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Molecular networking has become a key method to visual-
ize and annotate the chemical space in non-targeted mass 
spectrometry data. We present feature-based molecular net-
working (FBMN) as an analysis method in the Global Natural 
Products Social Molecular Networking (GNPS) infrastructure 
that builds on chromatographic feature detection and align-
ment tools. FBMN enables quantitative analysis and resolu-
tion of isomers, including from ion mobility spectrometry.

Since its introduction in 2012 (ref. 1), molecular networking has 
become an essential bioinformatics tool to visualize and annotate 
non-targeted mass spectrometry (MS) data2,3. Molecular network-
ing, uniquely, goes beyond spectral matching against reference 
spectra, by aligning experimental spectra against one another 
and connecting related molecules by their spectral similarity. In a 
molecular network, related molecules are referred to as a ‘molecular 
family’, differing by simple transformations such as glycosylation, 
alkylation and oxidation/reduction. Molecular networking became 
publicly accessible in 2013 through the initial release of GNPS, a 
web-enabled MS knowledge capture and analysis platform (https://
gnps.ucsd.edu/)4, and has been widely applied in MS-based metab-
olomics to aid in the annotation of molecular families from their 
fragmentation spectra (MS2).

Powered by more than 3,000 CPU cores at the University of 
California San Diego Center for Computational Mass Spectrometry 
and the MassIVE data repository, GNPS has provided researchers 
from more than 150 countries with the ability to perform molecu-
lar networking. To build upon the success of the first molecular 
networking method referred to as ‘classical’ molecular network-
ing (classical MN), which is based on the MS-Cluster algorithm5, 

we introduce a complementary tool named FBMN. FBMN lever-
ages the capability of well-established MS processing software 
and improves upon classical MN by incorporating not only MS1 
information, such as isotope patterns and retention time, but also 
ion mobility separation when performed. By relying on processed 
spectral information, molecular networks obtained with FBMN 
can (1) distinguish isomers producing similar MS2 spectra that are 
resolved by chromatographic or ion mobility separation, which 
may have remained hidden in classical MN, (2) facilitate spectral 
annotation, and (3) incorporate relative quantitative information 
that enables robust downstream metabolomics statistical analy-
sis. Whereas users of the classical MN would have had to perform 
molecular networking and MS1 analysis separately before per-
forming a cumbersome linking of the outputs, the FBMN method 
accepts the output of feature detection and alignment tools, mak-
ing them directly compatible with annotation tools and the entirety 
of the analysis pipeline.

To fully utilize the MS1 and MS2 data collected during a 
non-targeted metabolomics experiment in liquid chromatography 
coupled to tandem MS (LC–MS2), we have created an online and 
streamlined workflow (Fig. 1a) infrastructure that supports the out-
puts of feature detection and alignment tools for FBMN analysis 
(https://ccms-ucsd.github.io/GNPSDocumentation/featurebased-
molecularnetworking/), including the standard output format for 
analysis of small molecules (mzTab-M)6. The diversity of supported 
software, each offering different functionalities and modules, serves 
experimentalists, bioinformaticians, and software developers. 
FBMN is the second most commonly used analysis tool within the 
GNPS environment (Fig. 1b), with more than 6,767 jobs performed 
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in 2019, and has already been used in more than 80 publications 
since its introduction in November 2017.

The molecular networks generated with FBMN enable the effi-
cient visualization and annotation of isomers in LC–MS2 datasets, 
as demonstrated below with LC–MS2 data from a drug discovery 
project from Euphorbia plant extract7 (Fig. 2a,b) and the detec-
tion of human microbiome-derived lipids belonging to the com-
mendamide family8, detected in fecal samples from the American 
Gut Project (AGP9; a crowd-sourced citizen-science microbiome 
project; Fig. 2c,d). In both cases, FBMN resolved positional iso-
mers/stereoisomers in the molecular networks that have simi-
lar MS2 spectra but distinct retention times, that would not have 
been resolved with classical MN. The uses of FBMN facilitated the 
discovery of antiviral compounds7 (Fig. 2c), and the annotation 
of commendamide isomers9 and of a putative new derivative, the 
N-(dehydrohexadecanoyl)glycine (Fig. 2d).

In non-targeted LC–MS2 data acquisition, the same precur-
sor ion is frequently fragmented multiple times during chromato-
graphic elution. While MS-Cluster is often able to cluster these 
spectra into one single node in classical MN, there are cases where 
it will fail and produce multiple nodes representing the same com-
pound. For example, this can happen for compounds producing 
mostly low-intensity fragment ions or for chimeric spectra result-
ing from coeluting isobaric ions isolated and fragmented together. 
With FBMN, a singular representative MS2 spectrum is selected for 
the LC–MS feature (defined as the detected ion signal for an elut-
ing molecule)10. The benefit of using FBMN in such instances can 
be illustrated with the metal chelating agent EDTA in the LC–MS2 

analysis of plasma samples (Fig. 2e), in which it was used as an anti-
coagulant agent. Classical MN resulted in 13 duplicated nodes with 
identical precursor m/z values in one molecular family, 10 of which 
had spectral library matches to EDTA reference MS2 data (Fig. 2e,f). 
On the contrary, FBMN displayed a unique representative MS2 
spectrum that matched EDTA spectra in the library. The reduction 
of redundancy within the resulting molecular network simplifies 
the discovery of structurally related compounds.

