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Abstract

We present a data-driven nonintrusive model order reduction method for dynamical systems with moving boundaries.
he proposed method draws on the proper orthogonal decomposition, Gaussian process regression, and moving least squares

nterpolation. It combines several attributes that are not simultaneously satisfied in the existing model order reduction methods
or dynamical systems with moving boundaries. Specifically, the method requires only snapshot data of state variables at
iscrete time instances and the parameters that characterize the boundaries, but not further knowledge of the full-order model
nd the underlying governing equations. The dynamical systems can be generally nonlinear. The movements of boundaries
re not limited to prescribed or periodic motions but can be free motions. In addition, we numerically investigate the ability
f the reduced order model constructed by the proposed method to forecast the full-order solutions for future times beyond
he range of snapshot data. The error analysis for the proposed reduced order modeling and the criteria to determine the
urthest forecast time are also provided. Through numerical experiments, we assess the accuracy and efficiency of the proposed
ethod in several benchmark problems. The snapshot data used to construct and validate the reduced order model are from

nalytical/numerical solutions and experimental measurements.
c 2020 Elsevier B.V. All rights reserved.

eywords: Reduced order modeling; Nonintrusive model order reduction; Data-driven model reduction; Gaussian process; Proper orthogonal
ecomposition; Moving boundaries

1. Introduction

Many natural and engineering systems can exhibit complex dynamics with a wide range of temporal and spatial
eatures. In the analysis of these systems, a first step is to seek and extract dominant features or modes [1–4].
his step typically starts with a modal decomposition of a data set of state variables of interest attained at discrete

ime instances from experiments or computations. The proper orthogonal decomposition (POD) is one of the most
idely used techniques for accomplishing modal decomposition, which can decompose the set of data into spatially
ependent POD bases and temporally dependent coefficients. The dominant POD modes can effectively capture the
ajor dynamical evolution of the non-stationary state variables and thereby provide a means to describe a complex

ynamical system in a low-dimensional form, the so-called reduced-order model (ROM).
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To determine the temporal coefficient for each POD mode retained, both intrusive and non-intrusive approaches
have been developed. The Galerkin projection projects the full model (usually partial differential equations (PDEs))
onto the space of truncated POD modes. Through the orthonormality and energy-optimality attributes of the POD
bases, a truncated set of coupled ordinary differential equations (ODEs) is obtained, which constitutes a low-order
dynamical system and governs the evolution of the temporal coefficients. By solving the ODEs, usually numerically,
the temporal coefficients can be determined. Along with the spatial POD basis functions, such constructed ROM
can then be used to reproduce the full-order solutions. Since the Galerkin projection requires the prior knowledge of
the governing PDEs, this approach is referred to as intrusive model reduction. The quadratic nonlinearity and triadic
interactions in the ODEs derived from Galerkin projection call for a computational load in the order of O(R3), where
R is the number of POD modes retained in the ROM. Alternative to the Galerkin projection, nonintrusive approaches
can be employed to determine the temporal modes. For example, replace the set of ODEs with a set of hyper
surfaces, which is constructed using the interpolation methods such as the Smolyak sparse grid [5] and radial basis
function (RBF) [6,7]. The work in [2] proposed to infer the operators of the ODEs via the least squares
optimization [2]. Wan et al. employed the Gaussian Processes to model the temporal modes [3]. In addition,
several efforts adopted deep learning techniques and trained a neural network model for the temporal modes
in the form of the artificial [8] or deep feedforward neural network [9], the long short-term memory (LSTM)
recurrent neural network [4,10], or the temporal convolutional neural network [11]. These nonintrusive approaches
can effectively capture the generally nonlinear time evolution of the temporal coefficients without performing the
Galerkin projection. Among them, some are limited to predictions within the database range [2]; and some can
predict both inside and outside the database range [3,4,9]. The non-intrusive approaches do not necessarily require
the exact form of the full-order equations and hence are applicable to experimental data where the governing
equations are often not well established or the associated parameters have considerable uncertainties.

The above-mentioned model order reduction methods are applicable to fixed-domain problems. For many systems
with moving objects/boundaries, e.g., in fluid–solid interactions, additional care is needed to derive the ROM. The
efforts reported in literature also fall into either of two categories: intrusive or nonintrusive. And those efforts
mainly focus on fluid–solid interaction problems. In the intrusive category, the Navier–Stokes (NS) equations that
govern the fluid flow are extended to the solid domain. The POD modes are computed for the combined fluid–
solid domain. The extended NS equations are then projected via Galerkin projection onto the POD modes to yield
the low-order dynamical system with extra terms related to the solid motion. Liberge and Hamdouni proposed a
multiphase method similar to the fictitious domain method to extend the NS equations to the solid domain by using
a penalization method and a Lagrangian multiplier [12]. Gao and Wei proposed to add extra body-force terms to
the NS equations, similar to the immersed boundary method [13,14]. For generally unprescribed solid motion, the
additional terms contributed by the unsteady solid motion must be recomputed at each time step. The significantly
increased computational cost by these terms can overshadow the benefit of reduced order modeling. To alleviate this
issue, the most expensive nonlinear term was neglected in practice [13]. Those intrusive approaches were validated
by the tests on a rigid cylinder or sphere oscillating in a fluid [12–14], and only prescribed motion was considered
in [13,14]. In the non-intrusive category, Xiao et al. [15] proposed to employ the POD and RBF multi-dimensional
interpolation to construct the ROM for fluid–solid interaction problems with a free-moving solid body in the fluid.
In this work, the predictions of the ROM were examined for the time instances inside the database range.

In this paper, we present a new data-driven nonintrusive model order reduction method for dynamical systems
involving moving boundaries. The dynamical systems can be generally nonlinear. The proposed method is based
on the POD, Gaussian process regression (GPR) and moving least squares (MLS) interpolation. It combines three
attributes that are not simultaneously satisfied in the existing reduced order modeling methods for dynamical systems
with moving boundaries [12,13,15]. First, our method only needs snapshots of state variables at discrete time
instances and the parameters that characterize the boundaries. Otherwise, it does not require any prior knowledge of
the full-order model or the underlying governing equations for construction of the ROM. The snapshot data can be
from simulations or experiments. Second, the moving boundaries are not limited to prescribed or periodic motions.
Third, the ability of the ROM constructed to forecast the full-order solutions for future times beyond the range of
snapshot data is studied. We provide the criteria to determine the furthest future time that the ROM constructed
from a given set of data can predict. Fig. 1 summarizes the main components of the proposed method.

The paper is organized as follows. Section 2 explains in detail each component of the proposed method and

provides algorithms for practical implementation. In Section 3, we outline the results of numerical experiments,
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Fig. 1. Schematic of the proposed data-driven nonintrusive model order reduction method for dynamical systems with moving boundaries.

where the proposed method is assessed in several benchmark problems. We first present the benchmarks with fixed
domains only and then proceed to the cases with moving boundaries. The data used to construct and validate the
ROMs are from analytical/numerical solutions and experiments. Finally, we conclude in Section 4 and discuss the
limitation and possible extensions of the present work.

2. Methodology

Suppose u(x, t) is the full-order solution for a dynamical system. The spatial domain and boundaries for this
dynamical system generally consist of the fixed domain Ω f , the moving domain Ωm occupied by other phase(s)
(e.g., a cavity or a moving solid body), the fixed boundary Γ f , and the moving boundary Γm , as illustrated in
Fig. 2.

