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Design variety metrics measure how much a design space is
explored. This paper proposes that a generalized class of en-
tropy metrics based on Sharma-Mittal entropy offers advan-
tages over existing methods to measure design variety. We
show that an exemplar metric from Sharma-Mittal entropy,
named the Herfindahl–Hirschman Index for Design (HHID)
has the following desirable advantages over existing metrics:
(a) More Accuracy: It better aligns with human ratings com-
pared to existing and commonly used tree-based metrics for
two new datasets; (b) Higher Sensitivity: It has higher sensi-
tivity compared to existing methods when distinguishing be-
tween the variety of sets; (c) Allows Efficient Optimization: It
is a submodular function, which enables one to optimize de-
sign variety using a polynomial-time greedy algorithm; and
(d) Generalizes to Multiple Metrics: Many existing metrics
can be derived by changing the parameters of this metric,
which allows a researcher to fit the metric to better repre-
sent variety for new domains. The paper also contributes
a procedure for comparing metrics used to measure variety
via constructing ground truth datasets from pairwise com-
parisons. Overall, our results shed light on some qualities
that good design variety metrics should possess and the non-
trivial challenges associated with collecting the data needed
to measure those qualities.

∗Address all correspondence to this author.

NOMENCLATURE
SVS Design variety metric proposed in Shah et al. [1]
NM Design variety metric proposed by Nelson et al. [2]
HHI Herfindahl–Hirschman Index [3]
SME Sharma-Mittal Entropy [4]

INTRODUCTION
Creativity is the capacity to generate unique and original

work that is useful [5–7]. Creative solutions help individuals
in solving day-to-day tasks and societies by yielding mean-
ingful scientific findings [6].

Past research [8] relates creativity with divergent think-
ing — the capacity to produce a wider variety of ideas with
higher fluency. Divergent thinking has been shown to corre-
late with the success of the final product [9–12]. Prior work
supports that chances of solving a problem increase when
a more diverse set of ideas is produced in the initial stages
of the design process [1, 13, 14]. These findings encourage
the need to explore the design space in the early stages of
design [15]. But how does one quantify design space explo-
ration?

Engineering researchers have sought to capture how
“explored the solution space” is by measuring design va-
riety [1]. There are two approaches typically deployed in
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engineering literature to measure design variety: qualita-
tive (or subjective) and quantitative ratings of variety. As
one example of subjectively evaluating design variety, Lin-
sey et al. [16] proposed taking a set of ideas and dividing
them into pools based on intuitive categories created by the
coder. At the completion of this sorting process, an indi-
viduals variety score is determined by counting the number
of bins into which their ideas were sorted and dividing that
number by the total number of bins. The metric relies on
a rater’s mental model rather than a quantitative procedure.
While these subjective ratings provide a relatively efficient
method for measuring design variety in terms of the amount
of time and effort required to code design variety, this effi-
ciency comes at the potential cost of the validity and relia-
bility of the metric [17]. This paper does not investigate this
class of subjective variety metrics.

In contrast to subjective ratings, the other approach
to measure design variety is using a quantitative ap-
proach. Within quantitative approaches, genealogical tree
approaches are widely used to measure variety, as evident
by hundreds of studies citing these approaches [1, 2, 18]. In
these approaches, subjective human raters are replaced with
a deterministic formula that depends on a few measured at-
tributes of a set of designs. One of the first metrics to use
this approach was developed by Shah, Smith and, Vargas-
Hernandez [1] (SVS metric) who broke each design into
four hierarchical levels (physical principle, working princi-
ple, embodiment, and detail) to calculate design variety. The
SVS metric is repeatable and attempts to reduce subjectivity
by using predefined criteria for measuring variety. However,
researchers have reported a lack of sensitivity and accuracy
of SVS [19–21]. For example, the genealogical tree calcu-
lation method (like SVS) is inconsistent with experts ratings
of variety [19]. Besides, studies have shown that the sen-
sitivity of the SVS metric diminishes when it is applied to
large datasets [20] due to the exclusion of important abstract
differences and generally focuses on dissimilarity in the em-
bodiment level [21].

While computing a variety metric score for a set of
ideas is straightforward, finding which subset of ideas has
the highest variety score often requires computing the score
for all possible combinations. For large datasets, this process
becomes computationally expensive for any variety metric
which does not have a computationally tractable method of
optimization (for example, more than one billion SVS eval-
uations would be needed for finding six out of hundred ideas
with the highest SVS score). Finally, different metrics may
be more suitable for different domains. However, there is
a lack of understanding of connections between these met-
rics, which are measuring the same underlying phenomenon
of variety in a domain. While Fuge et al. [22] argued that a
few variety metrics belong to a family of mathematical func-
tions, they did not propose a single parametrized function
which can unify many variety measurement methods.

This paper re-examines two of these hierarchical metrics
and compare them to methods of calculating diversity from
other (non-engineering) domains. Specifically, this paper
compares the tree-based metrics of SVS [1] and NM [2] with

the entropy-based measure of the Herfindahl–Hirschman In-
dex (HHI). This paper shows how to adapt HHI to Engi-
neering Design problems and proposes a new metric named
Herfindahl–Hirschman Index for Design (HHID). By com-
paring HHID to SVS [1] and NM [2], this paper argues and
empirically demonstrates that HHID is a more accurate and
sensitive measure for variety that has clear benefits for en-
gineering and design measurement applications. We also
demonstrate that this new metric is optimizable and can be
generalized using a broader class of metrics.

The key contributions of this paper can be categorized
under five themes — Accuracy, Sensitivity, Optimizability,
Generalizability, and a Ground-truth Dataset:

1. Accuracy: This paper proposes a measurement proce-
dure that can estimate the accuracy of variety metrics
via alignment with ground truth datasets comprising of
pairwise comparisons. A ground truth dataset refers to
a set of design examples, where one is confident of the
variety measurement. Results 2 and 7 discuss how they
are established using pairwise comparisons. Any met-
ric which gives the same relative scores as a query in
this dataset is considered accurate. Using a new fam-
ily of variety metrics, the findings indicate that entropy-
based metrics better align with human judgments of va-
riety compared to two existing tree-based metrics for
two datasets used in this study.

2. Sensitivity: This paper proposes a method of approxi-
mating metric sensitivity by randomly selecting sets and
comparing their scores. The analysis shows that the SVS
and NM metrics give the same variety score to a large
percentage of sets (approximately 30% for our dataset),
while HHID index has higher sensitivity in distinguish-
ing between different sets of ideas.

3. Optimizability: The metric functions proposed in this
paper are monotone non-decreasing and submodular 1,
which allows one to propose a scalable greedy optimiza-
tion algorithm with a constant factor optimality guaran-
tee. To find a set of five designs with the highest variety
from a collection of 1000 designs, brute force using tra-
ditional metrics makes more than 8 trillion metric evalu-
ations, while greedy optimization gives the near-optimal
solution in less than 5000 metric evaluations. This rep-
resents an efficiency improvement of around six orders
of magnitude for even just a modest sized problem.

4. Generalizability: The paper proposes that a general class
of entropy-based metrics based on Sharma-Mittal en-
tropy can be used to measure variety. We discuss how
the choice of two parameters in the Sharma-Mittal en-
tropy family affects the type of variety one wants to mea-
sure. This enables one to customize the behavior of the
variety metric to a broader set of behaviors that current
variety metrics can model.

5. Ground-truth Dataset: The study leads to two datasets
of pairwise comparisons which are released for future
researchers to use. These datasets with pairwise queries

1Submodular functions are set functions to model diminishing marginal
utility.
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can be used as a common scale to measure improvement
in variety metrics in future studies.

The proposed family of metric has a few limitations.
First, our experiments were limited to two datasets. Second,
when different attributes have hierarchical relationships (e.g.
an electric motor is dependent on electricity as the mode of
power), the proposed metrics do not model these relation-
ships while calculating variety.

BACKGROUND AND RELATED WORK
This section first reviews some qualities that good va-

riety metrics should possess. Then, it discusses what fac-
tors researchers should consider when constructing a ground
truth evaluation method for comparing variety metrics.2

Lastly, it reviews existing design variety metric literature.

