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Data-driven coarse-grained modeling of polymers
in solution with structural and dynamic
properties conserved

Shu Wang, Zhan Ma and Wenxiao Pan *

We present data-driven coarse-grained (CG) modeling for polymers in solution, which conserves the

dynamic as well as structural properties of the underlying atomistic system. The CG modeling is built

upon the framework of the generalized Langevin equation (GLE). The key is to determine each term in

the GLE by directly linking it to atomistic data. In particular, we propose a two-stage Gaussian process-

based Bayesian optimization method to infer the non-Markovian memory kernel from the data of the

velocity autocorrelation function (VACF). Considering that the long-time behaviors of the VACF and

memory kernel for polymer solutions can exhibit hydrodynamic scaling (algebraic decay with time), we

further develop an active learning method to determine the emergence of hydrodynamic scaling, which

can accelerate the inference process of the memory kernel. The proposed methods do not rely on how

the mean force or CG potential in the GLE is constructed. Thus, we also compare two methods for

constructing the CG potential: a deep learning method and the iterative Boltzmann inversion method.

With the memory kernel and CG potential determined, the GLE is mapped onto an extended Markovian

process to circumvent the expensive cost of directly solving the GLE. The accuracy and computational

efficiency of the proposed CG modeling are assessed in a model star-polymer solution system at three

representative concentrations. By comparing with the reference atomistic simulation results, we

demonstrate that the proposed CG modeling can robustly and accurately reproduce the dynamic and

structural properties of polymers in solution.

1 Introduction

Atomistic simulations, via, e.g., all-atom molecular dynamics
(MD), have been widely employed to simulate polymers and
biomolecules in solution. By tracking individual atoms of
molecules and solvent, these simulations are accurate yet
expensive. For large-scale polymer solution systems, the meso-
scopic properties and collective dynamics of polymers can be of
more importance. Thus, it may not be necessary to simulate all
atomistic details of the system, but instead eliminate or average
out certain degrees of freedom (DOFs) properly to reduce the
simulation cost. This is so-called coarse-grained (CG) modeling.1–5

The removal of highly-fluctuating atomic DOFs and the larger
characteristic length scale of CG coordinates permit one to employ
larger time steps in CG simulations. For modeling polymers in
solution, if not only the DOFs representing polymer molecules are
reduced but also the solvent DOFs are eliminated, it leads to
implicit-solvent CG modeling.6–9 Significantly reduced DOFs and
larger time steps would make CG simulations muchmore efficient

than full atomistic simulations, and hence more applicable to
simulating large-scale polymer solution systems in practical
applications.10–13 However, the challenge of CG modeling is to
conserve both the structural and dynamic properties of polymers
in the coarse-graining process. In particular, if the solvent DOFs
are eliminated, the solvent-mediated dynamic effect must be
properly incorporated in CG modeling.

To conserve the structural properties (e.g., radial and angular
distribution functions), the CG potential must be correctly con-
structed. To this end, the existingmethods in the literature include
the iterative Boltzmann inversion (IBI) method,14 inverse Monte
Carlo,15 the force matching method,16 minimization of relative
entropy,17,18 etc. These methods typically employ assumptions or
approximations for the CG potential; for example, assume a two-
body pairwise potential14,15 or augment the pairwise potential with
an additive function of local densities of CG sites17,18 to approx-
imate the many-body interactions between CG coordinates. In
addition to these methods, machine learning techniques19–21 were
also employed to determine the CG potential, which generally
can avoid employing ad hoc assumptions or approximations for
the CG potential. All these efforts are limited to only conserving
the structural properties of the underlying atomistic system.
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To conserve the dynamic properties (e.g., the velocity auto-
correlation function (VACF) and diffusivity), the dynamic effect
of unresolved DOFs (including solvent) must be properly
accounted for. To this end, a non-Markovian dynamics must
be introduced in the CG modeling since elimination of DOFs
results in a non-Markovian memory in the dynamics of CG
variables, as discussed in the literature22–27 and also in our
prior work.28 Particularly in implicit-solvent CG modeling, the
non-Markovian memory can play an important role in producing
correct long-time dynamics.26,28–30 The generalized Langevin
equation (GLE) provides a theoretically sound framework for
CG modeling to describe the non-Markovian dynamics of CG
variables. However, efforts must be made to properly construct
the memory kernel (function) in the GLE such that the dynamics
of the underlying atomistic system can be accurately reproduced
by the GLE. In this regard, there have been different approaches
developed in the literature. Among them, most methods are
not applicable to polymers in solution. For example, some
methods23,31,32 only concern polymers in melts but cannot consider
the solvent-mediated effect on the dynamics in polymer solutions.
Our prior work28 and some efforts in the literature24,30,33 neglect the
CG potential (or mean force) in the GLE and hence cannot
reproduce the structural properties of the reference atomistic
system. Jung et al.26,34 proposed an inverse iterative procedure to
determine the memory kernel from the VACF data of atomistic
simulations, which was applied in the context of nanocolloids in
dilute solution. Given an appropriate initial guess, this method is
effective to find a memory kernel for the GLE to produce the target
VACF. However, the convergence of iterations can depend on the
choice of initial guess. Also, directly solving the GLE is expensive
due to storage of historical information on CG variables, numerical
evaluation of convolution, and generation of colored noise. This
method cannot alleviate this expensive cost. Their results only
showed short-time dynamics reproduced by the GLE with the
constructed memory kernel.

In this paper, we propose a different approach to infer the
memory kernel from the VACF data. The key idea is a two-stage
Gaussian process-based Bayesian optimization. The memory
kernel is approximated by a truncated expansion of exponentially
damped oscillators. The parameters in the expansion are optimized
via the two-stage Bayesian optimization with the objective function
associated with the VACF. The optimization process allows for
efficient use of data with maximum information gain via adaptive
sampling guided by the Gaussian process. The memory kernel
inferred by such permits us to map the GLE to a Markovian process
extended in a higher dimensional space, which is much cheaper to
solve than the GLE and hence leads to more efficient CG simula-
tions. In addition, we consider the fact that the long-time behaviors
of the VACF and memory kernel for polymer solutions can exhibit
hydrodynamic scaling or algebraic decay with time.35–38 Thus, we
propose an active learning process to determine the emergence of
hydrodynamic scaling, which can accelerate the inference process of
the memory kernel. These proposed methods should not rely on
how the CG potential is constructed. Thus, we employ two different
methods for constructing the CG potential to conserve the structural
properties of the underlying atomistic system: one is a deep

learning method, i.e. a deep neural network (DNN) method; and
the other is the IBI method14 commonly employed in CG
modeling of polymers. Using a model polymer solution system,
we demonstrate the accuracy and efficiency of the proposed CG
modeling in reproducing both structural and dynamic properties
of polymers in solution, compared with the reference atomistic
simulation results.