2.1. POD

POD starts from the snapshot data of the full-order solutions of the dynamical system, which can be obtained
from either numerical simulations or experimental measurements. The snapshot data correspond to u(x, ti ) at M
time instances with ti ∈ {t1, t2, . . . , tM}. Any u(x, ti ) may be decomposed into

u(x, ti ) = ū(x) + û(x, ti ), ū(x) =
1
M

M∑
u(x, ti ) , (1)
i=1

3
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Fig. 2. Schematic of the setup of spatial domain and boundaries.

where ū is the temporal mean of snapshot data and û is the fluctuating part. The task is to find a set of spatial bases
φk(x) and temporal coefficients ak(t) such that the fluctuating part û can be reproduced as:

û(x, t) =

M∑
k=1

ak(t)φk(x). (2)

o this end, the correlation matrix A ∈ RM×M of the fluctuating parts of snapshot data is constructed by:

Ai j =

∫
Ω

û(x, ti )û(x, t j )dx, (3)

here i and j refer to the i th and j th snapshots, respectively. By definition, A is symmetric and positive semi-
efinite. Thus, the set of spatial bases φk(x) (i.e., POD basis function) can be obtained via eigendecomposition
f A:

φk(x) =
1

√
λk

M∑
i=1

wk
i û(x, ti ) , (4)

where {λ1, λ2, . . . , λM} are eigenvalues in descending order and wk is the eigenvector corresponding to λk . The
POD basis functions satisfy the condition of orthogonality:

(φk, φl) =

{
1, k = l
0, k ̸= l , (5)

where (φk, φl) =
∫
Ω φk(x)φl(x)dx defines the inner-product of two functions.

For model order reduction, only the first R ≪ M largest eigenvectors (or POD modes) are retained. As a result,
a snapshot û(x, ti ) can be approximated as:

û(x, ti ) ≈ û P O D(x, ti ) =

R∑
k=1

√
λkw

i
kφk(x) (6)

with the following truncation error:

ϵPOD
=

1
M

M∑
i=1

û(x, ti ) − û P O D(x, ti )


L2
=

1
M

M∑
i=1


M∑

k=R+1

√
λkw

i
kφk(x)


L2

=

√ M∑
k=R+1

λk . (7)

By increasing R, i.e., by keeping more POD modes, the truncation error of POD (ϵPOD) can be reduced. Given
Eq. (6), Eq. (2) can be truncated to R dominant POD modes as:

û(x, t) ≈

R∑
ak(t)φk(x). (8)
k=1

4
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Define the relative root mean square (RRMS) truncation error as:

R RM S Error =

√∑M
k=R+1 λk∑M

k=1 λk
. (9)

By requiring R RM S Error < αPOD with αPOD the preset threshold, we can determine how many dominant POD
modes (R) to retain.

Once the spatial POD bases φk(x) are determined from Eq. (4), the next task is to construct the temporal
coefficients ak(t) such that the full-order solution can be effectively reproduced at a given time t ′ either within
or beyond the database range:

u(x, t ′) = ū(x) + û(x, t ′) ≈ uROM(x, t ′) = ū(x) +

R∑
k=1

ak(t ′)φk(x) for x ∈ Ω f and t ′
∈ [t1, tM ] or t ′ > tM .

(10)

Eq. (10) is hence the ROM constructed via POD.

2.2. Classical intrusive model order reduction based on Galerkin projection

In this section, we review the classical, intrusive approach to determine the temporal coefficients ak(t) based
on the Galerkin projection. Assume the dynamical system of interest can be described by the following full-order
model:

u̇(x, t) = F (u) , (11)

where F denotes general operators, e.g., spatial differential operators. To determine ak(t), the idea of Galerkin
projection is to project the original full-order model (Eq. (11)) onto the POD manifold, by which and noting the
orthogonality of POD basis functions a set of ordinary differential equations (ODEs) of ak(t) can be derived as:

ȧk(t) = (F (u), φk), k = 1, 2, . . . , R . (12)

To close the above ODEs, the initial conditions can be given using the following projection:

ak(t = 0) = (u(x, t = 0) − ū(x), φk). (13)

Hence, to solve for ak(t), one needs to evaluate the inner product in the right hand side of Eq. (12), which requires the
knowledge of F . If F is not attainable for “black-box” problems, e.g., for experimental data, the Galerkin projection
is not feasible. For problems with moving boundaries, even if F is known, it needs to include the contributions
from the moving boundaries, and hence evaluating the inner product (F(u), φk) demands expensive computation.
For example, in fluid–solid interactions, the NS equations that govern the fluid flow are augmented with extra
body-force terms to account for the coupling of fluid flow and solid motion [13,14]. For generally unsteady solid
motion, the contributions of these extra terms in the inner product (F(u), φk) must be recomputed at each time step,
which significantly increases the computational cost of the ROM. In addition, the ODEs in Eq. (12) usually must
be numerically solved. Thus, the temporal integrator and time step size must be chosen properly for the desired
accuracy and stability.

2.3. Gaussian process-enabled nonintrusive model order reduction

In this paper, we propose a Gaussian process-enabled nonintrusive model order reduction method. Different from
the Galerkin projection discussed in Section 2.2, the proposed method does not rely on any prior knowledge of the
full-model operator and is well suited for black-box problems or the problems requiring nontrivial evaluation and
solution of Eq. (12). For each temporal coefficient ak(t), we infer a Gaussian process model from the dataset ak(ti )
for i = 1, . . . , M . The obtained Gaussian process model is then employed to predict ak(t ′) at a given time t ′,
where t ′ > t1 can be within (t ′ < tM ) or beyond (t ′ > tM ) the dataset range. We provide the criteria to determine
the furthest time extrapolation permitted in this method. Once ak(t ′) is predicted, the full-order solution can be
reconstructed from Eq. (10).
5
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2.3.1. Inference of temporal coefficients via Gaussian process
Consider the data set t = [t1, . . . , tM ]T as the training inputs and t′ = [t ′

1, t ′

2, . . . , t ′

N ]T as the inputs for prediction.
or each k = 1, 2, . . . , R, the training outputs are y = [ak(t1), ak(t2), . . . , ak(tM )]T , and the predicted outputs are
′
= [ak(t ′

1), ak(t ′

2), . . . , ak(t ′

N )]T . The Gaussian process model is given by: y(t) ∼ GP(µ(t), C(t, t′)), where µ(t)
s the mean function and C(t, t′) is the covariance function. To predict y′, the key is to determine the posterior
istribution p(y′

|y). Since the joint distribution of the training outputs y and the predicted outputs y′ satisfy:[
y
y′

]
∼ N

([
µ(t)
µ(t′)

]
,

[
C(t, t) + σ 2I C(t′, t)T

C(t′, t) C(t′, t′)

])
, (14)

here σ 2 is the variance of identically independent normally distributed noise (with zero mean) assumed in the
aussian process model, the posterior distribution can be determined as:

p(y′
|y) = N (µ̂, Ĉ), (15)

here

µ̂ = C(t′, t)
[
C(t, t) + σ 2I

]−1
[y − µ(t)] + µ(t′),

Ĉ = C(t′, t′) − C(t′, t)
[
C(t, t) + σ 2I

]−1 C(t′, t)T .
(16)

n this work, the covariance function C(t, t′) is assumed a squared exponential form, i.e.,

Ci j (ti , t ′

j ; θ ) = θ2
f exp

[
−

1
2
θ2

l (ti − t ′

j )
2
]

, (17)

here θ = (θ f , θl) denotes the hyper-parameters. To determine the hyper-parameters θ as well as σ 2 in Eq. (16),
e minimize the negative log marginal likelihood [16]:

− log p(y|θ , σ 2) =
1
2

yTC−1y +
1
2

log |C| +
M
2

log(2π) , (18)

where C = C(t, t) + σ 2I, via the Quasi-Newton optimizer L-BFGS [17]. Here, M is the total number of training
data; and |C| is the determinant of matrix C. The marginal likelihood as in Eq. (18) is chosen because it entails a
trade-off between data-fit and model complexity: while the term 1

2 yTCy targets better fitting the training data, the
erm log |C| penalizes the model complexity. A key advantage of GPR is that uncertainty bounds can be analytically
erived from the hyper-parameters.