What Qualities Should a Good Design Metric Possess?
Quality control is essential when creating and evaluating

metrics that map abstract concepts like creativity to quantita-
tive metrics. Particularly when metrics can be either subjec-
tive or objective, researchers needs to demonstrate that they
are valid and reliable without circularity [23]. Design metrics
can be relative or absolute. Relative design metrics compare
ideas against other ideas in the same generated set [24]. In
this way, designs generated in the same design session ad-
dressing the same problem can be compared and contrasted
to tease out designs to develop further. In contrast, absolute
metrics are not dependent on what other ideas are in the set.
Researchers also need to reduce the subjectivity in measure-
ment techniques, so the results do not depend on individ-
ual judges. For example, in the field of psychometrics, re-
searchers try to craft sets of questions that produce internally
consistent results — that is, if one asks the same questions
one should get repeatable, similar answers even under minors
changes to the test environment or experimental setup [25].
However, these questions only ensure repeatability and not
validity. Validity refers to the extent to which a measure-
ment reflects the absolute state of an artifact under observa-
tion — that is, a ground truth. The term “valid” refers to an
external frame of reference or a universally accepted stan-
dard against which a measurement is tested [26]. Many cre-
ativity metrics leverage a rater’s expertise in a given domain
to ensure metric validity [27]. This is necessary to eliminate
circularity or measuring un-validated metrics against other
un-validated metrics [28]. In this paper, the term “accuracy”
is used to measure the validity of a metric against a known
standard.

The key assumption in many past works is that raters
who have considerable experience in a given domain are best
suited to provide ground truth assessment for tasks like eval-
uating creativity [29]. If experts are the de-facto ground
truth, then why do we need a separate, objective metric?
This is because of resource and practical constraints: expert
time and effort is a scarce commodity. This scarcity forces

2We use ‘variety metrics’ for metrics used to measure design variety.

researchers to develop objective metrics that can aid quasi-
experts or novice raters in accurately evaluating processes
and ideas.

But how do we verify whether a proposed metric is
valid, or, equivalently, accurately measures creativity? This
paper focuses on how to validate any proposed objective met-
ric against expert raters. The paper focuses on how variety
metrics must be evaluated to ensure they are measuring what
they are built to measure, reliably, and with an acceptable
degree of validity.

When a metric is created, it is important to establish
some desiderata (qualities we want) that a metric must pos-
sess. Prior work on establishing acceptable qualities of a
metric includes the work of Simonton and Amabile [30],
who were key in standardizing the measurement of creativ-
ity in psychological research. Previously, most methods used
pencil and paper tests, personality tests, biographical inven-
tories (such as Schaefer and Anastasi’s biographical inven-
tory [31] and Taylor’s Alpha Biographical Inventory [32])
etc. These tests were debatable in experiments that sought to
reduce within-group variability and generally lacked a clear
creativity definition and an effective strategy to avoid biases
on behalf of the rater [30]. This seminal work highlighted
the need to better understand the multiple desiderata for a
creativity metric. Building upon that work, this paper at-
tempts to mathematically describe and lay out experimental
procedures by which one might measure such desiderata.

For example, good metrics should have the ability to es-
tablish ground truths using expert agreements and must be
replicable by other raters who use the metric. In this re-
gard, variety metrics like SVS and NM were developed to
reduce subjectivity on the rater’s part and make it easier for
researchers to replicate a processes used to analyze designs.
For subjective metrics, high inter-rater reliability and inter-
nal consistency are reported as some of the desired qualities
of the metric [33].

This paper argues that for any new design variety metric,
accuracy, sensitivity, optimizability, repeatability, and ex-
plainability are also desirable qualities. Here accuracy means
that if ground truth estimates of a quantity are available, then
a new metric should align with this ground truth. Sensitiv-
ity means that a new metric should be able to distinguish
changes between different states of a quantity. Repeatabil-
ity means that when measurements are repeated again and
again with the quantity being unchanged, they should not
give different measurements. Explainability means that the
measuring instrument should give explainable scores, that is,
it should be possible to explain why one set of designs re-
ceived a higher score than another set. Finally, optimizability
means that given a ground set of ideas, if the goal is to find
sets of ideas that will have maximum or minimum measure-
ment score using a variety metric, then practitioners should
be able to do so in polynomial time (where time is a simple
polynomial function of the size of the input—for example
the number of designs considered). Subjective metrics gen-
erally lack repeatability and explainability. In contrast, ex-
isting metrics like SVS and NM are repeatable and explain-
able. However, this work shows that SVS and NM are not
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accurate, sensitive and optimizable compared to the Sharma-
Mittal family of metrics.

Why is Measuring Design Variety Important?
Engineering researchers introduced design variety met-

rics to measure how well someone explores the solution
space during a design task [34]. Generating a large num-
ber of ideas with iterative or small changes may not result
in effective concept generation or innovative products. Re-
search has shown that “there is no way to generate an opti-
mum solution without exploring the solution space through
early tentative ideas” (Pg. 11 [35]), which shows the impor-
tance of measuring design variety. Hence, the potential to
develop ideas of broad variety is correlated with the ability
to successfully re-construct and solve problems. This abil-
ity is referred to as cognitive restructuring in psychology [1].
Cognitive restructuring is frequently used along in concert
with the number of ideas developed (quantity) to assess de-
sign ideation.

Research in Engineering Design has shown a correlation
between the amount of design space explored and the quality
of the final design [11]. Without exploration, designers may
misconstrue the solution space to be narrow [36]. One of the
main contributing factors to this trend is functional fixation,
or blind adherence to solutions that are familiar and comfort-
able, which can generally lead to products of lower quality
or innovation [37, 38]. Suppose you have ten teams, each of
which generates five designs. Your task is to select one of
these sets and use it as an inspiration for new designs. Ide-
ally, you would want to select a set which causes minimum
functional fixation and is also high quality. How should one
do this? To choose this set and know how much a design
space is explored, one needs to measure both the quality of
the designs and their variety. This work focuses on the mea-
surement of design variety.

Measuring design space exploration requires computing
mathematical functions on groups of ideas [17]. To address
this need to measure the extent to which tools promote va-
riety, Shah et al. [1] developed a metric (SVS) to provide a
repeatable and reliable method to calculate design variety by
rewarding ideas that are differentiated at higher levels of ab-
straction. In the SVS metric, the authors decompose design
variety into four hierarchical levels: the physical principle,
followed by the working principle, embodiment, and detail.
Shah et al.proposed that design variety should be calculated
as shown below in equation 1.

V =
m

∑
j=1

( f j)
4

∑
k=1

(Sk ·Bk)/N (1)

where V is the variety score, m is the number of functions
solved by the design, f j is a weight assigned to the relative
importance of function j, Sk is the score for hierarchical level
k, Bk is the number of branches at hierarchical level k, and
N is the total number of ideas in the set. The key intuition
behind this metric is that a set of ideas can be represented by

a tree comprised of hierarchical attributes. Attributes on top
of the hierarchy are more important than ones below, and if
a set has multiple ideas with unique higher-level attributes,
then that set gets a higher variety score.

Researchers have found that the SVS metric double
counts ideas at each level in the tree and there is lack of guid-
ance on how the specific numerical choice of the weights at
each level of the tree is to be determined [2, 39]. Because
of these pitfalls, Nelson et al. [2] refined the metric by seek-
ing to account for the double-counting of ideas present in
the SVS metric by considering the number of differentiation
at each hierarchical level rather than considering all the lev-
els. Besides, Nelson et al. modified the SVS metric by al-
tering the weighting scheme from 10, 6, 3 & 1 to 10, 5, 2 &
1 for the physical principle, the working principle, the em-
bodiment, and detail respectively. They argued that the new
weighting scheme assures that at least two ideas at a lower
hierarchical level must be added to equal the variety gain by
adding a single idea at the next higher hierarchical level [2].

However, both SVS and NM do not define what each
level of the hierarchy means. There has been insufficient em-
pirical justification or verification of the weights used in such
genealogical tree metrics [19], which can lead to large varia-
tions in the deployment of the metric in Engineering Design
research. Srinivasan and Chakrabarti [40] also propose an
idea space variety metric and base it on the abstraction levels
of the SAPPhIRE model, with different weights for action,
state change, input, phenomenon, effect, organ and part ab-
straction levels. Other improvements of SVS metric includes
the work of Verhaegen et al. [18], who combined Shah’s met-
ric with a Herfindahl-index-based tree entropy penalty, to en-
courage “uniformness of distribution” — essentially prefer-
ring trees that have even branching. In Ref. [41], the authors
showed problems with many tree-based metrics, including
arbitrarily defined weights. However, most of these methods
require constructing a hierarchical tree. Our analysis demon-
strates that the additional step of constructing a tree may not
be necessary for measuring design variety as seemingly sim-
ple entropy metrics (which do not require tree construction)
often perform better.

