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Abstract—In this paper, we characterize the performance of
several canonical mobility models in a drone cellular network in
which drone base stations (DBSs) serve a set of user equipment
(UE) on the ground. In particular, we consider the following
four mobility models: (i) straight line (SL), (ii) random stop
(RS), (iii) random walk (RW), and (iv) random waypoint (RWP),
among which the SL mobility model is inspired by the simulation
models used by the third generation partnership project (3GPP)
for the placement and trajectory of drones, while the other
three are well-known canonical models (or their variants) that
offer a useful balance between realism and tractability. Assuming
the nearest-neighbor association policy, we consider two service
models for the UEs: (i) UE independent model (UIM), and (ii)
UE dependent model (UDM). While the serving DBS follows the
same mobility model as the other DBSs in the UIM, it is assumed
to fly towards the UE of interest in the UDM and hover above
its location after reaching there. The main contribution of this
paper is a unified approach to characterize the point process
of DBSs for all the mobility and service models. Using this, we
provide exact mathematical expressions for the average received
rate and the session rate as seen by the typical UE. Further, using
tools from the calculus of variations, we concretely demonstrate
that the simple SL mobility model provides a lower bound on
the performance of other general mobility models (including the
ones in which drones follow curved trajectories) as long as the
movement of each drone in these models is independent and
identically distributed (i.i.d.). To the best of our knowledge,
this is the first work that provides a rigorous analysis of key
canonical mobility models for an infinite drone cellular network
and establishes useful connections between them.

Index Terms—Drone cellular network, stochastic geometry,
mobility, random walk, random waypoint, trajectory.

I. INTRODUCTION

Wireless networks are all set to undergo a major transforma-
tion from being predominantly terrestrial to the ones that will
have an elaborate and dynamic aerial component in the form
of drone networks [3]. Owing to their deployment flexibility,
drones are currently being considered for a variety of use
cases, such as acting as mobile relays to expand the coverage
of cellular networks, providing network connectivity for public
safety applications, and setting up temporary networks in the
times of natural disasters or large social gatherings. While the
flexibility offered by the mobility of drones is highly appealing
to the network designers, it also adds an entirely new dimen-
sion to the system design that was not present in the traditional
terrestrial networks. In particular, while mobility is known to
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have a fundamental impact on the system-level performance
of wireless networks, e.g., see [4], the research focus in this
direction has traditionally been on the setting in which the UEs
are mobile while the base stations (BSs) are static [5], [6].
This is clearly not the case in drone-assisted communication
networks where some mobile drones may act as BSs [7]. Not
surprisingly, the support of mobile drones, either as UEs or
BSs, has also been recently explored in 3GPP studies [8],
[9]. In general, there has been an increasing interest in the
community to characterize the effect of drone mobility on the
design and performance of drone-assisted cellular networks.
Due to the irregularity of the drone placements and their
trajectories, it is expected that powerful tools from stochastic
geometry and point process theory could be leveraged for
accurate modeling and tractable analysis of drone networks.
Inspired by this, the main focus of this paper is to present a
unified performance analysis of a DBS network under various
mobility models that involves a novel characterization of the
underlying point processes as a function of time.

A. Related Works

This paper builds on the following two key lines of research:
(i) stochastic geometry for drone networks, and (ii) mobility
models in wireless networks. Although sparse, there are some
works that lie at their intersection and will be discussed below
after establishing the prior art for each research direction
separately.

Stochastic Geometry for Drone Networks. Owing to its
ability to capture irregularity in the placement and movement
of drones, stochastic geometry has recently found many appli-
cations in the performance analysis of drone networks [10]–
[18]. In [10], the authors considered a finite network of DBSs
distributed as a uniform binomial point process (BPP) [19] and
derived the coverage probability of the network. In [13], the
problem of spectrum sharing for a network of drone small cells
as an underlay to a conventional cellular network has been
studied. On the similar lines, the authors of [14] investigated
the coexistence of BSs and DBSs using probabilistic line-of-
sight (LoS) and non-line-of-sight (NLoS) propagation models
[20], where the locations of BSs and DBSs are modeled
as a superposition of a Poisson point process (PPP) and a
BPP. The work presented in [15] considered a network of
DBSs modeled as a PPP serving ground UEs. In particular,
incorporating LoS and NLoS propagation models, the authors
derived approximations for the coverage probability and the
received rate in the network. In [16], the coexistence between a
single DBS and an underlaid device-to-device (D2D) network
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has been analyzed in terms of coverage probability and rate.
Motivated by the requirement to provide coverage in a post-
disaster scenario, the authors in [17] analyzed the performance
of a DBS network serving clustered UEs.

Mobility Models in Wireless Networks. Mobility modeling
is a well-established area of research in wireless networks
[21]–[24]. Perhaps the simplest mobility model is the one in
which nodes move along straight lines in random directions
at a constant speed. Variants of this simple model have been
used extensively in the literature, e.g., see [8], [23], [25]–[27].
Although this model may appear simplistic, it is known to
provide performance bounds and useful insights in wireless
networks [25]. In fact, this model has also been used recently
to model drone mobility in 3GPP studies related to drone
networks [8]. Among other mobility models that have been
studied in wireless networks (such as RW, RWP, random
direction, Brownian motion, Levy walk, and Gauss-Markov),
RW and RWP mobility models have been more popular
because of their tractability [5], [21], [28]–[30]. Hence, we
also study these two models in this paper.

In the RW model, the mobile nodes can change their
directions [21], [26], [28]. In particular, each node selects
a uniformly random direction and a random speed in each
time slot and moves along a straight line using the selected
direction and speed. Upon arrival at the destination, it repeats
this procedure. As a generalization of the RW model, the
finite RWP model was proposed in [31] by adding a random
pause time between direction and/or speed changes in the RW
model. Specifically, the mobility process in the finite RWP
model starts with a random pause time at the initial waypoint
of a node in a finite region. Then, a destination waypoint is
selected randomly in that region and the node moves to this
destination waypoint along a straight line with a random speed.
Upon its arrival, the node pauses for another random time and
repeats this procedure. Due to some major drawbacks of this
model, such as the non-uniform distribution of the nodes [5],
[32], [33], the authors in [6] extended the finite RWP to an
infinite RWP model, where the nodes are allowed to move
over the entire plane. In particular, each node first pauses for
a random time at its initial waypoint and determines the next
waypoint by choosing a uniformly random direction and a
random transition distance. It then moves towards the chosen
waypoint at a random speed, pauses at this new waypoint for
another random time, and repeats this procedure.

Mobile Drone Networks. Among many works on the anal-
ysis of drone networks, only a handful of them considered
mobile drones. Considering a mobile network of DBSs that
are initially modeled as a BPP, the authors in [34] used results
from [10] to design stochastic trajectory processes for the
mobility of DBSs that provide the same coverage as given in
[10]. In [35] and [36], the authors modeled the motion of DBSs
in a 3D finite network by the finite RWP and RW models, and
using the results of [5], derived the coverage probability of the
network.

B. Contributions
This paper develops a unified approach for the performance

analysis of drone cellular networks under several key canonical

models. In particular, we model the initial locations of a
mobile network of DBSs as a homogeneous PPP operating at
a constant height that serves UEs on the ground. The serving
DBS is selected based on the nearest-neighbor association
policy and all the other DBSs are regarded as interferers. We
consider four canonical mobility models for the interfering
DBSs, i.e., SL, RS, RW, and RWP, and two service models for
the serving DBS: (i) UIM, in which the serving DBS follows
the same mobility model as the interfering DBSs, and (ii)
UDM, in which the serving DBS moves towards the typical
UE at a constant height and keeps hovering above its location
after reaching there until its transmission is completed. For
this setup, our key contributions are described next.

1) Distributional Properties of Canonical Mobility Models:
We derive various distributional properties for all the mobility
models. Most notably, for the RW and RWP, we derive the
joint distribution of the net displacement of a DBS and its
total traveled distance at each waypoint. Using this joint dis-
tribution, we compute the distribution of the net displacement
of a DBS at any time t. We also provide insightful asymptotic
results for these distributions.

2) Unified Framework for Characterizing the Point Process
of DBSs: We present a novel characterization of the point
process of DBSs as seen by the typical UE at any time t
for all the service and mobility models. Since the displace-
ment of each DBS is independent of the others, we apply
displacement theorem from stochastic geometry along with the
net displacement results described above to characterize these
point processes. Using this, we characterize the aggregate
interference and key performance metrics, such as average and
session rates, as seen by the typical UE for all the service and
mobility models.

3) Establishing Connections among Mobility Models: Bor-
rowing tools from the calculus of variations, we establish
meaningful connections among our mobility models in terms
of network performance. Specifically, we prove that the SL
mobility model provides a lower bound on the average re-
ceived rate over the space of all i.i.d. mobility models in which
the drones can also follow curved trajectories (as long as they
are i.i.d.).