The rest of the paper is organized as follows. In Section 2, we
describe the theoretical framework and GLE, based on which
the CG modeling is established. In Section 3.1, we briefly
describe the DNN and IBI methods employed for constructing
the CG potential. Section 3.2 explains in detail the new method
proposed for inference of the memory kernel from the data of
the VACF obtained in atomistic simulations, which consists of
the two-stage Bayesian optimization and an automated active
learning process for detection of algebraic decay in the VACF.
The equivalence of the GLE and the extended Markovian
process is explained in Section 3.3. We present all results in
Section 4, where a benchmark, a star-polymer solution system at
different concentrations, is studied to assess the accuracy and
computational cost of the CG simulations. Finally, we conclude
and summarize our main findings and contributions in Section 5.

2 Theoretical background

Without loss of generality, the atomistic system consists of
n atoms (beads) in polymer molecules, with coordinates r =
{ri|i = 1, 2,. . .,n} and momenta p = {pi|i = 1, 2,. . .,n}. In coarse-
graining, n atoms are coarse-grained as N clusters (referred to
as CG particles), and each cluster contains nc atoms. The CG
particles’ positions R = {RI|I = 1, 2,. . .,N} and momenta P =
{PI|I = 1, 2,. . .,N} constitute an extensive set of CG variables of
the N-body CG system.

To be consistent in notation, we use the lowercase mi, ri, and
pi to represent the mass, position, and momentum of the i-th
atom in the atomistic system; and the uppercase MI, RI, and PI
denote the mass, position, and momentum of the I-th CG
particle in the CG system. The variables of the atomistic and
CG systems are related via:

MI ¼
Xnc
i¼1

mIi; RI ¼
1

MI

Xnc
i¼1

mIirIi; PI ¼
Xnc
i¼1

pIi; (1)

where mIi is the mass of the i-th atom in the I-th CG particle;
and RI and PI are defined as the center-of-mass (COM) position
and total momentum of the I-th cluster, respectively.

The dynamics of the CG system is governed by the GLE as:

_PI ¼ hFI i �
ðt
0

Kðt� t 0ÞMI
�1PI ðt 0Þdt 0 þ ~FI : (2)

On the right-hand side of eqn (2), the first term hFIi = �rRI
U is

the ensemble-average mean force with U ¼
PN
I¼1

UI , where UI is

the potential of mean force (PMF) or referred to as the CG
potential. The third term F̃I denotes the random force. The
second term (referred to as the dissipative force) has a memory
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kernel K(t � t0), which is related to the random force by:
K(t) = (1/kBT)h[F̃I(t)][F̃I(0)]i with Boltzmann constant kB and thermo-
dynamic temperature T to satisfy the second fluctuation-
dissipation theorem.39 The dissipative and random forces
compensate for the lost atomic DOFs that result from coarse-
graining. To conserve both the structural and dynamic properties
of the underlying atomistic system, the CG potential and memory
kernel in eqn (2) must be directly linked to the atomistic system.

3 Methodology

In this section, we discuss how to construct the CG potential
and memory kernel from atomistic data.

3.1 Construction of the CG potential

The structural properties of the CG system are mainly determined
by the CG potential, which in general is nonlinear and can consist
of many-body interactions. Without ad hoc approximations such as
limiting the potential to two-body (or pairwise) contributions, a
DNN method can be employed to construct the CG potential. It is
adapted from the method proposed by Zhang et al.,20 where the
CG coordinates are at one atom of a water molecule. In this work,
the CG coordinates are at the COM of polymers. The performance
of the DNNmethod is compared with the IBI method14 commonly
employed in CG modeling of polymers.

3.1.1 Deep learning. In the deep learning method, a DNN
representation Ux

I for the CG potential (or PMF) UI(R) is sought
with x the network parameters. To ensure the output Ux

I preserves
the translational, rotational, and permutational symmetries of the
CG free energy surface, the input of the DNN is required to
preserve the same symmetries. To this end, the global coordinates
R of the CG system are transformed into a local descriptor matrix
DI as the input of the DNN, which describes the configuration of
neighbors of the I-th CG particle in its local Cartesian coordinates.

Following the work of Zhang et al.,20,40 the local coordinates
of the I-th CG particle are first constructed based on the
positions of the I-th CG particle and its first and second nearest
neighbors. The origin is set at RI. In the local coordinates,
{%xIJ,%yIJ,%zIJ} defines the vector from I to J. Then, DI takes the
following form:

DI ¼ fDIJ jJ 2 fneighbors of I that satisfy RIJ � Rcutgg

DIJ ¼ 1

RIJ
;
�xIJ
RIJ

2
;
�yIJ
RIJ

2
;
�zIJ
RIJ

2

� �
;

(3)

where Rcut is the cut-off radius; RIJ = |RIJ| with RIJ = RI � RJ; and
DIJ is sorted in DI with ascending RIJ.

With the input DI and output UI, the architecture of the DNN
is illustrated in Fig. 1. To train the DNN, the loss function used
in the training process is:

LðxÞ ¼ 1

UN

XU
u¼1

XN
I¼1

jFI ðRuÞ þ rRI
UxðRuÞj2; (4)

where u is the u-th configuration; U is the total number of con-

figurations used in the training process;UxðRuÞ ¼
PN
I¼1

Ux
I ðRuÞ; and

FI is the instantaneous total force on the I-th CG particle. Here, we
assume the CG particles I = 1, 2,. . ., N have the same DNNmodel of
the CG potential. In this work, the local descriptor matrix DI was
generated through the DeePMD-kit package,40 which also provides
the interface to TensorFlow for training the DNN and calling the
trained DNN model to calculate Ux

I (R).
The specific architecture of the DNN for each system was

determined according to the following theoretical and empirical
rules.41,42 (1) An inverted pyramid architecture with the number
of nodes (or neurons) per hidden layer decreasing from the
inner layer to the outer layer is adopted to be compatible with
the fact that the number of inputs is much larger than the
number of outputs. In the present work, there are on average
80 inputs and 1 output in all cases considered. (2) Since the
training cost increases as the numbers of nodes and layers
increase, a neural network with fewer nodes and layers is
preferred. (3) Assuming the same total number of nodes, having
more hidden layers is more effective than using more nodes per
layer to represent a more complex function between the outputs
and inputs. (4) The number of nodes per hidden layer should be
between the numbers of inputs and outputs. (5) When adding
more nodes or a hidden layer cannot further reduce the loss
function, the architecture of the neural network is considered
optimal.

3.1.2 Iterative Boltzmann inversion. The IBI method
assumes that the CG potential is pairwise: U ¼

P
I ;J

UðRIJÞ,

and constructs the pair potential U(RIJ) via an inverse iterative
process by reproducing the RDF of the reference atomistic
system.14 The iteration follows:14,43

Uiþ1ðRIJÞ ¼ UiðRIJÞ � ZkBT ln
RDFi

CGðRIJÞ
RDFAðRIJÞ

� �
; (5)

where the superscript i denotes the i-th iteration; Z o 1 is a
scaling factor that helps improve the convergence and stability
of the iteration process;43 and RDFA(RIJ) is the RDF of the

Fig. 1 Schematic of the feedforward DNN architecture to learn the CG
potential.
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reference atomistic system. The initial guess for the iteration in
eqn (5) is given by:14

U0(RIJ) = �kBT ln[RDFA(RIJ)]. (6)

The iteration in eqn (5) is terminated once
k RDFCGðRIJÞ �RDFAðRIJÞ k2

k RDFAðRIJÞ k2
is no greater than a tolerance,

which was set as 0.02 in this work. Here, 8�82 denotes the l � 2
norm of discrete data. The VOTCA package44 was employed to
implement the IBI method in the present work.

