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Abstract—A convenient method based on deep neural 
networks and an evolutionary algorithm is proposed for the 
inverse design of FinFET SRAM cells. Inverse design helps 
designers who have less device physics knowledge obtain cell 
configurations that provide the desired performance metrics 
under selected wearout conditions, such as a set specific stress 
time and use scenario that creates a specific activity level (duty 
cycle and transition rate). The cell configurations being 
considered consists of various process parameters, such as gate 
length and fin height, in the presence of variations due to process 
and wearout. The front-end mechanisms related to wearout 
include negative bias temperature instability (NBTI), hot carrier 
injection (HCI), and random telegraph noise (RTN). The process 
of inverse design is achieved quickly and at good accuracy.  

Keywords—Inverse Design, FinFET, SRAM, Performance 
Metrics, Wearout Mechanisms, NBTI, HCI, RTN 

I. INTRODUCTION 

Small area, low power consumption, and superior 
performance are always pursued for the design of an advanced 
SRAM. With the increase of requirements on system capacity, 
technology scaling of conventional CMOS is invented to 
achieve more complicated circuits under chip area constraints. 
Scaling leads to more leakage power and performance 
degradation. The design targets are difficult to achieve due to 
the drastic increase of sub-threshold leakage which leads to 
unacceptable leakage currents and power consumption. The 
leakage is due to short channel effects (SCEs). In general, we 
can maintain device/circuit performance in an acceptable 
range through mature processes with thinner gate oxides and 
high-k dielectric materials. In the deeply scaled regime, fin 
field-effect transistors (FinFETs), such as double-gate FETs 
and trigate FETs, are proposed to overcome the disadvantages, 
such as SCEs, with their better gate control capability [1]-[4]. 
FinFET characteristics are related to various process 
conditions and design parameters, such as gate length, fin 
width, fin height, doping concentration, fin pitch, etc. 
Variation of process conditions affects the device 
characteristics, such as the Ion/Ioff ratio, threshold voltage, and 
leakage current might change substantially. Since there are so 
many manageable process parameters at the device level, 
finding a suitable device configuration for circuit design is 
labor-intensive work if the designers are not sure about the 
importance of every process parameter. We propose a solution 
which combines neural networks and an evolutionary 
algorithm to overcome this problem.  

Meanwhile, deeply scaled FinFETs are sensitive to time-
zero variability and front-end/back-end wearout mechanisms, 
such as negative bias temperature instability, hot carrier 
injection, random telegraph noise, gate oxide breakdown, 
electromigration, and stress induced voiding [5]-[15]. The 
front-end wearout mechanisms affect device parameters and 
cause a shift in FinFET SRAM performance metrics. The 
back-end wearout mechanisms affect interconnect quality and 
lead to its breakdown. To obtain a high-end SoC, with the best 
possible area, power, and performance, it is important to find 
an optimized solution for the FinFET SRAMs based on 

specific goals on the performance metrics, such as static noise 
margin (SNM), minimum VDD for data retention (VDD-ret-
min), read delay & power, write delay & power, and leakage 
power, while accounting for process parameters and wearout 
mechanisms. In this study, degradation and variation due to 
the front-end wearout mechanisms, namely NBTI, HCI, and 
RTN, are taken into consideration.  

SRAM cells’ performance metrics can be checked with 
trials in Spice simulations. However, since the number of 
adjustable device parameters is large and the initial design 
needs physical insights and intuitive reasoning, the design 
process needs a rich knowledge of SRAMs to exploit the full 
parameter space. Benefiting from the rapid development of 
artificial intelligence (AI), some science problems which 
require human perception can be solved with AI algorithms. 
The methods based on deep neural networks (DNNs) have 
been incorporated into the discovery of nanophotonics and to 
speed-up the design process in [16]. In [17] and [18], machine 
learning techniques are applied to speed up the modeling and 
simulation of circuits for fast simulation and IP protection with 
good accuracy. These studies verified the good efficiency and 
comprehensiveness of the application of machine learning 
techniques. In this study, we propose a solution to circumvent 
the conventional design procedure for FinFET SRAM cells by 
using deep neural networks and an evolutionary algorithm. 
When fed with inputs of the customer-defined performance 
metrics, wearout status and use scenario, the constructed 
algorithm generates a cell configuration which provides the 
requested performance metric with high confidence. The 
process is the inverse design of FinFET SRAM cells which 
can alleviate a designer from the complicated explorations in 
a huge domain of device parameters. Inverse design can be 
accomplished in several seconds. Meanwhile, the explored 
device parameters can ensure the worst case of the 
performance metrics meet design requirements when 
variations are considered.  