While classical MN uses the spectral count or the summed pre-
cursor ion count, FBMN uses the LC–MS feature abundance (peak 
area or peak height), resulting in a more accurate estimation of the 
relative ion intensity. FBMN simplifies and aggregates data by includ-
ing relative quantitative information and other MS1 derived informa-
tion (that is, precursor isotope patterns, adduct annotation). FBMN 
enables robust statistical analysis by providing accurate relative ion 
intensities across a dataset. This capacity is demonstrated with a 
serial dilution series dataset of the NIST 1950 serum reference stan-
dard, containing 150 spiked standards. Here the LC–MS2 data were 
processed with MZmine11 or OpenMS10 for FBMN (Fig. 2g,h). A lin-
ear regression analysis was used to evaluate the relative quantification 
between classical MN and FBMN. Figure 2h shows that for FBMN, 
relative quantification had a coefficient of determination (R2) value 
distribution mostly above 0.7, whereas this was not found when the 
precursor ion abundance was obtained from classical MN via spec-
tral counts (Fig. 2g). The improved distribution of correlation coef-
ficients toward 1 indicates a more linear response between molecular 
concentration and ion abundance, which improves the accuracy and 
precision of the quantification of results. In addition, FBMN facilitates  
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Fig. 1 | Methods for the generation of molecular networks from non-targeted MS data with the GNPS web platform. a, Two methods exist for the 
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the direct application of existing statistical, visualization and annota-
tion tools, such as QIIME2 (ref. 12), MetaboAnalyst13, ’ili14, SIRIUS15, 
DEREPLICATOR16, MS2LDA17 and Qemistree18.

FBMN further enables the creation of molecular networks from 
ion mobility spectrometry (IMS) experiments coupled within 
LC–MS2 analysis. As an orthogonal separation method, the use 
of ion mobility offers additional resolving power to differentiate 
isomeric ions in the molecular network based on their collisional 
cross-section. The integration of ion mobility with FBMN on GNPS 
can currently be performed with MetaboScape, MS-DIAL19 and 
Progenesis QI. An example of such isomer separation using trapped 
IMS (TIMS) coupled to LC–MS2 is shown in Supplementary Fig. 1.

Available on the GNPS web platform at https://gnps.ucsd.edu/, 
FBMN is ideally suited for advanced molecular networking anal-
ysis, enabling the characterization of isomers, incorporation of 
relative quantification and integration of ion mobility data. FBMN 
analysis is recommended for a single LC–MS2 metabolomics study, 
but its applicability is limited when applied across multiple stud-
ies due to different experimental conditions and possible batch 
effects. Moreover, the use of FBMN for the analysis of very large 

datasets (containing several thousand samples) is limited by the 
scalability of most feature detection and alignment software tools. 
Thus, while FBMN offers an improvement upon many aspects of 
molecular networking analysis, classical MN remains essential for 
meta-analysis of large-scale datasets and is convenient for rapid 
analysis of LC–MS2 data with less user-defined parameters; one 
important aspect of molecular networks obtained with FBMN is the 
use of adequate processing steps and parameters, which otherwise 
could negatively affect the resulting molecular networks. To facili-
tate dissemination and education of the FBMN method and the 
supported processing software, we have created detailed tutorials 
and step-by-step instructions, available at https://ccms-ucsd.github.
io/GNPSDocumentation/featurebasedmolecularnetworking/.

The FBMN workflow not only offers automated spectral library 
search and spectral library entry curation, but is also integrated with 
other annotation tools available on the GNPS environment, such as 
MASST20, while promoting data analysis reproducibility by saving 
the FBMN jobs on the user’s private online workspace. The GNPS 
environment conveniently enables the user to evaluate different 
parameters and share the results via a URL for publication.
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Methods
Development of FBMN. The FBMN method consists of two main steps: (1) LC–
MS feature detection and alignment and (2) a dedicated molecular networking 
workflow on GNPS. Our first prototype for FBMN was developed with the 
Optimus workflow7,14 using OpenMS tools10. Following the first step, two files are 
exported: a feature quantification table (.TXT format) and a MS2 spectral summary 
(.MGF format). The feature quantification table contains information about LC–
MS features across all considered samples including a unique identifier (feature ID) 
for each feature, m/z value, retention time and intensity. The MS2 spectral summary 
contains a list of MS2 spectra, with one representative MS2 spectrum per feature. 
The mapping of information between the feature quantification table and the MS2 
spectral summary is stored in these files using the feature ID and scan number, 
respectively. This simple mapping enabled us to relate LC–MS feature information 
or statistically derived results to the molecular network nodes. This approach 
was also used for the integration of other tools with FBMN and does not require 
third-party software, as proposed previously22,23. Finally, the FBMN workflow also 
supports the mzTab-M format6, a standardized output format designed for the 
report of metabolomics MS data-processing results. In this case, the mzTab-M 
file is used instead of the feature quantification table and requires the input of the 
mzML files instead of the MS2 spectral summary file. Support for the mzTab-M 
format enables the possibility to perform FBMN with any existing and future 
processing tools that support this standardized format.