Apart from using hierarchical trees, researchers have
employed many other variety metrics of varying complex-
ity. A simple measure of variety is the ratio of the number
of categories that a participants’ ideas occupied to the total
number of bins, which has been used to understand design
fixation [16, 42]. Later, it is shown that a generalized two-
parameter metric reduces to form very similar to the above
metric by selecting both parameters to zero. In Ref. [43],
the authors proposed a Comprehensive Metric for Common-
ality (CMC) to evaluate the design of a product family based
on product attributes and the allowed diversity in the family.
Henderson et al. compared different variety metrics and pro-
pose a new metric which calculates variety by looking at how
a collection of ideas covers a potential design space based on
the diversity of the other metrics used to assess those ideas.
While most metrics discussed so fa focused on measuring
variety in an ideation exercise, Kota et al. [44] proposed
Product Line Commonality Index (PCI), to capture the level
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of component commonality in a product family, which was
later used in an integrated platform in Ref. [45] to support
product family redesign. While many of the variety metrics
discussed above have shown promising results in different
domains, there is a lack of methods to combine metrics shar-
ing common components or to find a unifying formulation
which connects variety metrics with theoretical concepts like
entropy of a system. There is also a lack of criteria which a
new variety metric should satisfy. This paper tries to address
some of these gaps.

Measuring Variety in Other Domains
Variety metrics are used in different domains under dif-

ferent names. They are often referred to as diversity met-
rics, while terms like coverage, breadth or heterogeneity may
also be used in different domains. Researchers in domains
outside of Engineering Design have measured the breadth
of ideation using metrics like the mean pairwise distance
between ideas [46] or by manually sub-grouping functions
into categories [47]. Over the last twenty years, economists
have also become increasingly interested in understanding
whether diversity among multiple distinct population groups
enhances or impedes a society’s economic and social devel-
opment. To quantify the economic impact of diversity, they
also needed to create an index that captures how a society
divides into various factions or parts.

Starting from the Gini index [48], economists have used
various diversity indices to evaluate the degree of social,
economic, cultural, and other dissimilarities among people,
regions, and countries. The Gini index was re-interpreted
by Simpson [49] as the inverse Hirschman–Herfindahl in-
dex. A variety of other statistical metrics of diversity includ-
ing Shannon entropy [50], effective numbers of species (aka
Hills metric), Tsallis number, etc. are also commonly used
in many fields including information theory (to measure the
amount of information conveyed) and ecology (to measure
diversity of species). The below paragraphs discuss three of
these measurement methods — Shannon entropy [50], Rich-
ness [51] and HHI [3].

The most commonly used diversity metric is called
Shannon Entropy. Shannon entropy quantifies the uncer-
tainty in predicting the group identity of an individual item
that is taken at random from the dataset. Shannon entropy
becomes zero when there is exactly one group, that is there
is no uncertainty in predicting the type of the next randomly
chosen item.

Richness quantifies how many different types the dataset
of interest contains and is a popular diversity index in ecol-
ogy. Although widely used, richness does not take into ac-
count the abundances of each type within their group. This
can be understood by an example. Suppose we take the
same number of species and change the distribution of an-
imals in them. One group has three tigers, three wolves, and
three Asian elephants. The second group has seven tigers,
one wolf, and one Asian elephant. The first group, with
more even number of animals of each species, should get a
higher diversity score, however, the ‘Richness’ metric gives

the same score of three to both groups. On careful observa-
tion, one may notice that this same problem occurs if one
is using design metrics inspired by the ‘Richness’ metric,
which count the number of bins in a set of designs [16]. This
property (called evenness sensitivity in [52]) is satisfied by
other metrics like Shannon entropy, which consider the abun-
dances in each category as well as the number of categories.

The Herfindahl–Hirschman Index (HHI) is a statistical
measure of concentration [3,53]. HHI is used by the Depart-
ment of Justice and the Federal Reserve in the analysis of
competitive effects of mergers. It accounts for the number of
firms in a market, as well as their concentration, by incorpo-
rating the relative size (that is, market share) of all firms in
a market. For a market with N firms, HHI is calculated by
squaring the market share (MSi) of all firms (i ∈ {1, · · · ,N})
in a market and then summing the squares, as follows:

HHI =
N

∑
i=1

(MSi)
2 (2)

Markets with more concentration (less variety) will have
a few large square terms. HHI has also been used in other
domains ranging from the measurement of linguistic diver-
sity [54] to the measurement of academic specialization [55].

This paper proposes a variant of HHI metric named
Herfindahl–Hirschman Index for Design (HHID). The metric
is also inspired by Fuge et al. [22], who argued that variety
metrics are coverage functions which should belong to this
family of functions. They introduced a probabilistic model
that computes a family of repeatable variety metrics trained
on expert data. In this work, our proposed metric also satis-
fies the properties of submodularity, which allows a practi-
tioner to optimize variety using a greedy heuristic algorithm.
The metric does not necessitate finding hierarchical trees,
simplifying the variety calculation. The results show that un-
like past metrics, this new metric has better alignment with
the judgment of variety by people.

While studying HHID, one may ask: why should some-
one use HHID and not another metric which is a slight vari-
ant of it (say cubic power instead of square terms)? To an-
swer this, we show below that the HHID metric is just one in-
stance of a more generalized class of Sharma-Mittal entropy
metrics, which can also be used to measure design variety.
Commonly used Hartley, Shannon and Quadratic entropy,
and the families of Tsallis, Renyi, and Arimoto entropies,
can all be derived as special cases of Sharma-Mittal entropy
metric [56]. This insight helps unify past notions of design
variety under a common mathematical form.

Unifying the Space of Variety Metrics
Sharma-Mittal entropy (SME) is a generalized class of

entropy measurement methods that unifies multiple past pro-
posals to measure diversity. It argues that the uncertainty in
a discrete random variable K = k1,k2, ...kn can be measured
by its entropy. Sharma-Mittal entropy (SME) can be defined
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as:

SME(K) =
1

t−1

[
1−

(
n

∑
i=1

P(ki)
r

) t−1
r−1
]

(3)

where r is the order and t the degree of the entropy mea-
sure. The order r is any positive real-valued number except
1. The degree t can be any real-valued number except 1.
P(ki) is the proportion of ideas of variable k. Fig. 1 shows
how metrics like Shannon, Quadratic (HHI), Tsallis, Effec-
tive number, and others can be obtained using different val-
ues of order and degree parameters3.

Although the Equation 3 may not immediately appear
intuitive, there are many ways to build understanding of this
space of metrics. For example, all of the SME metrics can
be thought of as quantifying the average surprise that would
be experienced if the value of the random variable K were
learned. The order parameter r determines what kind of av-
eraging function is used. r can be thought of as an index of
the imbalance of the entropy function, which indicates how
much the entropy measure discounts minor (low probability)
hypotheses. For example, when r = 0, entropy becomes
an increasing function of the mere number of the available
options. When r goes to infinity, on the other hand, entropy
becomes a (decreasing) function of the probability of a sin-
gle most likely hypothesis. The degree parameter t governs
which kind of surprise is averaged. It can be considered as
a deformation parameter of the probability distribution [4]
and unlike r, it does not have an intuitive explanation. While
these relationships between r and t may, at first, appear to just
be mathematical curiosities, we show below that by viewing
variety in this way, researchers can better scientifically study
and uncover how people make decisions about variety—for
example, by determining ranges of r and t that agree well
with expert opinion.

METHODOLOGY
In this section, we first describe variety measurement

methods using the Sharma-Mittal Entropy and then show
how a Herfindahl–Hirschman Index based metric can be de-
rived from it. Next, we show an example of variety calcu-
lation using the new metric. We show that the new metric
can be optimized using a simple greedy algorithm to find
sets of ideas with the highest variety. We finally show exam-
ple computation of variety using the Sharma-Mittal entropy,
which generalizes HHI.

The Sharma-Mittal Entropy for Design
In this section, we propose a variant of SME that can

measure the variety of a set of designs. To do so, we as-
sume that we are given a set of designs S. As commonly

3Note that limits, which exist, are used for points where the above equa-
tion is undefined.

Fig. 1. The two-parameter Sharma-Mittal entropies. Different exist-
ing entropy metrics like Shannon, Hartley, Tsallis, Quadratic etc. are
incorporated in this class of entropies.

used in literature, it is assumed that a design is the repre-
sented by a certain level of abstraction like the physical prin-
ciple, the working principle, the embodiment and the detail
level. As explained in Ref. [41], a generated concept of a mo-
tor could for instance exist of the ideas “electromagnetism”
at the physical principle level, “coils for attracting and re-
pelling permanent magnets” at a working principle level, a
schematic or description of the placement of the coils and
permanent magnets on the shaft and casing at the embodi-
ment level, and a detailed drawing or description of the parts
and assembly at the detail level.