This paper is arranged as follows. Section II gives detailed 
descriptions for inverse design, the evolutionary algorithm, 
and deep neural networks. Meanwhile, the models for front-
end wearout mechanisms are introduced. In Section III, the 
application of the proposed solution is shown with several 
examples. The inverse design for FinFET SRAM cells in the 
fresh state and the degraded states with specific stress times 
and specific combinations of wearout mechanisms are 
discussed. The conclusions are drawn in Section IV.    

II. INVERSE DESIGN BASED ON DEEP NEURAL NETWORKS & 

AN EVOLUTIONARY ALGORITHM AND THE WEAROUT 

MECHANISMS 

A. Wearout Mechanisms and Process Parameters 

Fig. 1 shows an example of a 6T SRAM cell to be studied.  
There is variation in parameters due to both manufacturing 
process and wearout. The time-zero variability is assumed to 
be due to gate length (described in Table I) and the threshold 
voltages shift of the six devices in the cell.  
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Fig. 1.  A typical 6T SRAM cell with degradation and variability parameters 
marked.  

 
Fig. 2. The analytical expressions for NBTI, HCI, and RTN [5]-[11].  

In this study, we assume that NBTI, HCI, and RTN cause 
the wearout of the FinFET SRAM cell. According to the 
description in [5], NBTI is modelled with three uncorrelated 
parts, which are interface traps (ΔNIT) and the pre-existing 
(ΔNHT) and generated (ΔNOT) traps in the bulk. These 
parameters are a function of stress time and recovery time. The 
time range and the ratios of stress and recovery are important 
for suitable prediction for NBTI. A complete solution of NBTI 
under long-term DC stress is given in [6]. We combine the 
long-term DC stress model with a duty factor ratio equation 
(for recovery) to calculate the overall NBTI degradation. A 
simplified expression of the recovery fraction in [6] is adopted 
for NBTI prediction. With this method, we incorporate the 
effect of stress and recovery cycles using the duty ratio 
(marked as D in Fig. 2). The duty ratio highly depends on the 
data stored in SRAM cells. Since we study 6T FinFET SRAM 
cells which have symmetric structure, a duty ratio closer to 0 
or 1.0 leads to more degradation than a duty ratio of 0.5.  

HCI is modeled with a shift in interface charge (ΔNIT) and 
is considered be not recoverable [9]. Since HCI happens when 
a transistor is on and is conducting current, HCI is determined 
by the transition rate (TR) of data stored in cells. An 
equivalent time gap is applied to simulate the transition of 
each data flip in an SRAM cell. The effective stress time 
related to HCI (marked as t in box No. 2 of Fig. 2) is the 
product of overall stress time, the equivalent time gap for each 
transition, and TR. The interface trap shift due to HCI varies 
with effective stress time (t), device dimensions, stress 
voltage, and temperature [7], [8].  

Random process parameters cause time-zero variability in 
threshold voltage. The overall shift of the threshold voltage 
due to NBTI and HCI is modeled as a normal distribution [19] 
and is added to the time-zero variability in threshold voltage. 
RTN introduces extra variation in the interface trap density. 
However, RTN doesn’t affect the accumulated ΔNIT induced 

by either NBTI or HCI because its impact is considered be 
temporary. The impact of RTN is modelled as an independent 
lognormal distribution. For each sample, the deviation of the 
ΔNIT from the lognormal distribution due to RTN is added to 
the deviation of ΔNIT from the normal distribution due to 
NBTI and HCI.  