The FBMN workflow has been integrated into the GNPS ecosystem and 
thus benefits from the connection with other GNPS features, for example, the 
possibility to perform automatic MS2 spectral library searching, the direct addition 
and curation of library entries, the search of a spectrum against public datasets 
with MASST20 and the visualization of molecular networks directly in the web 
browser24 or with Cytoscape25. The FBMN workflow is available on the GNPS 
platform (https://gnps.ucsd.edu/) via a web interface (Supplementary Fig. 2). Jobs 
are computed and stored on the computational infrastructure of the University of 
California San Diego Center for Computational Mass Spectrometry. Each finished 
job is saved in the private user space for future examination and has a permanent 
static link that enables data sharing and collaborative analyses. We strongly 
recommend the sharing of this static link along with data publications using GNPS 
workflows to facilitate accessibility and reproducibility of results. Instructions 
to perform FBMN with the supported tools and input file format requirements 
are provided in the GNPS documentation (https://ccms-ucsd.github.io/
GNPSDocumentation/featurebasedmolecularnetworking; Supplementary Fig. 3).

Processing mass spectrometry data for FBMN. FBMN supports the output 
from several feature detection and alignment processing software programs. 
Depending on the type and size of MS data and the intended user (for example, 
bioinformatician, mass spectrometrists and biologists), different software might 
be more appropriate. In general, tools with a graphical user interface (GUI), for 
example, MZmine11, MS-DIAL26, MetaboScape and Progenesis QI, are convenient 
for data visualization and empirical parameters optimization, but often have 
limited scalability, which might prevent their usage for large datasets (>500 files). 
For these large datasets, tools that were designed to operate on a cluster/cloud 
computer are preferred (XCMS27, OpenMS10 and, to some extent, MZmine). 
Regardless of the software or application, the processing steps and parameters used 
should be determined according to the recommendations from tool developers and 
experienced users through community feedback. Finally, automated optimization 
modules can be used to finely tune parameters, which is particularly valuable 
when using command-line interface tools28,29. While we acknowledge that many 
tools and configurations are available to analyze MS data, we provide a summary 
of processing steps on the supported tools in the FBMN documentation (https://
ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking). 
These steps constitute an aggregation of institutional knowledge from tool 
developers and experienced tool users that do not encompass all possible 
applications, but rather provide a starting point for new users.

Generation of a representative MS2 spectrum from a LC–MS2 file. The selection of 
the representative MS2 spectrum for detected features in the MS2 spectral summary 
file is performed using several methods. Available in all tools supported, the 
default method (‘most intense’) uses the MS2 spectrum with the highest precursor 
ion intensity or total ion current, in the specified m/z and retention time range, 
as the representative MS2 spectrum for a LC–MS feature. Experimental spectral 
‘clustering’ methods for the creation of the representative MS2 spectrum in FBMN 
are implemented in MZmine, OpenMS and XCMS. The spectral clustering method 
implemented in MZmine (‘merge’ option in the GNPS/SIRIUS export modules) 
and OpenMS (‘merge spectra’ option in the GNPSExport tool) works as follows: 
for each LC–MS2 feature, the purity of each fragmentation spectra is calculated 
with a function inspired by msPurity30. Briefly, adjacent MS1 scans are examined to 
determine if other isobaric ions were co-fragmented. In these MS1 scans, the ratio 
between the precursor ion intensity and the other isobaric ions in the precursor ion 
isolation range is calculated. Then, the purest MS2 spectrum (highest purity score) 
is selected as the reference spectrum and pairwise comparison (cosine score) is 
computed between the purest spectrum and all the other MS2 spectra for the feature. 
All MS2 spectra reaching a cosine score threshold with the reference MS2 spectra are 

then merged into one representative MS2 spectrum. The mass accuracy, isolation 
width for the ion filtering and cosine score are defined by the user.