II. SYSTEM MODEL

A. Spatial Setup

We consider a network of mobile DBSs serving UEs on the
ground. We assume that the DBSs are located at a constant
height h from the ground and the temporal evolution of the
DBS locations is modeled as the sequence of point processes
ΦD(t) ⊂ R2, indexed by t ∈ R+. Further, we assume that the
initial locations of the DBSs are distributed as a homogeneous
PPP with density λ0, i.e., ΦD(0) ∼ PPP(λ0). Terrestrial UEs
are distributed as an independent homogeneous PPP ΦU on
the ground. We also assume that the origin o = (0, 0, 0) of
the 3D coordinate system is located on the ground, which
is assumed to be aligned with the xy-plane. Throughout the
paper, we refer to the z = h plane as the DBS plane. In this
setup, the projection of o onto the DBS plane is denoted by
o′ = (0, 0, h). Without loss of generality, the analysis will
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Fig. 1. (a) An illustration of the system model, and (b) top view of the two service models. Note the difference between the movement direction of the
serving DBS in the UDM and the UIM.

be performed for the typical UE placed at o. As shown in
Fig. 1 (a), the distances of a DBS at time t located at x(t) ∈
ΦD(t) from o′ and o are denoted by ux(t) = ‖x(t)−o′‖ and
rx(t) = ‖x(t)− o‖ =

√
ux(t)2 + h2, respectively. Moreover,

the location of the nearest DBS to o′ and its corresponding
distance at time t are denoted by x0(t) and u0(t), respectively.
Thus, the distance of the closest DBS to o at time t is r0(t) =√
u0(t)2 + h2. For simplicity, we drop the time index t for

u0(t) defined at t = 0, i.e., u0 , u0(0), and we drop the
time index t for ux(t) whenever the time index can be clearly
understood from the context.

B. Service and Mobility Models
In this paper, we assume that each UE connects to its nearest

DBS. For the typical UE, this DBS is called the serving
DBS while all the other DBSs are regarded as interfering
DBSs. In order to motivate the drone mobility models studied
in this paper, we first take a cue from the mobility model
used in the 3GPP studies related to drone networks [8]. In
this model, drones start their movement at randomly selected
locations in the network and then move at a constant speed
and height along straight lines in uniformly random directions,
independently of each other, for the entire duration of the
simulation. It turns out that this simple enough model is
already considered sufficient to capture key effects of drone
mobility on the system-level performance. One can, of course,
generalize this straight-line mobility model to arrive at clas-
sical canonical models, such as RW and RWP, which offer a
useful balance between realism and tractability. Since all these
models are important in their own right, we will develop a
unified approach to analyze their performance jointly. Before
that, we formally define the four mobility models considered
in this paper next.

Definition 1. (Mobility Models). We define the mobility mod-
els used in this paper as follows. Without loss of generality, we
choose the x-axis as the reference for measuring all angles.

1) SL: DBSs move constantly in random directions Θ ∼
U [0, 2π) along straight lines at a constant speed v,
independently of each other.

2) RS: Each DBS moves a random distance R ∼ fR(.) in
a random direction Θ ∼ U [0, 2π) along a straight line
at a constant speed v, independently of the other DBSs,
and then stops and hovers over the stopping location.

3) RW: Each DBS selects a random direction Θ ∼
U [0, 2π), independently of the other DBSs, and moves
a random distance R ∼ fR(.) in this direction at a
constant speed v. Upon its arrival, it selects another
random direction Θ and distance R and repeats this
procedure.

4) RWP: In the beginning, each DBS hovers for a random
time T ∼ fT (.) at its initial location. It then selects a
random direction Θ ∼ U [0, 2π), independently of the
other DBSs, and moves a random distance R ∼ fR(.)
in this direction at a constant speed v. Upon its arrival,
it hovers for another random time T , sampled indepen-
dently from fT (.), selects another random direction Θ
and distance R, and repeats this procedure.

Remark 1. All the mobility models considered in this paper
lie in the space of i.i.d. mobility models, where the drone
trajectories are chosen independently of each other from the
same common distribution. As will be clear in the sequel, some
of our initial results hold for all i.i.d. models (including the
ones with curved trajectories).

Remark 2. In this paper, we represent DBSs as “points” in
the DBS plane. Hence, the occurrence of a collision, which is
defined as the event in which two points arrive at the same
location at the same time, is a zero measure event.

Remark 3. As mentioned in Definition 1, we require our DBSs
to be able to hover at specific locations. Hence, we assume
that DBSs in this paper are rotary-winged drones.

Definition 2. (Flight). In the RW and RWP mobility models,
a flight is defined as the distance traveled by a DBS between
two consecutive stop points.

As shown in Fig. 1 (b), we consider the following two
service models for the serving DBS.

1) UIM: The serving DBS follows the same mobility model
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as the interfering DBSs, independent of the typical UE
location.

2) UDM: The serving DBS moves towards o′ in the DBS
plane and keeps hovering at this location until its trans-
mission to the typical UE is completed.

The main motivation behind considering the UIM is to have
a baseline to evaluate the UDM. In other words, our intention
is to see how much we benefit from designing our trajectories
based on the UE locations (UDM). Note that in all the afore-
mentioned models, the speeds of the serving and interfering
DBSs are assumed to be the same. Moreover, since we are not
considering any dependency across the user locations, DBS
trajectories will be independent of each other in both the UIM
and the UDM.

Remark 4. In the UIM, since all DBSs move in different
directions based on the defined mobility models, handover may
occur [37]. On the other hand, in the UDM, no matter what
the mobility model is for the interfering DBSs, as long as the
interfering DBSs move at the same speed as the serving DBS,
the serving DBS will remain the closest DBS to the typical UE.
Hence, based on our association policy, the serving DBS will
not change in our mobility models, and thus, handover will
not occur. Furthermore, UDM can be considered as a best-
case model from the perspective of minimizing the distance
between the typical UE and its serving DBS.

C. Channel Model

We assume that all DBSs transmit with the same power
level P at all times. The received power at the typical UE
from the serving DBS is assumed to be Ph0(t)r0(t)−α, where
h0(t) represents the small-scale fading power gain between
the typical UE and the serving DBS and α > 2 is the path
loss exponent. Likewise, the interference power is I(t) =∑

x(t)∈Φ′D(t) Phx(t)rx(t)−α, where Φ′D(t) ≡ ΦD(t)\x0(t)

represents the point process of interfering DBSs and hx(t)
is the small-scale fading power gain between the typical UE
and the interfering DBSs. Since the air-to-ground links may
experience various fading scenarios, Nakagami-m fading is
used here to capture a large class of fading environments.
Thus, the channel fading power gains h0(t) and hx(t) follow
gamma distributions with probability density function (pdf)
fH(h) = mm

Γ(m)h
m−1e−mh, where Γ(x) =

∫∞
0
tx−1e−t dt is

the gamma function. For the serving and interfering links, we
assume m = m0 and m = mx, respectively, and we consider
integer values for m0 and mx for mathematical tractability.

D. Metrics of Interest

The received signal-to-interference ratio (SIR) at the typical
UE is defined as

SIR(t) =
Ph0(t)r0(t)−α

I(t)
. (1)

We now define our SIR-based performance metrics as follows.
Average rate: Average received rate is given as R(t) =
E[log (1 + SIR(t))], where the expectation is taken over the
PPP ΦD(t) and the trajectories. This is essentially the average

rate experienced by the typical UE at time t across different
network and trajectory realizations.
Session rate: This metric is defined as the average received
rate by the typical UE at each session of duration T . Mathe-
matically speaking, we have

SR(T ) =
1

T

∫ T

0

R(t) dt. (2)

E. Methodology of Analysis

In this subsection, we briefly describe the methodology of
our analysis in this paper. In Section III, we will characterize
the point process of interferers by deriving the density of
the network of interfering DBSs for all service and mobility
models. We will then provide some intermediate results for the
RW and RWP mobility models in Section IV that are useful
in characterizing the distributional properties of these mobility
models. Using the results in these two sections, we will finally
derive the average and session rates in Section V for all service
and mobility models.

III. POINT PROCESS OF INTERFERERS

In this section, we characterize the temporal evolution of
the point process of interferers for all the mobility models
described in Section II-B. We start our analysis by first
considering the UIM in the following lemma.

Lemma 1. Let Φ be a homogeneous PPP with density λ0.
If all the points of Φ are independently displaced based on
the four mobility models mentioned in II-B, then the displaced
points at every time t form another homogeneous PPP Ψ with
the same density λ0.

Proof: Based on the displacement theorem [38], we need
to argue that the displaced distances of DBSs at every time
t are i.i.d. and also independent of their original locations
in Φ. For the first two mobility models, this is clear from
our model constructions. For the RW and RWP models, note
that different flights are independent of the locations of DBSs
and the overall displaced distance at time t is a function
of these flights. Hence, the overall displacement of DBSs is
independent of their locations in the original PPP Φ. Therefore,
Ψ is distributed as a homogeneous PPP with density λ0. This
completes the proof.

In the UIM, the serving DBS and all the interfering DBSs
are displaced in uniformly random directions based on our
different mobility models. Thus, we can infer from Lemma
1 that the network of all DBSs at any time t will remain a
homogeneous PPP with density λ0. As a result, the network
of interfering DBSs will be distributed as an inhomogeneous
PPP in the DBS plane with density

λ(t;ux, u0) =

{
λ0 ux > u0(t)
0 ux ≤ u0(t)

. (3)

Note that although the serving distance u0(t) varies over time,
its distribution does not change.

