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Abstract—A convenient method based on deep neural
networks and an evolutionary algorithm is proposed for the
inverse design of FinFET SRAM cells. Inverse design helps
designers who have less device physics knowledge obtain cell
configurations that provide the desired performance metrics
under selected wearout conditions, such as a set specific stress
time and use scenario that creates a specific activity level (duty
cycle and transition rate). The cell configurations being
considered consists of various process parameters, such as gate
length and fin height, in the presence of variations due to process
and wearout. The front-end mechanisms related to wearout
include negative bias temperature instability (NBTI), hot carrier
injection (HCI), and random telegraph noise (RTN). The process
of inverse design is achieved quickly and at good accuracy.

Keywords—Inverse Design, FinFET, SRAM, Performance
Metrics, Wearout Mechanisms, NBTI, HCI, RTN

I. INTRODUCTION

Small area, low power consumption, and superior
performance are always pursued for the design of an advanced
SRAM. With the increase of requirements on system capacity,
technology scaling of conventional CMOS is invented to
achieve more complicated circuits under chip area constraints.
Scaling leads to more leakage power and performance
degradation. The design targets are difficult to achieve due to
the drastic increase of sub-threshold leakage which leads to
unacceptable leakage currents and power consumption. The
leakage is due to short channel effects (SCEs). In general, we
can maintain device/circuit performance in an acceptable
range through mature processes with thinner gate oxides and
high-k dielectric materials. In the deeply scaled regime, fin
field-effect transistors (FinFETs), such as double-gate FETs
and trigate FETs, are proposed to overcome the disadvantages,
such as SCEs, with their better gate control capability [1]-[4].
FinFET characteristics are related to various process
conditions and design parameters, such as gate length, fin
width, fin height, doping concentration, fin pitch, etc.
Variation of process conditions affects the device
characteristics, such as the /,,/I,y ratio, threshold voltage, and
leakage current might change substantially. Since there are so
many manageable process parameters at the device level,
finding a suitable device configuration for circuit design is
labor-intensive work if the designers are not sure about the
importance of every process parameter. We propose a solution
which combines neural networks and an evolutionary
algorithm to overcome this problem.

Meanwhile, deeply scaled FinFETs are sensitive to time-
zero variability and front-end/back-end wearout mechanisms,
such as negative bias temperature instability, hot carrier
injection, random telegraph noise, gate oxide breakdown,
electromigration, and stress induced voiding [5]-[15]. The
front-end wearout mechanisms affect device parameters and
cause a shift in FInFET SRAM performance metrics. The
back-end wearout mechanisms affect interconnect quality and
lead to its breakdown. To obtain a high-end SoC, with the best
possible area, power, and performance, it is important to find
an optimized solution for the FinFET SRAMs based on
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specific goals on the performance metrics, such as static noise
margin (SNM), minimum VDD for data retention (VDD-ret-
min), read delay & power, write delay & power, and leakage
power, while accounting for process parameters and wearout
mechanisms. In this study, degradation and variation due to
the front-end wearout mechanisms, namely NBTI, HCI, and
RTN, are taken into consideration.

SRAM cells’ performance metrics can be checked with
trials in Spice simulations. However, since the number of
adjustable device parameters is large and the initial design
needs physical insights and intuitive reasoning, the design
process needs a rich knowledge of SRAMs to exploit the full
parameter space. Benefiting from the rapid development of
artificial intelligence (Al), some science problems which
require human perception can be solved with Al algorithms.
The methods based on deep neural networks (DNNs) have
been incorporated into the discovery of nanophotonics and to
speed-up the design process in [16]. In [17] and [18], machine
learning techniques are applied to speed up the modeling and
simulation of circuits for fast simulation and IP protection with
good accuracy. These studies verified the good efficiency and
comprehensiveness of the application of machine learning
techniques. In this study, we propose a solution to circumvent
the conventional design procedure for FInFET SRAM cells by
using deep neural networks and an evolutionary algorithm.
When fed with inputs of the customer-defined performance
metrics, wearout status and use scenario, the constructed
algorithm generates a cell configuration which provides the
requested performance metric with high confidence. The
process is the inverse design of FInFET SRAM cells which
can alleviate a designer from the complicated explorations in
a huge domain of device parameters. Inverse design can be
accomplished in several seconds. Meanwhile, the explored
device parameters can ensure the worst case of the
performance metrics meet design requirements when
variations are considered.

