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compare prototype FPGA-based hardware with established ASIC architectures. The Chick currently supports
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1 INTRODUCTION

Analyzing data stored in irregular data structures such as graphs and sparse matrices is chal-
lenging for traditional architectures due to limited data locality in associated algorithms and per-
formance costs related to data movement. The Emu architecture [22] is designed specifically to
address these data movement costs in a power-efficient hardware environment by using a cache-
less system built around “nodelets” (see Figure 1) that execute lightweight threads. These threads
migrate on remote data reads rather than pulling data through a traditional cache hierarchy. The
key differentiators for the Emu architecture are the use of cacheless processing cores, a high-radix
network connecting distributed memory, and PGAS-based data placement and accesses. In short,
the Emu architecture is designed to scale applications with poor data locality to supercomputing
scale by more effectively utilizing available memory bandwidth and by dedicating limited power
resources to networks and data movement rather than caches.

Previous work has investigated the initial Emu architecture design [22], algorithmic designs
for merge and radix sorts on the Emu hardware [50], and baseline performance characteristics
of the Emu Chick hardware [11, 73]. This investigation is focused on determining how irregular
algorithms perform on the prototype Chick hardware and how we implement specific algorithms
so that they can scale to a rack-scale Emu and beyond.

This study’s specific demonstrations include:

o The first characterization of the Emu Chick hardware using irregular algorithms, including
sparse matrix vector multiply (SpMV), graph analytics (BFS), and graph alignment. We also
discuss programming strategies for the Emu such as replication (SpMV), remote writes to
reduce migration (BFS), and data layout to reduce workload imbalance (graph alignment)
that can be used to increase parallel performance on the Emu.

e Multi-node Emu results for BFS scaling up to 80 MTEPS and 1.28 GB/s on a balanced graph
as well as an initial comparison of Emu-optimized code versus a naive Cilk implementation
on x86.

e Multi-node results for SpMV scaling up to 50% of measured peak bandwidth on the the Emu.

e Graph alignment results showing a 68x speedup when scaling from 1 to 256 threads on
8 nodelets with optimized data layout and comparison strategies.

Achieving these results produced a series of observations on programming the Emu platform.
These observations, detailed in Section 6, can guide the Emu and future migratory thread systems.

2 THE EMU ARCHITECTURE

The Emu architecture focuses on improved random-access bandwidth scalability by migrating
lightweight Gossamer threads, or “threadlets,” to data and emphasizing fine-grained memory ac-
cess. A general Emu system consists of the following processing elements, as illustrated in Figure 1:

e A common stationary processor runs the OS (Linux) and manages storage and network
devices.

e Nodelets combine narrowly banked memory with highly multi-threaded, cacheless Gos-
samer cores to provide a memory-centric environment for migrating threads.

These elements are combined into nodes that are connected by a RapidIO fabric. The current gen-
eration of Emu systems include one stationary processor for each of the eight nodelets contained
within a node. System-level storage is provided by SSDs. We talk more specifically about some of
the prototype limitations of our Emu Chick in Section 4. More detailed descriptions of the Emu
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Fig. 1. Emu architecture: The system consists of stationary processors for running the operating system and
up to four Gossamer processors per nodelet tightly coupled to memory. The cacheless Gossamer processing
cores are multi-threaded to both source sufficient memory references and also provide sufficient work with
many outstanding references. The coupled memory’s narrow interface ensures high utilization for accesses
smaller than typical cache lines.

~—

architecture are available [22], but this is a point in time description of the current implementation
and its tradeoffs.

For programmers, the Gossamer cores are transparent accelerators. The compiler infrastruc-
ture compiles the parallelized code for the Gossamer ISA, and the runtime infrastructure launches
threads on the nodelets. Currently, one programs the Emu platform using Cilk [43], providing a
path to running on the Emu for OpenMP programs whose translations to Cilk are straightfor-
ward. The current compiler supports the expression of task or fork-join parallelism through Cilk’s
cilk_spawn and cilk_sync constructs, with a future Cilk Plus (Cilk+) software release in progress
that would include cilk_for (the nearly direct analogue of OpenMP’s parallel for) as well as
Cilk+ reducer objects. Many existing C and C++ OpenMP codes can translate almost directly to
Cilk+.