3.2 Inference of the memory kernel

To conserve the dynamics of the underlying atomistic system in
CG modeling, the memory kernel K in eqn (2) must be properly
determined. In general cases of N-body (N 4 1) CG systems, the
total force on each body has contributions from others. To
reproduce the structural properties, we need to consider the mean
force hFIi in eqn (2) as a function of R, as discussed in Section 3.1.
If we regard R = {R1, R2,. . .,RN} as a point in the CG phase space,
hFIi is associated with the normalized partition function of all
atomistic configurations at phase point R. As a result, if using a
forward approach to determine the memory kernel, as in our prior
work28 or the work of others,27,30 the memory kernel must also be
a function of R. However, how the memory kernel depends on R
cannot be assumed a priori. Determining the memory kernel as a
function of both t and R is challenging. Thus, previous work either
only considered a one-body CG system,27 or neglected to reproduce
the structural properties by regarding hFIi as the average over all
phase points and hence taking hFIi = 0 in the GLE,28,30 or assumed
t and R were separable and the function of R was only dependent
on RIJ (pairwise contributions from neighbors).23

To alleviate the difficulty in determining the memory kernel
and in the meanwhile being able to reproduce the structural
properties, we propose in this work a new approach. First, the
memory kernel in eqn (2) is constructed as the average over all
phase points and hence is only a function of time t. The
memory kernel K(t) is then inferred via an inverse optimization
process from the atomistic data of the VACF. This approach
does not rely on what the mean force (or CG potential) is and
how it is constructed. To proceed, K(t) is first approximated by
an asymptotic expansion as:

KðtÞ ¼
XN
l¼1

exp �al

2
t

� �
½bl cosðqltÞ þ cl sinðqltÞ�; (7)

where fal ; bl ; cl ; qlg 2 k (parameter space). Given eqn (7) trun-
cated to finite terms, an optimization problem in k space can
be framed to determine the parameters fal ; bl ; cl ; qlg 2 k that
minimize the difference in VACF(t) = hV(t)V(0)i of the CG system
with respect to the reference atomistic system:

k� ¼ argmin
k

PðkÞ; (8)

where PðkÞ is the objective function and defined as:

PðkÞ ¼ VACFCGðkÞh i � VACFAh ik k2
k VACFAh i k2

: (9)

Here, the VACF is chosen for optimization because the behaviors
of the VACF imply all dynamic properties of the system.45 The
data of VACFCGðkÞ and VACFA are attained from the CG and
atomistic simulations, respectively. We aim to determine K(t) up
to t r tcut since for t 4 tcut, |VACF(t)/VACF(0)| r 10�3, and the
dynamic properties are considered nearly invariant.

3.2.1 Gaussian process (GP)-based Bayesian optimization.
Solving the optimization problem in eqn (8) is challenging due to: (i)
the objectiveP is a black box for which no closed form is known nor
its gradient and Hessian; (ii) P is expensive to evaluate; (iii) evalua-
tions of P are noisy; and (iv) k is high-dimensional. Thus, we
propose to employ GP-based Bayesian optimization46–48 for solving
eqn (8), which can effectively tackle the above challenges. We start
with eqn (7) truncated toN terms, e.g.,N = 3, and, correspondingly,
k is 12-dimensional: (a1,b1,c1,q1,a2,b2,c2,q2,a3,b3,c3,q3). The GP-based
Bayesian optimization takes the following steps: (1) given some
initial observations fkk;PðkkÞjk ¼ 1; 2; . . . ; j0g, a probabilistic
model is built for P using GP regression that has a marginal
closed-form for the posterior mean and variance. The number ( j0)
and selection of initial data will be discussed later. (2) A cheap utility
function, e.g., the lower confidence bound function49 LCBðkÞ
chosen in this paper, is optimized based on the posterior to decide
where to take the next evaluation. (3) We augment the data with the
next observation. These three steps are iterated until the objective
function is less than the preset tolerance zBO or the number of
iterations reaches the limit IImax. The GP has amarginal closed-form
for the posteriormean and variance, and hence is chosen for building
the probability measure over objective and acquisition functions.
The uncertainty level determined from the GP is exploited to balance
exploration against exploitation. Thus, the method is able to start
with a small set of initial data and adaptively add more data as
necessary at locations that can maximize information gain. The
procedure of the GP-based Bayesian optimization employed in this
work is outlined in Algorithm 1.

Algorithm 1 GP-based Bayesian optimization
Set zBO and the search space of k

for i = 1, 2,. . .,10 do
Generate fkk;PðkkÞjk ¼ 1; 2; . . . ; j0g
for j = 0, 1,. . .,Imax do
Build a GP regression model for P
Optimize LCBðkÞ based on the mean and variance of GP
regression to determine:

kjþ1 ¼ argmin
k

LCBðkÞ

Evaluate Pðkjþ1Þ
Pðkjþ1Þo zBO then

End loop with k� ¼ kjþ1

else
Augment data set fkk;PðkkÞjk ¼ 1; 2; . . . ; j0 þ j þ 1g
end if
end for
end for
Output k� and Pðk�Þ

Paper Soft Matter



8334 | Soft Matter, 2020, 16, 8330--8344 This journal is©The Royal Society of Chemistry 2020

To avoid the optimization falling into local minima and to
ensure sufficient exploration of the parameter space, initial
observations fkk;PðkkÞjk ¼ 1; 2; . . . ; j0g should be sampled
covering the range of the search space. In the meanwhile, the
cost of constructing a GP model each time exhibits cubic
scaling with the number of observations. With more initial
data, the cost of constructing GP models and optimizing
utility functions would dominate the total cost of Bayesian
optimization and make the computation more expensive.
Thus, in practice, less initial data (smaller j0) is preferred in
each Bayesian optimization loop. To ensure that the optimi-
zation is unbiased, we can perform Bayesian optimization
several times with different random initial observations,
which is noted by the outer for–end loop in Algorithm 1.
For instance, if 1000 initial random observations are con-
sidered sufficient to cover the search space, we can divide the
1000 initial random observations into 10 groups each with
100 data points and perform Bayesian optimization 10 times
using one group of initial data each time. The number of
groups and the amount of data in each group are decided
from the trade-off between two considerations: (1) using
fewer initial observations can accelerate each optimization
process; and (2) conducting more Bayesian optimization
processes increases the costs because the objective function
has to be evaluated more times.

Although theoretically sound, Bayesian optimization is
practically limited to optimizing 10–20 parameters. This is
due to the fact that the number of data samples required to
cover the search space exponentially increases with the dimen-
sion of the parameter space.50 As a result, Bayesian optimiza-
tion in a high dimensional parameter space can be expensive.
For a polymer solution system that entails a slow-decaying
VACF(t) and hence a long memory, approximation of K(t) for
the entire t r tcut typically requires one to retain more than
5 terms in eqn (7). The resulting k consists of more than
20 parameters. Thus, directly applying Bayesian optimization
to determine K(t) for the entire t r tcut is challenging. In
the present work, we propose a two-stage Bayesian optimization
method, as described in the following, to address this
challenge.