This paper is arranged as follows. Section II gives detailed
descriptions for inverse design, the evolutionary algorithm,
and deep neural networks. Meanwhile, the models for front-
end wearout mechanisms are introduced. In Section III, the
application of the proposed solution is shown with several
examples. The inverse design for FInFET SRAM cells in the
fresh state and the degraded states with specific stress times
and specific combinations of wearout mechanisms are
discussed. The conclusions are drawn in Section I'V.

II. INVERSE DESIGN BASED ON DEEP NEURAL NETWORKS &
AN EVOLUTIONARY ALGORITHM AND THE WEAROUT
MECHANISMS

A. Wearout Mechanisms and Process Parameters

Fig. 1 shows an example of a 6T SRAM cell to be studied.
There is variation in parameters due to both manufacturing
process and wearout. The time-zero variability is assumed to
be due to gate length (described in Table I) and the threshold
voltages shift of the six devices in the cell.
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Fig. 2. The analytical expressions for NBTI, HCI, and RTN [5]-[11].

In this study, we assume that NBTI, HCI, and RTN cause
the wearout of the FInFET SRAM cell. According to the
description in [5], NBTI is modelled with three uncorrelated
parts, which are interface traps (4N;r) and the pre-existing
(4Npr) and generated (4ANor) traps in the bulk. These
parameters are a function of stress time and recovery time. The
time range and the ratios of stress and recovery are important
for suitable prediction for NBTI. A complete solution of NBTI
under long-term DC stress is given in [6]. We combine the
long-term DC stress model with a duty factor ratio equation
(for recovery) to calculate the overall NBTI degradation. A
simplified expression of the recovery fraction in [6] is adopted
for NBTI prediction. With this method, we incorporate the
effect of stress and recovery cycles using the duty ratio
(marked as D in Fig. 2). The duty ratio highly depends on the
data stored in SRAM cells. Since we study 6T FinFET SRAM
cells which have symmetric structure, a duty ratio closer to 0
or 1.0 leads to more degradation than a duty ratio of 0.5.

HCI is modeled with a shift in interface charge (AN;r) and
is considered be not recoverable [9]. Since HCI happens when
a transistor is on and is conducting current, HCI is determined
by the transition rate (TR) of data stored in cells. An
equivalent time gap is applied to simulate the transition of
each data flip in an SRAM cell. The effective stress time
related to HCI (marked as t in box No. 2 of Fig. 2) is the
product of overall stress time, the equivalent time gap for each
transition, and TR. The interface trap shift due to HCI varies
with effective stress time (#), device dimensions, stress
voltage, and temperature [7], [8].

Random process parameters cause time-zero variability in
threshold voltage. The overall shift of the threshold voltage
due to NBTI and HCI is modeled as a normal distribution [19]
and is added to the time-zero variability in threshold voltage.
RTN introduces extra variation in the interface trap density.
However, RTN doesn’t affect the accumulated AN;rinduced

by either NBTI or HCI because its impact is considered be
temporary. The impact of RTN is modelled as an independent
lognormal distribution. For each sample, the deviation of the
ANt from the lognormal distribution due to RTN is added to
the deviation of AN;r from the normal distribution due to
NBTI and HCI.

There are various models which are proposed to describe
theses wearout mechanisms. It is necessary to include the
impact on all device parameters for this study. In general, it’s
assumed that NBTI and HCI bring about a shift of charge
density in transistors which leads to shifts of threshold
voltage (AV7), carrier mobility (), subthreshold slope (SS),
and the gate-drain capacitance (ACg). RTN intensifies the
impact of NBTI and HCI with extra variation. Fig. 2 shows
the analytical expressions for NBTI and HCI in box No.1 and
box No.2. The threshold voltage distribution due to NBTI,
HCI, and time-zero variability are listed in box No.3. The
extra deviation induced by RTN is described in box No. 4.
Since box No.l and box No.2 just describe how the trap
density shifts with stress time, the relationship between the
shift of trap density and shift of threshold voltage (AVr) and
the relationship between AV and effective carrier mobility
(uep) are given in box No. 5. Box No.5 also describes that the
deviation of the gate-drain capacitance due to wearout is
extracted with TCAD simulations. It’s found that the SS is
insensitive to wearout, and therefore it’s not included in our
analysis. Since u and ACg can be expressed as direct
functions of the threshold voltage deviation, they are not input
variables for the DNNs in the next part. Their value has been
updated as a function of AVr when the dataset is generated
with SPICE simulations.