Each design within a set S can be described by a list of
attributes (the attributes can be hierarchical levels like func-
tional principle, working principle, embodiment, and detail
similar to SVS and NM above or they can be non-hierarchical
categorical attributes). We define Sharma-Mittal Entropy
for Design (SMED) for each attribute by replacing P(ki) in
Eq. 3 by the corresponding proportion of functional princi-
ple. Hence, SMEDF(S) for functional principle is defined
as:

SMEDF(S) =
1

t−1

[
1−

(
N f

∑
i=1

(
|FPi|

N

)r) t−1
r−1
]

(4)

Here, |FPi| is the number of designs using functional
principle i and N f is the total number of functional principles
(or the number of categories based on any factor, as defined
by a designer). N is the total number of designs in the set
S. Similarly, the paper defines SMEDW for working princi-
ple, SMEDE for embodiment and SMEDD for details (or any
number of attributes defined for a design). The total variety
score for a set S is defined as the weighted sum of variety
score for each type of attribute as follows:
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(5)SMED(S) = w1 SMEDF(S) + w2 SMEDW (S)
+ w3 SMEDE(S) + w4 SMEDD(S)

Here, SMED(S) is the total variety score for a set of de-
signs S. The weights w1, w2, w3 and w4 are used to give dif-
ferent importance to variety of different attribute types and
can be set such that the resultant value is always bounded to
be less than one (say, by setting the sum of weights to 1). For
instance, if all factors are equally important, then one can set
w1 = w2 = w3 = w4 = 1/4. This paper assumes here that
the total variety of a set is a weighted linear sum of the vari-
ety of different attributes found in that set. As discussed later,
this assumption aligns well with human judgments and also
allows the resultant metric to remain submodular for partic-
ular cases. By varying the parameters of SMED, one can
measure different types of variety. For instance, if one selects
r = t = 0, the metric reduces to SMEDF(S) = Number of
unique attributes − 1, where the attributes or categories can
be the functional principles or subjectively defined categories
by an expert. This reduction gives a metric, which is simi-
lar to the metric proposed by Linsey et al. [16], which counts
the proportion of unique bins (categories) to the total number
of bins. The next section shows how HHI defined in Eq. 2
is a special case of SMED metric defined in Eq. 4 by using
r = t = 2. These specific values of r and t are selected as
they are the smallest integral values satisfying the optimiz-
ability criteria. HHI is a common measure used in domains
like economics, and as shown in prior work [57], it aligns
well with human interpretation of variety.

The Herfindahl–Hirschman Index for Design The
Herfindahl index (also known as Herfindahl–Hirschman In-
dex, HHI) measures a firm’s size relative to the industry and
indicates the amount of competition among firms. The math-
ematical structure of HHI was provided in Eqn. 2. The value
of HHI measures the probability that two randomly chosen
individuals in a society belong to the same groups4. This
section proposes a variant of HHI, named HHID, that can
measure the variety of a set of designs, where each design is
described by a set of attributes. We calculate the HHID index
for each attribute separately for the entire set. For example,
the HHID index for the ‘functional principle’ attribute type
is given by:

HHIDF(S) = 1− ∑
N f
i=1 |FPi|2

N2 (6)

One may notice that HHIDF(S) can be derived from
SMEDF(S) in Eq. 4 by setting both r and t parameters to two,
showing that HHID is a special case of the broader Sharma-
Mittal class of metrics. When N f ≥ N, HHIDF(S) varies

4The interpretation of HHI as the probability that two individuals se-
lected at random from a set represent the same group assumes that the first
person is replaced to the set before taking the second person.

Fig. 2. Example of two polygon sets (Top shows Set A and bottom
shows Set B) shown to participants in our experiment. Participant
answers the question: “Which set is more diverse?”

between 0 to 1− 1/N. Unlike the HHI definition in Eq. 2,
Eq. 6 subtracts the value from 1. This definition is closer
to the Gini-Simpson index, which is also known in ecol-
ogy as the probability of interspecific encounter (PIE) [58].
HHIDF(S)’s value is maximum when all ideas have unique
functional principles in the set. Mathematically, it measures
the probability that two randomly chosen ideas in the set have
different functional principles. Similar to SMED, the total
variety score for a set S can be defined as the weighted sum
of variety score for each type of attribute as follows:

(7)HHID(S) = w1 HHIDF(S) + w2 HHIDW (S) +

w3 HHIDE(S) + w4 HHIDD(S)

Example variety calculation using proposed metrics
To demonstrate HHID calculation, an illustrative exam-

ple is discussed next, which is shown in Fig. 2 with two sets
of items. In this example, we use polygons instead of a case
study from Engineering Design due to two reasons — at-
tributes like shape and color are easy to visualize and one
can do one to one mapping of a polygon attributes to the at-
tributes of any Engineering Design idea with a similar num-
ber of total attributes.

In Fig. 2, for the set shown on top, there are eight
polygons (N = 8). There are four items with a rectan-
gular shape, three items with an oval shape and one tri-
angular shaped. There are five red-colored polygons, two
blue and one green. Three items have a solid fill, two have
shaded and three are empty inside. Without loss of gener-
ality, for this example, we assume that color is the func-
tional principle of a polygon, shape is the working princi-
ple and shading is the embodiment. It is also assumed that
all three levels are equally important in deciding the variety
of Set A (w1 = w2 = w3 = 1

3 ) and N f = 3 as there are
three unique functional principles (color). The HHIDF score
for color will be 1− ((5/8)2 + (2/8)2 + (1/8)2) = 0.531.
Similarly, HHIDW score for shape will be 1− ((4/8)2 +
(3/8)2 + (1/8)2) = 0.593 and HHIDE score for fill will
be 1− ((3/8)2 + (2/8)2 + (3/8)2) = 0.656. As all fea-
tures are equally important, the total HHID for the set of
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designs will be (0.531 + 0.593 + 0.656)/3 = 0.593. Sim-
ilarly, the variety of any set of designs can be calculated.
For instance, the HHID(S) score for the set at bottom is
(0.656+0.500+0.656)/3 = 0.604, using Eq. 7. These two
sets are close in their variety scores using HHID, with the
bottom set having a slightly higher score than the top set.
While the top set lacks in color variety (five red polygons),
the bottom set lacks in shape variety (no oval shape).

Next, the variety score of both the sets using SMED is
calculated. For demonstration, we use two settings of order
and degree parameters. First, both values are set to zero,
i.e. r = t = 0. In this case, the SMEDF , SMEDW and
SMEDE are each one minus the number of unique principles
(three). Hence, the SMED(S) is six for the top set. The bot-
tom sets SMED(S) is five (as it lacks one type of shape). This
shows that the top set has a higher variety score, if SMED pa-
rameters are set such that they give more importance only to
the unique number of groups found. The second setting we
show is r = 4 and t = 2. The SMED(S) scores for the top
and bottom set are 0.558 and 0.598 respectively, again giving
a higher variety score to the bottom set, similar to HHID. In
all these cases, it is assumed that variety for color, shape, and
shading are equally important. However, suppose a problem
requires that the shape variety is four times more important
than color and fill, then we can set w1 = w3 = 1

6 , w2 = 4
6 .

In that case, we get variety scores of 0.561 and 0.549 for
the top and the bottom set respectively. The first set, which
has three unique shapes, gets a higher variety score if more
importance is given to the variety of shape. Thus by chang-
ing the weights for different attributes, one can customize the
variety metric to meet the demands of a particular domain.

Optimizing variety of a set
Using metrics like SVS, NM and HHID, one can mea-

sure the variety of a given set of ideas (like the sets shown in
Fig. 2). However, what happens when one wants to choose
a small set of polygons (say five) which have the maximum
variety out of a thousand items? One way is to enumerate
all possible sets of size five (more than 8 trillion sets for a
ground set of 1000 items), calculate their variety score and
then find the set with the highest variety score. This approach
becomes intractable as the number of items in the ground set
increases.

Another approach, and the one used in this paper, is to
leverage mathematical properties of the variety function and
find approximate solutions close to the optimal. This HHID
metric is a submodular set function. Submodular functions
are functions defined over sets that are designed to model di-
minishing marginal utility, which is the mathematical prop-
erty one needs to model diversity or variety [22]. Having the
submodularity property means that the variety metric follows
the law of diminishing returns — when a design is added to
a larger set, the increase in HHID score is smaller compared
to the case when the same design is added to a smaller set.
This property can be exploited to find sets of maximum vari-
ety using a greedy algorithm [59], which guarantees that the
variety of the greedy search solution will be within 63.2%

(or 1− 1
e ) of the variety of the optimal solution.