First, we notice that K(t) typically displays a fast-decaying
short-time dynamics followed by a slow-decaying long tail. We
specify a time scale tshort to divide K(t) into the short-time and
long-tail parts such that |VACF(t)/VACF(0)|r 10�1 for tr tshort.
A schematic diagram of the different time scales is shown
in Fig. 2.

The short-time K(tr tshort), denoted as K1(t), due to its fast-
decaying behavior, typically can be satisfactorily approximated
by retaining 2–3 terms in eqn (7); i.e., 8–12 parameters need to
be optimized, which can be efficiently achieved using Bayesian
optimization. Thus, in the first stage, Bayesian optimization is
employed to solve eqn (8) for K1(t) with 4N1 (e.g., N1 = 3)
parameters in k. To provide the Bayesian optimization with a
reasonable search space for all parameters, we note that al,bl,ql 4 0,

and cl is related to al,bl,ql and must satisfy jcl j �
albl

2ql
(see

Section 3.3 for an explanation). The upper bounds for al and
ql can be as large as physically reasonable, e.g., in this work
we gave al A [0,60] and ql A [0,30]. To specify the search
space for bl, from eqn (7) we know that bl is directly related to

K(t = 0). According to the relationship: Kðt ¼ 0Þ ¼
PN
l¼1

bl �

FACFðt ¼ 0Þ, we constrain bl A [0,FACF(t = 0)], where
FACF is the force autocorrelation function and defined
as FACF = hF(t)F(0)i. The optimized parameters are denoted
as k1�.

Second, approximating the entire K(t) (up to) may require
one to supplement the N1 terms with more terms. Assume
we need N1 + N2 (e.g., 3 + 3) terms to accurately approximate
the entire K(t). The augmented N2 terms attempt to accurately
approximate the slow-decaying long tail of K(t) for tcut Z

t 4 tshort. When we employ the Bayesian optimization to
optimize 4(N1 + N2) parameters, although the dimensionality
of the parameter space is high, the optimized parameters k1�

obtained in the first stage can narrow down the search space
for the 4N1 parameters, which can significantly reduce
the number of iterations required in the optimization. Thus,
in the second stage, Bayesian optimization is employed to
solve eqn (8) for the entire K(t) (t r tcut) with 4(N1 + N2)
parameters. The search space for the 4N1 parameters is
constrained in ½ð1� aÞk1�; ð1þ aÞk1��. Here, a o 1 can start
with a small value and gradually increase according
to whether the preset tolerance can be reached within the
maximum iterations allowed. In this work, a = 0.2 was used in
all cases. Given the search space for the 4N1 parameters and

noting that Kðt ¼ 0Þ ¼
PN1þN2

l¼1

bl � FACFðt ¼ 0Þ, the upper

limit of bl in the N2 terms should be no greater than
a � FACF(t = 0).

The procedure of the proposed two-stage Bayesian optimization
is summarized in Algorithm 2. Although this approach requires
two stages of Bayesian optimization, the number of iterations in
each stage and the total computational time can be significantly
reduced, compared with the single-stage Bayesian optimization
to achieve similar results. In this work, we set IImax = 500 and
zBO = 0.02, and the Skopt package47 was used to perform each
Bayesian optimization.

Fig. 2 Schematic diagram of different time scales in K(t).
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Algorithm 2 Two-stage Bayesian optimization
Stage 1: solve eqn (8) for t r tshort
Set N1 and the search space: al A [0,60], bl A [0,FACF(t = 0)],

cl 2 �albl

2ql
;
albl

2ql

� 	
, and ql A [0,30] for l = 1,� � �,N1

Execute Algorithm 1
Output k1� and P k1�ð Þ

Stage 2: Solve eqn (8) for t r tcut
Set N2 to augment N1 s.t. N = N1 + N2

Set the search space for N1 terms: ½ð1� aÞk1�; ð1þ aÞk1��, and
the search space for the further N2 terms: al A [0,60], bl A

[0,a � FACF(t = 0)], cl 2 �albl

2ql
;
albl

2ql

� 	
, ql A [0,30] for l = 1,� � �,N2

Execute Algorithm 1
Output k� and P k�ð Þ

3.2.2 Algebraic decay. In general, for fluids, including
polymeric fluids (a polymer solution or melt), the long-time
behaviors of the VACF and memory kernel display hydrodynamic

scaling, i.e., algebraic decay with scaling t�
3
2 for t Z talg,

35–38

where talg denotes the characteristic time of the emergence of
algebraic decay. Different kinds of fluids have different talg. In the
case of talg o tcut, e.g., for a dilute polymer solution, the memory
kernel for t Z talg simply follows the algebraic decay, and hence
we only need to infer K(to talg) via Bayesian optimization. In this
section, we propose an active learning method to determine talg
(emergence of the hydrodynamic algebraic decay) ‘‘on-the-fly’’
while generating the data of the VACF in atomistic simulations.

To proceed, setting X ¼ gðtÞ ¼ t�
3
2 and Y = VACF yields a

linear regression model:

Y = b1X + e for t Z talg, (10)

where b1 is the slope and e is identical independent Gaussian
noise with zero mean and a variance of se

2. Note since VACF- 0
when X - 0 (t - N), the above linear regression model
assumes a zero intercept. The task herein is to determine talg
and b1 via regression from the VACF data. The talg and b1
sought can be used to predict the VACF from eqn (10) beyond
the dataset. Here, we require the standard deviation of
the predicted VACF at tcut to be less than a preset tolerance,
i.e., s(VACF(tcut)) r zAD, where zAD is the preset tolerance.
(Recall tcut is the time scale defined such that |VACF(t)/
VACF(0)| r 10�3 for t 4 tcut.) We denote the latest time of
the VACF dataset as ttest. For clarity, the different time scales are
indicated in Fig. 3.

The variance of the noise e in eqn (10) is first estimated from
G1 training data points by

ŝe2 ¼
XG1

i¼1

ðYi � Ŷ iÞ2=ðG1 � 2Þ

¼
XG1

i¼1

ðYi � b̂1XiÞ2=ðG1 � 2Þ; (11)

where b̂1 can be estimated by

b̂1 ¼

PG1

i¼1

XiYi

PG1

i¼1

Xi
2

: (12)

In eqn (11) and (12), �̂ is used to denote the estimated values
from the training data: {ti,VACF(ti)} with i = 1, 2,. . ., G1 and
ti = ttest � (i � 1)Dt. Here, the size (G1) of the dataset is
determined from a theoretical argument: the standard deviation
ŝe calculated by eqn (11) from G1 data has the desired prob-
ability of falling into the preset interval around the true stan-
dard deviation se.

51,52 Thereby, for ŝe having 95% probability to
fall into [(1 � 0.15)se, (1 + 0.15)se], G1 = 87.