The parameters related to wearout are marked in Fig. 1.
They are the threshold voltage shifts (AVnl, AVn2, AVn3,
AVn4, AVpl, AVp2) and their ratios due to interface traps for
each transistor (knl = AVnl 11/AVnl, kn2 = AVn2 11/AVn2,
kn3 = AVn3 r/AVn3, kn4d = AVnd ir/AVn4, kpl =
AVpl 11/AVpl, and kp2 = AVp2 11/AVp2). Variability due to
wearout is assumed to be caused by AVnl to AVp2.

This study considers both process and wearout
parameters. The relevant process parameters are listed in
Table 1. These parameters, except for Lg, are optimized in
the presence of variation in the process and due to wearout.
Their value is also updated in device model files when
generating the dataset. Lg isn’t chosen as one of the
optimization parameters because its variation leads to a shift
in the wearout parameters.

B. Inverse Design

Fig. 3 shows the architecture of the proposed method for
inverse design, and the general flowchart of the evolutionary
algorithm. The relationships between cell parameters (related
to the process and wearout) and performance metrics (we
considered SNM, VDD-ret-min, and read delay & power as
examples) are built with deep neural networks. All the input
and output variables of the DNNs are normalized for
convenient and quick training. Then the cell’s various process
parameters are determined through the evolutionary algorithm
to meet requirements on the performance metrics. The impact
of wearout mechanisms can be incorporated as well. It should
be kept in mind that DNNs with high accuracy for the
relationship between process and wearout parameters and
performance metrics ensures the final results of our inverse
design.
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Table 1. Description of process parameters [20]

Lg Gate length nfinax Finger numb'er of
access transistor
nfinpu Finger numbfer of pull nfinpd Finger number_ of pull
up transistor down transistor
fpitch Fin pitch Jint Length reduction
parameter
. . SiO; equivalent gate
hfin Fin height eot dielectric thickness
SiO; equivalent buried S/D doping
cotbox oxide thickness nsd concentration
nbody Channel (bOdY). doping tfin Body (fin) thickness
concentration
. Height of the raised - Thwktl:)esso?f;ilsléﬂde on
hepi source/drain on fin top tsili P ;
source/drain
Contact resistivity at Contact resistivity at
rhocn the silicon/silicide rhocp the silicon/silicide
interface of nFET interface of pFET
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Fig. 3. (a) Architecture of the proposed method for inverse design, and (b)
the general flowchart of the evolutionary algorithm.

Fig. 3(a) shows input and output variables of DNN. These
input variables of the DNNs include wearout parameters,
process parameters, and environmental parameters, such as the
supply voltage and temperature. The process parameters listed
in Table I need to be optimized. Others parameters considered
include VDD and Temp, which relate to the operating
conditions of the circuit, and also include shifts in wearout
parameters, including the random variation in these shifts.

The evolutionary algorithm (EA) that is used for
optimization is adopted from biological evolution in nature.
There are many different dialects for the EA. It is called the
Genetic Algorithm (GA) when the candidates are strings,
Genetic Programming (GP) when the candidates are finite
state machines, and Evolution Strategies (ES) when the
candidates are real-valued vectors, etc. [21], [22]. However,
the basic principle for these EAs is almost the same. Because
of the existence of natural selection, the candidates of the first
generation for specific applications are evaluated with an
estimator which measures how good they are in a natural
environment. Next, the second generation of candidates are
randomly created on the basis of good candidates from the first
generation. After that, the above mentioned two steps are
repeatedly implemented to obtain new generations until the

final generations are obtained which can meet the
requirements with an acceptable confidence.

In our study, each candidate is a vector which contains
process parameters and device parameters’ shift due to
wearout of the FInFET SRAM cell. Our estimation process
checks how performance metrics meets our expectations. In
the initial state, we generate a bunch of candidates which
contain randomly adopted process and wearout parameters.

Then some of these candidates are selected to be parents
of the next generation based on how well they match design
requirements (minimum/maximum limits) on the performance
metrics. After that, re-combinations and mutations are applied
on parents to reproduce their offspring. A portion of offspring
which survive in the environment related to the design target
forms the new generation. Afterwards, the most excellent
individuals of the new generation are taken as the parents of
the next round of evolution.