To find sets of maximum variety, one can use a sub-
modular greedy algorithm explained in [59]. Given the set
V of all ideas, the algorithm starts with an empty set S = {}
and add ideas to this set which give the maximum marginal
gain in the submodular function. At every step, it adds one
idea at a time, such that the selected idea i ∈ V is the one
with the highest marginal gain δHHID(S∪ i) on set S. At
each step, the algorithm adds the idea that will give a max-
imum increase in variety in the set S. Finally, as the func-
tion in Eq. 7 is submodular and monotonic, the algorithm
is also theoretically guaranteed to provide the best possible
(1− 1

e ) polynomial-time approximation to the optimal solu-
tion [60, 61]. SMEDF(S) function defined in Equation 5 is
concave as long as t ≥ 2− 1/r (see [62] for a proof). This
implies, in particular, the concavity of all metrics lying on
the diagonal line in Fig. 1, which are obtained by positing
r = t is also concave. Metrics of this kind are often la-
beled after Tsallis’s [63] work in generalized thermodynam-
ics, which has also been advocated as a compelling approach
to the measurement of biological diversity [64]. As a sum
of concave functions over modular functions is submodu-
lar [65], the resultant SMED(S) metric is also submodular
for t ≥ 2−1/r. Hence, the key takeaway is that one can op-
timize any SME derived metrics for all values t ≥ 2− 1/r
in polynomial time using a simple greedy algorithm. This
includes HHID, which is obtained by setting r = t = 2.

EXPERIMENTS AND RESULTS
We conducted an experiment to benchmark the proposed

HHID metric with the commonly used SVS and NM met-
rics using a known and easily verifiable ground truth based
on polygons. Next, another experiment is reported, which
uses milk frother design sketches provided by engineering
students and rated by domain experts. Before introducing
our experiment and its main results and implications, we de-
scribe how the experimental dataset of set comparisons was
constructed. As shown later, constructing such sets is non-
trivial, and one contribution of this paper lies in describing
a procedure for constructing such comparison sets for new
domains.

Estimating Design Variety Ground Truth using Human
Pairwise Comparisons

The first step in vetting design rating metrics is to iden-
tify a ‘ground truth’ of the measure that the metric is trying
to capture and then calculate how accurate any given metric
is in capturing that ground truth. However, for the case study
presented here (design variety), ground truth estimation is
difficult due to the large combinatorial space for sets of items
and the lack of a benchmark dataset. For instance, a small set
of thirty design ideas has more than one billion possible sets
of designs for which variety needs to be calculated. Exhaus-
tively calculating the ground truth for all designs is infea-
sible. To avoid circularity, any existing variety metrics are
not used to create the ground truth. Doing so would assume
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that a given metric represents true variety, which is what the
ground truth is used to establish. Instead, this paper proposes
the development of a ground truth by directly asking human
raters.

To establish a ground truth dataset for calculating the
design variety, three components are needed:

1. A ground set of design items over which sets are created
2. Sets of designs derived from the ground set for which

variety scores are calculated
3. Tree annotations for each design item to enable the cal-

culation of tree-based metrics

Variety scores are calculated on a set of designs. How-
ever, human raters are not good at giving absolute scores [66]
due to differences between internal scales of subjects, a well-
known problem for subjective scoring. For instance, given
the set of designs shown in Fig. 5 top, it would be difficult
for a human rater to say whether this set of six designs scores
6 out of 10 or 8 out of 10 for variety. Different raters may
also use different internal scales.

In contrast, if a rater is asked to rate whether they find
the variety of set shown in Fig. 5 top set greater than the
variety of those shown in Fig. 5 bottom set, they may an-
swer it relatively easily because humans are better at com-
paring items than giving absolute scores [67]. Hence, this
paper proposes that a ground truth dataset for variety should
be created using pairwise queries (ordinal judgments), where
each query contains two sets and there is a consensus among
human raters that one set has higher variety compared to the
other set. To elicit responses from experts, two sets at a time
are given to them and they are asked pairwise comparisons
of the form: “Which set of designs has higher variety?”

Measuring Variety for Polygons
In this experiment, the performance of SVS and NM

metrics in measuring the variety of a set of polygons is com-
pared with HHID, which is a special case of Sharma-Mittal
entropy. Initially, a base set of 27 polygons is created. Each
polygon has three attributes — shape, color, and shading.
Each attribute can take three unique values. Polygons can
be rectangular, triangular or oval-shaped. They can be red,
blue or green colored. Shading varies between polygons as
complete fill, shaded or empty.

The polygon example, which does not represent a real-
world design, is intentionally chosen to compare design met-
rics. The difficulty with using a real-world example to es-
tablish a ground truth for quantitative metrics is that such
examples have many moving parts and human judges have
low-agreement on what attributes should be extracted from
the design and which ones are important in determining their
similarity. For real-world examples, due to the inherent com-
plexity in the measurement of attributes and design perfor-
mance, it is difficult to say conclusively say whether the lack
of alignment of human judgment with a variety metric is due
to the wrong choice of attributes or the wrong choice of the
method measuring variety over those attributes. While the
polygons example does not represent an actual engineering

design solution, it is used to compare metrics when there is
no ambiguity in design attributes (shape, color, fill). Our
argument is that metrics that can measure variety for many
complex domains should at least fair well in measuring vari-
ety for a simpler polygon-based ground truth dataset. Later
sections provide a more complex example and discuss the
issue with capturing attributes.

The total number of possible sets of polygons is large
(227), hence calculating the variety score of all possible sets
is time-consuming. Instead, the search is narrowed down to
focus on three set sizes: when the number of items in a set is
four, six and eight. The researchers observed in their prelim-
inary experiments that if human raters are asked to compare
sets with larger than eight items, the task becomes too diffi-
cult for them, as evident by low agreement between different
raters. For a given set size (say size six), the total number
of ways two sets can be compared is also quite large (more
than 43 billion set comparisons). Hence, we first randomly
select 100 sets for comparison. From these 100 sets, we cal-
culate all possible pairwise comparisons (4950 comparisons
with each comparison containing two sets of size six). Next,
we calculate SVS, NM, and HHID scores for all the sets in
each comparison. For SVS and NM computation, the analy-
sis assumes that ‘Color’ is the functional principle, ‘Shape’
is the working principle and ‘Shading’ is the embodiment.

Result 1: Existing metrics cannot distinguish between
sets. Table 1 shows the percentage of comparisons where
each metric finds both the sets of equal variety. Note that
SVS and NM metrics do not distinguish between a large per-
centage of comparisons (31.7% and 21.4% for sets of size
six), while HHID gives identical scores to a much smaller
percentage of pairwise comparisons (14.7% for sets of size
six). This implies that existing metrics are not sensitive or
discriminative to differences between sets.

Result 2: Existing metrics vote similarly to one another.
Table 2 shows the percentage agreement between different
metrics. SVS and NM vote similarly for 80-85% of set com-
parisons for various set sizes. This means that for a large
proportion of comparisons, both metrics are indistinguish-
able as they give the same pairwise response. If SVS finds
Set A has higher variety, then so does NM. In contrast, the
agreement between HHID and other metrics is close to ran-
dom. Due to the lack of a benchmark dataset, it is difficult to
comment on whether a lack of agreement between metrics is
a good thing or not. We show later in the results that HHID
aligns with the human raters more than SVS and NM.

Establish the ground truth for comparing different met-
rics required the following steps. First, pairwise comparisons
where SVS and NM could distinguish between the two sets
were selected; that is, both the metrics did not calculate the
same variety score for both sets. This is important since we
want any collected human judgment to differentiate exist-
ing metrics, and we cannot do this if we select comparisons
where the two metrics calculate the same value. Secondly,
the sets where both metrics disagreed on their vote are se-
lected. This means if SVS voted Set A to be higher variety,
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Same Score

Method SVS NM HHID

Size 4 27.3% 37.0% 15.8%

Size 6 31.7% 21.4% 14.7%

Size 8 28.5% 12.9% 10.9%

Size 10 31.2% 14.5% 9.2%

Table 1. Percentage of pairwise comparisons when design metrics
give same score to both designs. Lower percentages are good as
it indicates that a metric can distinguish between sets. SVS metric
gives same score for approximately 30% of the sets.

Agreement

Method SVS-NM HHI-SVS HHI-NM

Size 4 84.4% 54.2% 50.2%

Size 6 81.0% 47.6% 50.0%

Size 8 82.5% 49.4% 56.9%

Size 10 84.4% 54.2% 50.2%

Table 2. Agreement between metrics for pairwise comparisons.
SVS and NM tend to vote similarly for more than 80% of the sets.

then NM would give Set B a higher variety score. Note that
this is a small set of pairwise comparisons — as we noted
from Table 1, both metrics vote similarly for more than 80%
of the comparisons and tend to give same scores to a large
percentage (up to 37%) of the sets.

Finally, the top 5 sets where SVS is most confident that
one set has higher variety than another are selected and the
top 5 sets where NM is most confident that one set has
higher variety than another set (i.e., the difference between
the scores are maximum). We combine these two to generate
10 queries which are then given to human raters. Finding hu-
man annotations for such sets allows a researcher to find out
which of the two metrics better aligns with human responses.