Given the estimated b̂1, we can forecast the VACF at any
future time using eqn (10) and determine tcut such that
|V̂ACF(t)/VACF(0)| r 10�3 for t 4 tcut. The standard deviation
of VACF(tcut) depends on: (1) how faithfully the data follow
algebraic decay, i.e., the model in eqn (10); and (2) whether
there are sufficient training data for regression. Thus, by assuming
that the VACF data follow algebraic decay and evaluating the
standard deviation of VACF(tcut), we first examine whether the
training data are sufficient for desired regression accuracy. To this
end, the standard deviation of VACF(tcut) can be estimated from:

s½VACFðtcutÞ� ¼ ŝe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

G
1þ ðXcut � �XÞ2

VarðXÞ

� 	s
; (13)

where G is the number of training data points; and Xcut ¼ tcut
�3
2.

Here, %X and Var(X) are the mean and variance of X in the
training data, respectively, which can be estimated via the Delta
method53 considering that the discrete t are equidistant, as:

�X � gð�tÞ ¼ g ttest �
G� 1

2
Dt

� �
and VarðXÞ � VarðtÞ dgð�tÞ

dt

� 	2
¼

1

12
Dt2ðG� 1ÞðGþ 1Þ dgð�tÞ

dt

� 	2
. Requiring s[VACF(tcut)] o zAD,

the number of training data points (G) required can be inversely
solved from eqn (13). In this work, the tolerance is set as
zAD = 10�4. Note that G must be no less than G1. The latter
has been used to estimate ŝe

2 (the variance of the noise e) in
eqn (11). Thus, G = max{G, G1}.

Fig. 3 Schematic diagram of different time scales in VACF(t).
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After determining G, we finally evaluate the standard deviation
of VACF(tcut) from the training data {ti,VACF(ti)} with ti = ttest �
(i � 1)Dt, i = 1, 2,. . ., G, as:

s½VACFðtcutÞ� ¼ ŝe;G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

G
þ

Xcut �
1

G

PG
i¼1

Xi

� �2

PG
i¼1

ðXi � �XÞ2

vuuuuuut ; (14)

where ŝe,G is calculated from eqn (11) from G training data points.
If such an evaluated s[VACF(tcut)] satisfies s[VACF(tcut)] r zAD, it
indicates that the VACF data used for training follow algebraic
decay. Hence, talg = ttest � (G� 1)Dt characterizes the emergence
of algebraic decay; and the VACF for t4 ttest can be predicted by
eqn (10). If s[VACF(tcut)] 4 zAD, it implies that the VACF up to
ttest has not displayed algebraic decay, and, hence, more data of
the VACF for t 4 ttest need to be generated and examined using
the liner regression method. This process is iteratively repeated
until s[VACF(tcut)] r zAD is satisfied. To determine the new ttest
for the next iteration, we propose the following formula:

ttest ¼ ttest þ 1� sX2

ŝe;G2

� �
GDt; (15)

where sX ¼ zAD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

G
þ

Xcut �
1

G

PG
i¼1

Xi

� �2

PG
i¼1

ðXi � �XÞ2

vuuuuuut . This formula

assumes that the VACF data newly generated follow algebraic
decay without noise, and hence provides the most conservative
estimation of the next ttest.

The proposed active learning method to determine talg in the
VACF is summarized in Algorithm 3.

Algorithm 3 Active learning of algebraic decay in the VACF
Initialize ttest = tshort and determine G1

do
Estimate ŝe by eqn (11) from G1 training data points
Estimate b̂1 by eqn (12) from G1 training data points and
determine tcut
Determine G from eqn (13) by requiring s[VACF(tcut)] r zAD
and take G = max{G, G1}
Compute b̂1 by eqn (12) and s[VACF(tcut)] by eqn (14) from G

training data points
if s[VACF(tcut)] r zAD then
End loop
else
Generate more VACF data until new ttest determined by

eqn (15)
end if
while (s[VACF(tcut)]) 4 zAD
Output talg = ttest � (G � 1)Dt
Predict VACF(t 4 ttest) by eqn (10)

If the determined talg o tcut, the method to infer the memory
kernel is revised as follows. K(t r ttest) is inferred via the
two-stage Bayesian optimization described in Section 3.2.1.
Note the inference herein is up to ttest instead of talg, con-
sidering the error in K(t) (within zBO) introduced by Bayesian
optimization. The memory kernel after talg follows algebraic

decay: Kðt 	 talgÞ ¼ b1
0
t�

3
2. Using the data of K(talg r tr ttest) as

training data, b10 is determined via regression as:

b1 ¼

PG0

i¼1

t
�3
2

i KðtiÞ

PG0

i¼1

ti�3

, where ti = talg+ (i � 1)Dt, i = 1, 2,. . ., G. Such

an obtained K(t) up to tcut is then approximated by eqn (7)
truncated to N terms by fitting.

3.3 Extended dynamics

Approximating the memory kernel by a finite set of exponentially
damped oscillators as in eqn (7) would allow one to replace the
non-Markovian dynamic equation (eqn (2)) with a Markovian
dynamics extended in higher dimensions. By doing so, the
expensive cost of solving the GLE can be significantly reduced,
as has been evidenced in the literature.23,28,54 To this end, eqn (7)
is rewritten in a matrix form as:

K(t) = �Apse
�tAssAsp, (16)

where Aps = �AT
sp. If we define the parameter matrix A = [0, Aps;

Asp, Ass], it can be assembled from the parameters in eqn (7) by:

Al ¼

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bl

2
� qlcl

al

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bl

2
þ qlcl

al

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bl

2
� qlcl

al

r
al

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ql2 þ al2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bl

2
þ qlcl

al

r
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ql2 þ al2

p
0

2
6666666664

3
7777777775
: (17)

In eqn (17), the top right block contributes to Aps; the bottom
left contributes to Asp; and the 2 � 2 block on the bottom right
constitutes Ass, which is a block diagonal matrix consisting of
2 � 2 blocks.

Given eqn (16) and by introducing auxiliary variables s, the
extended Markovian dynamics is given by:

_P

_s

 !
¼

hFi

0

 !
�

0 Aps

Asp Ass

 !
M�1P

s

 !
þ

0 0

0 Bs

 !
0

n

 !
:

(18)

Here, n is a vector of uncorrelated Gaussian random variables
with hn(t)i = 0 and hxI,m(t)xJ,n(0)i = dIJdmnd(t), where xn and xm
denote the different elements of n. To satisfy the second
fluctuation–dissipation theorem,39 BsB

T
s = kBT(Ass + AT

ss). We
can write the parameter matrix B = diag(0,Bs). To ensure A and
B are both real number matrices, the parameters in eqn (7)

need to satisfy: al Z 0, bl Z 0 and jcl j �
albl

2ql
.
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Assuming that the memory kernel can be approximated by
eqn (16), the extended dynamics in eqn (18) is equivalent to the
GLE in eqn (2)54 with the random force

~FðtÞ ¼ �
ðt
0

Apse
�ðt�t 0ÞAssBsnðt 0Þdt 0: (19)

In the present work, the implicit velocity-Verlet temporal integrator55

was used to numerically solve eqn (18) in the CG simulations.