Remark 5. The rate performance of a mobile drone network
where the service model follows the UIM is equivalent to that
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of a static drone network since the density of the point process
of interferers in a static setting will be also given by (3).

In the UDM, it is clear from our construction that Φ′D(0)
is an inhomogeneous PPP with density given by (3), which
introduces an exclusion zone, X = b(o′, u0), for the interfering
DBSs in the DBS plane, where b(o, r) is a disc of radius r
centered at o. Using displacement theorem, we observe that
Φ′D(t) remains an inhomogeneous PPP for the UDM as well.
In the next lemma, we provide a mathematical characterization
of Φ′D(t) in the UDM at every time t.

Lemma 2. (Point Process of Interferers). Consider the UDM
with an i.i.d. mobility model. Let x(0) and x(t) denote the
initial location and the location at time t of an interfering
DBS, respectively. Define L(t) = ‖x(0) − x(t)‖ as the net
displacement of this interfering DBS until time t and denote its
cumulative distribution function (cdf) and pdf by FL(l; t) and
fL(l; t), respectively. Then the network of interfering DBSs
will be an inhomogeneous PPP with density λ(t;ux, u0) =

λ0


1 u0 + vt ≤ ux

β(t, ux, u0) |u0 − vt| ≤ ux ≤ u0 + vt

β(t, ux, u0)1
(
t > u0

v

)
0 ≤ ux ≤ |u0 − vt|

, (4)

where 1(.) is the indicator function and

β(t, ux, u0) = 1− FL(u0 − ux; t)−∫ min{vt,ux+u0}

|ux−u0|
fL(l; t)

1

π
cos−1

(
l2 + u2

x − u2
0

2lux

)
dl. (5)

Proof: See Appendix A.

Remark 6. We observe the following directly from Lemma 2:
(i) (4) is continuous at boundaries, i.e., at ux = |u0 ± vt|,
(ii) as u0 → 0, we get β(t, ux, u0) → 1, i.e., the network of
interfering DBSs becomes homogeneous, and (iii) as u0 → 0
or t→ 0, (3) and (4) become identical.

The density derived in Lemma 2 is valid for all i.i.d.
mobility models where DBSs move at the same constant speed.
Hence, for mobility models in this paper, we only need to
characterize the distribution of the net displacement of each
DBS at every time t. For the SL model, we provide this
distribution, and thus, the density of the network of interferers,
in the next corollary.

Corollary 1. (Point Process of Interferers for the SL Model).
When the interferers move based on the SL mobility model,
the network of interferers will be an inhomogeneous PPP with
density λ(t;ux, u0) =

λ0


1 u0+vt ≤ ux

1
π cos−1

(
u2
0−u

2
x−v

2t2

2uxvt

)
|u0−vt| ≤ ux ≤ u0+vt

1
(
t > u0

v

)
0 ≤ ux ≤ |u0−vt|

. (6)

Proof: In the SL mobility model, we have L(t) = vt, and
thus, fL(l; t) = δ(l− vt) and FL(l; t) = 1(l− vt), where δ(.)
is the Dirac delta function. Hence, β(t, ux, u0) can be written
as

β(t, ux, u0) = 1− 1(u0 − ux − vt)−

1x

2x

0x

0u

vtu 0

vtu 0

o' o'
0uvt 

vt

vt

(a) (b)

x
0u

Fig. 2. Network density in different regions for the SL mobility model.
Green and black stars, red circles, and black squares represent serving DBS,
displaced serving DBS, interfering DBSs, and displaced interfering DBSs,
respectively. (a) Serving DBS is moving towards o′, and (b) serving DBS is
hovering at o′.

∫ min{vt,ux+u0}

|ux−u0|
δ(l − vt) 1

π
cos−1

(
l2 + u2

x − u2
0

2lux

)
dl. (7)

We need to consider two cases:
• 0 ≤ ux ≤ |u0 − vt|

In this case, since λ(t;ux, u0) = 0 for u0 ≥ vt, we
need to only evaluate β(t, ux, u0) for u0 < vt. This gives
0 ≤ ux ≤ vt− u0, which makes the integral term in (7)
zero. Since u0 − ux ≤ u0 + ux ≤ vt, the term for the
indicator function in (7) will become zero as well. Hence,
β(t, ux, u0) = 1

(
t > u0

v

)
.

• |u0 − vt| ≤ ux ≤ u0 + vt
In this case, we have the triangle inequality for the triple
(ux, u0, vt), which yields |u0 − ux| ≤ vt ≤ u0 + ux.
Hence,

β(t, ux, u0) = 1− 1

π
cos−1

(
v2t2 + u2

x − u2
0

2vtux

)
=

1

π
cos−1

(
u2

0 − u2
x − v2t2

2uxvt

)
.

This completes the proof.

Remark 7. We can make sense of (6) intuitively by consid-
ering the exclusion zone X and different regions illustrated
in Fig. 2 as follows: (i) R1 = {ux ≥ u0 + vt}: No DBS
that was initially in R1 can enter X within time t, and thus,
λ(t;ux, u0) = λ0, (ii) R2 = {0 ≤ ux ≤ u0 − vt|vt ≤ u0}:
The serving DBS is in motion towards o′ and since there is
no interfering DBS in R2, we have λ(t;ux, u0) = 0, and (iii)
R3 = {0 ≤ ux ≤ vt − u0|vt > u0}: In this region, we can
use the same method introduced in the proof of Lemma 2 as
follows. We first calculate the density contributed by points that
would have originally fallen in X and then subtract it from
λ0 to get the density of the network of interfering DBSs. Since
all the DBSs that are initially inside X will leave R3 after
the displacement of vt, the density contributed by X in R3

is 0, which gives λ(t;ux, u0) = λ0. However, for non-linear
i.i.d. mobility models, such as RW or RWP, where direction
changes are allowed during flights, there is a possibility that
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some of the DBSs that are initially inside X do not leave R3

after the displacement of vt. This fact is highlighted in Fig. 2
(b), where a DBS that is initially at x could possibly fall into
R3 after a displacement of vt with a non-linear i.i.d. mobility
model. Hence, the impact of X is not zero in this case, which
implies that the density of interfering DBSs is less than λ0 in
R3.

It is in fact possible to make a more formal statement about
the comparison of SL mobility model with the other models,
which is done next.

Theorem 1. The expected number of interferers in the disc
B = b(o′, u0+vt) at any time t is maximized over the space of
i.i.d. mobility models (including the ones where drones follow
curved trajectories) when interferers follow the SL mobility
model.

Proof: See Appendix B.

Remark 8. Theorem 1 demonstrates that the average number
of interferers in any neighborhood of the typical UE is higher
in the SL mobility model compared to the other i.i.d. mobility
models. Consequently, the average received rate at the typical
UE under the SL mobility model is lower compared to the
other i.i.d. mobility models.

In the RS mobility model, the net displacement of DBSs
until time t is L(t) = min{vt, R}, where R is a random
variable that determines the displaced distances of DBSs.
The following corollary gives the network density for the RS
mobility model.

Corollary 2. (Point Process of Interferers for the RS Model).
When interfering DBSs move based on the RS mobility model,
the network of interfering DBSs will be an inhomogeneous
PPP with the same density as given in Lemma 2. Furthermore,
we have β(t, ux, u0) =

FR(ux − u0) + (1− FR(r))
1

π
cos−1

(
u2

0 − u2
x − r2

2uxr

)
+∫ r

|ux−u0|
fR(l)

1

π
cos−1

(
u2

0 − u2
x − l2

2uxl

)
dl, (8)

where r = min{vt, ux + u0}.

Proof: Starting with L(t) = min{vt, R}, we can write
the cdf and pdf of L(t) as

FL(l; t) = P[min{vt, R} ≤ l] = 1− P[vt > l,R > l]

= FR(l)1(vt− l) + 1(l − vt),
fL(l; t) = (1− FR(vt))δ(vt− l) + fR(l)1(vt− l).

Similar to the proof of Corollary 1, we consider two cases to
derive β(t, ux, u0) as follows.

• 0 ≤ ux ≤ |u0 − vt|. We have β(t, ux, u0) =

1− FR(u0 − ux)−
∫ ux+u0

|ux−u0|
fR(l) 1

π cos−1
(
l2+u2

x−u
2
0

2lux

)
dl.

• |u0 − vt| ≤ ux ≤ u0 + vt. We have β(t, ux, u0) =

1− FR(u0 − ux)− (1−FR(vt)) 1
π cos−1

(
v2t2+u2

x−u
2
0

2vtux

)
−

1R

1

)0(x

)(nx

)1( nx
1nZ

)(tL 1
n

Svt

n
R

1
n

n


Fig. 3. A realization of the RW mobility model.

∫ vt

|ux−u0|
fR(l) 1

π cos−1
(
l2+u2

x−u
2
0

2lux

)
dl.

Combining these equations into a single one, we end up with
(8) and the proof is complete.

Note that the SL mobility model is a special case of the RS
mobility model when R → ∞, which means that the DBSs
never stop. Mathematically speaking, evaluating β(t, ux, u0)
in Corollary 2 with FR(l) = 0 and fR(l) = δ(l−∞) = 0 for
l <∞, we end up with (6).

