑

j,m=1

n∑
�=1

|v�j||v�m||uij||uim|

=
n∑

j,m=1

|uij||uim|
(

n∑
�=1

|v�j||v�m|
)

(b)≤
n∑

j,m=1

|uij||uim| ‖V:,j‖2︸ ︷︷ ︸
1

‖V:,m‖2︸ ︷︷ ︸
1

= ‖Ui,:‖2
1

≤ ‖U‖2
∞,

where (b) follows from the Cauchy-Schwarz inequality. Thus,

Rr(∞)(k) > Rr(1)(k) ⇐ [
Rr(∞)(∞) − Rr(1)(∞)

]
λk

1 > |λ2|k · 2‖U‖2
∞

⇔ k >
log 2‖U‖2

∞ − log
[
Rr(∞)(∞) − Rr(1)(∞)

]
log λ1 − log |λ2| .

Therefore, the result follows by choosing K > K̄ , where K̄ = � log 2‖U‖2∞−log[Rr(∞)(∞)−Rr(1)(∞)]
log λ1−log |λ2| �. �

The following lemma will be useful in the proof of Theorem 4.4.

Lemma G.1 Let W ∈ R
n×n be a doubly-stochastic matrix and γ ∈ R

n
≥0 be such that γ1 ≥ · · · ≥ γn. If

1−w11
w11

≤ γ1−γ2
γ1−γn

, then 1 ∈ arg max1≤i≤n (Wγ )i.

Proof. Note that we have

1 − w11

w11
≤ γ1 − γ2

γ1 − γn
⇔ (γ1 − γ2)w11 ≥ (γ1 − γn)(1 − w11)

⇔ γn + w11(γ1 − γn) ≥ γ2 + (1 − w11)(γ1 − γ2)

⇒ ∀i ≥ 2 γn + w11(γ1 − γn) ≥ γ2 + wi1(γ1 − γ2),

where the last implication is because wi1 ≤ 1 − w11 for all i ∈ {1, . . . , n}. The last inequality can be
equivalently expressed, for any i ∈ {2, . . . , n}, as

w11γ1 + (1 − w11)γn ≥ wi1γ1 + (1 − wi1)γ2,

which, given that γn ≤ γj ≤ γ2 for all j ∈ {2, . . . , n}, implies

w11γ1 +
n∑

j=2

w1jγj ≥ wi1γ1 +
n∑

j=2

wijγj,
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for any i ∈ {2, . . . , n}. This can be equivalently written as

n∑
j=1

w1jγj ≥
n∑

j=1

wijγj ⇔ (Wγ )1 ≥ (Wγ )i,

completing the proof. �

Proof of Theorem 4.4. For convenience, let λ = [λ1 · · · λn]T . After some algebraic manipulations, one
can show that

Ri(k) = (A2k)ii =
n∑

j=1

v2
ijλ

2k
j = (Wλ2k)i. (G.1)

The assumption that node 1 has the largest eigenvector centrality is equivalent to the largest element of
the first column of W being w11, i.e.,

w11 = max
1≤i≤n

wi1, (G.2)

or, also equivalently, r(∞) = 1. This can always be realized by a permutation of the rows of W achieved
by relabelling the node with the largest centrality as node 1 (note that relabelling the nodes only permutes
the rows of W and not its columns. The order of its columns is arbitrary and corresponds to the order of
the diagonal elements of �).

The claim of the theorem is trivial in all cases for k = 0. Under condition (i), for k = 1, we have

λ2
1 − λ2

2

λ2
1 − λ2

n

= |λ1| − |λ2|
|λ1| − |λn|

|λ1| + |λ2|
|λ1| + |λn| ≥ |λ1| − |λ2|

|λ1| − |λn| ≥ 1 − w11

w11
.

For k ≥ 2, using the above inequality, we have

λ2k
1 − λ2k

2

λ2k
1 − λ2k

n

= λ2
1 − λ2

2

λ2
1 − λ2

n

λ2k−2
1 + · · · + λ2k−2

2

λ2k−2
1 + · · · + λ2k−2

n

≥ 1 − w11

w11
.