A launched Gossamer thread only performs local reads. Any remote read triggers a migration,
which will transfer the context of the reading thread to a processor local to the memory channel
containing the data. Experience on high-latency thread migration systems like Charm++ identifies
migration overhead as a critical factor even in highly regular scientific codes [1]. The Emu system
minimizes thread migration overhead by limiting the size of a thread context, implementing the
transfer efficiently in hardware, and integrating migration throughout the architecture. In particu-
lar, a Gossamer thread consists of 16 general-purpose registers, a program counter, a stack counter,
and status information, for a total size of less than 200 bytes. The compiled executable is replicated
across the cores to ensure that instruction access always is local. Limiting thread context size also
reduces the cost of spawning new threads for dynamic data analysis workloads. Operating system
requests are forwarded to the stationary control processors through the service queue.

The highly multi-threaded Gossamer cores read only local memory and do not have caches,
avoiding cache coherency traffic. Additionally, “memory-side processors” provide atomic read or
write operations that can be used to access small amounts of data without triggering unnecessary
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Fig. 2. Distributed memory layouts for CSR SpMV (from [73]).

thread migrations. A node’s memory size is relatively large with standard DDR4 chips (64 GiB)
but with multiple, Narrow-Channel DRAM (NCDRAM) memory channels (8 channels with 8-bit
interfaces to the host using FIFO ordering). Each DIMM has a page size of 512 B and a row size
of 1,024. The smaller bus means that each channel of NCDRAM has only 2GB/s of bandwidth, but
the system makes up for this by having many more independent channels. Because of this, it can
sustain more simultaneous fine-grained accesses than a traditional system with fewer channels
and the same peak memory bandwidth.

3 ALGORITHMS

We investigate programming strategies for three algorithms: (1) the standard (CSR) sparse ma-
trix vector multiplication operation, (2) Graph500’s breadth-first search (BFS) benchmark, and
(3) graph alignment, computing a potential partial mapping of the vertices of two graphs. These
three algorithms cover a variety of sparse, irregular computations: the ubiquitous sparse matrix
vector multiplication, filtered sparse matrix sparse vector multiplication (in BFS), and a variant of
the sparse matrix—sparse matrix multiplication (in computing the similarities of vertices). In the
following subsections we discuss how we implement these algorithms on the Emu platform.

3.1 Sparse Matrix Vector Multiply (SpMV):

This algorithm computes the product of a sparse matrix A and a column vector X. Each element
of the resulting column vector Y is computed as the dot product of X with a single row of A. The
matrix A is stored in distributed memory using a compressed sparse row (CSR) layout consisting
of three arrays: row offsets, column indices, and values. The row offset array is striped across all
nodelets and encodes the length of each row. Every row’s non-zero entries and column indices are
allocated together and are present in the same nodelet giving rise to the jagged arrays col and V
shown in Figure 2. X is replicated across each nodelet and the output Y is striped across all nodelets.

The one-dimensional (1D) layout in Figure 2 stripes each array across the nodelets individually.
The 2D layout stripes blocks of rows across nodelets but places the row data, adjacent columns,
and values on the same nodelet (see Reference [73] for details). In the 2D allocation case, no thread
migrations occur when accessing elements in the same row.

A 1D striped layout incurs a migration for every element within a row to fetch the vector entry.
The 2D layout is equivalent to that used in Reference [59], but we consider the impact of replicating
data across the Chick.

Synthetic Laplacian matrix inputs are created corresponding to a d-dimensional k-point stencil
on a grid of length n in each dimension. For the tested synthetic matrices, d = 2 and k = 5, resulting
in a n? X n? Laplacian with five diagonals. The Laplacian consists of the main diagonal, the first
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Table 1. Notations Used in BFS

Symbol Description
V' Vertex set
Q  Queue of vertices
P Parent array
nP  New parent array
Neig(v) Neighbor vertices of v

super and subdiagonals, and the nth super and subdiagonals. The upper and lower bandwidths of
the synthetic matrices are n. The tested real-world matrices are listed in Table 3.

3.2 Graph Analytics (Breadth-first Search for Graph500)

A breadth-first search (BFS) begins at a single vertex of a graph. It explores all the neighbors of that
vertex, then explores all the neighbors-of-neighbors, and continues in this fashion until all vertices
connected to the initial vertex have been explored. Table 1 defines the notation used to refer to
BFS data structures. Our in-memory graph layout is inspired by STINGER [23] so that computation
can adapt to a changing environment [71]. Each vertex contains a pointer to a linked-list of edge
blocks, each of which stores a fixed number of adjacent vertex IDs and a pointer to the next edge
block. We use a striped array of pointers to distribute the vertex array across all nodelets in the
system, such that vertex 0 is on nodelet 0, vertex 1 is on nodelet 1, and so on. We use STINGER
rather than CSR to enable future work with streaming data and incremental algorithms [34], one
of the primary targets of the Emu architecture. Note that breadth-first search is nearly equivalent
to computing a filtered sparse matrix times sparse vector product [35].