IV. RW AND RWP MOBILITY MODELS

In the previous section, we characterized the point process
of interferers for both service models, which required the dis-
tribution of the net displacement of each DBS as a function of
time. As it was shown in Corollaries 1 and 2, this distribution
can be easily derived for the SL and RS mobility models.
However, the characterization of this distribution for the RW
and RWP mobility models is not straightforward and is the
main focus of this section. Note that the distributional results
provided here are novel and may be useful in their own right.

As stated in Definition 1, we assume that the direction of
the i-th movement of a DBS is Θi ∼ U [0, 2π), which is
selected independently of the other DBSs, and the flights Ri
are i.i.d. with cdf and pdf of FR(.) and fR(.), respectively.
Fig. 3 shows an example of the RW mobility model. Let x(0)
and x(n− 1) be the initial location of a DBS and its location
after (n − 1) flights, respectively. Define Zn−1 and Ψn−1 as
the net displacement of a DBS between x(0) and x(n − 1)
and the angle between the x-axis and the line connecting x(0)
and x(n− 1), respectively. Furthermore, we define Sn−1 and
L(t) as the total distance traveled from x(0) to x(n− 1) and
the net displacement of a DBS until time t, respectively. In
order to properly find the distribution of L(t), we need the
distributional characteristics of Sn−1, Zn−1, and Ψn−1, which
is done next.

From Fig. 3, we can derive the equations for Sn−1, Zn−1,
and Ψn−1 as

Sn−1 =
n−1∑
i=1

Ri, (9)

Zn−1 =

√√√√(n−1∑
i=1

Ri cos(Θi)

)2

+

(
n−1∑
i=1

Ri sin(Θi)

)2

, (10)
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Ψn−1 = tan−1

(∑n−1
i=1 Ri sin(Θi)∑n−1
i=1 Ri cos(Θi)

)
. (11)

In the next lemma, we derive the distribution of Ψn.

Lemma 3. When interfering DBSs move based on the RW
mobility model, then irrespective of the flight distribution R,
the random variable Ψn is distributed uniformly in [0, 2π).

Proof: See Appendix C.
Using the same methodology as in the proof of Lemma 3,

one can also find the distribution of Zn. However, it turns
out that the (n − 1)-fold integral that arises in the derivation
of the pdf of Zn does not have a closed-form solution in
general. Nevertheless, when the flights are i.i.d. Rayleigh
random variables, we can derive the distribution of Zn in
closed form.

Lemma 4. When interfering DBSs move based on the RW
mobility model and the flights are Rayleigh distributed with
parameter σ, then Zn is also Rayleigh distributed with pa-
rameter σ

√
n.

Proof: See Appendix D.
Lemma 4 establishes a useful result for the distribution of

Zn when the flights are Rayleigh distributed. On the other
hand, if the flights have a general non-Rayleigh distribution,
we can find an asymptotic distribution for Zn as n→∞. We
present this result in the next lemma.

Lemma 5. When interfering DBSs move based on the RW
mobility model and the flights have general non-Rayleigh but
i.i.d. distributions with a mean and variance of µR and σ2

R,
respectively, then Zn√

n
will have a Rayleigh distribution with

parameter
√

µ2
R+σ2

R

2 as n→∞.

Proof: Define X =
∑n
i=1

1√
n
Ri cos(Θi) and Y =∑n

i=1
1√
n
Ri sin(Θi). Since Θi’s are i.i.d. with uniform distri-

bution in [0, 2π), the central limit theorem (CLT) asserts that as
n→∞, X and Y will have Gaussian distributions. Since Ri
and Θi are independent of each other, the moments of X can
be computed as follows: E[X] =

∑n
i=1

1√
n
E[Ri]E[cos(Θi)] =

0 and E[X2] = E
[∑n

i=1

∑n
j=1

1
nRiRj cos(Θi) cos(Θj)

]
=

E
[∑n

i=1
1
nR

2
i cos2(Θi)

]
=

µ2
R+σ2

R

2 . Note that the same is
also true for Y . Hence, X ∼ N (0,

µ2
R+σ2

R

2 ) and Y ∼
N (0,

µ2
R+σ2

R

2 ). Now since E[XY ] = 0, X and Y are uncor-
related, and thus, independent. Therefore, Zn√

n
=
√
X2 + Y 2

is Rayleigh distributed with parameter
√

µ2
R+σ2

R

2 as n → ∞.
This completes the proof.

After characterizing Zn and Ψn, we need to find the
distribution of Sn as well. Recall that Sn is the sum of n
i.i.d. random variables and for a general distribution of Ri, the
distribution of Sn is not known. There have been some works
that establish the distribution of Sn for different distributions
of Ri (see [39] for a comprehensive review). When Ri’s are
exponentially distributed, the distribution of Sn is known to
be Erlang. However, the exact distribution of Zn is not known
for exponentially distributed flights. When Ri’s are Rayleigh,

the distribution of Sn has been investigated in the literature
[40] and the result is given here without proof.

Lemma 6. The pdf of the sum of n i.i.d. Rayleigh random
variables with parameter σ can be approximated as

fSn(s) ≈
( s√

n
)2n−1e−

s2

2nb

2n−1bn(n− 1)!
−

( s√
n
− a2)2n−2e−

a1( s√
n
−a2)2

2b

2n−1b( b
a1

)n(n− 1)!
×

a0

[
b(2s
√
n− a2)− a1

s√
n

(
s√
n
− a2)2

]
, (12)

where b = σ2
n
√

(2n−1)!!

n and the constants a0, a1, and a2

are derived numerically using a nonlinear curve-fitting least
square method based on the trust region reflective algorithm
[41].

In order to better understand the distributional properties
of the RW mobility model, we also need to find the joint
distribution of Sn and Zn for a given number of flights n.
Given Sn, the range of the values for Zn is upper bounded
by the value of Sn, which suggests a dependency between
Sn and Zn. In the next proposition, we characterize this joint
distribution.

Proposition 1. The joint pdf of Sn and Zn for a given number
of flights n ≥ 2 can be written as a 2(n−1)-fold integral given
as fSn,Zn(s, z) =

4z
(2π)n

∫
. . .

∫
R

fR(s−Jn)
∏n−1
i=1 fR(xi) dx dξ√

(z2−(s−Jn−Kn)2)((s−Jn+Kn)2−z2)
, (13)

where Jn =
∑n−1
i=1 xi, Kn =

√∑n−1
i,j=1 xixj cos(ξi − ξj), and

R is defined as the region where 0 ≤ xi < ∞, 0 ≤ ξi < 2π
for 1 ≤ i ≤ n− 1, and |s− Jn −Kn| ≤ z ≤ s− Jn +Kn.

Proof: See Appendix E.
Note that for n = 1, the random variables Sn and Zn

will become identical and equal to R1, and thus, their joint
distribution will be the same as the distribution of R1, i.e.,
fR(.). For n = 2, the result of Proposition 1 can be further
simplified, which is given in the next corollary.

Corollary 3. The joint pdf between S2 and Z2 can be written
as

fS2,Z2
(s, z) =

2z

π
√
s2 − z2

∫ s+z
2

s−z
2

fR(x)fR(s− x)√
z2 − (2x− s)2

dx, (14)

for s > z and zero otherwise.

Remark 9. As n gets larger, the dependency between Sn and
Zn will become less significant, and thus, we can ignore it for
large enough n. Hence, we approximate the joint pdf of Sn
and Zn by assuming them to be independent for n ≥ 3, thus
giving fSn,Zn(s, z) ≈ fSn(s)fZn(z). Note that n ≥ 3 is large
enough for this result to be reasonably accurate.

Using the results that we have derived for the RW mobility
model so far, we can now compute the distribution of L(t),
i.e., the distance between the location of a DBS at time t and
its original location at time t = 0. Fig. 3 shows a DBS that is
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FL(l; t) = (1−FR(vt))1(l−vt) +
∞∑
n=2

∫ vt

vt−l

∫ l−(vt−s)

0

fSn−1,Zn−1(s, z)(1−FR(vt−s)) dz ds+

∞∑
n=2

∫ vt

vt−l
2

∫ min{s, l+(vt−s)}

|l−(vt−s)|
fSn−1,Zn−1

(s, z)(1−FR(vt−s)) 1

π
cos−1

(
z2 + (vt− s)2 − l2

2z(vt− s)

)
dz ds, (15)

fL(l; t) = (1−FR(vt))δ(l−vt)+
2l

π

∞∑
n=2

∫ vt

vt−l
2

∫ min{s, l+(vt−s)}

|l−(vt−s)|

fSn−1,Zn−1
(s, z)(1− FR(vt− s))√

[l2−(z−(vt−s))2] [(z+(vt−s))2−l2]
dz ds, (16)

flying in its n-th flight. Note that the distance traveled by the
DBS until time t is vt, and thus, the residual distance in the
n-th flight will be vt−Sn−1. We now state the main result in
the next proposition.

Proposition 2. When interfering DBSs move based on the RW
mobility model, the cdf and pdf of L(t) are given as (15) and
(16), respectively, at the top of this page for l ≤ vt. Otherwise,
we have FL(l; t) = 1 and fL(l; t) = 0.