C. The Application of Deep Neural Networks

The structure of deep neural networks is shown in Fig. 3(a).
It consists of an input layer, an output layer, and several hidden
layers which are used to emulate the relationship between the
input layer variables and the output layer variables.

The input variables include all the process parameters in
Table I, together with the time-zero and wearout parameters
mentioned in Section 2B. In addition, we also include the
BL/BLB (bit-line, bit-line bar) capacitance (BCAP),
temperature (Temp), and power supply voltage (VDD) as
input variables of the DNNs to ensure comprehensiveness of
the predicted results. Note that VDD is not an input variable
of the DNN for VDD-min-ret because it is swept to obtain
VDD-min-ret during the phase of data generation.

Since we show the inverse design for SNM, VDD-min-ret,
and read delay & power as examples, three DNNs for each
type of performance metric are trained separately. Another
reason for separate training is that the goals on these
performance metrics don’t have an obvious connection.

The training and test datasets are obtained from SPICE
simulations. For each sample, the randomly adopted input
variables are embedded into the netlist. Then the trial-error
simulations are executed to get SNM and VDD-min-ret. And
the read delay & power are extracted directly. In the dataset,
there are 15k samples in total for each performance metric.
The sample ratio for training and test is 9:1. Each of the DNNs
has four hidden layers with 128 neurons for each layer. The
DNN for SNM has 34 input variables and one output variable,
the DNN for VDD-min-ret has 33 input variables and one
output variable, while the DNN for read delay & power has 34
input variables and four output variables because read
operations on ‘0’ and ‘1’ have different delays and power. The
training and test procedures are implemented with PyTorch
[23]. The training procedure is based on batch gradient descent
with an L2 (least square errors) function and an Adam
optimizer. In the first step, the model is trained for 10k epochs
with a learning rate of 0.001. Then the model is trained with a
learning rate of 0.0001. In general, the overall test accuracy
gets higher than 99% after being trained for another several
thousand epochs. During the training process, the test
accuracy is monitored carefully to prevent overfitting. It’s
noted that the DNN structure and training strategies can be
adjusted to ensure prediction accuracy.

Fig. 4 shows the comparison of normalized labels with
output variables predicted by DNNs for several performance
metrics. Clearly, the DNNs can predict performance metrics
under various cell configurations with good accuracy. Based
on the DNNS, the exploration of cell configurations for each
performance metric is implemented with an EA as described
in Section II.
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ret and read delay meet the specifications under process
variations, with the process parameters listed in Figs. 5(d) and
5(f). It’s noted that the value of some process parameters
(such as nfinax, nfinpu, and nfinpd) after inverse design is 0.
This means that the absolute number of fingers is 1 instead of
0, because we have normalized the number of fingers with a
smallest value of 1 and a largest value of 10. This is similar
for the other process parameters. Since the EA is
implemented with a random selection of parameters, the
process parameters are different after each inverse design step
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Fig. 4. The comparison of normalized labels with normalized predictions by
the DNNss for (a) SNM, (b) VDD-min-ret, (c) delay of read ‘0’, and (d) power
of read ‘0’. The comparison for delay and power of read ‘1’ is similar.

III. APPLICATION OF INVERSE DESIGN ON FINFET SRAM
CELL

In this section, we study the application of inverse design
to FInFET SRAM cell performance metrics. We specifically
have considered SNM, VDD-min-ret, and read delay &
power. The inverse design for other/additional performance
metrics can be applied with the same method. As mentioned
in Section II, the DNNs for relationships between cell
parameters and performance metrics (SNM, VDD-ret-min,
and read delay & power) are obtained in the first step. Then
our evolutionary algorithm is applied to find the process
parameters which ensure the target performance metrics meet
our expectations. The case with process parameter variations
in the fresh state, the case with variations related to process
and wearout mechanisms after specific stress times, and the
case with variations related to process and wearout by subset
of wearout mechanisms are studied.

A. Cases with Process Parameters Variations

In this part, the inverse design is explored for a FinFET
SRAM cell in the fresh state while considering process
parameter variations. Since the requirements on different
performance metrics can’t always be achieved at the same
time, the explorations of the SNM, VDD-min-ret, read delay
& power, and other performance metrics are implemented
separately. Read/Write delay and power are different for
operations on ‘0’ and ‘1°.