4 Results

The proposed CG modeling was assessed on a benchmark star-
polymer solution system. In solutions, the structural and
dynamic properties of star polymers depend on their concentra-
tions. Therefore, to demonstrate the robustness of the proposed
CG modeling approach, we considered the benchmark solution
system at different concentrations. In the CG model, each star
polymer is coarse-grained as a single CG particle; and the solvent
DOFs are eliminated. The CG potential and memory kernel in the
GLE (eqn (2)) were constructed following the methodology
described in Section 3. The dynamics of the CG system is
governed by eqn (18). We denote the CG model with the CG
potential determined by the IBI method as ‘‘CG1’’ and the CG
model using the DNN method to construct the CG potential as
‘‘CG2’’. We examined the accuracy and computational efficiency
of the CG models in reproducing both structural and dynamic
properties of the reference atomistic system. The structural
properties include the RDF characterizing two-body correlations
of star polymers, the angular distribution function (ADF) char-
acterizing three-body correlations, and also the averaged local
Steinhardt parameters %q4 and %q6, which characterize the many-
body correlations.56,57 The CG potential determines the structural
properties of the CG system. The dynamic properties include the
VACF and diffusion coefficient as functions of time. The memory
kernel along with the CG potential determines the dynamics of
the CG system. The simulations were performed using LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator).58

4.1 Atomistic system

The atomistic system of the star-polymer solution consists of
Lennard-Jones (LJ) beads. More specifically, each star polymer
consists of a core LJ bead and 10 identical arms with 3 LJ beads
per arm, as illustrated in Fig. 4. The core LJ bead and the LJ
beads in each arm are connected by finitely extensible non-
linear elastic (FENE) bonds. The solvent is also modeled by LJ
beads identical to those in star polymers.

Three concentrations were considered in this work, as
summarized in Table 1. The concentration is defined as the
percentage-wise fraction of the LJ beads in star polymers vs. the
total LJ beads in the polymer solution.

The dynamics of the atomistic system is governed by the
Hamiltonian:

H ¼
Xn
i¼1

pi
2

2mi
þ
X
iaj

EðrijÞ; (20)

where rij = |rij| = |ri � rj| is the distance between two LJ beads;
and E denotes the total potential energy contributed by the
inter-atomic and bonded potentials. The inter-atomic LJ
potential adopts the purely repulsive Weeks–Chandler–Ander-
sen (WCA) potential and is given by:

EWCAðrÞ ¼
4e

s
r

� �12
� s

r

� �6
þ1

4

� 	
r � rc

1 r4 rc

8><
>: ; (21)

where rc = 21/6s is the cutoff distance. The bonded interaction
between connected LJ beads in star polymers is modeled as a
spring with a FENE potential, i.e.,

EFENEðrÞ ¼
�1

2
kr0

2 ln 1� r

r0

� �2
" #

r � r0

1 r4 r0

8>><
>>: ; (22)

where k = 30e/s2 is the spring constant, and r0 = 1.5s is the
maximum length of the FENE spring. In sum, we have:

E(rij) = EWCA(rij) + EFENE(rij). (23)

The data of the atomistic systems were generated from MD
simulations, which were performed in the canonical ensemble
(NVT) using the Nosé–Hoover thermostat with kBT = 1.0 and a
time step Dt = 0.001t. All the results in the present paper are
expressed in the reduced LJ unit; i.e., the mass, length, energy,
and time units are set as: m = 1, s = 1, e = 1, and t = s(m/e)0.5 = 1.
To obtain accurate ensemble averages from the noisy data of
MD simulations, 10 independent simulations with different
random seeds were conducted for each system. In each simulation,
the data after reaching thermal equilibrium were collected for
computing the ensemble-averaged quantities of interest. A periodic
cubic box of length 57.8647s was used in all MD simulations. This
size was chosen to be large enough such that the finite size effect on
the VACF can be neglected.

Fig. 4 Atomistic model of a star polymer consisting of 31 LJ beads: one
core and 10 arms with 3 beads per arm.

Table 1 Atomistic systems with different concentrations

System
Number of
star polymers

Number of
solvent beads

Concentration
(%)

Mole
fraction (%)

Melt 2500 0 100.0 100.0
Dense 2000 15 500 80.0 11.4
Dilute 1000 46 500 40.0 2.1
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4.2 Melt

We first considered a melt system of star polymers, where there
is no solvent. Each star polymer is coarse-grained as a CG
particle. The CG system consists of 2500 CG particles. To
construct the CG potential, a cutoff radius Rcut = 6.4 was
employed in both the IBI and DNN methods, which is at the
first valley of the RDF. In the DNN method, one hidden layer
with 10 nodes was used to build the DNN model of the CG
potential. From the VACF data generated in the MD simulation,
we determined tcut = 18.5, and tcut o talg. Thus, we inferred the
entire memory kernel K(t) (up to tcut) from the VACF data by
employing the two-stage Bayesian optimization as described in
Section 3.2.1 with N1 = 3, N2 = 3, and tshort = 2.8. Thereby, the
inferred K(t) was represented by N = N1 + N2 = 6 terms of
exponentially damped oscillators with optimized parameters
k�. From k�, the matrices A and B in Section 3.3 were
assembled. With the extended dynamics fully determined, the
CG simulation numerically solved eqn (18) and computed the
quantities that characterize the structural and dynamic proper-
ties of the CG system. The predictions of the CG simulation
were compared with the MD simulation results.

4.2.1 Structural properties. The results on the structural
properties are presented in Fig. 5–7. By comparison with the
MD simulation results, we find that the CG model constructed
can accurately reproduce all the structural properties. Since the
structural properties of the CG system are determined by the

CG potential, the results demonstrate the performance of the
DNN and IBI methods employed for constructing the CG
potential. From the results on the averaged local Steinhardt
parameters %q4 and %q6, we find that the DNN method (in CG2)
slightly outperforms the IBI method (in CG1) for reproducing
the many-body correlations, which is due to the fact that the
DNNmethod does not assume a pairwise potential but accounts
for generally many-body contributions to the CG potential.

4.2.2 Dynamic properties. The memory kernel K(t) inferred
by employing the two-stage Bayesian optimization is plotted in
Fig. 8. Since the CG potentials constructed by the IBI and DNN
methods are not identical, the memory kernels in the two CG
models are not the same. The VACF and diffusion coefficient
D(t) predicted by the CG simulation beyond tcut are depicted in
Fig. 9. By comparison with the MD simulation results, only a
small discrepancy in the VACF’s long tail is detected, which is
less than 10�3 � |VACF(0)|. The overall good agreement
demonstrates the accuracy of the constructed CG model in

Fig. 5 RDF of star polymers in the melt predicted by the CG models and
compared with the MD simulation result.

Fig. 6 ADF of star polymers in the melt predicted by the CG models and
compared with the MD simulation results. Here, the ADF was computed at
two different positions: (a) R = 4.5 at the first peak of the RDF and
(b) R = 6.4 at the first valley of the RDF.

Fig. 7 Probability distributions of the averaged local Steinhardt para-
meters %q4 and %q6 of star polymers in the melt predicted by the CG models
and compared with the MD simulation results.