There are various models which are proposed to describe 
theses wearout mechanisms. It is necessary to include the 
impact on all device parameters for this study. In general, it’s 
assumed that NBTI and HCI bring about a shift of charge 
density in transistors which leads to shifts of threshold 
voltage (∆VT), carrier mobility (µ), subthreshold slope (SS), 
and the gate-drain capacitance (∆Cgd). RTN intensifies the 
impact of NBTI and HCI with extra variation. Fig. 2 shows 
the analytical expressions for NBTI and HCI in box No.1 and 
box No.2. The threshold voltage distribution due to NBTI, 
HCI, and time-zero variability are listed in box No.3. The 
extra deviation induced by RTN is described in box No. 4. 
Since box No.1 and box No.2 just describe how the trap 
density shifts with stress time, the relationship between the 
shift of trap density and shift of threshold voltage (∆VT) and 
the relationship between ∆VT and effective carrier mobility 
(µeff) are given in box No. 5. Box No.5 also describes that the 
deviation of the gate-drain capacitance due to wearout is 
extracted with TCAD simulations. It’s found that the SS is 
insensitive to wearout, and therefore it’s not included in our 
analysis. Since µ and ∆Cgd can be expressed as direct 
functions of the threshold voltage deviation, they are not input 
variables for the DNNs in the next part. Their value has been 
updated as a function of ∆VT when the dataset is generated 
with SPICE simulations. 

The parameters related to wearout are marked in Fig. 1. 
They are the  threshold voltage shifts (ΔVn1, ΔVn2, ΔVn3, 
ΔVn4, ΔVp1, ΔVp2) and their ratios due to interface traps for 
each transistor (kn1 = ΔVn1_IT/ΔVn1, kn2 = ΔVn2_IT/ΔVn2, 
kn3 = ΔVn3_IT/ΔVn3, kn4 = ΔVn4_IT/ΔVn4, kp1 = 
ΔVp1_IT/ΔVp1, and kp2 = ΔVp2_IT/ΔVp2). Variability due to 
wearout is assumed to be caused by ΔVn1 to ΔVp2.  

This study considers both process and wearout 
parameters.  The relevant process parameters are listed in 
Table I.  These parameters, except for Lg, are optimized in 
the presence of variation in the process and due to wearout. 
Their value is also updated in device model files when 
generating the dataset. Lg isn’t chosen as one of the 
optimization parameters because its variation leads to a shift 
in the wearout parameters.  

B. Inverse Design 

Fig. 3 shows the architecture of the proposed method for 
inverse design, and the general flowchart of the evolutionary 
algorithm. The relationships between cell parameters (related 
to the process and wearout) and performance metrics (we 
considered SNM, VDD-ret-min, and read delay & power as 
examples) are built with deep neural networks. All the input 
and output variables of the DNNs are normalized for 
convenient and quick training. Then the cell’s various process 
parameters are determined through the evolutionary algorithm 
to meet requirements on the performance metrics. The impact 
of wearout mechanisms can be incorporated as well. It should 
be kept in mind that DNNs with high accuracy for the 
relationship between process and wearout parameters and 
performance metrics ensures the final results of our inverse 
design.  
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Table I. Description of process parameters [20] 

Lg Gate length nfinax Finger number of 
access transistor 

nfinpu Finger number of pull 
up transistor nfinpd Finger number of pull 

down transistor

fpitch Fin pitch lint Length reduction 
parameter 

hfin Fin height eot SiO2 equivalent gate 
dielectric thickness 

eotbox SiO2 equivalent buried 
oxide thickness nsd S/D doping 

concentration 

nbody Channel (body) doping 
concentration tfin Body (fin) thickness 

hepi 
Height of the raised 

source/drain on fin top tsili 

Thickness of silicide on 
top of raised 
source/drain 

rhocn 
Contact resistivity at 
the silicon/silicide 
interface of nFET 

rhocp 
Contact resistivity at 
the silicon/silicide 
interface of pFET 

tgate Gate height on top of 
the hard mask tmask Height of the hard 

mask on top of the fin 

nsde 

Active doping 
concentration at the 

channel edge 
  

 

 

(a) 

 
(b) 

Fig. 3. (a) Architecture of the proposed method for inverse design, and (b) 
the general flowchart of the evolutionary algorithm.  