The method proposed herein is different from that in [3], where the time derivative ȧk = f (a1, . . . , aR) is modeled
s a Gaussian process, instead of ak(t) as in this work. To obtain an accurate model for the time derivative, it
equires to approximate the time derivative by a numerical integrator of high-order accuracy in the training process.
o predict ak(t ′ > tM ) from the trained model of ȧk , it needs to march from ak(tM ) by the increment of δt (time step
ize) each time and finally reaches t ′. Also, compared with training a model for ak(t), it needs more training data.
n addition, if the data are noisy, e.g., from experimental measurements, training an accurate model for the time
erivative can be challenging. Due to these considerations, we choose to model ak(t) itself as a Gaussian process.

.3.2. Criteria for furthest forecast time
In this section, we propose two criteria to determine the furthest time extrapolation that the ROM can achieve.

ince the ROM is constructed via POD and GPR, each of them poses a constraint on the time extrapolation.
To forecast the solution at t ′ > tM , the same POD subspace is assumed, which is constructed by the

ominant spatial bases extracted from the snapshot data. The error arising from this assumption constrains the time
xtrapolation of the ROM. While in some cases, the dominant POD bases vary slowly in time, e.g., flow dynamics
t low Reynolds numbers described by the Burgers equation; in other cases, they can change rapidly, e.g., shock
ave and advection problems. Theoretically, the decay rate of Kolmogorov n-width [18,19] can measure how fast

he POD spatial bases change in time for a dynamical system. The Kolmogorov n-width is defined as [20]:

dn(M) = inf
Sn

sup
u∈M

min
v∈Sn

∥u − v∥ , (19)

here M is the manifold of the full-order solutions over the entire time considered, including the snapshot data;

n denotes n-dimensional linear subspaces constructed from the snapshot data; u is a full-order solution in M; and

6
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v represents a reduced-order solution in Sn . In the context of this paper, Sn refers to the subspaces formed by the
first R POD spatial bases. The Kolmogorov n-width as in Eq. (19) provides the worst-case error resulting from a
projection onto the best-possible linear subspace of a given dimension n [20]. If the Kolmogorov n-width decays
faster with respect to n, the reduced-order solution in the subspace constructed by the first R POD bases can be an
accurate approximation of the full-order solution for longer time beyond the range of snapshot data. In practice, a
direct evaluation of the Kolmogorov n-width and its decay rate is difficult. In this paper, we instead estimate the
decay rate of dominant eigenvalues, i.e., ln λ2−ln λR+2

R . Note that λ2 dominates the POD truncation error if only the
first POD mode is retained in the ROM; λR+2 dominates the POD truncation error if the first R + 1 modes are
retained in the ROM. We employ this decay rate of dominant eigenvalues to characterize how fast the POD spatial
bases change in time for a dynamical system. Based on that, we propose the following constraint posed by POD
on the furthest forecast time of the ROM:

∆t∗

POD

∆tSnapshots
≤ βPOD ln λ2 − ln λR+2

R
, (20)

here ∆tsnapshots = tM − t1 denotes the time span of snapshot data; ∆t∗

POD = t∗

POD − tM defines how long the furthest
orecast time t∗

POD is beyond tM (the latest time of snapshot data); and βPOD < 1 is a non-dimensional constant
elated to the tolerance for the error induced by the change of POD spatial bases. Eq. (20) provides the criterion
o determine the furthest forecast time t∗

POD permitted in time extrapolation using the dominant POD spatial bases
xtracted from the M snapshot data. Note that although the eigenvalues can be over/under-estimated by picking
ifferent snapshots in a fixed range, the decay rate of eigenvalues has little change if we pick different snapshots
n the same range. Thus, the criterion in Eq. (20) does not require snapshots to be uniformly sampled.

The second criterion is from the uncertainty level of GPR for predicting each ak at a given time t ′. The standard
eviation (or uncertainty level) σ̂k(t ′) grows when the forecast time t ′ is further from the snapshot data, and hence
t poses a constraint on the furthest forecast time t∗

GPR,a permitted by GPR. Considering each temporal mode ak

ontributes differently in the total energy of the dynamical system, the weighted average of standard deviation is
efined to measure the uncertainty level:

σ̂ (t ′) =

∑R
k=1 λk σ̂k(t ′)∑M

k=1 λk
. (21)

And based on that, we propose the following constraint posed by GPR on the furthest forecast time of the ROM:∑R
k=1 λk σ̂k(t∗

GPR,a)∑R
k=1 λk |µ̂k(t∗

GPR,a)|
≤ βGPR,a (22)

here βGPR,a denotes the preset tolerance. Larger βGPR,a means larger tolerance for the uncertainty associated in
PR. From Eq. (22), the furthest forecast time permitted in time extrapolation by GPR, t∗

GPR,a , can be adaptively
etermined according to the preset tolerance.

.3.3. Algorithm for Gaussian process-enabled nonintrusive model order reduction
The procedure of the proposed nonintrusive model order reduction method based on the POD and GPR is

ummarized in Algorithm 1 .
When the numerical simulations or experimental measurements are demanding or expensive for a dynamical

ystem, one can employ the ROM to forecast the full-order solutions at future times beyond the database range.
s we have discussed in Section 2.3.2, the furthest forecast time is constrained by the POD and GPR. Thus,

fter the furthest forecast time of the ROM is reached, the consecutive prediction would still need numerical
imulations or experimental measurements. Thus, for long-time prediction of a dynamical system, the numerical
imulations/experimental measurements and the ROM can be called alternatively in an automated process:

1. Generate M snapshot data using numerical simulations/experimental measurements.
2. Construct a ROM from the snapshot data and determine the furthest forecast time t∗ by the proposed criteria.
3. Call the ROM to predict the full-order solutions at any desired times until t = t∗. The full-order solution at

t∗ is taken as the initial condition for the consecutive numerical simulations/experimental measurements.
4. Repeat Steps 1–3 until the target prediction time.
7
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d

Algorithm 1 Gaussian process-enabled nonintrusive model order reduction

Input: M snapshot data of u(x, ti ), i = 1, 2, ..., M
Output: u(x, t∗) predicted at t∗ > tM

1: Determine R dominant POD spatial bases φk(x), k = 1, 2, ..., R, with R RM S Error < αPOD

2: Project u(x, ti ) to the reduced space and obtain ak(t) = (û(x, t), φk(x))
3: Determine the furthest forecast time permitted by the POD, t∗

POD, from Eq. (20)
4: for k = 1, 2, ..., R do
5: Infer a Gaussian Process model for ak(t) following Section 2.3.1
6: Determine the furthest forecast time permitted by the GPR, t∗

GPR,a , from Eq. (22)
7: end for
8: Determine the final furthest forecast time as t∗

= min{t∗

POD, t∗

GPR,a}

9: Predict each ak(t∗) by the inferred Gaussian Process models
10: Reconstruct the full-order solution u(x, t∗) by Eq. (10)
11: return u(x, t∗)

This process adaptively combines numerical simulations/experimental measurements with ROMs and hence opti-
mizes the efficiency for long-time prediction of a dynamical system.