In this work, we show the results for SNM, VDD-min-ret,
and read delay as examples. Obviously, the input variables of
Temp and VDD can’t be adjusted arbitrarily, and we set them
as constants of 0.685 and 1.0 after normalization, in the
following inverse designs. The mean value of Lg is set as 0.5
after normalization. For the cases shown in Fig. 5, the
normalized specifications for SNM, VDD-mint-ret, and read 0
delay are 0.3, 0.5, and 0.5, respectively.

Since a larger SNM is preferred and the process variations
introduce more uncertainty, our algorithm is designed to find
the process parameters for the FinFET SRAM cell (as shown
in Fig. 5(b)) to ensure that the worst case (smallest) SNM
meets the required specification. The blue line is a reference
for a good Weibull distribution.

In contrast, smaller VDD-min-ret and read 0 delay are
preferred. The algorithm helps obtain deterministic values of
process parameters to ensure that even the largest VDD-min-

although the targets are kept the same.
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Fig. 5. The SNM distribution and value of the related process parameters in
(a) and (b), the VDD-min-ret distribution and value of the related process
parameters in (c) and (d), and the read 0 delay distribution and value of the
related process parameters in (e) and (f), after inverse designs when the
circuit is in fresh state.

Although the process parameters are randomly picked in
the EA to emulate the mutation procedure, it’s necessary to
check how important each process parameter is for the
performance metrics, to understand the evolution of the
process parameter set. We adopt a strategy called random
permutation to achieve this goal. It consists of 18 steps
(because we have 18 process parameters) for each
performance metric. At each step, the importance of one
process parameter X: for a specific performance metric ¥ is
studied (i ranges from 1 to 18, j ranges from 1 to 3). A Monte
Carlo simulation with a specified sample size (1000) is
applied to each step. The process parameters, except for a
specific Xi, are randomly selected between 0.0 and 1.0 for
each sample. Then the increase of the performance metric
(AY)) due to the increase of Xi from 0.0 to 1.0 is recorded for
each sample. At last, the averaged increase of the
performance metric is used to measure the importance of Xi
to Y;. It’s observed that the trend of ¥; due to X: is monotonous.
Fig. 6 shows the most important process parameters for SNM,
VDD-min-ret, and read 0 delay in the fresh state. The process
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parameters corresponding to the averaged AY; with an
absolute value that is smaller than 0.05 are considered be
unimportant, and thus are not shown. The red arrow pointing
up denotes that an increase of X: brings about a larger ¥;, and
vice versa. According to the description in Fig. 6, a larger
nfinax, eot, and tfin, and a smaller nfinpd and fpitch can help
improve SNM. A smaller nfinax, and a larger nfinpu and eot
brings about a better (smaller) VDD-min-ret. Read 0 delay is
affected by various process parameters, in which nfinax,
nfinpd, and hfin are the most crucial. It’s noted that the EA
doesn’t necessarily make all parameters evolve in the
directions which are beneficial for the target on the
performance metric if the evolution directions of some
process parameters don’t disturb the overall exploration for
the design target. For example, it’s acceptable to keep nfinax
as 0 (shown in Fig. 5 (b)) because the nfinpd of 0.0 is good
enough to ensure all samples of the SNM distribution stay on
the right-hand side of the target.

nfinax -> 10.301, nfinpd -> }0.367, fpitch -> 10.052,
eot -> 10.111, tfin -> 10.095.

()
nfinax -> 10.062, nfinpu -> $0.127, eot -> ]0.229. |

(b)
nfinax -> }0.169, nfinpu -> }0.112, nfinpd -> }0.415,
fpitch -> }0.139, hfin -> 10.267, eot -> $0.056,
nbody -> 10.054, tfin -> ]0.137, rhocn -> 10.145.

(©)
Fig. 6. The most important process parameters for (a) SNM, (b) VDD-min-
ret, and (c) read 0 delay, for the circuit in fresh state.

nfinax -> $0.456, nfinpu -> }0.061, nfinpd -> 10.521,
fpitch -> }0.094, hfin -> 10.056, eot -> 10.092,
nbody -> |0.078.