Fig. 3(a) shows input and output variables of DNN.  These 
input variables of the DNNs include wearout parameters, 
process parameters, and environmental parameters, such as the 
supply voltage and temperature. The process parameters listed 
in Table I need to be optimized. Others parameters considered 
include VDD and Temp, which relate to the operating 
conditions of the circuit, and also include shifts in wearout 
parameters, including the random variation in these shifts.  

The evolutionary algorithm (EA) that is used for 
optimization is adopted from biological evolution in nature. 
There are many different dialects for the EA. It is called the 
Genetic Algorithm (GA) when the candidates are strings, 
Genetic Programming (GP) when the candidates are finite 
state machines, and Evolution Strategies (ES) when the 
candidates are real-valued vectors, etc. [21], [22]. However, 
the basic principle for these EAs is almost the same. Because 
of the existence of natural selection, the candidates of the first 
generation for specific applications are evaluated with an 
estimator which measures how good they are in a natural 
environment. Next, the second generation of candidates are 
randomly created on the basis of good candidates from the first 
generation. After that, the above mentioned two steps are 
repeatedly implemented to obtain new generations until the 

final generations are obtained which can meet the 
requirements with an acceptable confidence.  

In our study, each candidate is a vector which contains 
process parameters and device parameters’ shift due to 
wearout of the FinFET SRAM cell. Our estimation process 
checks how performance metrics meets our expectations. In 
the initial state, we generate a bunch of candidates which 
contain randomly adopted process and wearout parameters. 

Then some of these candidates are selected to be parents 
of the next generation based on how well they match design 
requirements (minimum/maximum limits) on the performance 
metrics. After that, re-combinations and mutations are applied 
on parents to reproduce their offspring. A portion of offspring 
which survive in the environment related to the design target 
forms the new generation. Afterwards, the most excellent 
individuals of the new generation are taken as the parents of 
the next round of evolution.  

C.  The Application of Deep Neural Networks  

The structure of deep neural networks is shown in Fig. 3(a). 
It consists of an input layer, an output layer, and several hidden 
layers which are used to emulate the relationship between the 
input layer variables and the output layer variables.  

The input variables include all the process parameters in 
Table I, together with the time-zero and wearout parameters 
mentioned in Section 2B. In addition, we also include the 
BL/BLB (bit-line, bit-line bar) capacitance (BCAP), 
temperature (Temp), and power supply voltage (VDD) as 
input variables of the DNNs to ensure comprehensiveness of 
the predicted results. Note that VDD is not an input variable 
of the DNN for VDD-min-ret because it is swept to obtain 
VDD-min-ret during the phase of data generation.   

Since we show the inverse design for SNM, VDD-min-ret, 
and read delay & power as examples, three DNNs for each 
type of performance metric are trained separately. Another 
reason for separate training is that the goals on these 
performance metrics don’t have an obvious connection.  

The training and test datasets are obtained from SPICE 
simulations. For each sample, the randomly adopted input 
variables are embedded into the netlist. Then the trial-error 
simulations are executed to get SNM and VDD-min-ret. And 
the read delay & power are extracted directly. In the dataset, 
there are 15k samples in total for each performance metric. 
The sample ratio for training and test is 9:1. Each of the DNNs 
has four hidden layers with 128 neurons for each layer. The 
DNN for SNM has 34 input variables and one output variable, 
the DNN for VDD-min-ret has 33 input variables and one 
output variable, while the DNN for read delay & power has 34 
input variables and four output variables because read 
operations on ‘0’ and ‘1’ have different delays and power. The 
training and test procedures are implemented with PyTorch 
[23]. The training procedure is based on batch gradient descent 
with an L2 (least square errors) function and an Adam 
optimizer. In the first step, the model is trained for 10k epochs 
with a learning rate of 0.001. Then the model is trained with a 
learning rate of 0.0001. In general, the overall test accuracy 
gets higher than 99% after being trained for another several 
thousand epochs. During the training process, the test 
accuracy is monitored carefully to prevent overfitting. It’s 
noted that the DNN structure and training strategies can be 
adjusted to ensure prediction accuracy.   