FBMN after MZmine processing. MZmine11 is an open-source cross-platform 
software for MS data processing with an advanced GUI that enables the users 
to visually optimize parameters and examine the results of each processing step. 
Moreover, MZmine allows for the export of a batch file containing all the steps and 
parameters used in the processing, thus enabling reproducibility. To support FBMN 
in MZmine, the feature detection step (peak ‘deconvolution module’) was modified 
to provide the ability to pair a feature with its MS2 scans using an m/z and retention 
time range defined by the user (Supplementary Fig. 4). Due to a new data structure 
and to support older projects (before version 2.38), an additional specific filtering 
module (group MS2 scans with features) was developed to assign all MS2 scans to 
the features of the existing peak list (for instructions see https://www.youtube.com/
watch?v=EL5pmFvpTFE). Moreover, a GNPS export and direct submission module 
was created (Supplementary Fig. 5), which offers two modes: (1) export of the 
feature quantification table and the MS2 spectral summary file and (2) direct FBMN 
analysis on the GNPS web platform (version 2.37+). The direct GNPS job submission 
generates all the files and uploads them together with an optional metadata table 
and default parameters (Supplementary Fig. 6) to the FBMN workflow on GNPS. By 
providing the user’s GNPS login credentials (optional), a new job can be created in 
the personal user space (https://www.youtube.com/watch?v=vFcGG7T_44E&list=P
L4L2Xw5k8ITzd9hx5XIP94vFPxj1sSafB&index=4&t=0s/). Otherwise, the user can 
be notified by email or redirected to the job web page after the submission. With the 
option ‘most intense’, the GNPSExport module uses the most intense MS2 spectrum 
as a representative spectrum for each LC–MS2 feature. When using the ‘merge MS/
MS’ spectra option (version 2.40+), a representative high quality MS2 spectrum is 
instead generated from all spectra and exported as a representative MS2 spectrum. 
For detailed documentation, see https://ccms-ucsd.github.io/GNPSDocumentation/
featurebasedmolecularnetworking-with-mzmine2/.

FBMN after OpenMS processing. OpenMS is an open-source cross-platform 
software specifically designed for the flexible and reproducible analysis of 
high-throughput MS data analysis, including more than 200 tools for common 
mass spectrometric data-processing tasks10. Building on our experience with the 
Optimus development, the integration of OpenMS and FBMN was achieved by 
creating a GNPSExport tool (TOPP tool) as a part of the OpenMS tool collection 
(https://github.com/OpenMS/OpenMS). A detailed description of the GNPSExport 
module and instructions for use with FBMN is available at https://ccms-ucsd.
github.io/GNPSDocumentation/featurebasedmolecularnetworking-with-openms/. 
Briefly, after running an OpenMS non-targeted metabolomics pipeline, the 
GNPSExport TOPP tool can be applied to the consensusXML file resulting from 
FeatureLinkerUnlabeledKD or FeatureLinkerUnlabeledQT tools (alignment step) 
and the corresponding mzML files. For each consensusElement (LC–MS2 feature) 
in the consensusXML file, the GNPSExport tool generates one representative MS2 
spectrum that will be exported in the MS2 spectral summary file (using either the 
option ‘most intense’ or ‘merged spectra’). The TextExport tool is applied to the 
same consensusXML file to generate the feature quantification table. Note that 
GNPSExport requires the use of the IDMapper tool on the featureXML files (from 
the feature detection step) before feature linking, to associate MS2 scans (peptide 
annotation in OpenMS terminology) with each feature. These MS2 scans are used 
by the GNPSExport tool for the generation of the representative MS2 spectrum. 
Additionally, the FileFilter has to be run on the consensusXML file before the 
GNPSExport, to remove consensusElements without associated MS2 scans. The two 
exported files (feature quantification table and MS2 spectral summary) can be directly 
used for FBMN analysis on GNPS. The OpenMS-GNPS workflow for metabolomics 
data processing was implemented as a Python wrapper around OpenMS TOPP tools 
(https://github.com/Bioinformatic-squad-DorresteinLab/openms-gnps-tools/) and 
released as a workflow (https://github.com/Bioinformatic-squad-DorresteinLab/
openms-gnps-workflow/) on the GNPS/MassIVE web platform and could be run in 
OpenMS TOPPAS workflow31. The OpenMS and GNPS workflow can be accessed 
and run at https://proteomics2.ucsd.edu/ProteoSAFe/.

FBMN after XCMS processing. XCMS (for the most recent version, see 
https://github.com/sneumann/xcms/) is one of the most widely used software 
packages for processing of MS-based metabolomics data27. The integration 
of XCMS and FBMN is currently possible using a custom utility function 
‘formatSpectraForGNPS’ to create the MS2 spectral summary. This function 
is available on GitHub (https://github.com/jorainer/xcms-gnps-tools/) and is 
compatible with the CAMERA algorithm for isotopes and adduct annotation32. 
Representative XCMS R scripts in Markdown and Jupyter notebook formats 
are available in GitHub at https://github.com/DorresteinLaboratory/XCMS3_
FeatureBasedMN/. The two exported files (feature quantification table and MS2 
spectral summary) can be directly used for FBMN analysis on GNPS. The detailed 
documentation is available at https://ccms-ucsd.github.io/GNPSDocumentation/
featurebasedmolecularnetworking-with-xcms3/.

FBMN after MS-DIAL processing. MS-DIAL is an open-source MS 
data-processing software26 (available for Windows only; http://prime.psc.riken.
jp/Metabolomics_Software/MS-DIAL/). The integration of MS-DIAL and FBMN 
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has been made possible since v2.68 by exporting the ‘alignment results’ using 
the ‘GNPSExport’ option. In addition to LC–MS2 data processing, MS-DIAL 
can process data from SWATH-MS2 (data-independent LC–MS2 acquisition) 
and IMS coupled to LC–MS19. The two files exported (MS2 spectral summary 
and feature quantification table) can be directly used for FBMN analysis 
on GNPS. A video tutorial on the use of MS-DIAL for FBMN is available 
at https://www.youtube.com/watch?v=hxk40jwAkcc&t=7s/ and detailed 
documentation is available at https://ccms-ucsd.github.io/GNPSDocumentation/
featurebasedmolecularnetworking-with-ms-dial/.