2.4. Nonintrusive model order reduction for problems with moving boundaries

In the presence of time-evolving boundaries Γm(t), reproducing the full-order solution from Eq. (10) needs
additional efforts. First, the snapshot data are also needed in Ωm . Thus, we need to assign the values of û(x, ti )
for x ∈ Ωm and ti ∈ {t1, t2, . . . , tM}. If a moving solid body is involved (in fluid–solid interaction), the values of
the velocity in Ωm coincide with the motion of the solid body; and the values of the pressure in Ωm are assigned
via interpolation of the surrounding fluid pressure in Ω f . If a cavity is involved, the values of the state variable in
Ωm are extrapolated by least squares from the values in Ω f near the cavity. With the snapshot data given in both
Ω f and Ωm , the POD can be conducted for the entire domain Ω f ∪ Ωm .

2.4.1. Inference of the time-evolution of moving boundaries
The next task is to infer the time-evolution of the moving boundaries given a set of trajectory data. We assume

the evolution of a moving boundary can be fully determined by a finite set of parameters, for example, the radius
of a spherical surface (see Section 3.4) or the translational and rotational displacements and velocities of the center
of mass of a rigid solid body (see Section 3.5). Without loss of generality, we denote the parameters that fully
characterize a time-evolving boundary Γm(t) as γ (t) = [γ1(t), γ2(t), . . . ]. For each γl(t), we seek a Gaussian process
model using t = [t1, . . . , tM ]T as the training inputs and [γl(t1), γl(t2), . . . , γl(tM )]T as the training outputs. By the
constructed Gaussian process model, we predict γl(t′) at a future time series t′ > tM . We consider a Gaussian process
model γl(t) ∼ GP(µγl (t), Cγl (t, t′)), where µγl (t) is the mean function and Cγl (t, t′) is the covariance function. The
procedure to construct this Gaussian process model is the same as described in Section 2.3.1. The furthest forecast
time for Γm(t) is determined by t∗

GPR,Γm
= min{t∗

GPR,γ1
, t∗

GPR,γ2
, . . .}. And each t∗

GPR,γl
for γl(t) is determined from:

σ̂ γl (t∗

GPR,γl
)

|µ̂γl (t∗

GPR,γl
)|

≤ βGPR,Γm , (23)

where βGPR,Γm is the preset tolerance.

2.4.2. Correction near the moving boundaries
We note that when reproducing the full-order solution in Ω f at a future time t ′ > tM , the largest errors appear

in the regions near the moving boundaries on the downstream side. The large errors stem from the fact that those
regions were part of Ωm but not in Ω f during [t1, tM ], and the gradient of the solution (e.g., velocity gradient) is

iscontinuous across Γm . Thus, we propose a correction step to recover the accuracy of the prediction for those

8
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regions. In particular, the correction is achieved via high-order interpolation from their neighbor regions using the
MLS [21].

More specifically, consider a point xp ∈ Ωm during [t1, tM ] but ∈ Ω f at t > tM , a kernel length h is set to search
the neighbor points xq satisfying ∥xq − xp∥ < h and xq ∈ Ω f during [t1, t∗]. Here, the furthest forecast time t∗ is
determined by t∗

= min{t∗

POD, t∗

GPR,a, t∗

GPR,Γm
}. A polynomial uh(x) = P⊺(x)c∗ of order s is sought to approximate u

at xp, where P(x) denotes the polynomial basis. The coefficient vector c∗ is determined by minimizing the following
weighted residual functional:

c∗

p = argmin
cp

∑
q

[
u(xq ) − P⊺(xq )cp

]2 Wpq , (24)

where q ∈ Nh,p =
{
xq s.t. ∥xq − xp∥ < h, xq ∈ Ω f during [t1, t∗]

}
and Wpq = W (∥xq − xp∥) with W a positive

function with the compact support h. The choice of h is determined by the polynomial order s to ensure necessarily
sufficient neighbor points xq to solve Eq. (24). Due to its polynomial consistency, the MLS interpolation can
achieve high-order accuracy by taking large s, e.g., s = 3 used in this work. Following standard arguments for
the minimization of a symmetric positive definite quadratic form, the solution of Eq. (24) is given by:

c∗

p =

⎛⎝ ∑
j∈Nh,p

Pp(x j )Wpj P⊺
p(x j )

⎞⎠−1 ⎛⎝ ∑
q∈Nh,p

Pp(xq )Wpqu(xq )

⎞⎠ . (25)

he solution reproduced from the ROM (Eq. (10)) at xp is then replaced with the interpolated value, i.e., u(xp) ≈

h(xp) = P⊺
p(xp)c∗

p. By such, we improve the accuracy of the ROM’s predictions for the regions that fall in Ω f at
> tM but belong to Ωm during [t1, tM ].

.4.3. Algorithm
Algorithm 2 outlines the procedure of the proposed nonintrusive model order reduction method for problems

ith moving boundaries, which augments Algorithm 1 with the steps to infer the time evolution of the moving
oundaries and to correct the solutions for the regions in Ω f at t∗ > tM but in Ωm during [t1, tM ].

Algorithm 2 Nonintrusive model order reduction for problems with moving boundaries

Input: M snapshot data of u(x, ti ) and γl(ti ) with i = 1, 2, . . . , M and l = 1, 2, . . .

utput: u(x, t∗) and γl(t∗) predicted at t∗

1: for l = 1, 2, . . . do
2: Infer a Gaussian Process model for γl(t) following Section 2.4.1
3: Determine t∗

GPR,γl
by Eq. (23)

4: end for
5: Determine the furthest forecast time permitted for Γm as t∗

GPR,Γm
= min{t∗

GPR,γ1
, t∗

GPR,γ2
, . . . }

6: Generate snapshot data for x ∈ Ωm(t), t ∈ [t1, tM ]
7: Determine R dominant POD spatial bases φk(x), k = 1, 2, ..., R, with R RM S Error < αPOD

8: Project u(x, ti ) to the reduced space and obtain ak(t) = (û(x, t), φk(x))
9: Determine the furthest forecast time permitted by the POD, t∗

POD, from Eq. (20)
10: for k = 1, 2, ..., R do
11: Infer a Gaussian Process model for ak(t) following Section 2.3.1
12: Determine the furthest forecast time permitted by the GPR, t∗

GPR,a, from Eq. (22)
13: end for
14: Determine the final furthest forecast time as t∗

= min{t∗

POD, t∗

GPR,a, t∗

GPR,Γm
}

15: Predict γl(t∗) by the inferred Gaussian Process models for γl(t)
16: Predict each ak(t∗) by the inferred Gaussian Process models for ak(t)
17: Reconstruct the full-order solution u(x, t∗) by Eq. (10)
18: Correct u(x, t∗) for {x|x ∈ Ω f at t∗ but x ∈ Ωm during [t1, tM ]}
19: return u(x, t∗) and γl(t∗)
9
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2.5. Error analysis

The error of the proposed nonintrusive model order reduction is originated from three resources: the truncation
error in POD, the error caused by GPR, and the interpolation error introduced in Section 2.4.2, i.e.,

ϵROM
=

u(x, t) − uROM(x, t)


L2
= ϵPOD

+ ϵGPR
+ ϵMLS . (26)

ere, ϵPOD is the truncation error of POD given by Eq. (7). ϵGPR is the error caused by GPR and can be indicated
by the uncertainty level σ̂ (t):