To avoid the overhead of generic runtime memory allocation via malloc, each nodelet pre-
allocates alocal pool of edge blocks. A vertex can claim edge blocks from any pool, but it is desirable
to string together edge blocks from the same pool to avoid thread migrations during edge list
traversal. When the local pool is exhausted, the edge block allocator automatically moves to the
pool on the next nodelet.

Kernel 1 of the Graph500 benchmark involves constructing a graph data structure from a list
of edges. In our implementation the list of edges is loaded from disk into memory on nodelet 0.
Currently I/O is limited on the prototype Emu Chick, and loading indirectly assists in evaluating
the rest of the architecture. We sort the list by the low bits of the source vertex ID to group together
edges that will be on the same nodelet and then spawn threads to scatter the list across all the
nodelets. Once the list has been scattered, each nodelet spawns more threads locally to insert each
edge into the graph, allocating edge blocks from the local pool.

Our initial implementation of BFS (Algorithm 1) was a direct port of the STINGER code. Each
vertex iterates through each of its neighbors and tries to set itself as the parent of that vertex using
an atomic compare-and-swap operation. If the operation is successful, then the neighbor vertex is
added to the queue to be explored along with the next frontier.

On Emu, the parent array is striped across nodelets in the same way as the vertex array. Each
nodelet contains a local queue so that threads can push vertices into the queue without migrating.
At the beginning of each frontier, threads are spawned at each nodelet to explore the local queues.
Thread migrations do occur whenever a thread attempts to claim a vertex that is located on a
remote nodelet. In the common case, a thread reads an edge, migrates to the nodelet that owns the
destination vertex, executes a compare-and-swap on the parent array, pushes into the local queue,
and then migrates back to read the next edge. If the destination vertex happens to be local, then
no migration will occur when processing that edge.
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ALGORITHM 1: BFS algorithm using migrating threads

P[v] « —1,forYo eV
Q.push(root)
while Q is not empty do
for s € Q do in parallel
for d € Neig(s) do in parallel
> Thread migrates reading P[d]
if P[d] = —1 then
L if compare_and_swap(P[d], -1, s) then

| Q.push(d)
| Q.slide_window()

ALGORITHM 2: BFS algorithm using remote writes

Pl[v] « -1, forYo eV

nP[v] « —1,forYo e V

Q.push(root)

while Q is not empty do

for s € Q do in parallel

for d € Neig(s) do in parallel

L > Thread issues remote write to nP[d]

B nP[d] « s

cilk_sync

for v € V do in parallel

if P[v] = —1 then

if nP[v] # —1 then

P[v] < nP[v]
Q.push(v)

| QO.slide_window()

An alternative BFS implementation (Algorithm 2) exploits the capability of the Emu system
to efficiently perform remote writes. A copy of the parent array (nP) holds intermediate state
during each frontier. Rather than migrating to the nodelet that contains the destination vertex, we
perform a remote write on the nP array. The remote write packet can travel through the network
and complete asynchronously while the thread that created it continues to traverse the edge list.
Remote writes attempting to claim the same vertex are serialized in the memory front end of the
remote nodelet. Rather than attempting to synchronize these writes, we simply allow later writes
to overwrite earlier ones. After all the remote writes have completed, we scan through the nParray
looking for vertices that did not have a parent at the beginning of this frontier (P[v] = —1) but were
assigned a parent in this iteration (nP[v] # —1). When such a vertex is found, it is added to the
local queue, and the new parent value nP[v] is copied into the parent array at P[v]. This is similar
to direction-optimizing BFS [9] and may be able to adopt its early termination optimizations.