FBMN after MetaboScape processing. MetaboScape is a commercial MS 
metabolomics data-processing software commercialized by Bruker and available on 
Windows. MetaboScape can perform feature detection, alignment, and annotation 
of non-targeted LC–MS2 data acquired on Bruker mass spectrometers. Support 
for the processing of TIMS coupled to non-targeted LC–MS2 (LC-TIMS-MS2) 
was added in MetaboScape 4.0, which results in LC-TIMS-MS features. FBMN 
can be performed on LC–MS2 or LC-TIMS-MS2 data by exporting the feature 
quantification table and MS2 spectral summary from the ‘bucket table’ using the 
‘export to GNPS format’ function. These files can be uploaded to GNPS for FBMN 
analysis. Information from MetaboScape, such as the collision cross-section values 
or other spectral annotations, can be mapped into the molecular networks using 
Cytoscape25. The detailed documentation is available at https://ccms-ucsd.github.
io/GNPSDocumentation/featurebasedmolecularnetworking-with-metaboscape/.

FBMN after Progenesis QI processing. Progenesis QI is a commercial feature 
detection and alignment software developed by Nonlinear Dynamics (Waters) 
that is compatible with various proprietary and open MS data formats. Progenesis 
QI can perform feature detection, alignment and annotation of non-targeted 
LC–MS2 data acquired either in data-dependent acquisition or data-independent 
analysis and can also utilize the IMS dimension. FBMN can be performed on 
any of these data types processed with Progenesis QI (v4.0), by exporting the 
feature quantification table (.CSV format) and MS2 spectral summary (.MSP 
format). These two files can be exported from the ‘identify compounds’ submenu 
by using the functions ‘export compound measurement’ and ‘export fragment 
database’, respectively. These files can be uploaded to GNPS for FBMN analysis. 
Information from Progenesis QI, such as the collision cross-section values or 
other spectral annotations, can be mapped into the molecular networks using 
Cytoscape25. The detailed documentation is available at https://ccms-ucsd.github.
io/GNPSDocumentation/featurebasedmolecularnetworking-with-progenesisQI/.

Running time and scalability of the FBMN method. While the molecular 
networking computation part of the FBMN method is performed online on the 
GNPS web server (runtime of 5 min to several hours depending on the number 
of features and job parameters), the data-processing part has to be performed 
with the computational resources available to the researcher (laptop or desktop 
computer, workstation and cluster/cloud infrastructure). The computational 
cost of the data-processing part depends on (1) the software employed, (2) the 
number of samples in the dataset and (3) the parameters set. For this reason, the 
computational cost of the method in all scenarios cannot be comprehensively 
established. Nevertheless, our experience and feedback from the FBMN 
community with open-source tools such as MZmine or MS-DIAL showed that 
small datasets (<50 samples) can be processed in 10–60 min with a computer 
equipped with 8–16 GB RAM. Medium-sized datasets (>100 samples) require 
the use of a workstation equipped with 16–32 GB RAM, and large datasets (>500 
samples) require 32–64 GB RAM. For very large datasets (>1,000 samples), 
it is currently recommended to use OpenMS or XCMS on a cluster/cloud 
infrastructure.

Integration with other computational mass spectrometry annotation tools. The 
.MGF file format is accepted by numerous computational MS annotation tools. 
The use of these annotation tools with the MS2 spectral summary file enables (1) 
a reduction in the computation time compared to when using the unprocessed 
MS file(s) and (2) the subsequent mapping of these annotations to the molecular 
networks produced by the FBMN method. Some of these tools are directly 
available in the GNPS environment, including SIRIUS15, DEREPLICATOR16, 
Network Annotation Propagation (NAP)33, MS2LDA17, MolNetEnhancer34 and 
Qemistree18 (see below for details), as well as other software such as MetWork35, 
CFM-ID36 and MetFrag37.

SIRIUS. SIRIUS is an advanced software for the computational annotation of 
small molecules from LC–MS2 data15. It is capable of identifying compounds at the 
molecular formula38, and annotating substructural, class39 and structural levels40 
from the compound MS2 spectra. The MS2 spectral summary file (.MGF format) 
generated for the FBMN is compatible with SIRIUS, either running locally or with 
the dedicated GNPS workflow (https://ccms-ucsd.github.io/GNPSDocumentation/
sirius/). Results from SIRIUS can be mapped on the molecular networks, which 
is essential since spectral library matching usually results frequently in a 1–5% 
annotation rate. In addition, a dedicated SIRIUS export function compatible with 
FBMN was created in MZmine and MetaboScape that exports a modified MS2 

spectral summary file with representative MS1 and MS2 spectra for each feature. 
The MS1 spectra contains information about the detected isotopic pattern and 
can be used for automated detection of adduct/rare elements in SIRIUS, which 
restricts the molecular formula search space to speed up computation and improve 
molecular formula identification rates.