Proof: See Appendix F.
For n = 2, the double integrals in (15) and (16) can be writ-

ten as single integrals since S1 = Z1 = R1. Mathematically
speaking, for l < vt we have

FL(l; t|n = 2) =

∫ vt+l
2

vt−l
2

fR(r)(1− FR(vt−r))×

1

π
cos−1

(
r2+(vt−r)2−l2

2r(vt−r)

)
dr, (19)

fL(l; t|n = 2) =
2l

π
√
v2t2−l2

∫ vt+l
2

vt−l
2

fR(r)(1−FR(vt−r))√
l2−(2r−vt)2

dr.

(20)

This result will be useful for our further approximations on
the distribution of L(t). Applying the results of Proposition
2 to Lemma 2, we can compute β(t, ux, u0) in (5) and get
the density of the network of interfering DBSs for the RW
mobility model.

Building on the RW mobility model, we now derive the
distribution of L(t) for the RWP mobility model as well. The
RWP mobility model is defined by a sequence of quadruples
at the i-th flight period: two waypoints pi−1 and pi as the
starting and destination waypoints, respectively, one transition
length Ri, and one waiting time Ti at the destination waypoint.
In an infinite network, we can observe that the only difference
between the RWP and the RW mobility models is the inclusion
of the random variable Ti as the waiting time at the end
of each flight. Assuming that the random variables {Ti} are
i.i.d. with cdf and pdf of FT (.) and fT (.), respectively, and
also independent of Ri, the following proposition extends the
results of Proposition 2 to the RWP mobility model. Before
stating the main result, we define Wn as the aggregate waiting
time until the end of the n-th flight, i.e., Wn =

∑n
i=0 Ti.

Note that Wn will be independent of Sn and Zn. Moreover,
we assume that W0 = T0 6= 0, which implies that there is an
initial random waiting time before the DBSs start to move.

Proposition 3. When interfering DBSs move based on the
RWP mobility model, the cdf and pdf of L(t) are given as (17)
and (18), respectively, at the bottom of this page for l ≤ vt.
Otherwise, we have FL(l; t) = 1 and fL(l; t) = 0.

Proof: See Appendix G.

As in the RW mobility model, the results can be further

FL(l; t) =

∫ ∞
t− l

v

(1− FR(vt− vw)) fT (w) dw+

∞∑
n=2

∫ vt

0

∫ min{s,l}

0

fSn−1,Zn−1(s, z)
(
FWn−2(t− s

v
)− FWn−1(t− s

v
)
)

dz ds+

∞∑
n=2

∫ vt

vt−l

∫ l−(vt−y)

0

∫ y
v

0

fWn−1
(w)fSn−1,Zn−1

(y − vw, z)(1− FR(vt− y)) dw dz dy+

∞∑
n=2

∫ vt

vt−l
2

∫ min{y, l+(vt−y)}

|l−(vt−y)|

∫ y
v

0

fWn−1(w)fSn−1,Zn−1(y−vw, z)(1−FR(vt−y)) 1
π cos−1

(
z2+(vt−y)2−l2

2z(vt−y)

)
dw dz dy,

(17)

fL(l; t) =
1

v
(1− FR(l)) fT

(
t− l

v

)
+
∞∑
n=2

∫ vt

l

fSn−1,Zn−1
(s, l)

(
FWn−2

(t− s

v
)− FWn−1

(t− s

v
)
)

ds+

2l

π

∞∑
n=2

∫ vt

vt−l
2

∫ min{y, l+(vt−y)}

|l−(vt−y)|

∫ y
v

0

fWn−1(w)fSn−1,Zn−1(y − vw, z)(1− FR(vt− y))√
[l2 − (z − (vt− y))2] [(z + (vt− y))2 − l2]

dw dz dy, (18)
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Fig. 4. Distribution of L(t) in the RW and RWP mobility models for t ∈ {50, 100, 300} s. As t increases, the pdf of L(t) in both the RW and RWP models
converges to the Rayleigh distribution.

simplified for n = 2 and l < vt as

FL(l; t|n = 2) =

∫ l

0

fR(r)
(
FT (t− r

v
)− FW1(t− r

v
)
)

dr+∫ t

t− l
v

∫ vt−vw

0

fR(r)fW1
(w)(1− FR(vt− vw − r)) dr dw+∫ t− l

v

0

∫ vt−vw+l
2

vt−vw−l
2

fR(r)fW1
(w)(1− FR(vt− vw − r))×

1

π
cos−1

(
r2 + (vt− vw − r)2 − l2

2r(vt− vw − r)

)
dr dw, (21)

fL(l; t|n = 2) = fR(l)

(
FT (t− l

v
)− FW1

(t− l

v
)

)
+

2l

π

∫ t− l
v

0

∫ vt−vw+l
2

vt−vw−l
2

fR(r)fW1
(w)(1−FR(vt−vw−r))√

[(vt−vw)2−l2][l2−(2r−(vt−vw))2]
dr dw.

(22)

Similar to the RW scenario, we can apply the distribution of
L(t) derived in Proposition 3 to Lemma 2 and compute the
density of the network of interferers for the RWP mobility
model.

V. AVERAGE AND SESSION RATES

In this section, we compute the SIR-based metrics defined
in Section II-D for the typical UE in the network. Equipped
with the density of the network of interfering DBSs for each
mobility model under both the UIM and the UDM, we first
derive the average received rate by the typical UE in the UDM.
The following theorem provides this result.

Theorem 2. In the UDM and using any i.i.d. mobility model
described in the previous sections, the average received rate
by the typical UE at time t is given as

R(t) =

∫ ∞
0

∫ ∞
0

2πλ0u0e−πλ0u
2
0

1 + γ
×

m0−1∑
k=0

(−s)k

k!

∂k

∂sk
LI(t)(s

∣∣x0(t))

∣∣∣∣
s=m0γrα0 (t)

du0 dγ, (23)

where LI(t)(s
∣∣x0(t)) is the conditional Laplace transform of

interference given as LI(t)(s
∣∣x0(t)) =

exp

[
−2π

∫ ∞
0

ux(t)λ(t;ux, u0)
(

1−
(
1+

s(u2
x(t)+h2)

−α/2

m

)−m)
dux(t)

]
.

(24)

Proof: We start by writing the complementary cumulative
distribution function (ccdf) of SIR(t) conditioned on x0(t) as

P
[
SIR(t) ≥ γ

∣∣x0(t)
]
=E [P [h0(t) ≥ γrα0 (t)I(t)|x0(t), I(t)]]

(a)
= E

[
Γ(m0,m0γr

α
0 (t)I(t))

Γ(m0)

∣∣∣∣x0(t)

]
(b)
= E

[
m0−1∑
k=0

(m0γr
α
0 (t)I(t))k

k!
e−m0γr

α
0 (t)I(t)

∣∣∣∣∣x0(t)

]

=

m0−1∑
k=0

(−s)k

k!

∂k

∂sk
LI(t)(s

∣∣x0(t))

∣∣∣∣
s=m0γrα0 (t)

,

where in (a) the Nakagami-m fading assumption is used and
in (b) we used the definition of the incomplete gamma function
for integer values of m0. The conditional Laplace transform
of interference at time t can be computed as

LI(t)(s
∣∣x0(t)) = E

[
e−sI(t)

∣∣x0(t)
]

= E

exp

−s ∑
x(t)∈Φ′D(t)

hx(t)rx(t)−α

∣∣∣∣∣∣u0(t)


(a)
= E

 ∏
x(t)∈Φ′D(t)

(
1 + srx(t)−α

m

)−m∣∣∣∣∣∣u0(t)


(b)
= exp

[
−2π

∫ ∞
0

ux(t)λ(t;ux, u0)

(
1−
(

1+ srx(t)−α

m

)−m)
dux(t)

]
,

where (a) results from the moment generating function (MGF)
of the gamma distribution and (b) follows from the probability
generating functional (PGFL) of a general PPP. Now, the
average rate at time t can be written as

R(t) = E [log (1 + SIR(t))] =

∫ ∞
0

log(1 + γ)fΓ(γ; t) dγ

=

∫ ∞
0

∫ ∞
0

2πλ0u0e−πλ0u
2
0

1 + γ
P
[
SIR(t)≥γ

∣∣x0(t)
]

du0 dγ,

where fΓ(γ; t) is the pdf of SIR(t) and in the last equation,
we used integration by parts and deconditioned the result on
u0(t). Note that in the UDM, we have u0(t) = [u0 − vt]+,
where [x]+ = x if x ≥ 0 and [x]+ = 0 otherwise. This
completes the proof.

For the UIM, since the density of the network of interfering
DBSs is given in (3), the received rate by the typical UE will
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Fig. 5. Density of the network of interfering DBSs for the UDM with the SL
and RS mobility models. Serving distance is u0 = 500 m and the density is
given at t ∈ {20, 40, 50, 200} s.

be given as in (23) evaluated at t = 0. Finally, the session rate
at time T is derived by integrating over the average rate w.r.t.
t as in (2).