Thus, the result follows from Lemma G.1.
Under condition (ii), for any k ≥ 1,

1 ∈ arg max
1≤i≤n

Ri(k) ⇔
n∑

j=1

w1jλ
2k
j ≥

n∑
j=1

wijλ
2k
j

⇔ w11λ
2k
1 + (1 − w11)λ

2k
2 ≥

n∑
j=1

wijλ
2k
j

⇐ w11λ
2k
1 + (1 − w11)λ

2k
2 ≥ wi1λ

2k
1 + (1 − wi1)λ

2k
2

⇔ (w11 − wi1)(λ
2k
1 − λ2k

2 ) ≥ 0,

where the last inequality is always true (cf. equation (G.2)).
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Finally, under condition (iii), first consider the case when |λ1| > |λ2|. By contradiction, assume
Ri(k) > R1(k) for some i ∈ {2, . . . , n} and k ≥ 2. Since |λ1| > |λi| for all i ∈ {2, . . . , n}, there exists a
sufficiently large k where R1(k) > Ri(k) (recall our node labelling convention in (G.2)). Note that it is
not necessary for k to be less than K . Thus, R1 and Ri swap orders at least 2 times. However, since A has
(at most) three distinct nonzero eigenvalues, [82, Theorem 1] implies that R1 and Ri can swap orders at
most once, which is a contradiction. On the other hand, if |λ1| = |λ2|, then each Ri is essentially the sum
of at most two distinct exponential functions and thus, using [82, Theorem 1] again, the order of all Ri’s
remains unchanged for all k, yielding the result. �

Proof of Theorem 4.5. We first prove the first part of the theorem for general (not necessarily symmetric)
A0 and E. Recall that for k ∈ {0, . . . , K − 1}

r(k) = arg max
i∈N

Ri(k) = arg max
i∈N

(
((A + αE)k)T (A + αE)k

)
ii

(a)= arg max
i∈N

(
((α−1A + E)k)T (α−1A + E)k

)
ii
,

where (a) holds because the maximizer of a set is invariant to the scaling of all the elements of the set by
a constant. Using limα→∞ α−1A + E = E and the continuity of polynomials, we get

lim
α→∞ Ri(k) = R̃i(k),

where R̃i denotes the 2k-communicabilities of a node i in the additive network E. Since E is not acyclic,
powers of E never vanish, and thus

∀k ∈ {0, . . . , K − 1} ∃i ∈ {1, . . . , n1} R̃i(k) > 0,

while R̃i(k) = 0 for i ∈ {n1 + 1, . . . , n} and all k. Therefore, for any k ∈ {0, . . . , K − 1}, there exists
ᾱk > 0 such that

r(k) ∈ {1, . . . , n1},

for α > ᾱk . The claim follows by taking ᾱ = maxk∈{0,...,K−1} ᾱk .
Now, assume A0 and E are symmetric. As before, let λ = [λ1 · · · λn]T ∈ R

n and V ∈ R
n×n be the

vector of eigenvalues (with |λ1| ≥ · · · ≥ |λn|) and the matrix of eigenvectors of A, respectively, and W
be the element-wise square of V . Recall that this gives

Ri(k) = (A2k)ii =
n∑

j=1

v2
ijλ

2k
j = (Wλ2k)i.

Let i∗ ∈ {1, . . . , n1} be the node with the greatest eigenvector centrality in E and γ ∈ R
n be any vector

such that γ1 ≥ · · · ≥ γn ≥ 0. Fix i ∈ {n1 + 1, . . . , n} arbitrarily and let r ≤ n1 be the rank of E. Using the
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inequalities

n∑
j=1

wi∗jγj ≥ wi∗1γ1,

r∑
j=1

wijγj ≤ γ1

r∑
j=1

wij,

n∑
j=r+1

wijγj ≤ γr+1,

it follows that (Wγ )i∗ > (Wγ )i if

wi∗1γ1 > γ1

r∑
j=1

wij + γr+1. (G.3)

Note that if (G.3) holds for γ = |λ|, then it holds for γ = λ2k for any k ≥ 1. This is because

wi∗1λ
2k
1 = |λ1|2k−1 · wi∗1|λ1| > |λ1|2k−1

(
|λ1|

r∑
j=1

wij + |λ|r+1

)
> λ2k

1

r∑
j=1

wij + λ2k
r+1.

Therefore, our proof strategy is to find α such that (G.3) holds for γ = |λ| if α > α. To this end, let
λ̃ = [λ̃1 · · · λ̃n]T ∈ R

n and Ṽ ∈ R
n×n be the vector of eigenvalues (with |λ̃1| ≥ · · · ≥ |λ̃n|) and the matrix

of eigenvectors of E, respectively, and W̃ be the element-wise square of Ṽ . Note that W̃ has the structure

(G.4)

In the following, we bound λ and V using perturbation theory of eigenvalues and eigenvectors. For
simplicity of exposition, we only deal with the case where the r nonzero eigenvalues of E are all distinct
(the proof for the general case proceeds along the same lines but is more involved).