DEREPLICATOR. DEREPLICATOR16, along with DEREPLICATOR VarQuest41, 
is a collection of computational MS tools specialized in the annotation of peptidic 
small molecules often produced by microorganisms endowed with various 
biological activities. DEREPLICATOR tools can be run directly through the FBMN 
workflow results on GNPS. Alternatively, and for advanced parameterizing, the 
DEREPLICATOR workflow on GNPS accepts the MS2 spectral summary file 
(.MGF format) as input and can directly map into the FBMNs (https://ccms-ucsd.
github.io/GNPSDocumentation/dereplicator/).

Network annotation propagation. NAP33 uses MetFrag/MetFusion37,42 for the 
prediction of putative structures and the network topology to rerank structure 
predictions by propagating the expected structural similarity. NAP is available 
on GNPS as a dedicated workflow and offers direct support to FBMN (https://
ccms-ucsd.github.io/GNPSDocumentation/nap/).

Unsupervised substructure annotation with MS2LDA. MS2LDA uses the latent 
Dirichlet allocation algorithm to mine for motifs (Mass2Motifs) of co-occurring 
fragments and neutral losses in MS2 spectra17,43. MS2LDA accepts the outputs 
of FBMN, allowing the direct mapping between MS2LDA annotations and the 
molecular networks. MS2LDA can be run on the GNPS web platform (https://
ccms-ucsd.github.io/GNPSDocumentation/ms2lda/) and/or in the MS2LDA web 
application43.

MolNetEnhancer. MolNetEnhancer34 combines the outputs from molecular 
networking, substructure annotation with MS2LDA and other structural 
annotation tools, including SIRIUS, NAP and DEREPLICATOR, together with 
automated chemical classification through ClassyFire44 into a single molecular 
network34. MolNetEnhancer accepts input files from classical MN and FBMN. 
The MolNetEnhancer accepts the MS2 spectral summary from FBMN and 
is available through the GNPS web platform (https://ccms-ucsd.github.io/
GNPSDocumentation/molnetenhancer/).

Qemistree. Qemistree is an MS data exploration strategy based on hierarchical 
organization of structural fingerprints18 predicted from fragmentation spectra. 
The fingerprints are predicted with SIRIUS/CSI:FingerID15,40 and the tree-based 
structure obtained allows the application of ecological tools to study the chemical 
composition. Qemistree is available as a GNPS workflow and directly accepts the 
outputs of FBMN (https://ccms-ucsd.github.io/GNPSDocumentation/qemistree/).

FBMN applications. FBMN makes it possible to resolve isomers in a drug lead 
discovery effort. The examination of LC–MS2 data (MSV000080502) from the 
E. dendroides plant extract showed the presence of numerous chromatographic 
peaks for ions in the range of m/z 500–900, corresponding to diterpene ester 
derivatives. These specialized metabolites consist of a polyhydroxylated diterpene 
core acylated with various acidic moieties, which are typically found as positional 
isomers based on their acylation pattern. The EIC for the ion m/z 589.31 in the E. 
dendroides extract data (Supplementary Fig. 7) shows the presence of at least seven 
distinct LC–MS peaks between 24.5 min and 27.3 min, including five peaks with 
associated MS2 spectra. The analysis of the extract and the fractions where these 
molecules were originally isolated (fractions 13 and 14) with classical MN resulted 
in a molecular network with two nodes for the m/z 589.31 ions (Fig. 2a and 
Supplementary Fig. 8). These MS2 spectra (cluster index of 5352 and 5354) resulted 
from the merging of 96 fragmentation spectra spanning 23.6 min to 26.5 min by 
MS-Cluster (Fig. 2b and Supplementary Fig. 9). Close examination of the clustered 
spectra revealed that, while all MS2 spectra for the precursor m/z 589.31 present 
fragment ions m/z 501.26, 423.21, 335.16 and 295.17, three distinct spectral types 
could be established based on the relative intensities of the ions (Supplementary 
Fig. 10). FBMN of the dataset with MZmine processing (see the GNPS job) enabled 
the differentiation of the MS2 spectra of seven isomers (Fig. 2b and Supplementary 
Fig. 11; see the molecular network view). A detailed discussion of the differences 
observed between the two methods can be found in the Supplementary Note 1 
and Supplementary Table 1. Interestingly, in the original study7, OpenMS was used 
for FBMN and resulted in the observation of three different positional isomers 
instead of seven, which shows that different processing methods and/or parameters 
can lead to different results with FBMN. These three isomers were subsequently 
isolated and differed by the position of one double bond on the C-12 acyl chain 
or from carbon C-4 configuration7. Because FBMN connects the accurate relative 
abundance of the ions across the fractions and the molecular networks, it allowed 
us to create bioactivity-based molecular networks7, which were used to predict 
and target potentially antiviral compounds. For a detailed description of the 
extraction, MS analysis and structural elucidation, see the original paper7. The 
MZmine project and parameters used can be accessed on the MassIVE submission 
(MSV000080502).
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FBMN resolves isomers in large-scale metabolomics studies. FBMN was 
applied on a cohort of the AGP, a citizen-science research project that enabled the 
observation of commendamide in humans, along with other new N-acyl amide 
derivatives using molecular networking9. Commendamide is a recently discovered 
bacterial N-acyl amide that has been shown to modulate host metabolism via 
G-protein-coupled receptors in the murine intestinal tract45.