VI. SIMULATION RESULTS

In this section, we provide numerical simulations to verify
our analytical results and provide several useful insights about
the system-level performance of the network. We assume that
the network density is λ0 = 1 DBS/km2 and DBSs move
with a constant speed v = 45 km/h using one of the four
mobility models defined in Section II. We consider the low
altitude platform (LAP) for the flight of DBSs and assume h ∈
{100, 200} m as typical values for the height of drones in the
LAP. Furthermore, we assume the path loss exponent is α = 3.
For the RS, RW, and RWP mobility models, we assume that
the flight distances are distributed as i.i.d. Rayleigh random
variables with mean 500 m. Moreover, in the RWP mobility
model, we assume the hovering times follow i.i.d. exponential
random variables with mean 5 s. Note that the evaluations of
the multiple integrals that occur in the analyses of the RW and
RWP mobility models are carried out using the Monte Carlo
(MC) integration method.

A. Distribution of L(t) in RW and RWP

Characterizing the distribution of L(t) for a given time t is
essential for the analysis of the RW and RWP mobility models.
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Fig. 6. Density of the network of interfering DBSs for the UDM with the
RW and RWP mobility models. Serving distance is u0 = 500 m and the
flights are Rayleigh distributed with mean 500 m.

We derived the exact cdf and pdf of L(t) for the RW and RWP
mobility models in Propositions 2 and 3, respectively. Fig. 4
shows the pdf of L(t) for both the RW and RWP mobility
models at t ∈ {50, 100, 300} s. Note that as t → ∞, the
distance traveled during the n-th flight will be much smaller
than Zn−1, and thus, we have L(t) ≈ Zn−1. Now, according to
Lemma 5, as t→∞, the distribution of Zn−1 converges to a
Rayleigh distribution. Hence, L(t) is also Rayleigh distributed
as t→∞. This trend can also be noticed in Fig. 4.

B. Point Process of Interferers

In Figs. 5 and 6, we plot the density of the network
of interfering DBSs for all the mobility models considered
in this paper at t ∈ {20, 40, 50, 200} s. We assume that
the serving DBS follows the UDM and the exclusion zone
radius is u0 = 500 m. In the SL mobility model, as also
highlighted in Remark 7, the density will be divided into
two homogeneous parts and one bowl-shaped inhomogeneous
part after t = u0

v . Furthermore, the inhomogeneous part will
become homogeneous as t → ∞, which ultimately makes
the point process of interferers homogeneous. This fact can
also be directly inferred from Corollary 1 by taking the limit
of (6) as t → ∞ and ux → vt. According to Fig. 6,
this homogenization happens for the RW and RWP mobility
models as well. However, this is not the case in the RS
mobility model, since the DBSs “stop” moving after a period
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Fig. 7. Comparison of the average rate for the UDM with the SL mobility
model for different Nakagami-m parameters with α = 3 and h = 100 m.
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Fig. 8. Comparison of the average rate for both the UIM and the UDM with
the SL mobility model at different heights with α = 3 and m0 = mx = 1.
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Fig. 9. Comparison of the average rate for the UDM with different mobility
models. Other parameters are α = 3, h = 100 m, and m0 = mx = 1.
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Fig. 10. Comparison of the session rate for the UDM with different mobility
models. Other parameters are α = 3, h = 100 m, and m0 = mx = 1.

of time. Hence, the point process of interferers does not evolve
with time, making it inhomogeneous for all time t. In Fig. 6,
based on Remark 9, we also plot the density of the network
of interfering DBSs for the RW and RWP mobility models by
assuming that Sn and Zn are independent for n ≥ 3. Clearly,
this approximation is fairly accurate.

C. Impact of Fading and Height

In order to show the effect of the Nakagami-m fading
parameter on the performance of the network, we plot the
average rate in the UDM under the SL mobility model for
m0 = mx ∈ {1, 2} in Fig. 7. Since increasing m0 and mx

decreases the severity of the fading, the average rate will
increase as well. Fig. 8 depicts the impact of DBS heights
on the performance of the network for both service models
under the SL mobility model. As is clear in this figure, the

average rate increases as height decreases, which can also be
observed directly from (23) and (24).

D. Impact of Mobility Models

Under the UDM, we compare different mobility models
studied in this paper in terms of the average and session
rates in Figs. 9 and 10, respectively. As can be seen in these
figures, the SL mobility model acts as a lower bound on the
performance of these models. This result is essentially the one
that we proved in Theorem 1 by demonstrating that the average
number of interferers in the vicinity of the typical UE is higher
in the SL mobility model than the other i.i.d. mobility models.
Hence, the performance of the network under the SL mobility
model will be worse than the other mobility models. In Table
I, we provide a brief comparison between the four mobility
models studied in this paper.

TABLE I
A COMPARISON BETWEEN DIFFERENT MOBILITY MODELS.

Model Advantage Disadvantage
SL tractable and closed-form solutions simplistic for some applications

RS captures limited battery capacity of drones DBSs do not change their locations after
stopping in order to serve other UEs

RW/RWP more general less tractable
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VII. CONCLUSION

In this paper, we presented an in-depth and unified analysis
of a mobile drone cellular network operating at a constant
height to serve the UEs on the ground. Specifically, we
considered four mobility models for the DBSs, i.e., (i) SL, (ii)
RS, (iii) RW, and (iv) RWP, and provided several fundamental
distributional properties of these models. The use of the
SL mobility model for drone networks was inspired by the
simulation models used in the 3GPP studies of drone networks,
while the others are useful canonical models (or their variants)
that have been used extensively in wireless networks and
provide a reasonable balance between realism and tractability.
The serving DBS is selected based on the nearest-neighbor
association policy and moves according to two service models:
(i) based on the same mobility model as the interfering DBSs
(UIM), and (ii) towards the typical UE at a constant height and
keeps hovering above the location of the typical UE (UDM).
We proposed a novel characterization of the point process
of DBSs for both the UIM and the UDM, using which we
analyzed the average received rate and the session rate at the
typical UE. Borrowing tools from the calculus of variations,
we mathematically showed that the SL mobility model acts as
a lower bound on the system-level performance of our mobile
drone network over the space of all i.i.d. mobility models.
To the best of our understanding, this is the first work that
offers a unified analysis of canonical mobility models for a
drone cellular network in an infinite plane and establishes
meaningful connections between them. While this work offers
many useful insights in the canonical settings, it will be useful
to extend some of these results to more realistic mobility
models, including the ones developed from actual mobility
traces of drones (as and when they become available). Another
direction of future research could be the use of advanced
mathematical techniques, such as the stochastic differential
equation and the Ornstein-Uhlenbeck process [42], to design
more sophisticated drone trajectories. Furthermore, extending
the results of this paper to more general 3D models, such as
multi-tier drone cellular networks [43], is a promising future
work.

APPENDIX

A. Proof of Lemma 2

Since we have started with an inhomogeneous PPP with
the density given as (3) for t = 0 in the UDM and the
displacements are independent of each other, the network of
interfering DBSs will also be an inhomogeneous PPP at every
time t due to displacement theorem [38]. According to Lemma
1 and defining X = b(o′, u0) as the exclusion zone, if there
was no X and DBSs moved independently of each other, as
in our mobility models, the network of all DBSs (including
the serving DBS) would have remained a homogeneous PPP
with density λ0. Taking X into account, the resulting density
of the network can be partitioned into two sets: (i) density
contributed by X (denoted as λ1(t;ux, u0)), i.e., due to the
points that are initially inside X , and (ii) density of interferers
(denoted as λ(t;ux, u0)), i.e., due to the points that are initially
outside X . Since the resulting network density is λ0, we

L(t)
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Fig. 11. An illustration for the proof of Lemma 2. The red circle and the
green dotted circles indicate X and A, respectively.

have λ(t;ux, u0) = λ0 − λ1(t;ux, u0). Define N(t) as the
average number of points that are initially inside X and after
a displacement of L(t) land on an infinitesimal annulus A with
an inner and outer radii of ux and ux+dux, respectively. Since
the density in this case is rotation-invariant, it is sufficient
to consider an annulus centered at o′ for our analysis. By
definition, we can write

λ1(t;ux, u0) = lim
dux→0

N(t)

2πuxdux
, (25)

where the denominator denotes the area of A. As shown in
Fig. 11, let x, y1, and y2 denote a randomly selected point
inside X with distance r from o′ and two intersection points
of b(x, L(t)) with A, respectively. Writing the cosine law in
triangles o′xy1 and o′xy2, we have

u2
x = L(t)2 + r2 − 2rL(t) cos(θ),

(ux + dux)2 = L(t)2 + r2 − 2rL(t) cos(θ + ϕ),

where θ = ∠o′xy1 and ϕ = ∠y1xy2. Eliminating θ in both
of these equations gives

cos(ϕ) =
1

b2

[
a2 − a

(
dux +

(dux)2

2ux

)
+

c

√
c2 + 2a

(
dux +

(dux)2

2ux

)
−
(

dux +
(dux)2

2ux

)2
]
,

where a =
L(t)2+r2−u2

x

2ux
, b = 2rL(t)