Fig. 4 shows the comparison of normalized labels with 
output variables predicted by DNNs for several performance 
metrics. Clearly, the DNNs can predict performance metrics 
under various cell configurations with good accuracy. Based 
on the DNNs, the exploration of cell configurations for each 
performance metric is implemented with an EA as described 
in Section II.   
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                              (a)                                                           (b) 

 
                               (c)                                                         (d) 
Fig. 4. The comparison of normalized labels with normalized predictions by 
the DNNs for (a) SNM, (b) VDD-min-ret, (c) delay of read ‘0’, and (d) power 
of read ‘0’. The comparison for delay and power of read ‘1’ is similar.   

III. APPLICATION OF INVERSE DESIGN ON FINFET SRAM 

CELL 

In this section, we study the application of inverse design 
to FinFET SRAM cell performance metrics. We specifically 
have considered SNM, VDD-min-ret, and read delay & 
power. The inverse design for other/additional performance 
metrics can be applied with the same method. As mentioned 
in Section II, the DNNs for relationships between cell 
parameters and performance metrics (SNM, VDD-ret-min, 
and read delay & power) are obtained in the first step. Then 
our evolutionary algorithm is applied to find the process 
parameters which ensure the target performance metrics meet 
our expectations. The case with process parameter variations 
in the fresh state, the case with variations related to process 
and wearout mechanisms after specific stress times, and the 
case with variations related to process and wearout by subset 
of wearout mechanisms are studied.  

A. Cases with Process Parameters Variations  

In this part, the inverse design is explored for a FinFET 
SRAM cell in the fresh state while considering process 
parameter variations. Since the requirements on different 
performance metrics can’t always be achieved at the same 
time, the explorations of the SNM, VDD-min-ret, read delay 
& power, and other performance metrics are implemented 
separately. Read/Write delay and power are different for 
operations on ‘0’ and ‘1’.  

In this work, we show the results for SNM, VDD-min-ret, 
and read delay as examples. Obviously, the input variables of 
Temp and VDD can’t be adjusted arbitrarily, and we set them 
as constants of 0.685 and 1.0 after normalization, in the 
following inverse designs. The mean value of Lg is set as 0.5 
after normalization. For the cases shown in Fig. 5, the 
normalized specifications for SNM, VDD-mint-ret, and read 0 
delay are 0.3, 0.5, and 0.5, respectively.  

Since a larger SNM is preferred and the process variations 
introduce more uncertainty, our algorithm is designed to find 
the process parameters for the FinFET SRAM cell (as shown 
in Fig. 5(b)) to ensure that the worst case (smallest) SNM 
meets the required specification. The blue line is a reference 
for a good Weibull distribution.  

In contrast, smaller VDD-min-ret and read 0 delay are 
preferred. The algorithm helps obtain deterministic values of 
process parameters to ensure that even the largest VDD-min-

ret and read delay meet the specifications under process 
variations, with the process parameters listed in Figs. 5(d) and 
5(f). It’s noted that the value of some process parameters 
(such as nfinax, nfinpu, and nfinpd) after inverse design is 0. 
This means that the absolute number of fingers is 1 instead of 
0, because we have normalized the number of fingers with a 
smallest value of 1 and a largest value of 10. This is similar 
for the other process parameters. Since the EA is 
implemented with a random selection of parameters, the 
process parameters are different after each inverse design step 
although the targets are kept the same.  

   
                                    (a)                                                   (b) 

  
                                    (c)                                                   (d) 

   
                                    (e)                                                   (f) 
Fig. 5. The SNM distribution and value of the related process parameters in 
(a) and (b), the VDD-min-ret distribution and value of the related process 
parameters in (c) and (d), and the read 0 delay distribution and value of the 
related process parameters in (e) and (f), after inverse designs when the 
circuit is in fresh state.  

Although the process parameters are randomly picked in 
the EA to emulate the mutation procedure, it’s necessary to 
check how important each process parameter is for the 
performance metrics, to understand the evolution of the 
process parameter set. We adopt a strategy called random 
permutation to achieve this goal. It consists of 18 steps 
(because we have 18 process parameters) for each 
performance metric. At each step, the importance of one 
process parameter Xi for a specific performance metric Yj is 
studied (i ranges from 1 to 18, j ranges from 1 to 3). A Monte 
Carlo simulation with a specified sample size (1000) is 
applied to each step. The process parameters, except for a 
specific Xi, are randomly selected between 0.0 and 1.0 for 
each sample. Then the increase of the performance metric 
(∆Yj) due to the increase of Xi from 0.0 to 1.0 is recorded for 
each sample. At last, the averaged increase of the 
performance metric is used to measure the importance of Xi 
to Yj. It’s observed that the trend of Yj due to Xi is monotonous. 
Fig. 6 shows the most important process parameters for SNM, 
VDD-min-ret, and read 0 delay in the fresh state. The process 