To find the ground truth for polygons, an Amazon Turk
study was conducted to collect responses from crowd work-
ers for pairwise queries. A sample query with two sets of
eight polygons is shown in Fig. 2. Judging the variety of
polygons does not require expertise in the area and Amazon
Turk enables getting a large number of responses quickly.
We collected pairwise responses for three different set sizes.
For each set size, ten pairwise queries were created. For
each query, ten responses from Amazon Turk participants
were collected. To ensure the quality of responses from the
crowdworkers, the following steps were taken: 1) The order
of the queries was randomized and also the order of the op-
tions shown to different participants to reduce the possibility
of any ordering bias. 2) The surveys were divided into two
parts to reduce fatigue. 3) No worker was repeated across
surveys, and 4) Six queries were repeated to filter out work-
ers with very low internal consistency.

Result 3: Human raters largely agree on what it means to
have a high variety set of polygons. The survey responses
showed that on average people had consensus on one set be-
ing more diverse or higher variety than another set. The num-
ber of votes received by the set pairwise query receiving a
majority vote for sets of size four was: [9, 8, 9, 7, 6, 9, 8, 6,

8, 7] respectively. This means that for the first query, 9 peo-
ple out of 10 voted for the same set. For the second query
where two sets of size four were shown, 8 people voted for
the same set as being of higher variety. Similarly, for sets of
size six, [5, 5, 9, 9, 9, 8, 6, 8, 5, 8] votes were received by
the majority set and [7, 5, 7, 7, 9, 9, 8, 6, 7, 6] votes were
received by the majority set for sets of size 8.

A direct comparison between SVS, NM, and HHID met-
rics using the published weights would be unfair to SVS and
NM, as HHID weight parameters can be optimized specifi-
cally for each domain. The published weights for SVS metric
is [10, 6, 3, 1] and published weights for NM metric is [10,
5, 2, 1]. To maximize their performance, SVS and NM met-
rics are given the same flexibility by allowing the weights
of functional principle, working principle and embodiment
to be optimized. For a given metric (say SVS) and weight
combination (say 4, 3, 3), the variety scores for both sets in
a given pairwise comparison are calculated. Suppose there
are ten humans who voted on a pairwise comparison task. If
SVS metric finds that Set A has more variety than Set B, and
eight humans had also voted this way, then eight points are
allocated to the SVS metric. If the metric found Set B has
higher variety than Set A, then this metric receives the two
points which humans gave to the other set. As we ask 30
different queries from people, to judge the metric, the aggre-
gated points for all 30 queries are calculated for each metric.

Based on how people voted in this experiment, the max-
imum number of points that any metric can receive is 220 —
that is if it always votes with the majority opinion of hu-
man raters. Now, suppose a metric receives 200 points in
total, then we say that it has 90.9% alignment (100x200/220
= 90.9) with human ratings.

Result 4: HHID outperforms SVS and NM w.r.t. human
agreement on polygon variety. Table 3 shows the com-
parison between SVS, NM, and HHID for alignment with
human ratings. SVS and HHID have similar best-case per-
formance for this dataset. By varying the weights of each
functional level between 1 to 10 in steps of 1, gives a 1000
possible performance scores corresponding to each weight
combination [w1, w2, w3] (this is in contrast to using a fixed
combination of weight, like [10, 6, 3, 1] for SVS). The re-
sults show that HHID performs better than SVS in the me-
dian case, where the median is calculated over all the thou-
sand weight combinations.

Table 3 shows that HHID aligns with human perception
of variety to the highest degree, irrespective of the choice
of weights — that is, its performance is robust to weight
choices. Even in the worst case, HHID aligns with 74.5% of
human ratings. We find that the highest performance is ob-
tained for many combinations of weights like 1, 2 and 10. On
first glance, SVS also seems to perform well for the median
case. However, this does not mean SVS is suitable to mea-
sure variety as we only select the queries where SVS is able
to differentiate between the two sides. It is also important
to recall that the comparisons were generated such that SVS
has high confidence in its choice between both the sets (by
design). In contrast, if we select sets to compare at random,
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SVS calculates the same score for more than one-fourth of
the queries. This drastically reduces the SVS performance
in alignment with human responses — humans generally
showed a clear preference between the variety of two sets,
but SVS would be indifferent. Hence, due to the better ac-
curacy and higher sensitivity, the HHID metric outperforms
both SVS and NM in alignment with human’s judgment of
variety.

Method Median Case Best Case Worst Case Sample optimal weights

HHID 81.8% 95.4% 74.5% 1, 2, 10

SVS 79.0% 95.4% 59.0% 2, 1, 1

NM 54.5% 86.3% 40.9% 10, 3, 1

Table 3. Comparison of design variety metrics in alignment with hu-
man ratings

Result 5: Sharma-Mittal Entropy parameters show most
entropy metrics align well with human judgements This
section shows how SME aligns with human perception of va-
riety. To do so, the weights of the metric for color, shape, and
shading are set to be equal and only the order r and degree
parameters t of the SME metric are varied.

r and t are varied between 0 to 10 at steps of 1 (note
that r and t are not necessarily restricted to integral values).
The results are shown in Fig. 3. For each combination, the
resultant alignment with humans is calculated. As shown by
the white region, the metric achieves the highest performance
for multiple combinations of r and t, including r = t = 2
used to define HHID. This leads to the question: What does
this indicate about how people think about measuring variety
of polygons?

To dive into this question, it is important to first under-
stand the parameters of the SME metric. In the SME metric,
the order parameter r is an index of the insensitivity to less
abundant principles. As r increases, variety gets closer and
closer to a simple (decreasing) function of one single ele-
ment in the distribution, which is the relative abundance of
the most common principle (most common color, shape or
shading in the set). When r = 0, on the contrary, variety
becomes an increasing function of the plain number of prin-
ciples with non-null relative abundance (e.g., the count of
the number of unique shapes, colors or shading). This shows
that the order parameter r indicates how much a variety mea-
sure disregards relatively rare principles. The higher r is, the
more the common categories are regarded and the rare cate-
gories are discounted in the measurement of diversity. The
role of the degree parameter t is more technical: it affects a
few important metric properties, which is elaborated in detail
in literature on mathematical analysis of SME [4].

The results show that the metric top performance is in-
different to variations in r. This means some people may
have focused on just the count of classes, while others may
have focused on the largest class. Performance is sensitive to
values in t, with a decrease in performance as t goes above
two.

Fig. 3. Plot of performance for different values of order (r) and de-
gree (t) parameters of Sharma-Mittal Entropy. Performance is high
for many common entropy metrics like Shannon entropy (r=1, t=1)
and HHID (r=2, t=2).

Result 6: We can find sets of designs with highest variety
One of the auxiliary outcomes of using an HHID de-

rived index for variety measurement is that it provides a sim-
ple method to find the highest variety sets. Suppose in an
ideation exercise, 10 teams get together to generate a total of
27 ideas. Our goal is to combine all ideas into one large set
and then down-select to a small set of ideas that provide a
distribution over the design space. To demonstrate the con-
cept, we assume that ideas produced by all the teams are rep-
resented by the 27 polygons discussed before and the goal is
to find a subset of five ideas, which have the highest variety
(one can pick any size of the subset).

If one wants to find the subset of size five ideas with the
highest SVS variety (or any other tree-based variety metric),
they will have to calculate all possible combinations of five
ideas, then calculate the tree for each subset, estimate SVS
scores for each set and finally pick the set with the high-
est SVS score. This exercise will require enumerating all
80,730 (27 choose 5) possible trees for each set of five poly-
gons. This approach becomes infeasible when the ground
set becomes large due to a large number of possible options
(mathematically, this is because the problem is NP-Hard).

In contrast, we use a greedy algorithm [59, 68] to rank
order all polygons or to select a subset. For size 5, it will
require only 125 evaluations, which requires 99.84% fewer
calculations. When applied to polygons, the resultant set,
with highest variety for color, shape, and shading, is shown
in Fig. 4. The method selects one polygon at a time based
on which polygon provides the highest marginal gain. As
mentioned above, this is possible in polynomial time due
to the submodular behavior of HHID. A practitioner may
also wonder how many ideas should provide sufficient cov-
erage over the design space. While this work does not show
how many ideas are enough to explore the design space, past
work [68,69] has shown straightforward methods to estimate
the cutoff for the number of ideas needed using the marginal
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Fig. 4. Set of five polygons with highest variety found using a greedy
algorithm applied to submodular objective function

gain of a submodular function. The same method applies to
the current variety metric due to its submodularity and can
be used to find the size of the subset.

Measuring Variety for Milk-Frother Sketches
While the polygon example discussed in the previous

section helped to validate the metrics, using a problem with
little complexity, it did not represent an actual engineering
design solution. In this section, an additional experiment of
an engineering design problem is discussed, where the goal
is to measure the variety of early-concept design sketches.
We use experts to judge items from a pre-existing dataset of
milk-frother sketches to create a ground truth dataset com-
prising of pairwise comparisons. Finally, we measure how
well different variety metrics align with the ground truth to
measure their accuracy.