Fig. 8 Memory kernel inferred for star polymers in the melt: (a) short-
time K(t) on a linear scale and (b) long-time |K(t)| on a logarithmic scale.
Here, tshort = 2.8.
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reproducing the dynamic properties of the reference atomistic
system. In this regard, the CG models with the CG potential
constructed by the IBI or DNNmethod do not show a significant
difference.

We note that Li et al.23 also developed CGmodeling for melts
of star polymers. Twomethods were compared in their work. One
was based on the GLE and extended dynamics, similar to this
work. However, the VACF and diffusion coefficient were not
reproduced so accurately as in this work. The other method
assumed pairwise interactions in the non-Markovian dynamics,
which could reproduce the VACF and diffusion coefficient of the
reference atomistic system with the same accuracy as in the
present work. However, that method has two issues: (1) it
requires one to evaluate all pairwise dissipative and random
interactions (within the cutoff) for each CG particle, which is
more costly than directly evaluating the total dissipative and
random forces on each CG particle; and (2) its pairwise assumption
cannot capture the many-body effect on the dynamics of
polymers arising from solvent and hence is not applicable to
polymers in solution.

4.3 Dense solution

We next studied a dense solution of star polymers. The atomistic
system consists of 2000 star polymers and 15500 solvent beads.
In CG modeling, each star polymer is coarse-grained as a CG
particle, and the solvent DOFs are eliminated. Hence, the CG
system consists of 2000 CG particles. The cutoff radius
Rcut = 6.8 (at the first valley of the RDF) was employed in both
methods for constructing the CG potential. In the DNN method,
two hidden layers with 20 and 10 nodes, respectively (from the
input end to the output end), were used to build the DNNmodel
of the CG potential. From the VACF data generated in the MD
simulation, we determined tcut = 10.2, and tcut o talg. Thus, we
inferred the entire memory kernel K(t) (up to tcut) from the VACF
data by employing the two-stage Bayesian optimization with

N1 = 3, N2 = 3, and tshort = 3.0. Thereby, the inferred K(t) was
represented byN =N1 +N2 = 6 terms of exponentially damped
oscillators with optimized parameters k�. With the CG potential
and memory kernel determined, the CG simulation solving
the extended dynamics predicted the structural and dynamic
properties of the CG system. The predictions of the CG simulation
were compared with the MD simulation results.

4.3.1 Structural properties. The results of both the CG and
MD simulations on the structural properties are presented in
Fig. 10–12. We find that the CG models constructed can
accurately reproduce all the structural properties of the reference
atomistic system. The performances of the IBI and DNNmethods
in correctly constructing the CG potential are comparable. The
results on the averaged local Steinhardt parameters, especially %q4,
indicate that the DNN method outperforms the IBI method in
reproducing the many-body correlations.

4.3.2 Dynamic properties. The memory kernel K(t) inferred
by employing the two-stage Bayesian optimization is plotted in
Fig. 13.

The VACF and diffusion coefficient D(t) predicted by the CG
simulation (beyond tcut) are depicted in Fig. 14. By comparison
with the MD simulation results, only a small discrepancy in the
VACF’s long tail (beyond tcut) is noticed, which is less than
10�3 � |VACF(0)|. The overall good agreement demonstrates
the accuracy of the constructed CG models in reproducing the
dynamic properties of the reference atomistic system. In this

Fig. 9 Dynamic properties of star polymers in the melt: the absolute value
of the VACF (on a logarithmic scale) and diffusion coefficient D(t) predicted
by the CG models and compared with the MD simulation results. Here,
tshort = 2.8 and tcut = 18.5.

Fig. 10 RDF of star polymers in the dense solution predicted by the CG
models and compared with the MD simulation result.

Fig. 11 ADF of star polymers in the dense solution predicted by the CG
models and compared with the MD simulation results. Here, the ADF was
computed at two different positions: (a) R = 4.7 at the first peak of the RDF
and (b) R = 6.8 at the first valley of the RDF.
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regard, the CG models with the CG potential determined by the
IBI or DNN method do not exhibit a significant difference.

4.4 Dilute solution

Finally, we examined a dilute solution of star polymers. The
atomistic system consists of 1000 star polymers and 46 500
solvent beads. The CG system consists of 1000 CG particles. The
cutoff radius Rcut = 7.4 (at the first valley of the RDF) was
employed in both methods for constructing the CG potential.
In the DNN method, 3 hidden layers with 40, 20 and 10 nodes,
respectively (from the input end to the output end), were used
to build the DNN model of the CG potential. Following the
method described in Section 3.2.2, we determined talg = 6.3 and
tcut = 93.7 from the VACF data generated in the MD simulation.
Since talg o tcut, the memory kernel K(t r ttest) was inferred
using the two-stage Bayesian optimization withN1 = 3,N2 = 3,
tshort = 3.8, and ttest = 7.2. The memory kernel after talg followed

algebraic decay: Kðt 	 talgÞ ¼ b1
0
t�

3
2 with b10 determined from

the data of K(talg r t r ttest) via regression. The entire memory
kernel K(t r tcut) was then fitted by eqn (7) truncated to N = 7
terms in the CG1 model and N = 8 terms in the CG2 model.
The fitting parameters k were then used to assemble the
matrices A and B for the extended dynamics in Section 3.3.
The CG simulations solving the extended dynamics predicted
the structural and dynamic properties of the CG system. The
predictions of the CG simulations were compared with the MD
simulation results.

4.4.1 Structural properties. The results of both the CG and
MD simulations on the structural properties are presented in
Fig. 15–17. The CG models constructed can accurately repro-
duce all the structural properties of the reference atomistic
system. The overall performances of the IBI and DNN methods
in correctly constructing the CG potential are comparable.
However, the DNN method (in CG2) is superior to the IBI
method (in CG1) in reproducing the many-body correlations,
which is indicated by the results on the averaged local Steinhardt
parameters %q4 and %q6 in Fig. 17.

4.4.2 Dynamic properties. The VACF of star polymers in
the dilute solution displayed a very slowly decaying VACF, see
Fig. 18. The finite-size effect of the periodic box in the MD
simulations can cause spurious oscillations in the long tail of

Fig. 12 Probability distributions of the averaged local Steinhardt para-
meters %q4 and %q6 of star polymers in the dense solution predicted by the
CG models and compared with the MD simulation results.

Fig. 13 Memory kernel inferred for star polymers in the dense solution:
(a) short-time K(t) on a linear scale and (b) long-time |K(t)| on a logarithmic
scale. Here, tshort = 3.0.

Fig. 14 Dynamic properties of star polymers in the dense solution:
the absolute value of the VACF (on a logarithmic scale) and diffusion
coefficient D(t) predicted by the CG models and compared with the MD
simulation results. Here, tshort = 3.0 and tcut = 10.2.