To bound the eigenvalues in λ, let πA : {1, . . . , n} → {1, . . . , n} be a permutation that re-orders the
eigenvalues of A based on their signed value, i.e., λπA(1) ≥ λπA(2) ≥ · · · ≥ λπA(n). Define πE similarly for
E (i.e., such that λ̃πE (1) ≥ λ̃πE (2) ≥ · · · ≥ λ̃πE (n)). By Weyl’s Theorem [83, Thm 4.3.1],

|λπA(j) − αλ̃πE (j)| ≤ ρ(A0), (G.5)

for all j ∈ {1, . . . , n}. We know from the Perron-Frobenius theorem [21, Fact 4.11.4] for non-negative
matrices that πA(1) = πE(1) = 1. Therefore, (G.5) implies that

αρ(E) − ρ(A0) ≤ λ1 ≤ αρ(E) + ρ(A0). (G.6a)
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Moreover, since E has n − r zero eigenvalues, (G.5) implies that A has at least n − r eigenvalues with
absolute value less than or equal to ρ(A0), i.e.,

|λr+1| ≤ ρ(A0). (G.6b)

Next, we bound the eigenvectors in V . Define

δE = min{λ̃πE (j) − λ̃πE (j+1) | λ̃πE (j)−λ̃πE (j+1) > 0, j ∈ {1, . . . , n − 1}}.

Using [84, Cor. 1], we have

‖vπA(j) − ṽπE (j)‖ ≤ 23/2‖A0‖
αδE

, (G.7)

for j ∈ π−1
E ({1, . . . , r}). To see this, set � = αE and �̂ = A0 in [84, Cor. 1]. This is the only place where

we need the nonzero eigenvalues of E to be distinct. If E has a repeated nonzero eigenvalue, then the
corresponding eigenvectors are no longer unique, i.e., one has to study the perturbation of eigenspaces
rather than eigenvectors. Therefore, one can no longer use the simplified variant [84, Cor. 1] of the
Davis-Kahan Theorem but the original result itself, which provides essentially the same result but is
more technically involved.

Using πA(1) = πE(1) = 1 and (G.7), we get

|wi∗1 − w̃i∗1| = |v2
i∗1 − ṽ2

i∗1| ≤ 2||vi∗1| − |ṽi∗1|| (G.8)

≤ 2|vi∗1 − ṽi∗1| ≤ 2‖v1 − ṽ1‖ ≤ 25/2‖A0‖
αδE

,

which together with w̃i∗1 ≥ 1
n1

gives

wi∗1 ≥ 1

n1
− 25/2‖A0‖

αδE
. (G.9a)

To derive similar bounds on wij, j ∈ {1, . . . , r} (recall that we fixed i ∈ {n1 + 1, . . . , n} arbitrarily at the
beginning of the proof), we need to choose α >

2ρ(A0)

|λ̃r | . This choice of α guarantees that πA(j) ∈ {1, . . . , r}
for all j ∈ π−1

E ({1, . . . , r}). Therefore, using (G.7) and (G.4) and following the same steps as in (G.8), we
get

wij ≤ 25/2‖A0‖
αδE

, j ∈ {1, . . . , r}. (G.9b)
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Now, using (G.6) and (G.9), (G.3) holds with γ = |λ| if

(
1

n1
− 25/2‖A0‖

αδE

)(
αλ̃1 − ρ(A0)

)
>
(
αλ̃1 + ρ(A0)

) r25/2‖A0‖
αδE

+ ρ(A0),

which itself holds if α > α, where

α � max
{
1,

2ρ(A0)

λ̃r

,
8‖A0‖

δE

(
1+ ρ(A0)

ρ(E)

)
n2

1 + 2
ρ(A0)

ρ(E)
n1

}
,

completing the proof. �

H. Description of the analysed real networks

The real networks studied in this work have been acquired from a multitude of sources, which we list
here for easier reproduction of our results. All the databases are freely and publicly available.

• BCTNet fMRI [47]: This is a human whole-brain functional network. Nodes represent
brain areas and edges represent fMRI co-activations. The dataset is available online at
https://sites.google.com/site/bctnet/datasets.

• Cocomac [48]: This is a macaque whole-brain structural network based on the Felleman and Van
Essen atlas. Nodes represent brain areas and edges represent axonal projections (nerve tracts) between
them. The dataset is retrieved from http://cocomac.g-node.org/services/axonal_projections.php by
entering the specifications detailed in http://cocomac.g-node.org/main/faq.php#connectivity matrix.

• BCTNet Cat [47]: This represents the cat structural thalamocortical network. Nodes represent tha-
lamocortical areas and edges represent nerve tracts between them. The dataset is available online at
https://sites.google.com/site/bctnet/datasets.

• C. elegans [49]: This dataset contains the neural network of Caenorhabditis elegans worm
(C. elegans). Nodes represent individual neurons and edges represent the total number of
synapses and gap junctions between any pair of neurons. The dataset of available online at
https://toreopsahl.com/datasets/#celegans.

• air500 [50]: This is the network of the 500 busiest commercial airports in the United States in 2002.
Nodes represent airports and edges represent flights between them. The dataset is available online at
https://toreopsahl.com/datasets/#usairports.

