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Abstract

1

The synthesis of poly(propylene carbonate) with 100% '*C-labeled carbonate carbons is reported. The Vco, Vvibration is

shifted 45 cm™' lower than that observed in its '

’C analog. This lowering of the vco, vibrational mode of the copolymer

provides a window for observing vyg stretching motions in incorporated dinitrosyl iron complexes.

The utilization of carbon dioxide as a C1 feedstock is cur-
rently an extremely active area of interest in the chemical
industry [1, 2]. One of the most successful applications of
this chemistry involves the coupling of CO, and epoxides to
produce cyclic carbonates or polycarbonates [3, 4]. Relevant
to this process is the large-scale usage of carbon dioxide in
the production of poly(propylene carbonate) diols for incor-
poration into various thermoplastic isocyanate polymers,
such as polyurethanes [5, 6]. Recently, we and others have
been developing the synthesis of well-defined block copo-
lymers originating from CO,/epoxides and their functionali-
zation employing thiol-ene click chemistry [7-9]. In this
note, we wish to report on the synthesis of poly(propylene
carbonate) that is 100% '*C isotopically labeled at the car-
bonate linkages, as well as observations on regio- and stereo-
regularities in the resulting polycarbonate. The motivation for
preparing such a copolymer originates from our studies,
which incorporate metal complexes into micelles derived
from CO,-based amphiphilic polycarbonates using chain
transfer agents [10]. Some of these metal complexes possess
infrared probe ligands that have vibrational modes that
greatly overlap with the very intense carbonate band of the
polycarbonates centered at 1750 cm™'. For example, we are
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interested in synthesizing discrete dinitrosyl iron complexes
(DNICs) contained in the hydrophobic segment of the
micelle for NO drug delivery [11].

The polymerization of PO and '*CO, was carried out in a
stainless steel reactor using an appropriate amount of the
binary catalyst (salen)CoTFA/PPNTFA and PO, followed
by loading the reactor with '3CO, at 2.5 MPa. The poly-
merization occurred readily at ambient temperature
(Scheme 1). For comparison, two additional polymers were
also synthesized under similar conditions by reacting
enantiomerically pure propylene oxide (R-PO) with *CO,,
as well as racemic PO with '2CO,. All purified copolymers
were characterized by 'H and ®C NMR spectroscopic
techniques. The "H NMR spectra displayed the presence of
all the peaks with matching integration, as shown in
Figs. S1-S3 in the Supplementary information. Similar to
earlier reports by Coates using [Co(salcy)OAc] catalysts
[12], the abovementioned binary catalyst system (salen)
CoTFA/PPNTFA does not produce any cyclic propylene
carbonate. The expensive excess °CO, can be recovered
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Scheme 1 Reaction of propylene oxide and '*CO, to yield
poly(propylene carbonate). Reaction conditions: cat/PPNTFA/PO =
1:1:1000 (TFA = CF;CO, ), ambient temperature, 2.5 MPa, 22 h
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Fig. 1 a '*C-NMR spectrum of poly(propylene carbonate) produced by coupling racemic PO and *CO, using the binary catalyst (salen)CoTFA/
PPNTFA. b Comparison of the carbonyl region in the '*C-NMR spectra of all three copolymers

using a MOF-filled stainless steel column as described
previously [13].

Regarding the regioregularity of the afforded copolymers,
it has been reported -earlier that [Co(salcy_3)OAc],
[Co(salcy_1)OAc], [Co(salcy_2)OAc], where the 3-positions
of the salcy ligands are 1=Br, 2=H and 3="Bu, and
[Zn(BDI)OAc] were found to have regioregularities of 80%,
70%, 75%, and 60%, respectively [12, 14, 15]. Coates and
coworkers later investigated [(salcy)CoX] (where X = either a
halide or acetate anion) along with ionic cocatalysts, which
yielded highly regioregular polycarbonates having up to 99%
carbonate linkages with 94% head-to-tail connectivity [16].
A poly(propylene carbonate) with high regio- and stereo-
selectivity has also been reported by Lu and coworkers from
racemic propylene oxide using unsymmetrical chiral (salen)
Co(IIl) complexes [17]. The 3C-NMR spectra of the poly-
mers we report here revealed preferential formation of head-
to-tail regioisomers with very small proportions of the other
linkages, such as HH (head-to-head) and TT (tail-to-tail)
linkages, as shown in Fig. 1 and Supplementary information.

The formation of these copolymers was further confirmed
by recording their FT-IR spectra in dichloromethane. The
infrared spectra revealed that the carbonyl absorption peak,
which generally occurs at ~1750cm™' in the case of poly-
carbonates, as expected, shifted to lower wavenumbers upon
using *CO, instead of 'CO, during the copolymerization
reaction (Fig. 2). The carbonate absorption occurred at 1706
cm !, which is ~45cm™! lower than that in '?CO,-derived
polycarbonates. The main advantage of this shift can
be exploited to observe different functional groups in
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Fig. 2 FT-IR spectra of copolymers produced by the coupling of PO
and carbon dioxide
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Fig. 3 Comparison of FT-IR spectra of copolymers in the carbonate
region and the nitrosyl region of a typical DNIC complex

functionalized polycarbonates that exhibit absorbances in this
region. This is illustrated in Fig. 3 for the nitrosyl stretches in
a typical DNIC complex. The molecular weights of these
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Fig. 4 MALDI-ToF spectrum of a
a copolymer produced by
coupling of (a) rac-PO with
13CO, and (b) R(+) PO with
1CO,. Both spectra show a
separation of 103, characteristic
for the incorporation of labeled
13C0,. The major signals are
assigned to the copolymer
initiated by CF;CO, ", with the
minor peaks being due to the
presence of water as the chain-
transfer agent
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Table 1 Polymers obtained during the copolymerization of PO, R(+)
PO and '3CO,

Polymer Mn Mw PDI FT-IR CO v values

Racemic PO and *CO, 38,100
R(+)PO and 3CO, 13,500
Racemic PO and '>)CO, 35,000

51,400 1.34
14,600 1.07
40,800 1.20

1706
1706
1751

copolymers were obtained by gel permeation chromato-
graphy, and the results of these GPC traces (Fig. S6) are
summarized in Table 1.

To better understand the structure of the polymers pro-
duced during this polymerization, copolymer samples were
subjected to MALDI-ToF analysis. The MALDI-ToF spec-
trum (Fig. 4) of the copolymers produced during coupling of
racemic PO and R(+)PO with '3CO, shows a separation of
103, which corresponds to the repeating unit of these poly-
mers. In addition, it is of interest to note that the T, of isotactic
poly(propylene carbonate) is 3 °C lower than its stereo-
irregular analog (Fig. S7 in Supplementary information).

In summary, we successfully synthesized polypropylene
carbonates by coupling PO with '*CO, instead of '*CO, for
the first time and characterized these polymers by different
spectroscopic techniques. The binary catalyst system (salen)
CoTFA/PPNTFA selectively formed regioregular poly-
carbonates with no cyclic byproducts. '*C-NMR studies
revealed that the polymers formed were regioselective with
preferential head-to-tail connectivity. We further demon-
strated how the carbonyl absorptions in the FT-IR spectra of
these polycarbonates can be shifted to lower wavenumbers
using °CO, instead of the routinely used 'CO,. This
concept can be exploited to visualize the functional groups
in functional polycarbonates with infrared absorbance in
this region.
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