Fig. 15 RDF of star polymers in the dilute solution predicted by the CG
models and compared with the MD simulation result.
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the slow-decaying VACF, which in turn may affect accurately
detecting the hydrodynamic scaling behavior (algebraic decay
with time) of the VACF. Thus, we enlarged the periodic cubic
box used in the MD simulation by two times but kept the same
concentration of star polymers. The resulting length of the
periodic box is 115.7295s, which was filled with 8000 star
polymers and 372 000 solvent beads. From the VACF data of
this larger atomistic system, employing the method described
in Section 3.2.2 resulted in the same talg, which confirmed the
accuracy of the determined talg. The comparison of the VACF is
depicted in Fig. 18, which also indicates that the long-time
VACF (of the larger atomistic system) without spurious oscillations
consistently follows the theoretical prediction of algebraic decay.

The memory kernel K(t) inferred using the method described
in Section 3.2.2 is presented in Fig. 19. The VACF and diffusion
coefficient D(t) predicted by the CG simulations are shown in
Fig. 20. Those results are compared with the MD simulation results
for tr talg and comparedwith the theoretical prediction of algebraic

Fig. 16 ADF of star polymers in the dilute solution predicted by the CG
models and compared with the MD simulation results. Here, the ADF was
computed at two different positions: (a) R = 5.2 at the first peak of the RDF
and (b) R = 7.4 at the first valley of the RDF.

Fig. 17 Probability distributions of the averaged local Steinhardt para-
meters %q4 and %q6 of star polymers in the dilute solution predicted by the
CG models and compared with the MD simulation results.

Fig. 18 Comparison of the VACFs of the original atomistic system and a

two-times larger system of star polymers in dilute solution. The slope �3

2
(green dash dot line) is drawn for reference.

Fig. 19 Memory kernel inferred for star polymers in the dilute solution:
(a) short-time K(t) on a linear scale and (b) long-time |K(t)| on a logarithmic
scale. Here, tshort = 3.8 and talg = 6.3.

Fig. 20 Dynamic properties of star polymers in the dilute solution: the
VACF (on a logarithmic scale) and diffusion coefficient D(t) predicted
by the CG models and compared with the MD simulation results for
t r talg and the theoretical prediction of algebraic decay for t 4 talg. Here,
tshort = 3.8, talg = 6.3 and tcut = 93.7.
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decay for t 4 talg. Good agreement is achieved for either CG model
(with the CG potential constructed by the IBI or DNN method).

4.5 Computational efficiency of CG simulations

In this section, we assess the cost of CG simulations vs. the
reference atomistic simulations. For comparison, each simula-
tion was conducted for 103t via serial computing on an Intel
Core i5-6500 CPU@3.20 GHz. The computer time spent in each
simulation is summarized in Table 2. Note that the computer
time reported herein for the CG simulations does not include
the time used to construct the CG models. Owing to the larger
time step permitted and fewer total DOFs in the CG simulations,
we anticipate that the CG simulations are more efficient than the
reference atomistic simulations. Hence, in Table 2, we further
evaluated the speedup factors of the CG simulations.

5 Conclusion

We have presented a data-driven CG modeling approach for
polymers in solution, which can reproduce the dynamic as well
as structural properties of the reference atomistic system. The CG
modeling is built upon the framework of the GLE. The non-
Markovianmemory kernel is inferred from the atomistic simulation
data of the VACF via two-stage GP-based Bayesian optimization. The
uncertainty level determined from the GP enables the optimization
to balance exploration against exploitation, leading to adaptive
sampling of data with information gain maximized. Consider-
ing that the long-time behaviors of the VACF and memory
kernel for polymer solutions can exhibit hydrodynamic scaling
(algebraic decay with time), we have proposed an active learning
method to ‘‘on-the-fly’’ determine the emergence of hydro-
dynamic scaling while the atomistic simulations are generating
the data of the VACF. In addition, we have compared the DNN
and IBI methods for constructing the CG potential. With the
memory kernel and CG potential determined, the GLE is
mapped onto an extended Markovian process to circumvent
the expensive cost of directly solving the GLE. We have assessed
the accuracy and computational efficiency of the proposed CG
modeling in a benchmark polymer solution system at three
representative concentrations.

By comparing with the atomistic simulation results, we have
demonstrated that the proposed CG modeling can robustly and

accurately reproduce both the structural and dynamic properties
of polymers, regardless of the solution concentrations. Moreover,
the CG simulations have fewer total DOFs, permit larger time
steps, and thereby are much more efficient than the reference
atomistic simulations. Employing the DNN or IBI method for
constructing the CG potential does not affect the effectiveness of
the proposed two-stage Bayesian optimization for inference of
the memory kernel and reproducing the dynamic properties.
However, we have found that the DNN method outperforms the
IBI method in reproducing many-body structural correlations
characterized by the averaged local Steinhardt parameters. As
the concentration of the polymer solution decreases, the
solvent-mediated many-body effect becomes more pronounced,
and hence the CG potential becomes more complex and non-
linear, which is reflected by more layers and nodes required in
the DNN representation of the CG potential. In spite of superior
accuracy, the CG simulation with the DNN model of the CG
potential is significantly slower than the CG simulation with the
IBI-determined potential. The dominant cost of calling the DNN
model in CG simulations stems from assembly of the descriptor
matrix DI as the input of the DNN. Future efforts aiming to
reduce this cost would be worthwhile. Another avenue for future
work would be to explore how the DNN’s representation of the
many-body potential can sensibly be decomposed into a sum of
two-body, three-body, four-body, . . . contributions. This effort
may shed light on how important the many-body interactions
are, and how they can be represented such that potentially more
efficient CG simulation schemes could be constructed.

Although a model system of star polymers was chosen to
assess the accuracy and computational efficiency of the proposed
CG modeling, the two-stage GP-based Bayesian optimization for
inference of the memory kernel and the active learning method to
determine the emergence of hydrodynamic scaling in the VACF are
anticipated to be applicable to general polymer solution systems.
We note that there may be cases that require more than 10 terms
truncated in eqn (7) to approximate the entire memory kernel, for
whichmore than 40 parameters need to be optimized in the second
stage of Bayesian optimization. For those cases, the second stage of
Bayesian optimization can be expensive since the cost increases
exponentially with the dimension of parameters. To tackle this
issue, we could potentially employ the feature space-based
Bayesian optimization,59–61 which can effectively reduce the
dimensionality of the optimization problem by embedding the
high dimensional parameters k 2 R4N onto a low-dimensional

feature space l0 2 Rd , where d { 4N. By jointly learning
(i) the feature mapping: k ! l0, (ii) the reconstruction map-
ping: l0 ! k, and (iii) the GP model for P l0ð Þ, the acquisition
function LCB l0ð Þ can be optimized in the low-dimensional
feature space, thereby effectively reducing the cost of Bayesian
optimization for high-dimensional cases. The study in this
regard will be in our future work.
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Table 2 Comparison of the computational cost of CG simulations vs.
reference MD simulations

System Simulation Dt (t) Cost (s) Speedup factor

Melt MD 0.001 6271 —
CG1 0.1 59 106.3
CG2 0.1 181 34.6

Dense solution MD 0.001 6117 —
CG1 0.1 47 130.1
CG2 0.1 175 35.0

Dilute solution MD 0.001 5485 —
CG1 0.1 29 189.1
CG2 0.1 88 62.3
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