3.3 GsANA: Parallel Similarity Computation

Integrating data from heterogeneous sources is often modeled as merging graphs. Given two or
more compatible, but not necessarily isomorphic graphs, the first step is to identify a graph align-
ment, where a potentially partial mapping of the vertices of the two graphs is computed. In this
work, we investigate the parallelization of GsaANA [68], which is a recent graph aligner that uses
the global structure of the graphs to significantly reduce the problem space and align large graphs
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Table 2. Notations Used in GSANA

Symbol Description
Vi,V Vertex sets
El, Ez Edge sets

QT1,QT, Quad-trees of the graphs

QT;.Neig(B) Neighboring buckets of B in QT;
o(u,v) Similarity score foru € Vi andv € V,
N(u) Adjacency listofu € V;
A(u) Vertex attribute of u € V;
RW(f(-)) Number of required memory Reads & Writes to execute given function, f(-)

with a minimal loss of information. The proposed techniques are highly flexible, and they can be
used to achieve higher recall while being orders of magnitude faster than the current state of the
art [68].

Briefly, GsaANA first reduces the problem space, then runs pairwise similarity computation be-
tween two graphs. Although the problem space can be reduced significantly, the pairwise similar-
ity computation step remains to be the most expensive part (more than 90% of the total execution
time). While GsANA has an embarrassingly parallelizable nature for similarity computations, its
parallelization is not straightforward. This is because GsANA’s similarity function is composed of
multiple components, with some only depending on graph structure and others depending also on
the additional metadata (types and attributes). All of these components compare vertices from two
graphs and/or their neighborhood. Hence, the similarity computation step has a highly irregular
data access pattern. To reduce this irregularity, we store the metadata of a vertex’s neighborhood in
sorted arrays. While arranging metadata helps to decrease irregularity, data access remains a prob-
lem because of the skewed nature of real-world graphs. Similarity computations require accessing
different portions of the graph simultaneously. In Reference [69] authors provide parallelization
strategies for different stages of GSANA. However, because of the differences in the architecture and
the parallelization framework, the earlier techniques cannot be applied to EMU Chick in a straight-
forward manner. Hence, in this work, we investigate two parallelization strategies for similarity
computations and also two graph layout strategies on Emu Chick.

GSANA places vertices into a 2D plane using a graph’s global structure information. The intuition
is that similar vertices should also have similar structural properties, and they should be placed
closely on the 2D plane. When all vertices are placed, GSANA partitions space into buckets in a
quad-tree-like fashion. Then, a task for similarity computation becomes the pairwise comparison
of the vertices in a bucket with vertices in the neighboring buckets. For example, in Figure 3(a)
and (b) the vertices in the yellow colored bucket are compared with vertices in the yellow and
red colored buckets. We investigate two parallel similarity computation schemes and two vertex
layout schemes. Refer to Table 2 for the definition of notations used in these algorithm listings.

ALGORITHM 3: PARALLELSIM(QT1, QT2, k, 0)

P[v] « 0, forVv e V;
for each non-empty B € QT do
| cilk_spawn compSmm(B, QT;.Neig(B), P, 0)
cilk_sync
return P
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Fig. 3. GsaNA: Task definition and bucket and vertex partition among the nodelets respecting the Hilbert-
curve order.

3.3.1 Similarity Computation Schemes. In the All Comparison scheme, Algorithm 3 first spawns
a thread for each non-empty bucket of B € QT, where compSim is instantiated with comPSIMALL
shown in Algorithm 4. This function computes the similarity scores for each vertex v € B with
vertex u € B’, where B’ € QT;.Neig(B). Afterward, the top k similar vertices are identified and
stored in P[v]. This technique is illustrated in Figure 3(a).

ALGORITHM 4: compSIMALL(B, N, P, o)

> For each vertex keep a priority list with top k elements.
for each v € Bdo
for each B’ € N do
for each u € B’ do
L L P[v].insert(u) > Only keeps top k
return P

In the Pair Comparison scheme, Algorithm 3 first spawns a thread for each non-empty bucket
of B € QT;, where compSiMm is instantiated with compSiMPAIR shown in Algorithm 5. Then, for
each (B, B’) pair where B € QT, and B’ € QT;.Neig(B), comPSIMPAIRAUX is spawned. Next, we
compute pairwise similarity scores of vertices between these bucket pairs and return intermediate
similarity scores (see Algorithm 5). Finally, we merge these intermediate results in Algorithm 5.
This scheme spawns much more threads than the previous one. This technique is illustrated in
Figure 3(b).

In ALL comparison scheme, the number of threads is limited by the number of buckets. There-
fore achievable scalability is limited. Furthermore, coarse grain decomposition of the tasks may
lead to high load balance. Sorting tasks based on their loads in a non-increasing order can be a
possible optimization/heuristic for reducing imbalance.

The PAIR comparison scheme reduces the load imbalance by compromising with additional
synchronization cost that arises during the insertion in Algorithm 4. Task list is shuffled to decrease
the possibility of concurrent update requests to a vertex’s queue.