The use of FBMN for the AGP data (Fig. 2d) allowed the observation 
of two additional commendamide isomers (m/z 330.26) and of an analog, 
N-(hydroxyheptadecanoyl)glycine (m/z 344.28), while classical MN resulted in 
the observation of one single consensus spectrum for all the isomers (Fig. 2c). In 
addition, FBMN allowed the observation of a putative commendamide derivative 
N-(dehydrohexadecanoyl)glycine (CCMSLIB00005436498; Supplementary Fig. 
12) in the commendamide molecular network. The sample collection and MS 
acquisition methods are described in the original manuscript9. The data were 
downloaded from MassIVE (MSV000080186) and processed with MZmine 
(v2.37). The MZmine project data, along with parameters and export files, were 
deposited to the MassIVE repository (MSV000084095). The chromatograms 
for m/z 330.26 and m/z 344.28 displayed in Fig. 2c,d are from samples 43076_
P3_RB9_01_314.mzML and 38131_P5_RA4_01_538.mzML, respectively. 
Chromatograms were exported with MZmine. The results were exported with 
the ‘Export for/submit to GNPS’ module for FBMN analysis on GNPS. The 
corresponding job can be accessed at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=0a8432b5891a48d7ad8459ba4a89969f (only logged-in users can access all the 
input files). The mzML files used for the classical MN job are available at https://
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=3c27e43d908c4044bace405cc394cd25.

FBMN reduces spectral redundancy and de-obfuscates spectral similarity 
relationships: the case of EDTA. The benefit of using FBMN can be illustrated 
with the metal chelating agent EDTA, widely used in beauty products, food and 
scientific protocols. A search for its occurrences in public spectral datasets with the 
MS search tool (MASST)20 showed that it is frequently observed in plasma samples 
where it is used during the sample preparation. Using classical MN, we analyzed 
a public dataset of human plasma where EDTA was observed (MSV00008263; see 
Supplementary Note 2 for protocol and MS parameters); the results showed that the 
EDTA ions are found in two molecular networks: one network consisting of [M+H]+ 
spectra and the other of [M+Na]+ spectra. Interestingly, each of these networks have 
one node with a large number of clustered spectra (node 91,205 for 4,655 spectra 
and node 116,470 for 571 spectra), yet EDTA ions are represented by multiple nodes, 
although these nodes have the same precursor ion mass and retention time. Detailed 
analyses showed that while the median pairwise cosine values between EDTA 
spectra were high (median values of 0.93 and 0.94), the spectra were not clustering 
into a single node. Examination of the multiple fragmentation spectra for EDTA 
ions showed that (1) some are chimeric spectra that are ‘contaminated’ by fragment 
ions produced by coeluting isobaric ions and (2) other spectra were dominated by 
low-intensity fragment ions resulting from MS2 spectra acquired at low intensity. 
The method of FBMN was applied on that same dataset using the OpenMS-GNPS 
workflow (see the job), and the results showed that it efficiently reduced the 
appearance of these redundant node patterns from the same molecule (see the 
FBMN job; Fig. 2f), both for the molecular networks containing the [M+H]+ and 
[M+Na]+ spectra. FBMN recovered the molecular similarity of in-source fragments 
observed for EDTA, which were not displayed with classical MN, as they now fall 
within the top-K rank (typically set to ten) of MS2 spectral similarity considered in 
the network topology. The parameters used for OpenMS tools can be accessed in the 
OpenMS-GNPS job (see the job). OpenMS v2.4.0 was used10.

FBMN enables the use of relative quantification in the molecular networks. 
While classical MN uses the spectral count or the sum of precursor ion intensity 
to estimate the ion abundance, FBMN uses the accurate ion intensities obtained 
from LC–MS feature detection. The FBMN method brings in ion abundance across 
all samples by using the value of the chromatographic peak area or peak height 
as determined by the LC–MS feature detection and alignment software. Multiple 
dilutions (n = 5) of the NIST 1950 serum reference metabolome sample46 were 
analyzed by LC–MS2 (three independent experiments per sample) on an Orbitrap 
mass spectrometer (Q Exactive, Thermo Fisher) and processed with MZmine or 
OpenMS. OLS linear regression analysis between the feature intensity and expected 
relative abundance in samples of known dilution factor (serial dilution) showed 
improved linearity of the relative quantification with FBMN compared to classical 
MN (Fig. 2h, Supplementary Note 3 and Supplementary Figs. 13–19). The sample 
preparation and MS methods are described in Supplementary Note 3. The files 
along with the parameters for MZmine are available on the following MassIVE 
repository (MSV000084092). The OLS analysis was performed with Python 2 
(v2.7.15) using the linear regression function of the sklearn package (v0.20.1)33. 
The analysis is available as a Jupyter notebook at https://github.com/lfnothias/
FeatureBasedMolecularNetworking_RelativeQuantEval/. The molecular networking 
jobs and parameters can be accessed at https://gnps.ucsd.edu/ProteoSAFe/status.jsp
?task=daf3f0d7cec94104b2c9001739964c31 for classical MN, https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=f443cad083be4979aedd2af0f97b9fe9 for FBMN with 
MZmine, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d6a430cc6da2458f8135
ae76126eb763 for GNPS-OpenMS and https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=53bcfa39fa674c749b4da0b613df1b8d for FBMN with OpenMS.