ϵGPR
=

uPOD(x, t) − uROM(x, t)


L2
≈ C1σ̂ (t) , (27)

where uPOD(x, t) is the projection of the full-order solution u(x, t) onto the reduced space formed by R POD bases;
1 > 0 is a constant; and σ̂ (t) is given by Eq. (21). ϵMLS denotes the error of the MLS interpolation and can be

estimated by [22]:

ϵMLS
= ∥u(x, t) − uh(x, t)∥L2

≤ C2hs+1
|u|Cs+1(Ω f ) , (28)

where C2 > 0 is a constant; and |u|Cs+1(Ω f ) := maxζ≤s+1 ∥Dζ u∥L∞
with Dζ u the ζ -th order spatial derivative of u

for x ∈ Ω f . The relative error is then defined as:

ϵROM
r =

ϵROM

∥u(x, t)∥L2

=

u(x, t) − uROM(x, t)


L2

∥u(x, t)∥L2

. (29)

3. Numerical experiments

We assessed the accuracy and efficiency of the proposed data-driven nonintrusive model order reduction method
in several benchmark dynamical systems. We started with three benchmarks without moving boundaries and then
moved to problems with moving boundaries. The data used to construct and validate the ROM are either from
analytical/numerical solutions or experimental data. The values of variables or parameters are all non-dimensional.

3.1. Burgers equation

First, we constructed the ROM to predict the solution of the Burgers equation, which is a typical benchmark
used in literature for validating model order reduction methods (e.g., in [23–25]). The Burgers equation considered
herein is:

∂u
∂t

+ u
∂u
∂x

=
1

Re
∂2u
∂x2 , x ∈ (0, 1)

u(0, t) = 0, u(1, t) = 0, t ≥ 0

u(x, 0) =
x

1 +

√
1
t0

exp(Re x2

4 )
, x ∈ (0, 1)

(30)

where Re is the Reynolds number and t0 = exp( Re
8 ). The analytical solution of Eq. (30) is given by:

u(x, t) =

x
t+1

1 +

√
t+1
t0

exp(Re x2

4t+4 )
. (31)

The analytical solution (Eq. (31)) of the Burgers equation was used to generate the snapshot data to construct
he ROM with the time step δt = 10−2 and spatial grid length δx = 10−3. In particular, 20 snapshots from t = 0.3
o t = 0.5 were used to extract the dominant POD modes. We set the truncation threshold αPOD

= 0.01, which
means the POD modes retained dominate at least 99.99% of the fluctuating kinetic energy. To satisfy this threshold,
the number of POD modes retained (R) varies with the Reynolds number, which is indicated in Fig. 3.

To construct the temporal coefficients ak(t), we employed both the Galerkin projection and GPR and compared
heir performance. With the constructed a (t), we predicted the solution u(x, t∗) of the Burgers equation at a future
k

10
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(a) Re = 1, R = 1 (b) Re = 100, R = 2

(c) Re = 300, R = 4 (d) Re = 500, R = 4

Fig. 3. Burgers equation: The solution of u(x, t) at a future time t∗ = 0.6 predicted by the ROM built from POD and Gaussian process
(POD–Gaussian) or Galerkin projection (POD–Galerkin), compared with the exact solution.

time t∗
= 0.6 for different Reynolds numbers from Re = 1 to Re = 500. The results are shown in Fig. 3. The

formulation used in the Galerkin projection to determine ak(t) is given as below:

ȧk(t) = (
1

Re
∂2u
∂x2 − u

∂u
∂x

, φk) = Bk +

R∑
i=1

L ikai (t)+
R∑

i=1

R∑
j=1

Ni jkai (t)a j (t), for k = 1, 2, . . . , R , (32)

here Bk = ( 1
Re

∂2ū
∂x2 − ū ∂ ū

∂x , φk), L ik = ( 1
Re

∂2φi
∂x2 − φi

∂ ū
∂x − ū ∂φi

∂x , φk), and Ni jk = (−φi
∂φ j
∂x , φk).

From Fig. 3, we find that the solution forecasted at the future time t∗
= 0.6 by the constructed ROM is accurate

or lower Reynolds numbers, either based on the Gaussian process or Galerkin projection. For higher Reynolds
umbers, the accuracy deteriorates, and oscillations occur near the shock wave singularity. This is because the
ominant spatial bases φk(x) would change rapidly upon the development of shock wave, which violates the
ssumption of POD-based model order reduction: the dominant spatial bases are the same for the training data
nd forecasted solutions. The accuracy of the ROM constructed using the GPR is comparable with that using the
alerkin projection. However, while the Galerkin projection relies on both the data and knowledge of the Burgers

quation to establish the ODEs (Eq. (32)) for the temporal coefficients ak(t), the Gaussian process only requires
ata.

We further examined the behavior of relative error ϵROM
r (Eq. (29)) of the ROM constructed using the POD and

GPR. The solution predicted at t∗
= 0.6 with the snapshots from t1 = 0.3 to tM = 0.5 was considered. As expected,

the constructed ROM is more accurate with more POD modes retained, as depicted in Fig. 4(a) for Re = 100 and
Re = 500. However, the error decay stalls when R (the number of POD modes retained) reaches a certain number,
which is because ϵGPR begins to dominate when ϵPOD becomes small. In addition, the error decreases with respect
to R at a faster rate for lower Reynolds number (Re = 100) and at a slower rate for higher Reynolds number
(Re = 500). This can be explained through the analysis of eigenvalues. Recall the truncation error of POD is

determined from the eigenvalues of the correlation matrix of the snapshot data, as specified in Eq. (7). The energy

11
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(a) The relative error ϵROM
r of the ROM solution

at t∗ = 0.6 for varying number of retained POD
modes

(b) Relative information content for Re =

1, 100, 300, 500

Fig. 4. Burgers equation: Error analysis for different number of POD modes retained.

Fig. 5. Burgers equation: ϵROM at different forecast times beyond the dataset range ∆t∗ = t∗ − tM . Here, ϵGPR and σ̂ are also shown for
comparison.

contributed by each mode in the total energy can be evaluated by the relative information content (RIC), expressed
as:

RI C(k) = (
λk∑M
j=1 λ j

) × 100%. (33)

n Fig. 4(b), we compare the RIC of kth POD mode for different Reynolds numbers. The RIC demonstrates how
he contribution of each POD mode decays. The smaller the Reynolds number is, the decay slope is more steep,
nd thereby the POD truncation error decreases faster with respect to R. The decay rate of eigenvalues, as defined
n Eq. (20) is also used to determine the furthest forecast time. Fig. 4(b) indicates smaller Reynolds number permits
onger time extrapolation (i.e., larger ∆t∗

= t∗
− tM ) given the dataset range [t1, tM ] is fixed.

In Fig. 5, we assessed the errors ϵROM and ϵGPR and the uncertainty level of GPR σ̂ at different forecast times
∗ with the same snapshots from t1 = 0.3 to tM = 0.5. Here, Re = 500 was considered and 4 POD modes were
etained. The growth of σ̂ as ∆t∗ increases can be explained by Fig. 6, where the GPR model trained for each
ominant ak(t) is presented. It can be seen that the 95% confidence interval enlarges, indicating the uncertainty
evel (or σ̂ (t∗)) increases, as time extrapolation goes further. This result also supports the use of σ̂ (t∗) as a criterion
o adaptively determine the furthest forecast time t∗, as given in Eq. (22). ϵGPR varies following the trend of σ̂ (∆t∗).
inally, ϵROM grows with ∆t∗, i.e., with the forecast time t∗ going further beyond the dataset range, resulting from

GPR
he behavior of ϵ .