• airUS [51]: This is the complete US airport network in 2010. Nodes and edges rep-
resent airports and flights between them, respectively. The dataset is available online at
https://toreopsahl.com/datasets/#usairports.

• airGlobal [51]: This dataset contains the global airport network according to OpenFlights.org. Nodes
and edges represent airports and flights between them, respectively. The dataset is available online at
https://toreopsahl.com/datasets/#usairports.

• Chicago [52, 53]: This dataset represents the road transportation network of the Chicago region, USA.
Nodes are transport nodes while edges represent connections between them. The dataset is available
online as [85].
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• Escherichia coli [54]: This is the probabilistic functional gene network of E. coli.
Nodes represent genes and edges represent interactions between them. The dataset
is available online at http://www.inetbio.org/ecolinet/downloadnetwork.php (the integrated
network).

• Yeast [55]: This network represents the protein–protein interaction network in the budding yeast.
Nodes and edges represent proteins and the interactions among them, respectively. The dataset is
available online at http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm.

• Stelzl [56]: This is a protein–protein interaction network in humans. Nodes and edges rep-
resent proteins and the interactions among them, respectively. The dataset is available online
as [86].

• Figeys [57]: Similar to above, this is a protein–protein interaction network in humans where nodes
and edges represent proteins and the interactions among them, respectively. The dataset is available
online as [87].

• Vidal [58]: Similar to above, this is a protein–protein interaction network in humans where nodes
and edges represent proteins and the interactions among them, respectively. The dataset is available
online as [88].

• westernUS [49]: This dataset describes the high voltage power grid in the Western States of the
US. Nodes represent transformers, substations and generators, and the edges represent high-voltage
transmission lines. The dataset is available online at https://toreopsahl.com/datasets/#uspowergrid.

• Florida [59]: This network describes the food web in the cypress wetlands of South Florida during
the wet season. Nodes represent taxa and an edge denotes that a taxon uses another taxon as food.
The dataset is available online as [89].

• LRL [60]: The networks describes the food web of Little Rock Lake, Wisconsin, USA. Nodes
represent autotrophs, herbivores, carnivores and decomposers while links represent food sources.
The dataset is available online as [90].

• Facebook group [61]: This dataset describes the social interactions among a group of Facebook users.
Nodes and edges represent profiles and the connections between them, respectively. The dataset is
available online at http://snap.stanford.edu/data/egonets-Facebook.html.

• E-main [62, 63]: This datasets contains E-main communications in a research institution.
Nodes represent institution members and edges exist between any ordered pair of mem-
bers if one has sent at least one E-main to the other. The dataset is available online at
http://snap.stanford.edu/data/email-Eu-core.html.

• Southern Women [64]: This is a social network of 18 Southern women. Nodes are individuals and
edges represent mutual attendance at one of the 14 events recorded. The dataset is available online at
https://toreopsahl.com/datasets/#southernwomen.

• UCI P2P [65]: This dataset describes an online community among the students of
the University of California, Irvine. Nodes represent individuals and edges represent at
least one message sent between any pair of them. The dataset is available online at
https://toreopsahl.com/datasets/#online_social_network.

• UCI Forum [66]: This network is based on the same online community as in UCR P2P, but an
edge exists between two individuals if they posted on the same topic in a forum. This dataset is also
available online at https://toreopsahl.com/datasets/#online_social_network.
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• Freeman’s EIES [67]: This is a network of researchers working on social network analysis. Nodes
represent researchers and edges represent personal relationships between them. The dataset is available
online at https://toreopsahl.com/datasets/#FreemansEIES (the second dataset in the list).

• Dolphins [68]: This is a social network of bottlenose dolphins observed between 1994 and 2001.
The nodes are the bottlenose dolphins and edges indicate a frequent association between them. The
dataset is available online as [91].

• Physicians [69]: This network captures innovation spread among 246 physicians in four towns in
Illinois, USA. A node represents a physician and an edge represents that one physician recognizes
the other as theor friend or that they turn to them if they need advice or are interested in a discussion.
The dataset is available online as [92].

• Org. Consult Advice & Value [70]: These are intra-organizational networks between employees of
a consulting company. The nodes are individuals, and the edges represent frequency of information or
advice requests (Org. Consult Advice) and the value placed on the information or advice received (Org.
Consult Value). The datasets are available online at https://toreopsahl.com/datasets/#Cross_Parker.

• Org. R&D Advice & Aware [70]: Similar to the networks above, these describe intra-
organizational interactions among the members of a research team in a manufacturing company.
Nodes represent individuals, and edges represent the extent to which individuals received advice
from their peers to accomplish their work (Org. R&D Advice) and employees’ awareness of
each others’ knowledge and skills (Org. R&D Aware). The datasets are available online at
https://toreopsahl.com/datasets/#Cross_Parker.
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