FBMN enables molecular networking with IMS. The sample NIST 1950 
serum46 was analyzed using a timsTOF Pro (Bruker Daltonics) in data-dependent 
acquisition mode using PASEF47. The data were then processed with MetaboScape 
(v5.0), and the results were exported for FBMN analysis on GNPS. The MS 
acquisition method, data and parameters used for the processing were deposited 
on MassIVE (MSV000084402). Classical MN data were annotated with the GNPS4, 
NIST17 and LipidBlast48 spectral libraries (https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=f2adc2cf33c646548798d0e285197a96). Lipid annotation in 
MetaboScape was performed using SimLipid (v6.04; Premier Biosoft) and mapped 
to the FBMN (https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0d89db67b097
4939a91cb7d5bfe87072). The molecular networks were visualized with Cytoscape 
(v3.7.1; ref. 25), and the results are presented in Supplementary Fig. 1.

Large dataset processing with OpenMS and XCMS. The processing of very large 
metabolomics datasets (>1,000 samples) is limited by the scalability of existing 
LC–MS feature detection tools, especially those based on a GUI (such as MZmine 
and MS-DIAL). We showed that, with specific peak-picking parameters, the use 
of XCMS or OpenMS enables the processing of large metabolomics studies for 
FBMN (MSV000080030; approximately 2,000 samples; Supplementary Note 4, 
Supplementary Table 2 and Supplementary Fig. 19).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The LC–MS2 data for the E. dendroides dataset, along with the MZmine project and 
parameters used, can be accessed on the MassIVE submission (MSV000080502; 
Creative Commons CC0 1.0 Universal license). The classical MN and FBMN 
jobs can be accessed via the GNPS website at https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=189e8bf16af145758b0a900f1c44ff4a and https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=672d0a5372384cff8c47297c2048d789, respectively.
LC–MS2 data for the AGP were downloaded from MassIVE (MSV000080186; 
Creative Commons CC0 1.0 Universal license) and processed with MZmine 
(v2.37). The MZmine project along with parameters and export files were 
deposited (MSV000084095; Creative Commons CC0 1.0 Universal license). The 
classical MN and FBMN jobs can be accessed at https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=3c27e43d908c4044bace405cc394cd25 and https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=0a8432b5891a48d7ad8459ba4a89969f, respectively.
The LC–MS2 data for the EDTA case are available on the MassIVE submission 
(MSV00008263; Creative Commons CC0 1.0 Universal license). The classical MN 
job can be accessed at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=fbac1a50
61ba4ad683a284ef55d45df6. The OpenMS and FBMN jobs are available at https://
proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=83a0a417a49b4b76b61e9a8191
a6ea2d at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8f40420c11694cf9ab0
6fdf7a5a4c53b, respectively.
The MS acquisition method, data and parameters used for the processing 
of the serum analysis with the timsTOF mass spectrometer were deposited 
(MSV000084402). Classical MN and FBMN jobs can be accessed at https://gnps.
ucsd.edu/ProteoSAFe/status.jsp?task=f2adc2cf33c646548798d0e285197a96 and 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0d89db67b0974939a91cb7d5
bfe87072, respectively.

Code availability
The FBMN workflow is available as a web interface on the GNPS web platform 
(https://gnps-quickstart.ucsd.edu/featurebasednetworking/). The workflow code 
is open source and available on GitHub (https://github.com/CCMS-UCSD/GNPS_
Workflows/tree/master/feature-based-molecular-networking/). It is released under 
the license of The Regents of the University of California San Diego and free for 
non-profit research (https://github.com/CCMS-UCSD/GNPS_Workflows/blob/
master/LICENSE/). The workflow was written in Python (v3.7) and deployed 
with the ProteoSAFE workflow manager used by GNPS (https://proteomics.ucsd.
edu/Software/ProteoSAFe/). We also provide documentation, support, example 
files and additional information on the GNPS documentation website (https://
ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/). 
The source code of the GNPSExport module in MZmine is available at https://
github.com/mzmine/mzmine2/ under the GNU General Public License. The 
source code of the GNPSExport tool in OpenMS is available at https://github.com/
Bioinformatic-squad-DorresteinLab/OpenMS/under the BSD license. The source 
code for the GNPSExport custom function for XCMS is available at https://github.
com/jorainer/xcms-gnps-tools/ under the GNU General Public License.
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