12
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Fig. 6. Burgers equation: GPR for each dominant temporal coefficient ak (t).

3.2. Lid-driven cavity flow

In this section, we studied the 2D lid-driven cavity flow, where a square cavity Ω = [0, 1] × [0, 1] consists of
hree stationary walls and a lid moving with a constant tangential velocity. To obtain the velocity and pressure fields
or the lid-driven cavity flow, numerical simulations are usually employed for solving the full Navier–Stokes (NS)
quation. Here, we assessed the ability of the proposed Gaussian process-enabled nonintrusive model order reduction
o predict the velocity and pressure fields for this flow. To construct the ROM, the snapshot data were generated
ia simulation which is based on the staggered finite-volume spatial discretization, projection method to enforce
ncompressibility, and treating the nonlinear advection term explicitly and the viscous term implicitly [26,27].

Two different Reynolds numbers were considered: Re = 100 and Re = 1000. In numerical simulations, the
ime step was set as δt = 0.01, and 100 × 100 grids were used in the spatial discretization. We took the numerical
olutions between t = 0.6 ∼ 0.8 as the snapshot data to construct the ROM using the POD and GPR. The POD
runcation threshold was set as αPOD

= 0.01. The constructed ROM was then employed to predict the velocity and
ressure fields of the flow for t > 0.8. Figs. 7 and 8 present the predicted solutions at t∗

= 1.0 for Re = 100
nd Re = 1000, respectively. This forecast time t∗ was determined from Eqs. (20) and (22) with βPOD

= 0.3 and
GPR,a

= 0.01. By comparison with the full-order solutions by simulations, we find the prediction of the constructed
OM is very accurate. The relative errors ϵROM

r for both velocity and pressure are less than 2% for either Re = 100
r Re = 1000.

Next, we examined our implementation of the automated process that adaptively combines the numerical
imulations and ROM (as described in Section 2.3.3) for long-time prediction of the solutions for the lid-driven
avity flow. Fig. 9 shows the velocity and pressure fields predicted at t = 20.0 for Re = 1000 by combining the
umerical simulations and ROM, compared with the solutions obtained solely from numerical simulations. Good

ROM
ccuracy is achieved with the relative errors ϵr for both velocity and pressure less than 5%.

13
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(a) Velocity field (with streamlines) by
numerical simulations

(b) Velocity field (with streamlines) by
ROM

(c) Pointwise error for velocity

(d) Pressure field by numerical simula-
tions

(e) Pressure field by ROM (f) Pointwise error for pressure

Fig. 7. Lid-driven cavity flow: Comparison of the solutions predicted by the ROM with the solutions obtained from numerical simulations
at t = 1.0 for Re = 100. Here, R = 2, i.e., the first 2 POD modes are retained.

(a) Velocity field (with streamlines) by
numerical simulations

(b) Velocity field (with streamlines) by
ROM

(c) Pointwise error for velocity

(d) Pressure field by numerical simula-
tions

(e) Pressure field by ROM (f) Pointwise error for pressure

Fig. 8. Lid-driven cavity flow: Comparison of the solutions predicted by the ROM with the solutions obtained from numerical simulations
at t = 1.0 for Re = 1000. Here, R = 3, i.e., the first 3 POD modes are retained.
14
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(a) Velocity field (with streamlines)
solely by numerical simulations

(b) Velocity field (with streamlines) by
combining numerical simulations and
ROM

(c) Pointwise error for velocity

(d) Pressure field solely by numerical
simulations

(e) Pressure field by combining numeri-
cal simulations and ROM

(f) Pointwise error for pressure

Fig. 9. Lid-driven cavity flow: Comparison of the solutions predicted by adaptively combining the numerical simulations and ROM with the
solutions obtained solely from numerical simulations at t = 20.0 for Re = 1000.

.3. Heterogeneous fracture deformation

In this section, we applied the proposed nonintrusive model order reduction method to experimental data, where
he full-order model is unknown. The experimental data are the 2D displacement fields for heterogeneous fracture
eformation. From the snapshots of the displacement fields at different times, we constructed the ROM using the
OD and GPR. The constructed ROM was then employed to forecast the displacement fields of future times beyond

he snapshot data.
In experiments, the data of displacement fields were obtained by employing the augmented-Lagrangian digital

mage correlation (ALDIC) method [28] on the images from the experiment of Avellar [29]. The images recorded
he gray scale of a speckle pattern painted on the surface of a material specimen. Upon deformation, the gray scale of
he speckle pattern changed. Hence, by comparison of the gray scale in the images before and after deformation, the
isplacement field can be determined by solving an optimization problem. Although effective, the ALDIC method
s quite expensive and requires storage of massive image data. Instead, the ROM, once constructed, can efficiently
eproduce the displacement field at any given time until the furthest forecast time t∗ allowed by the ROM is reached.

To demonstrate the proposed reduced order modeling, we chose to consider the data for a material specimen with
heterogeneous stiffness and thereby complex displacement fields [28], for which the saving of computational cost
by using the ROM compared with the ALDIC method is even more remarkable.

More specifically, we used 15 snapshots of the displacement fields from t1 = 0 to tM = 15 to construct the
ROM, which was then employed to predict the displacement field at t∗

= 25. Here, the first 3 POD modes were
retained (R = 3) with the POD truncation threshold αPOD

= 0.01. The furthest forecast time t∗ was determined from
Eqs. (20) and (22) with βPOD

= 0.3 and βGPR,a
= 0.1. The results are presented in Fig. 10. For comparison, we

also show the displacement fields determined using the ALDIC method. From the comparison, we demonstrate the

good accuracy of the predictions by the ROM. Taking the results by the ALDIC method as the “exact” solutions,
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ig. 10. Heterogeneous fracture deformation: The ((a)–(c)) x- and ((d)–(f)) y-displacement fields predicted by the ROM at t∗ = 25, compared
ith the results by the ALDIC method.

he relative error ϵROM
r is less than 8% for the prediction of x-displacement field and less than 2% for the prediction

f y-displacement field.
In regard to the computational cost, it typically takes the ALDIC method about 53 s to generate the displacement

eld from two images [28], which was tested in MATLAB using a workstation with Intel (R) Xeon(R) CPU E5-2650
3 2.30 GHz (2 Processors). It only takes the ROM about 0.02s to predict the displacement field using MATLAB

and comparable hardware. And the cost for constructing the ROM is about 0.70s. Thus, integrating the ALDIC
method with the proposed reduced order modeling can significantly reduce the computational cost in experiments
to determine the time-varying displacement fields.

3.4. Bubble cavitation in hydrogel

After the three benchmarks used to validate the nonintrusive model order reduction method based on the POD
and GPR, we next considered a problem involving moving boundary. In particular, it concerned bubble cavitation

in hydrogel. The data used to construct and validate the ROM were from the experiments [30], where a spherical
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Fig. 11. Schematic of a bubble cavitation in hydrogel. The bubble can expand (e.g. at t1) or shrink (e.g., at t2).