nfinax : 0.0, nfinpu : 0.888,
nfinpd : 0.0, fpitch : 0.155,
lint : 0.434, hfin : 0.089, 
eot : 0.116, eotbox : 0.753,
nsd : 0.373, nbody : 0.674, 
tfin : 0.837, hepi : 0.048,
tsili : 0.148, rhocn : 0.456,
rhocp : 0.035, tgate : 0.015, 
tmask : 0.327, nsde : 0.115.

nfinax : 0.888, nfinpu : 0.0,
nfinpd : 0.666, fpitch : 0.209,
lint : 0.251, hfin : 0.517, 
eot : 0.191, eotbox : 0.496,
nsd : 0.517, nbody : 0.904, 
tfin : 0.107, hepi : 0.376, 
tsili : 0.242, rhocn : 0.247, 
rhocp : 0.001, tgate : 0.042, 
tmask : 0.272, nsde : 0.378.

nfinax : 0.0, nfinpu : 0.222, 
nfinpd : 0.0, fpitch : 0.161,
lint : 0.134, hfin : 0.193, 
eot : 0.949, eotbox : 0.396,
nsd : 0.144, nbody : 0.513, 
tfin : 0.701, hepi : 0.047,
tsili : 0.379, rhocn : 0.85,
rhocp : 0.489, tgate : 0.329,
tmask : 0.559, nsde : 0.281.
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parameters corresponding to the averaged ∆Yj with an 
absolute value that is smaller than 0.05 are considered be 
unimportant, and thus are not shown. The red arrow pointing 
up denotes that an increase of Xi brings about a larger Yj, and 
vice versa. According to the description in Fig. 6, a larger 
nfinax, eot, and tfin, and a smaller nfinpd and fpitch can help 
improve SNM. A smaller nfinax, and a larger nfinpu and eot 
brings about a better (smaller) VDD-min-ret. Read 0 delay is 
affected by various process parameters, in which nfinax, 
nfinpd, and hfin are the most crucial. It’s noted that the EA 
doesn’t necessarily make all parameters evolve in the 
directions which are beneficial for the target on the 
performance metric if the evolution directions of some 
process parameters don’t disturb the overall exploration for 
the design target. For example, it’s acceptable to keep nfinax 
as 0 (shown in Fig. 5 (b)) because the nfinpd of 0.0 is good 
enough to ensure all samples of the SNM distribution stay on 
the right-hand side of the target.  

 
(a) 

 

(b) 

 

(c) 
Fig. 6. The most important process parameters for (a) SNM, (b) VDD-min-
ret, and (c) read 0 delay, for the circuit in fresh state.  

 

 
(a) 

 

(b) 

 

(c) 
Fig. 7. The most important process parameters for (a) SNM, (b) VDD-min-
ret, and (c) read 0 delay, when the circuit has been under 10 years of stress 
(duty cycle of 0.1, and transition rate of 20 times/µs).  

B. Cases with Variations Related to Wearout Mechanisms 
and Cases with Variations Related to Fewer Wearout 
Mechanisms 

 The most important parameters for each performance 
metric have been analyzed for a circuit in the fresh state in part 
A. Since wearout mechanisms impact device parameters, the 
relevant importance of these parameters for performance 
metrics get be different when wearout is taken into 
consideration. Fig. 7 shows the most important process 
parameters for SNM, VDD-min-ret, and read 0 delay, when 
the circuit has been has received 10 years of stress. Based on 
the comparison between Fig. 6 and Fig 7, it is observed that 
the wearout mechanisms make SNM and read 0 delay 