Fig. 5. Top: Sample of Set A where all raters agreed it was more
diverse than Set B. Bottom: Sample of Set B where all raters agreed
it was less diverse than Set A.

To measure the variety of milk-frothers, data from a pre-
vious experiment conducted by Starkey et al. [70] is taken,
which consisted of 934 idea sketches. Specifically, the data
set consisted of ideas developed by 89 first-year students
from an undergraduate engineering course and 52 senior stu-
dents from a capstone engineering course including 95 males
and 46 females. The ideas developed in this dataset were
from a design task where participants were asked to generate

ideas for a “novel and efficient milk frother”. This task was
selected because the task addressed solving a product-based
problem.

In order to calculate the metrics based on hierarchical
features, the results from the previously developed Design
Rating Survey (DRS) was used to classify the features ad-
dressed by each design concept (see [71] for more details).
Twenty questions on the DRS were used to help raters clas-
sify the features each design concept addressed. The results
of the DRS were then split into which category they ad-
dressed in the extension metrics: physical principle, working
principle, or embodiment. The physical principle was deter-
mined by what type of power source was used for to power
the product (i.e. manual, battery). On the other hand, the
working principle was determined by what type of motion
was used by the product (i.e. stirring, shaking) and the em-
bodiment was determined by what the product looked like
(i.e. shake weight, handheld frother).

For this study, to create the dataset of sets of milk-frother
sketches, a ground set of ten design sketches is adopted from
Ahmed et al. [72].The benefit of using these ten sketches
was the availability of hierarchical features as well as infor-
mation in the form of subjective idea maps, which is later
used for gaining additional insights. The total number of
possible sets which can be formed using these ten sketches
is 1024(210sets). Similar to the polygon case, the goal is
to find a small set of pairwise comparisons of sets, which
humans agree on. It is important to create a ground-truth
dataset of pairwise queries where human input is most use-
ful in distinguishing between well-known metrics. The pro-
cess of identifying pairwise comparisons which are shown to
human experts is described next.

From the ten sketches, pairwise queries with sets of
six sketches have to be created. We decided to create the
ground truth with pairs of six sketches as the median number
of sketches made by a participant in the entire milk-frother
dataset [70] was six. The number of unique sets of size six is
210 (10 choose 6). To see the distribution of variety scores
and guide the selection of a ground truth dataset, the variety
scores for all these sets using SVS and NM metric is cal-
culated. However, in this case, the information about Eu-
clidean embeddings for each sketch as discussed in [72] is
also available, which is used to guide the selection of queries.
These embeddings are essentially 2-D maps with each de-
sign having x and y coordinates allocated to them. Similar
designs occur closer to each other than dissimilar designs
on this map. To decide which sets of six sketches to ask
humans to rate, information from three metrics (SVS, NM
and average pairwise distance) is used. The last metric is
derived using an embedding of designs derived in the study
by Ahmed et al. [72]. One design embedding was picked
randomly (as each participant in the study had a different de-
sign embedding and only one design embedding was needed
to guide our experiment) and it provides the 2-D positions
for each sketch. The choice of the design embedding does
not alter the key findings of this section as it is only used to
guide the selection of queries which are asked from people.
The variety scores for all 210 sets was calculated and all sets
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were rank-ordered from the highest variety set to the lowest
variety set, where the variety is measured using the pairwise
average distance metric.

Out of these 210 sets, we obtained 21,945 pairs of sets
(210 choose 2) and calculated the absolute rank difference
between the two items for each pair. A small rank difference
implies that the two sets in a comparison have similar vari-
ety, while a large rank difference implies that the metric is
confident that one of the set has a significantly higher vari-
ety than the other. After calculating the rank differences, 20
comparisons were selected based on two factors. First, com-
parisons were selected where each metric (SVS, and NM)
votes differently on which set has higher variety — i.e., if all
ratings agree on the comparison, then human expert ratings
would not discriminate them. Second, sets with a high-rank
difference, but that also differ from sets we are using in other
selected comparisons were selected. This ensures that a met-
ric is confident in its vote, but also the queries provide good
coverage over different types of sets in the data by ignoring
pairs that have already been selected.

Among these candidate sets, 20 pairwise queries are se-
lected that are given to four expert raters using a Qualtrics
survey. Sets from a typical query is shown Fig. 5. Two com-
parisons (10% repeated queries) were repeated in each sur-
vey to measure the internal consistency of each expert, and a
total of 22 queries were given to them. Experts can choose
whether Set A is higher variety compared to Set B or they
can select the option of ‘Can’t decide’. On average, the raters
took 24 minutes to complete the survey. From these expert
ratings, we find that all four experts agreed on 9 out of 20
queries, while at least three experts agreed on 15 out of 20
queries. Due to a majority agreement among experts, these
15 queries are selected as the ground truth dataset for com-
paring variety metrics. Next, they are used as ground-truth
dataset to compare variety metrics.

Result 7: SVS and NM are equivalent to random chance,
w.r.t. matching expert assessments of milk-frother vari-
ety. After finding the relative variety scores for each query
using SVS and NM, it is seen that they align with only one-
third (33.3%) of the ground truth dataset — that is five com-
parisons. To see if this low performance is due to specific
choice of weights, 1000 possible weight combinations for
SVS and NM are tested to report how close these metrics are
to human experts. To explore the sensitivity of these results,
we calculate the NM and SVS scores for every valid weight
combination used by each metric. Using these weights, we
find that SVS aligns with 33.3% of the pairwise expert as-
sessments of milk-frother variety irrespective of the weights
used — that is, changing the tree weights used by SVS has
zero effect on whether or not it agrees with human experts.
NM aligns with 33.3% of the dataset for 95.6% of all the
weight combinations. For the rest, it has no alignment with
any expert ratings — that is, NM’s scores are more sensitive
to its internal weights, but not in a way that benefits its score
accuracy. The alignment scores are close to random chance
for three categories (Greater, Smaller and Equal) showing
that SVS and NM are unable to capture human intuition of

variety for the examples we tested.

Result 8: HHID robustly outperforms SVS and NM w.r.t.
human comparisons, but still has a non-trivial error. In
contrast to SVS and NM, HHID aligns with 9 out of 15 com-
parisons when weights are optimized for each level. We find
that many weight configurations for HHID lead to highest
performance, including w=[1, 9, 5].

Hence, HHID aligns with the human judgment of vari-
ety more than both SVS and NM metrics for two standard
datasets. However, it still is not 100% aligned to human
benchmarks. However, in the second experiment, we had
assumed that the annotations provided for SVS, NM, and
HHID for different hierarchical levels are accurate. If this
is not the case, any variety metric will have a large error as
it may not capture the true features. Constructing the hierar-
chical trees is outside the scope of this paper but it is impor-
tant to understand that metrics may be limited by the specific
choice of how one constructs a tree, which also needs to be
verified.

We propose that by using our above method for con-
structing these ground truth variety comparisons, future pa-
pers will be able to use these and other ground truth vari-
ety pairwise comparisons to judge the comparative quality of
other metrics as well. This would provide a common scale
over which metrics are compared.

DISCUSSION
Above experiments highlight several broader implica-

tions, both around how variety metrics are constructed and
verified, as well as in how existing metrics are used across
domains.

Selecting appropriate validation sets for variety metrics
is non-trivial

As we showed above, selecting exactly which sets of
designs to show experts for ground truth labeling is non-
trivial. First, the combinatorial nature of the problem (sets
of designs) makes exhaustive labeling by experts impractical
for anything above a handful of designs. But randomly sub-
sampling this combinatorial set does not solve the problem:
many metrics may trivially agree on a large portion of the
space.

We proposed possible desiderata on what comparisons
to show experts, as well as several potential methods to
make this selection, such as maximal rank order disagree-
ment, distances over embedded spaces computed via past
techniques [72], and space coverage over different sets. Con-
structing comparisons in this fashion does lead to potential
bias: as we saw in Result 4, by preferentially sampling sets
where metrics were confident in their answers, we may over-
estimate their performance.

The trade-off here is one of time and cost. If one picks
comparisons to maximize discriminative power among met-
rics, this will inevitably ignore portions of the space where
they agree and inflate performance metrics. In contrast, if
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one does not do this one may collect many expensive expert
comparisons that, while covering the space well, do not pro-
vide much value in separating good metrics from bad ones.

One limitation of our proposed approaches is that we
currently provide no theoretical guarantees regarding the
number or scope of queries needed to achieve a certain as-
sessment accuracy. The number of comparisons we col-
lected above was driven by primarily practical concerns —
how many expert comparisons could we realistically expect
to collect in our available time budget? Future work could
address how to perform this collection optimally (e.g., using
Active Learning) and to bound the number of comparisons
one would need to collect.