Fig. 12. Bubble cavitation in hydrogel: The prediction of the bubble cavitation’s radius R(t).

bubble cavitation was formed in the center of a hydrogel material. Assume the initial radius of the bubble is R0.
ue to the plasma recombination and the volume change of the vapor and non-condensable gas within the bubble,

he radius of the bubble is a function of time R(t); as a result, the interface between the bubble and hydrogel is
moving boundary. The expansion or shrinkage of the bubble led to compression or tension on the surrounding

ydrogel material. A schematic of this problem is illustrated in Fig. 11. The distribution of the elastic strain S
n the surrounding hydrogel as well as the bubble’s radius R(t) were measured in the experiments. The elastic

strain S was measured at each tracer position. Due to the spherical symmetry of this problem, we simplified it to a
one-dimensional problem. Hence, the strain field only depends on r , the radial distance to the center of the bubble.

From M snapshots of the experimental data, we first constructed a GPR model for R(t), the bubble’s radius as
a function of time. The constructed GPR model can forecast the bubble’s radius at a given time beyond the range
of data. The furthest forecast time t∗ was determined from Eqs. (20), (22) and (23) with βPOD

= 0.3, βGPR,a
= 0.1

nd βGPR,Γm = 0.1. After the furthest forecast time t∗ was reached, new M snapshots of experimental data were
ollected and used to infer another GPR model to forecast R(t) for further times. Repeating this process and the
esulting adaptive combination of experimental measurements and GPR modeling allowed us to efficiently predict
he long-time evolution of the radius of the bubble cavitation with a complex dynamics of expansion and shrinkage,
s shown in Fig. 12. Good agreement was achieved between the GPR model’s predictions and the test data from
xperiments.
17
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Fig. 13. Bubble cavitation in hydrogel: The prediction of the elastic strain S(r, t) in hydrogel.

Besides the bubble cavitation’s radius, we also predicted the elastic strain field S(r, t) in the surrounding hydrogel.
To this end, the ROM for S(r, t) was constructed using the POD and GPR from the experimental snapshot data. For
demonstration, we predicted for two different times: one during the expansion of the bubble and the other during
the bubble’s shrinkage. More specifically, we used 10 snapshot data from t1 = 1 to tM = 10 to construct a ROM,
which was then employed to forecast S(r, t) at t∗

= 20; and we used 10 snapshot data from t1 = 51 to tM = 60 to
construct another ROM to predict S(r, t) at t∗

= 70. Each prediction of S(r, t) by the constructed ROM, along with
the comparison with the experimental data, is presented in Fig. 13. After t > 50, the bubble cavitation experienced
shrinkage until t = 70. During this period of time, the surrounding hydrogel was stretched toward the bubble’s
center. Hence, the strain field S(r, t > tM ) included the range of r that was not covered in the snapshot data (from
t1 = 51 to tM = 60). To construct the ROM covering that range of r , we extrapolated by least squares the snapshot
data of S(r ) until the minimum possible value of R. When we forecasted S(r, t) at t∗

= 70 by the constructed
ROM, for the region of r not covered in the snapshot data (i.e., the region between two vertical dash lines in
Fig. 13(b)), the correction was made using the method proposed in Section 2.4.2. To validate the prediction of S(r )
in that region, since no experimental data were available, we relied on the following analytical model [30,31] for
validation:

S(r, t) = (
r

r3 + R(t̄)3
− R(t)3

) , (34)

here t̄ = 5. As can be seen in Fig. 13, the predictions of the strain field S(r, t) by the ROM reasonably agree
ith the experimental data and the analytical model. Thus, we anticipate the proposed reduced order modeling can
e applied to predict the strain field for the regions and times that are not accessible in experiments or when the
nalytical model is not applicable (e.g., after the first collapse of the bubble).

.5. Fluid–solid interactions

Finally, we studied the problems of fluid–solid interactions, where multiple solid bodies move in a fluid flow.
ssume the domain Ωm consists of Ns solid bodies, and each of them has a boundary Γ n

m, n = 1, . . . , Ns , and a
enter-of-mass position Xn and orientation Θn . In this study, we predicted the dynamics of each solid body as well
s the velocity and pressure fields in the fluid by the ROM constructed. The snapshot data used to construct the ROM
ere generated via numerical simulations, where the incompressible Stokes flow subject to moving solid boundaries
as numerically solved using the generalized moving least squares discretization method [32]. For simplicity, the

olid bodies are subject to rigid-body kinematics. The evolution of a moving solid boundary Γ n
m can be characterized

y [Xn,Θn].
In all the cases studied herein, the fluid and solid bodies are confined in a 2D square box of [−5, 5]×[−5, 5]. The
op and bottom boundaries of the box are subject to identical velocities u0 = 0.5 but along opposite x directions so
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(a) Velocity in y computed from numer-
ical simulations

(b) Velocity in y predicted by the ROM
without correction

(c) Velocity in y predicted by the ROM
with correction

(d) Pressure field computed from numer-
ical simulations

(e) Pressure field predicted by the ROM
without correction

(f) Pressure field predicted by the ROM
with correction

Fig. 14. Two cylinders under a shear flow: The velocity and pressure fields in the fluid predicted by the ROM at t∗ = 3.0, compared with
the full-order solutions by numerical simulations.

as to generate a shear flow. In numerical simulations, the time step was set δt = 0.1, and the spatial discretization
was uniform with the spacing δx = 0.1. In the first case, there are two cylinders of equal size immersed in the fluid
flow. We constructed the ROM from the first 20 snapshots from t1 = 0 to tM = 2.0. The constructed ROM was
then used to predict the velocity and pressure fields in the fluid and the positions of the two cylinders at t∗

= 3.0,
hich is the furthest forecast time determined from Eqs. (20), (22) and (23) with βPOD

= 0.8, βGPR,a
= 0.1 and

βGPR,Γm = 0.1. The first 4 POD modes were retained in the ROM by setting αPOD
= 0.05. Fig. 14 presents the

velocity and pressure fields predicted by the ROM, compared with the full-order solutions by numerical simulations.
Since the velocity in x direction is dominated by linear shear flow, the comparison is made for the velocity along y
direction. We also compared the predictions with and without the correction near the moving solid boundaries, as
discussed in Section 2.4.2. For a closer view, Fig. 15 depicts the velocity and pressure along two lines at x = −2 and
y = 2, respectively. It is clearly seen that the large errors appear in the regions near the moving solid boundaries on
he downstream sides, which were previously occupied by the cylinders (Ωm) but not part of the fluid domain (Ω f ).
he correction method proposed in Section 2.4.2 can effectively improve the accuracy of the ROM’s predictions

or those regions.
For the problems of fluid–solid interactions, the numerical simulations can be rather demanding and expensive.

hus, we can adaptively combine the numerical simulations and ROM to save computational cost. In this case, we
ook the ROM’s predictions (the velocity and pressure fields in the fluid and the positions of cylinders) at t∗

= 3.0
s the initial condition and restarted the numerical simulations until t = 5.0. Using the numerical solutions for
1 = 3.1 until tM = 5.0 as the snapshot data, we constructed a new ROM and predicted the solutions for t∗

= 6.0.
y repeating this procedure until the target time t = 20.0, we predicted the entire trajectory of one cylinder, as
lotted in Fig. 16. By comparison with the result obtained solely from the numerical simulations, we find the
rediction by adaptively combining the numerical simulations and ROM achieves good accuracy. In the meanwhile,

1 of the simulation. Compared with the cost of the numerical simulations, the
he ROM’s predictions replaced about 3
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F
b

(a) Velocity in y at x = −2 (b) Velocity in y at y = 2

(c) Pressure at x = −2 (d) Pressure at y = 2

ig. 15. Two cylinders under a shear flow: The velocity and pressure in the fluid along two lines x = −2 and y = 2 at t∗ = 3.0 predicted
y the ROM with and without correction, compared with the full-order solutions by numerical simulations.