2ux
, c =

√
b2 − a2. Note that

the probability that a DBS at x lands on A after a displacement
of L(t) is 2ϕ

2π . Hence, we write N(t) by considering all such
points x in X as N(t) = E

[∫ u0

0
ϕ
π 2πrλ0 dr

]
, where the

expectation is taken over L(t). This gives

λ1(t;ux, u0) =
λ0

π
E
[∫ u0

0

r

ux
lim

dux→0

ϕ

dux
dr

]
, (26)

where we have changed the order of limit with the expectation
and the integration due to the continuity of the integrand.
Representing dux with x for simplicity, we compute the limit
as

lim
x→0

ϕ

x
= lim
x→0

1

x
cos−1

(
1− 1

a2 + c2

[
c2 + ax+

a

2ux
x2−
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c

√
c2 + 2ax+

a

ux
x2 −

(
x+

x2

2ux

)2
])

(∗)
=

√
2

a2 + c2
lim
x→0

√√√√ (a2 + c2)
(
x2 + 1

ux
x3 + 1

4u2
x
x4
)

2c2x2

=
1

c
=

2ux√
(u2

x − (L(t)− r)2)((L(t) + r)2 − u2
x)
, (27)

where in (∗) we used the Taylor series expansion cos−1(1−
x) =

√
2x + Θ(x3/2) as x → 0, where f(x) = Θ(g(x))

implies that f(x) is asymptotically bounded by g(x) both from
above and below. Note that since the triangle inequality holds
for the triple (ux, r, L(t)), the result in (27) is real and positive,
as expected. Plugging (27) into (26), we have λ1(t;ux, u0) =

λ0

π

∫ ∞
0

∫
I1

2rfL(l; t)√
(u2

x − (l − r)2)((l + r)2 − u2
x)

dr dl, (28)

where I1 = {|l − ux| ≤ r ≤ l + ux}
⋂
{0 ≤ r ≤ u0}. Since

the net displacement of a DBS at time t cannot exceed its
aggregate traveled distance vt, we have L(t) ≤ vt. Hence,
(28) simplifies to λ1(t;ux, u0) =

λ0

π

∫ vt

0

∫
I1
fL(l; t)

2r√
(u2

x−(l − r)2)((l + r)2−u2
x)

dr dl +

λ0

π
(1−FL(vt; t))

∫
I2

2r√
(u2

x−(vt− r)2)((vt+ r)2−u2
x)

dr,

where I2 = {|vt− ux| ≤ r ≤ vt+ ux}
⋂
{0 ≤ r ≤ u0}.

Simplifying the last step requires tedious integrations and the
details are skipped to maintain brevity. Finally, the density of
the network of interfering DBSs is summarized as (4) and (5)
in the lemma statement.

B. Proof of Theorem 1

The intensity measure or the expected number of interfering
DBSs in the Borel set B = b(o′, u0 + vt) is given as
Λ(B) = 2π

∫ u0+vt

0
uxλ(t;ux, u0) dux. Defining Λ1(B) and

Λ2(B) as the intensity measures for the SL mobility model
and a general i.i.d. mobility model, respectively, we need to
show that Λ1(B) ≥ Λ2(B). Note that we only prove this for
t ≤ u0

v and the proof for t > u0

v follows on the similar lines.
Using (4) and (5), we have

Λ1(B)− Λ2(B) = 2πλ0

∫ u0+vt

u0−vt
ux×[

−g(vt, ux)+FL(u0−ux; t) +

∫ vt

|ux−u0|
fL(l; t)g(l, ux) dl

]
dux, (29)

where g(l, ux) = 1
π cos−1

(
l2+u2

x−u
2
0

2lux

)
. We denote the inte-

grand in (29) by L(ux, FL(ux), fL(ux)), which is a functional
with ux being the independent variable. Note that we also have
FL(0) = 0 and FL(vt) = 1 by definition. Using the Euler-
Lagrange equation, we show that Λ1(B) − Λ2(B) attains its
minimum at zero. From the calculus of variations, we know
that FL is a critical (extremum) function for the functional L if
it satisfies the Euler-Lagrange equation: ∂L

∂FL
− d

dux

(
∂L
∂fL

)
=0.
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Fig. 12. An illustration for the proof of Lemma 3 showing the geometrical
interpretations of ∆ and ∆′ in an RW.

We compute the first term as ∂L
∂FL

= ux1(u0 − ux) and the
second term as

d

dux

(
∂L

∂fL

)
=

d

dux

(∫ vt

|ux−u0|
uxg(l, ux) dl

)
(a)
= ux1(u0 − ux) +

∫ vt

|ux−u0|

∂

∂ux
(uxg(l, ux)) dl,

where in (a) we used the Leibniz integral rule along
with g(|ux − u0|, ux) = 1(u0 − ux). Applying these
derivatives to the Euler-Lagrange equation, we get∫ vt
|ux−u0|

∂
∂ux

(uxg(l, ux)) dl = 0, which does not include
either FL or fL. This means that the original function in
(29) attains its extremum at the boundaries. We now evaluate
L(ux, FL(ux), fL(ux)) at ux = u0 ± vt as

ux =u0−vt→ L =−uxg(vt, u0−vt)+uxFL(+vt) + 0 = 0

ux =u0+vt→ L =−uxg(vt, u0+vt)+uxFL(−vt) + 0 = 0.

Since both of the boundary values are 0, we conclude that the
minimum value in (29) is 0.

C. Proof of Lemma 3

In order to derive the distribution of Ψn, we introduce (n−
1) auxiliary random variables Ξi = Θi, 1 ≤ i ≤ n − 1, and
find the joint pdf of n random variables Ψn and Ξi, 1 ≤ i ≤
n− 1. We then integrate out these auxiliary random variables
to find the pdf of Ψn. We start by solving the system of n
equations (one equation in (11) for the definition of Ψn and
(n−1) equations introduced by the auxiliary random variables)
to derive Θi’s in terms of Ψn and Ξi’s. The result can be
written as the following two sets of solutions:

Set 1 :

{
Θi = Ξi, i = 1, 2, . . . , n− 1

Θn = Ξn1 = tan−1
(
−∆ cos(Ψn)+∆′ sin(Ψn)
∆ sin(Ψn)+∆′ cos(Ψn)

)
,

Set 2 :

{
Θi = Ξi, i = 1, 2, . . . , n− 1

Θn = Ξn2
= tan−1

(
−∆ cos(Ψn)−∆′ sin(Ψn)
∆ sin(Ψn)−∆′ cos(Ψn)

)
,

where ∆ =
∑n−1
i=1 Ri sin(Ξi−Ψn) and ∆′ =

√
R2
n −∆2. In

Fig. 12, we show the geometrical interpretations of ∆ and ∆′.
Note also that Ψn =

Ξn1+Ξn2

2 . Computing the determinant of
the Jacobian matrix J , we get |J | = |∂Θn

∂Ψn
| for both solution
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sets. Hence,

|J | =
∑n
i=1

∑n
j=1RiRj cos(Θi −Θj)∑n

i=1RiRn cos(Θi −Θn)

= 1 +

∑n
i=1

∑n−1
j=1 RiRj cos(Θi −Θj)∑n

i=1RiRn cos(Θi −Θn)
.

By some algebraic manipulations, we find that |J |
∣∣
Θn=Ξn1

+

|J |
∣∣
Θn=Ξn2

= 2. Now, since Θi ∼ U [0, 2π), the joint
distribution of Ψn and Ξi’s can be written as

fΨn,Ξ(ψn, ξ) = fΘ(θ)|J |
∣∣
Θn=Ξn1

+ fΘ(θ)|J |
∣∣
Θn=Ξn2

= 2

(
1

2π

)n
,

where the boldface letters represent vector random variables.
Integrating out Ξi, 1 ≤ i ≤ n − 1, the distribution of Ψn is
derived as fΨn(ψn) = 1

π for ψn ∈ [−π2 ,
π
2 ), due to the range

of the tan−1 function. Finally, since the actual range of Ψn is
[−π, π), we conclude that fΨn(ψn) = 1

2π for ψn ∈ [−π, π),
and the proof is complete.

D. Proof of Lemma 4

We consider an RW of two flights F1 and F2, where F1

and F2 are two independent Rayleigh random variables with
parameters σ1 and σ2, respectively. Let F be the distance
from the start of the first flight to the end of the second
flight. We show that F is Rayleigh distributed with parameter
σ =

√
σ2

1 + σ2
2 , which proves the lemma by induction. Since

F1 and F2 are Rayleigh distributed, they can be written as
F1 =

√
X2

1 + Y 2
1 and F2 =

√
X2

2 + Y 2
2 , where X1, Y1 ∼

N (0, σ2
1) are X2, Y2 ∼ N (0, σ2

2) are independent Gaussian
random variables. Note that due to the independence of X1

and X2, their sum will also be a Gaussian random variable.
Therefore, X = X1 + X2 ∼ N (0, σ2

1 + σ2
2). Likewise,

Y = Y1 +Y2 ∼ N (0, σ2
1 +σ2

2). We can now represent F1 and
F2 in the abscissa and ordinate axes as [X1, Y1] and [X2, Y2],
respectively. Hence, F =

√
X2 + Y 2 will have a Rayleigh

distribution with parameter σ =
√
σ2

1 + σ2
2 . This completes

the proof.