(a)
nfinax -> 10.055, nfinpu -> }0.122, eot -> 10.093. I

(b)

nfinax -> 10.096, nfinpu -> }0.412, nfinpd -> 10.942,
fpitch -> }0.404, lint -> }0.116, hfin -> }0.561,

eot -> 10.335, eotbox -> }0.052, nsd -> 10.174,
nbody -> $0.091, tfin -> 10.059, tsili -> {0.115,
rhocn -> 10.365.

(©
Fig. 7. The most important process parameters for (a) SNM, (b) VDD-min-
ret, and (c) read 0 delay, when the circuit has been under 10 years of stress
(duty cycle of 0.1, and transition rate of 20 times/ps).

B. Cases with Variations Related to Wearout Mechanisms
and Cases with Variations Related to Fewer Wearout
Mechanisms

The most important parameters for each performance
metric have been analyzed for a circuit in the fresh state in part
A. Since wearout mechanisms impact device parameters, the
relevant importance of these parameters for performance
metrics get be different when wearout is taken into
consideration. Fig. 7 shows the most important process
parameters for SNM, VDD-min-ret, and read 0 delay, when
the circuit has been has received 10 years of stress. Based on
the comparison between Fig. 6 and Fig 7, it is observed that
the wearout mechanisms make SNM and read 0 delay

sensitive to more parameters. For example, SNM becomes
sensitive to nfinpu, hfin, and nbody, and is more sensitive to
nfinax and nfinpd. Read 0 delay becomes sensitive to lint,
eotbox, nsd, and tsili, and becomes less sensitive to nfinax and
tfin. Inverse design is also implemented for SNM, VDD-min-
ret, and read 0 delay with the impact of NBTI, HCI, and RTN.
The specifications on them are still 0.3, 0.5, and 0.5,
respectively. The results of the inverse design for SNM and
read 0 delay are similar with the results in part A. However, as
shown in Fig. 8, the final distribution of VDD-min-ret is
always much more non-Weibull than the distribution in part
A, which is mainly due to the occurrence of RTN. The
procedures for each inverse design step are accomplished in
several seconds.

Moreover, RTN leads to the failure of inverse design for
certain cases. A good example is the inverse design for SNM.
According to the description in Fig. 6 and Fig. 7, a larger
nfinax, hfin, and eot are crucial for getting a larger SNM.
Inverse design fails if we set nfinax, hfin, and eot as 0 with a
design target of 0.7 for circuits which have been stressed by
NBTI, HCI, RTN for 10 years, while the designs with the
same settings in the fresh state or under stress by only NBTI
and HCI can be optimized. Fig. 9 shows the SNM
distributions after inverse design for a circuit in the fresh state
and when the circuit has been stressed for 10 years.

9330 ’l‘ nfinax : 0.0, nfinpu : 0.222,

o 0325 nfinpd : 0.0, fpitch : 0.161,
i 0:00 lint : 0.134, hfin : 0.193,
E 2:;2 eot : 0.949, eotbox : 0.396,
A 0.225 nsd : 0.144, nbody : 0.513,
8 0.200 tfin : 0.701, hepi : 0.047,

0.175 tsili : 0.379, rhocn : 0.85,

0.150L" rhocp : 0.489, tgate : 0.329,

-4-3-2-10 1 2 3 4 [tmask:0.559, nsde :0.281]

Quantiles
(a) (®)
Fig. 8. The VDD-min-ret distribution and value of the process parameters in
(a) and (b), after inverse designs, when the circuit has been under 10 years of
stress (duty cycle of 0.1, and transition rate of 20 times/us).
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Fig. 9. The distributions of SNM, after inverse designs for circuit under fresh
state (a), and under the state when the circuit has been under 10 years of stress
(b). The duty cycle is 0.1, and the transition rate is 20 times/ps. Only the
impact of NBTI and HCI is included.

IV. CONCLUSION

We have proposed a methodology based on DNNs and an
EA to do inverse design for FInFET SRAM cells. Each step of
the overall inverse design can be accomplished as fast as
several seconds. This inverse design technique provides
convenience and high efficiency for designers. No matter
whether the cell is in the fresh state or is stressed by various
wearout mechanisms, the algorithm can help the user obtain
configurations (process parameters) which make the cells’
performance metrics meet specific targets, although various
variations exist. The EA doesn’t make all parameters evolve
in the directions which are beneficial for target on
performance metric if the evolution directions of some process
parameters don’t disturb the overall exploration for target.
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