Fig. 16. Two cylinders under a shear flow: The trajectory of one cylinder predicted by the combination of the numerical simulations and
ROM.

cost of constructing the ROM and employing it for prediction is trivial. For example, it took 21.2s for the numerical
simulations to march from t = 2.0 to t = 3.0 with the time step δt = 0.1. The simulation was run using C++ with
OpenMPI-based parallel implementation on one Intel(R) Xeon(R) E3-1231 v3 CPU @ 3.4 GHz with 4 cores. On
20
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(a) Velocity in y computed from numeri-
cal simulations

(b) Velocity in y predicted by the ROM
without correction

(c) Velocity in y predicted by the ROM
with correction

(d) Pressure field computed from numer-
ical simulations

(e) Pressure field predicted by the ROM
without correction

(f) Pressure field predicted by the ROM
with correction

Fig. 17. Four cylinders under a shear flow: The velocity and pressure fields in the fluid predicted by the ROM at t∗ = 3.0, compared with
the full-order solutions by numerical simulations.

the same hardware, it only needed 4.65 s in total to construct the ROM and employ it for prediction by a serial
MATLAB code.

To demonstrate the robustness of the proposed reduced order modeling method, we further examined a case of
more cylinders in a shear flow. Figs. 17 and 18 summarize the velocity in y direction and pressure predicted by
he ROM with and without the correction near the moving solid boundaries, compared with the full-order solutions
y numerical simulations. Finally, to demonstrate the applicability of the proposed reduced order modeling method
o moving boundaries of arbitrary geometries, we also solved the fluid–solid interaction problem with two squares.
he results are presented in Figs. 19 and 20. In either case, the predictions by the ROM with the correction achieve
ood accuracy. Figs. 18 and 20 provide closer views for the difference between without and with the correction.
e hence have demonstrated that the proposed reduced order modeling method is applicable to dynamical systems
ith general moving boundaries regardless of the number or geometry of the boundaries.

. Conclusion

We have presented a model order reduction method for dynamical systems with moving boundaries, which draws
n the POD, GPR, and MLS interpolation. The method is nonintrusive and applicable to experimental data. Given a
et of snapshot data of state variables at discrete time instances, the reduced space is constructed via the POD. The
ime-evolution of the temporal POD coefficients and the parameters characterizing the moving boundaries is inferred
rom the data via the GPR. The cost of GPR would not increase due to the nonlinearity of the system. The errors in
he ROM’s prediction for the regions near the moving boundaries on the downstream side can be effectively reduced
sing the correction method based on the MLS interpolation. For a given set of snapshot data, the ROM constructed

rom the data can predict the full-order solution at a desired time inside or outside the dataset range. The forecast
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(a) Velocity in y at x = 0.5 (b) Velocity in y at y = −2.5

(c) Pressure at x = 0.5 (d) Pressure at y = −2.5

ig. 18. Four cylinders under a shear flow: The velocity and pressure along the lines x = 0.5 and y = −2.5 at t∗ = 3.0 predicted by the
OM with and without correction, compared with the full-order solutions by numerical simulations.

eyond the range of snapshot data is constrained by the POD and GPR as well as how many snapshot data are
vailable. To avoid a trial-and-error approach, we have provided the criteria for a priori determination of the furthest
orecast time permitted in time extrapolation of the ROM. We have demonstrated the accuracy and efficiency of
he proposed method in several benchmark problems, where the snapshot data used to construct and validate the
OMs were generated from analytical solutions, results of numerical simulations, and experimental data.

When numerical simulations or experimental measurements are demanding or expensive, reduced order mod-
ling provides an attractive alternative means to predict the full-order solutions. In practice, numerical simula-
ions/experimental measurements and ROMs can be adaptively combined to achieve an efficient long-time prediction
or a dynamical system. With the furthest forecast time of the ROM determined a priori by the proposed criteria, the
umerical simulations/experimental measurements and ROMs can be alternatively called in an automated process.
e note that the “equation-free” approach [33,34] proposed by Kevrekidis and collaborators for multiscale modeling

lso couples two levels of predictions “on-the-fly”: microscopic simulations and macroscopic models. In particular, it
xtrapolates ensemble-averaged macroscale quantities obtained from the microscopic simulations. The extrapolation
s through a projective integrator that advances the macro variable over a macro time step with the time derivative
f the macro variable computed from the results of the last few steps of the microscale simulations using small time
teps. The “equation-free” approach requires time-scale separation, i.e., the local relaxation time for the microscopic
rocess is much smaller than the time scale for the macroscopic evolution of the system. The approach proposed in
he present work uses Gaussian process regression for time extrapolation and does not require time-scale separation.

The slowly decaying Kolmogorov n-width is a major factor limiting the furthest forecast time of the ROM,
hich results from the fact that POD restricts the state to evolve in a linear subspace. To address this n-width

imitation of linear subspaces, Lee and Carlberg proposed to construct ROMs in nonlinear manifolds that are
omputed based on convolutional autoencoders from deep learning [35]. The ROM constructed by this method
as shown significantly outperforming the linear-subspace ROM when forecast the full-order solution at a future

ime for advection-dominated Burgers equation. Thus, it may be worthwhile in a future work to consider replacing

he linear spatial bases by nonlinear manifolds in our method to achieve a longer forecast time for the ROM.
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(a) Velocity in y computed from numeri-
cal simulations

(b) Velocity in y predicted by the ROM
without correction

(c) Velocity in y predicted by the ROM
with correction

(d) Pressure field computed from numer-
ical simulations

(e) Pressure field predicted by the ROM
without correction

(f) Pressure field predicted by the ROM
with correction

Fig. 19. Two squares under a shear flow: The velocity and pressure fields in the fluid predicted by the ROM at t∗ = 3.0, compared with
the full-order solutions by numerical simulations.

Our method can be potentially extended to construct ROMs to predict the full-order solutions for different
parameters/inputs. Suppose u(x, t; η) is the full-order solution for a parameterized dynamical system, where η ∈ P
denotes the parameter, and P ⊂ Rd is the parameter space. The full-order solutions u(x, ti ; η j ) at sampled
parameters η j ∈ PS ⊂ P ( j = 1, 2, . . . , Mη) and time instances ti (i = 1, 2, . . . , Mt ) are available to form
the snapshot dataset. We aim to predict the solution u(x, t ′

; η∗) at t ′ for a new parameter η∗ /∈ PS . For this type
of problems, the coefficients of POD modes become ak(t, η) ∈ R. Thus, a multivariate Gaussian process model
for each ak(t, η) needs to be constructed from the snapshot data with the training input z = (t, η) ∈ Rd+1.
The multivariate Gaussian process model constructed is then used to predict the POD coefficient ak(t ′, η∗) at
t ′ and η∗. Finally, the full-order solution can be predicted by: u(x, t ′

; η∗) ≈ ū(x) +
∑R

k=1 ak(t ′, η∗)φk(x) with
ū(x) =

1
Mt Mη

∑Mη

j=1
∑Mt

i=1 u(x, ti ; η j ). Detailed error analysis, criteria, and application to parameterized dynamical
ystems with moving boundaries will be investigated in our future work.
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F

(a) Velocity in y at x = −2.5 (b) Velocity in y at y = 1.5

(c) Pressure at x = −2.5 (d) Pressure at y = 1.5

ig. 20. Two squares under a shear flow: The velocity and pressure along the lines x = −2.5 and y = 1.5 at t∗ = 3.0 predicted by the
ROM with and without correction, compared with the full-order solutions by numerical simulations.
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