E. Proof of Proposition 1

Similar to the proof of Lemma 3, we define 2(n − 1)
auxiliary random variables Xi = Ri and Ξi = Θi, 1 ≤ i ≤
n − 1 and find the joint pdf of these 2n random variables.
Solving this system of 2n equations, we can write Ri and Θi,
1 ≤ i ≤ n in terms of Sn, Zn, Xi, and Ξi, 1 ≤ i ≤ n − 1.
Note that (2n − 1) of these equations have trivial solutions,
i.e., Ri = Xi and Θi = Ξi for 1 ≤ i ≤ n − 1 and
Rn=Sn−

∑n−1
i=1 Xi. For Θn, we write the governing equation

as
n−1∑
i=1

Xi cos(Θn−Ξi)=
Z2
n−R2

n−
∑n−1
i,j=1XiXj cos(Ξi−Ξj)

2Rn
.

(30)

Note that the exact expression for Θn will not be required for
the derivation of the joint pdf of interest. We then derive the
determinant of the Jacobian matrix as

|J | =
∣∣∣∣∂Θn

∂Zn

∣∣∣∣ =
Zn

Rn

∣∣∣∑n−1
i=1 Xi sin(Θn − Ξi)

∣∣∣ . (31)

Solving (30) and (31), we can eliminate Rn and Θn to get
|J | only in terms of Sn, Zn, Xi, and Ξi, 1 ≤ i ≤ n − 1.
Hence, we can write the joint distribution of these 2n random
variables as fSn,Zn,X,Ξ(s, z,x, ξ) =

4z

(2π)n
fR(s− Jn)

∏n−1
i=1 fR(xi)√

(z2 − (s− Jn −Kn)2) ((s− Jn +Kn)2 − z2)
,

where Jn =
∑n−1
i=1 xi, Kn =

√∑n−1
i,j=1 xixj cos(ξi − ξj). In-

tegrating this pdf 2(n−1) times w.r.t. xi and ξi, 1 ≤ i ≤ n−1,
we end up with (13) and the proof is complete.

F. Proof of Proposition 2

Considering the RW mobility model at time t, a DBS is
either in its first flight, or in its second flight, etc. Hence,
initializing S0 = 0, the event Ω =

⋃∞
n=1 (Sn−1 ≤ vt < Sn)

has unit probability. Thus, we can write the cdf of L(t) as

FL(l; t) = P[L(t) ≤ l] = P[L(t) ≤ l,Ω]

=
∞∑
n=1

P [L(t) ≤ l, Sn−1 ≤ vt < Sn]

(a)
=

∞∑
n=1

P
[
Z2
n−1 − 2Zn−1(vt− Sn−1) cos(Φn) +

(vt− Sn−1)2 ≤ l2, Sn−1 ≤ vt < Sn
]

(b)
=
∞∑
n=1

∫ vt

0

∫ s

0

fSn−1,Zn−1
(s, z)(1− FR(vt− s))×

P
[
z2+(vt−s)2−2z(vt−s) cos(Φn)≤ l2

]
dz ds,

(32)

where in (a) we used the cosine law and in (b) we conditioned
the probability on knowing Sn−1 and Zn−1. Note that Φn =
π−Θn+Ψn−1 is the angle between the direction of Zn−1 and
the direction of the n-th flight. We now rewrite the probability
in (32) as P [cos(Φn) ≥ x], where x = z2+(vt−s)2−l2

2z(vt−s) . In order
for this probability to be non-zero, we have two cases: (i)
x ≤ −1 which gives z + (vt − s) ≤ l, and (ii) −1 < x ≤ 1
which gives |z − (vt − s)| ≤ l < z + (vt − s), which is the
triangle inequality. Note also that it is clear from our setup
that z ≤ s ≤ vt. For l ≥ vt, only the first case will hold and
we can write the cdf as

FL(l; t) =
∞∑
n=1

∫ vt

0

∫ s

0

fSn−1,Zn−1
(s, z)(1−FR(vt−s)) dz ds

=
∞∑
n=1

∫ vt

0

fSn−1(s)(1− FR(vt− s)) ds

=
∞∑
n=1

FSn−1
(vt)− FSn(vt) = 1,

where in the last equality we used the convolution integral that
arises in the derivation of the cdf of Sn = Sn−1 +Rn. Hence,
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FL(l; t) = 1 for l ≥ vt, as expected. On the other hand, both
cases can occur for l < vt. For the first case, we have 0 ≤ z ≤
l−(vt−s) and vt− l ≤ s ≤ vt. Similarly, for the second case
we have |l− (vt− s)| ≤ z ≤ min{s, l+ (vt− s)} and vt−l

2 ≤
s ≤ vt based on the triangle inequality. Now, according to
Lemma 3, Ψn−1 is uniformly distributed in [0, 2π), and since
Θn ∼ U [0, 2π) is independent of Ψn−1, the random variable
Φn will have a symmetric triangular distribution. However,
since the range of values of Φn is between 0 and 2π, we have
Φn ∼ U [0, 2π). Hence, the cdf of L(t) for l < vt can be
written as in (15). Note that for n = 1, we have L(t) = vt
and the cdf becomes P[vt ≤ l, vt < R1] = (1−FR(vt))1(l−
vt). Differentiating the derived cdf w.r.t. l using the Leibniz
integral rule for two-dimensional integrals, we end up with the
pdf of L(t) as in (16).

G. Proof of Proposition 3

Define Mn = Sn + vWn−1 and Yn = Sn + vWn.
Considering the RWP mobility model at time t, a DBS is
either in one of its flight states, or in one of its waiting
time states. Hence, initializing S0 = 0 and W−1 = 0, the
event Ω′ =

⋃∞
n=1 (Vn−1 ∪ Fn) has unit probability, where

Vn = {Mn ≤ vt < Yn} and Fn = {Yn−1 ≤ vt < Mn} are
the n-th waiting and flight periods, respectively. Thus, we can
write the cdf of L(t) as follows.

FL(l; t) = P[L(t) ≤ l] = P[L(t) ≤ l,Ω′]

=

∞∑
n=1

P [L(t) ≤ l, Vn−1] +

∞∑
n=1

P [L(t) ≤ l, Fn]

(a)
=
∞∑
n=1

P [Zn−1≤ l, Vn−1]+
∞∑
n=1

P[Z2
n−1+(vt−Yn−1)2

− 2Zn−1(vt− Yn−1) cos(Φn) ≤ l2, Fn]

=

∞∑
n=1

∫ vt

0

∫ min{s,l}

0

fSn−1,Zn−1(s, z)

× P [s+vWn−2≤vt<s+vWn−2+vTn−1] dz ds

+
∞∑
n=1

∫ vt

0

∫ y

0

fYn−1,Zn−1
(y, z)(1−FR(vt−y))

× P
[
z2+(vt−y)2−2z(vt−y) cos(Φn)≤ l2

]
dz dy

(b)
=
∞∑
n=1

∫ vt

0

∫ min{s,l}

0

fSn−1,Zn−1(s, z)

×
(
FWn−2

(t− s

v
)− FWn−1

(t− s

v
)
)

dz ds

+
∞∑
n=1

∫ vt

0

∫ y

0

∫ y
v

0

fWn−1
(w)fSn−1,Zn−1

(y−vw, z)(1−FR(vt−y))

×P
[
z2+(vt−y)2−2z(vt−y) cos(Φn)≤ l2

]
dw dz dy,

where in (a) we used the fact that L(t) = Zn−1 when a DBS
is in its (n−1)-th waiting state and L(t) follows the cosine rule
when a DBS is in its n-th flight state. In the first summation
of (b), we first conditioned the probability in the integrand on
knowing Tn−1 and then used the identity Wn−1 = Wn−2 +
Tn−1 to simplify the result. In the second summation of (b),
we used the definition of Yn−1 to write the joint pdf of Yn−1

and Zn−1 in terms of the joint pdf of Sn−1 and Zn−1. Now,

with the same reasoning as in the proof of Proposition 2, we
get the cdf and pdf of L(t) for l ≤ vt as in (17) and (18),
respectively. Note that for n = 1, we have FL(l; t|n = 1) =

P[vt ≤ vW0] + P[vt−vW0 ≤ l, vW0 ≤ vt < R1+vW0]

= P
[
W0 ≥ t−

min{R1, l}
v

]
=

∫ ∞
0

P[min{R1, l} ≥ vt− vw]fT (w) dw

=

∫ ∞
t− l

v

(1− FR(vt− vw)) fT (w) dw.

For l > vt, we can write the cdf as FL(l; t) =

∞∑
n=1

∫ vt

0

fSn−1
(s)
(
FWn−2

(t− s

v
)− FWn−1

(t− s

v
)
)

ds

+
∞∑
n=1

∫ vt

0

fYn−1(y)(1− FR(vt− y)) dy

(a)
=

∞∑
n=1

∫ vt

0

fSn−1
(s)FWn−2

(t− s
v ) ds−

∫ vt

0

fYn−1
(y)FR(vt−y) dy

(b)
=

∞∑
n=1

FMn−1(vt)−FMn(vt) =1,

where in (a) we used the definition of Yn−1 to get
FYn−1(vt) =

∫ vt
0
fSn−1(s)FWn−1(t− s

v ) ds and in (b) we used
the definition of Mn−1 and the identity Mn = Yn−1 +Rn to
get the result.
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