sensitive to more parameters. For example, SNM becomes 
sensitive to nfinpu, hfin, and nbody, and is more sensitive to 
nfinax and nfinpd. Read 0 delay becomes sensitive to lint, 
eotbox, nsd, and tsili, and becomes less sensitive to nfinax and 
tfin. Inverse design is also implemented for SNM, VDD-min-
ret, and read 0 delay with the impact of NBTI, HCI, and RTN. 
The specifications on them are still 0.3, 0.5, and 0.5, 
respectively. The results of the inverse design for SNM and 
read 0 delay are similar with the results in part A. However, as 
shown in Fig. 8, the final distribution of VDD-min-ret is 
always much more non-Weibull than the distribution in part 
A, which is mainly due to the occurrence of RTN. The 
procedures for each inverse design step are accomplished in 
several seconds.    

Moreover, RTN leads to the failure of inverse design for 
certain cases. A good example is the inverse design for SNM. 
According to the description in Fig. 6 and Fig. 7, a larger 
nfinax, hfin, and eot are crucial for getting a larger SNM. 
Inverse design fails if we set nfinax, hfin, and eot as 0 with a 
design target of 0.7 for circuits which have been stressed by 
NBTI, HCI, RTN for 10 years, while the designs with the 
same settings in the fresh state or under stress by only NBTI 
and HCI can be optimized. Fig. 9 shows the SNM 
distributions after inverse design for a circuit in the fresh state 
and when the circuit has been stressed for 10 years.   

  
                                    (a)                                                   (b) 
Fig. 8. The VDD-min-ret distribution and value of the process parameters in 
(a) and (b), after inverse designs, when the circuit has been under 10 years of 
stress (duty cycle of 0.1, and transition rate of 20 times/µs).  

  
                                    (a)                                                   (b) 
Fig. 9. The distributions of SNM, after inverse designs for circuit under fresh 
state (a), and under the state when the circuit has been under 10 years of stress 
(b). The duty cycle is 0.1, and the transition rate is 20 times/µs. Only the 
impact of NBTI and HCI is included.  

IV. CONCLUSION 

We have proposed a methodology based on DNNs and an 
EA to do inverse design for FinFET SRAM cells. Each step of 
the overall inverse design can be accomplished as fast as 
several seconds. This inverse design technique provides 
convenience and high efficiency for designers. No matter 
whether the cell is in the fresh state or is stressed by various 
wearout mechanisms, the algorithm can help the user obtain 
configurations (process parameters) which make the cells’ 
performance metrics meet specific targets, although various 
variations exist. The EA doesn’t make all parameters evolve 
in the directions which are beneficial for target on 
performance metric if the evolution directions of some process 
parameters don’t disturb the overall exploration for target. 

nfinax -> 0.301, nfinpd -> 0.367, fpitch -> 0.052,
eot -> 0.111, tfin -> 0.095.

nfinax -> 0.062, nfinpu -> 0.127, eot -> 0.229.

nfinax -> 0.169, nfinpu -> 0.112, nfinpd -> 0.415,
fpitch -> 0.139, hfin -> 0.267, eot -> 0.056, 
nbody -> 0.054, tfin -> 0.137, rhocn -> 0.145.

nfinax -> 0.456, nfinpu -> 0.061, nfinpd -> 0.521,
fpitch -> 0.094, hfin -> 0.056, eot -> 0.092, 
nbody -> 0.078.

nfinax -> 0.055, nfinpu -> 0.122, eot -> 0.093.

nfinax -> 0.096, nfinpu -> 0.412, nfinpd -> 0.942, 
fpitch -> 0.404, lint -> 0.116, hfin -> 0.561,
eot -> 0.335, eotbox -> 0.052, nsd -> 0.174,
nbody -> 0.091, tfin -> 0.059, tsili -> 0.115,
rhocn -> 0.365. 

nfinax : 0.0, nfinpu : 0.222, 
nfinpd : 0.0, fpitch : 0.161,
lint : 0.134, hfin : 0.193, 
eot : 0.949, eotbox : 0.396,
nsd : 0.144, nbody : 0.513, 
tfin : 0.701, hepi : 0.047,
tsili : 0.379, rhocn : 0.85,
rhocp : 0.489, tgate : 0.329,
tmask : 0.559, nsde : 0.281.
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Moreover, RTN leads to the failure of inverse design for 
certain cases.  
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