Good variety metrics need to be accurate and discrimi-
native

As we showed in Results 1 and 2, good metrics need to
not only be accurate but also highly discriminative or sensi-
tive. We found that commonly used metrics can lack sensitiv-
ity across a broad range of comparisons. Even if such metrics
are accurate, they have limited usefulness as measurement
instruments — that is, they cannot detect small effect sizes
in terms of differences in variety. We argue that, in addition
to focusing on accuracy, future metric development should
compute and account for the sensitivity of the measurement
instrument for the given domain, and such quantities should
be reported in subsequent papers.

Metric performance can differ significantly across do-
mains

Comparing Results 4 and Result 7, we see that a given
metric applied to one domain/problem may have drastically
different performance. In our case, SVS performed well for
human comparisons on the polygon case, but poorly on the
milk-frother case. While it is perhaps obvious that a met-
ric’s accuracy depends on where it is applied, we note that,
in practice, past researchers have broadly used existing met-
rics (both SVS, NM, and others) with limited to no verifi-
cation and calibration of the measurement instrument to that
domain.

We believe that our results here should give other re-
searchers pause before blindly applying an existing variety
metric to a new problem without first conducting some of
the pairwise verification we detail above. We are releasing
both the datasets we collected in this paper and the tools we
used to construct human comparisons in the hope that future
researchers will have an easier time constructing verification
tests for new metrics or domains.5 We believe that the pro-
posed metric can be used in combination with other design
metrics to provide insights from different perspectives of a
set of designs. The usage of this metric and creation of new
ground truth datasets should take into account the context
that designers have deep knowledge in a field and can judge
variety through different lenses and with an experience that
may not always be possible from a quantitative metric.

5https://github.com/IDEALLab/design-variety

Sharma-Mittal entropy is a promising alternative metric
that allows optimization of variety

We demonstrated via Results 4 that using HHID
matched or exceed the performance of commonly used met-
rics. This was true in both the Polygon and Milk-Frother
experiments. Calculating the HHID is computationally sim-
pler to the benchmark tree-based constructions of SVS and
NM.

More importantly, the submodular form of HHID al-
lows one to efficiently (i.e., in polynomial time) approximate
the highest variety sets of designs, given a corpus. For de-
sign corpora larger than approximately 50 designs, this leads
to orders-of-magnitude reductions in computational effort in
finding optimal variety subsets of design, compared to exist-
ing metrics. The fact that HHID can be easily optimized to
match human judgments for a domain makes it flexible to ap-
ply to different problems if one gathers pairwise comparison
data as described above.

We further showed in Result 5 that many different set-
tings of Sharma-Mittal entropies are suitable to measure de-
sign variety, HHID being one instance of them. We also dis-
cussed the conditions under which SME is also submodular,
which helps in the optimization of the metric. Different do-
mains tend to use different metrics. This generalization helps
one understand why one metric may be more suitable to a
particular domain.

It is important to understand a few major assumptions in
using quantitative metrics. First, SMED is defined for cat-
egorical variables (like red, blue, and green), where all cat-
egories are assumed to be equally distant from each other.
This assumption is used in NM and SVS too. However, it is
possible that in some applications, items may have attributes
which are real-valued or a few categories can be more simi-
lar to each other than others. In such cases, SMED will not
be a suitable choice and future work will explore extending
SMED to continuous domains. Second, finding the right at-
tributes (or design representation) is critical to the success of
any quantitative design metric. Many manual and automated
methods exist to identify suitable attributes for a set of de-
signs. For example, text-based designs may use keyword ex-
traction or topic modeling to identify attributes. Image-based
designs may use image descriptors and CAD models may use
shape descriptors for attribute identification. This work as-
sumes that the attributes are provided and estimate variety
score for the given set of attributes. Identifying the right at-
tribute to represent different designs is outside the scope of
our work.

As SMED and HHID are both derived from entropy met-
rics, theoretically they can give an absolute score about the
variety of a system (in this case, a set of ideas). However, in
practice, they are relative metrics. This is because the variety
score is dependent on what attributes or categories are con-
sidered in the evaluation (We use N f categories in Eq. 4). If
one introduces more categories and reallocates ideas to these
new categories, then the variety score may change. For in-
stance, if all ‘uninteresting’ designs are allocated to the same
category (given the same attributes), then they will have a
small score. However, if one chooses to allocate them dif-
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ferent attributes, then the variety score will be large. This
limitation, which also exists for other quantitative metrics, is
an artifact of finding the right attributes, and not necessarily
of how the metric is defined.

In comparing sets relative to each other, this paper also
assumes that variety measurements are transitive for a fixed
set of attributes (or categories). This assumption is backed
by the information-theoretic interpretation of Sharma-Mittal
entropy, from which our metric is derived. However, it is
possible that human variability judgements are not always
transitive and this assumption was not explicitly testes in this
paper. As this paper uses consensus on pairwise queries to
score metrics and not to rank order all sets, this assumption
would not affect our results for metric accuracy.

Our future work will focus on using machine learning
methods to identify a set of attributes, which are most im-
portant in variety estimation. As human judgments are often
expensive, an interesting avenue of work will be to cast the
fitting of HHID or SME as an active learning problem and
reduce the number of expert comparisons needed to adapt
design metrics to a new domain. In future work, we will also
verify whether human variety judgments are transitive or not.

Possible applications of Sharma-Mittal entropy beyond
sets

Morphological matrices are a powerful tool for gener-
ating ideas, based on potential variations in a problem’s at-
tributes. For a morphological matrix, the variety score can
be calculated in different ways, depending on what the end
goal is. The morphological matrix is a simple and powerful
tool that enables a design engineer to organize and generate
all the different alternatives before identifying the best de-
sign solution [73–75]. A possible extension of SMED is to
morphological matrices. One option is to calculate the vari-
ety of the entire matrix, which will inform us how widely do
all solutions explore the design space. Another option is to
calculate the variety within each function, by listing all idea
combinations in it and optionally clustering them. In future
work, we will explore how variety-metrics can be integrated
with morphological matrices and compare different ways of
doing so.

In applications of morphological matrices and many
other design exercises, ideas are often grouped together or
chunked during the activity.If ideas are chunked into a set
of N f requirements (or categories/clusters), the SMED score
can be calculated using Eq. 4. Hence, the metric allows for
chunking of ideas into groups. If more categories to which
an idea can belong are added, it effectively means an increase
in the value of N f in Eq. 4. This means, for the same set
of ideas, adding new categories will lead to an increase in
the variety score of the set (assuming new categories are not
empty), while reducing the number of categories will lead to
a reduction in the variety score. In the extreme case, when
there is only one category, variety score is zero. Finally, it
may also be needed that the variety score is calculated for
one set of attributes (or requirements) and later, a different
set of attributes is used to calculate the variety score. One

can also calculate variety scores using the SMED metric for
different subset of attributes using Eq. 4. In Figure 2, one
may use only shape as the attribute and after the polygons
are colored, may use the color as an attribute to calculate va-
riety of sets. However, it is important to note that two scores
calculated using different set of attributes cannot be com-
pared with each other meaningfully as the score magnitude
also depends on the total number of attributes chosen.

When ideas are collected using methods including brain-
storming, the Gallery method, Storyboarding, etc., it is pos-
sible that there are missing or incorrectly reported attributes.
This situation cannot be handled by existing quantitative
metrics, including SMED. A challenging, albeit important,
area of future work is to study design metrics under uncer-
tainty in attribute measurement.

CONCLUSION
In this paper, we contributed: (1) a generalization of de-

sign variety metric based on the Sharma-Mittal entropy, for
which Hirschman-Herfindahl index for design is a special
case; (2) a practical procedure for comparing variety metrics
via constructing ground truth datasets from pairwise com-
parisons by experts; and (3) empirically demonstrating the
procedure and metric on two new two ground truth datasets
using milk-frother design sketches and polygons. Using this
dataset, we then compared the performance of two existing
and commonly used tree-based metrics and showed that our
newly proposed metric aligns with human ratings more than
existing metrics. As an ancillary benefit, we also show that
by using a simple greedy algorithm, our new metric can find
sets of designs with the highest variety in polynomial time.

Overall, our results shed light on some qualities that
good design variety metrics should possess and the non-
trivial challenges associated with collecting the data needed
to measure those qualities. These results guide how and
when various commonly used metrics may or may not be
valid, as well as a concrete scientific process by which to
gain further insight into when and where metrics apply.

We hope that the procedures we outline here can provide
a catalyst for deeper discussion regarding how we measure
and verify variety within engineering design. We encour-
age researchers to build upon and contribute to the datasets
we have started collecting and distributing for these prob-
lems. We hope that by better understanding how to measure
the variety and ultimately optimize variety, we will be able
to reliably and scalably support designers in improving their
creativity and competitiveness.
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