Note that while ALL is akin to vertex-centric-based partitioning, PAIR is akin to edge-based
partitioning. The vertices and edges here refer to the task graph.

3.3.2  Vertex Layouts. In the Block partitioned (BLK) layout, the vertices are partitioned among
the nodelets based on their IDs, independent from their placement in the 2D plane. The buckets are
also partitioned among the nodelets independently. That is, each nodelet stores an equal number
of vertices and buckets. A vertex’s metadata is also stored in the same nodelet of corresponding
vertex. With the two computational schemes, vertices in the same bucket may be in different
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nodelets, leading to many thread migrations. In the Hilbert-curve-based (HCB) layout (shown in
Figure 3(c)), the vertices and buckets are partitioned among nodelets based on their Hilbert orders.
To achieve this, after all vertices are inserted in the quad-tree, we sort buckets based on their
Hilbert orders. Then, we relabel every vertex in a bucket according to bucket’s rank (i.e., vertices
in the first bucket, B, have labels starting from 0 to |B| — 1). In this layout every vertex is placed
in the same nodelet with its bucket. As with BLK, a vertex’s metadata is also stored in the same
nodelet of the corresponding vertex. Here, all vertices in the same bucket are in the same nodelet,
and hence there is in general less migration. While BLK may lead to a better workload balance
(equal number of similarity computations per nodelet), HCB may lead to a workload imbalance, if
two buckets with high number of neighbors are placed into the same nodelet.

ALGORITHM 5: comPSIMPAIR(B, N, P, o)

pp < 0, for VB’ € Np
for each B’ € N do
| cilk_spawn comPSIMPAIRAUX(B, B, pps, 0)
cilk_sync
P < MERGE(PB' eNp)
return P

def compSIMPAIRAUX(B, B, P, 0):
> For each vertex keep a priority list with top k elements.
for each v € Bdo
for each u € B’ do
L P[v].insert(u) > Only keeps top k
return P

4 EXPERIMENTAL SETUP
4.1 Emu Chick Prototype

The Emu Chick prototype is still in active development. The current hardware iteration uses an
Arria 10 FPGA on each node card to implement the Gossamer cores, the migration engine, and
the stationary cores. Several aspects of the system are scaled down in the current prototype with
respect to the next-generation system that will use larger and faster FPGAs to implement com-
putation and thread migration. The current Emu Chick prototype has the following features and
limitations:

e Our system has one Gossamer Core (GC) per nodelet with a concurrent max of 64 threadlets.
The next-generation system will have four GC’s per nodelet, supporting 256 threadlets per
nodelet.

e Our GC’s are clocked at 175 MHz rather than the planned 300 MHz in the next-generation
Emu system.

e The Emu’s DDR4 DRAM modules are clocked at 1,600 MHz rather than the full 2133 MHz.
Each node has a peak theoretical bandwidth of 12.8 GB/s.

e CPU comparisons are made on a four-socket, 2.2-GHz Xeon E7-4850 v3 (Haswell) machine
with 2 TiB of DDR4 with memory clocked at 1,333 MHz (although it is rated for 2,133 MHz).
Each socket has a peak theoretical bandwidth of 42.7 GB/s.

e The current Emu software version provides support for C++ but does not yet include
functionality to translate Cilk Plus features like cilk_for or Cilk reducers. All bench-
marks currently use cilk_spawn directly, which also allows more control over spawning
strategies.
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4.2 Experiment Configurations

All experiments are run using Emu’s 18.09 compiler and simulator toolchain, and the Emu Chick
system is running NCDIMM firmware version 2.5.1, system controller software version 3.1.0, and
each stationary core is running the 2.2.3 version of software. We present results for several con-
figurations of the Emu system:

e Emu Chick single-node (SN): one node; 8 nodelets

e Emu Chick multi-node (MN): 8 nodes; 64 nodelets

e Simulator results are excluded from this study as previous work [73] has shown simulated
scaling numbers for SpMV and STREAM on future Emu systems. We prioritize multi-node
results on hardware.

Application inputs are selected from the following sources:

e The SpMV experiments use synthetic Laplacian matrices, and real-world inputs are selected
from the SuiteSparse sparse matrix collection [38]. Each Laplacian consists of a five-point
stencil, which is a pentadiagonal matrix.

e BFS uses RMAT graphs as specified by Graph500 [6] and uniform random (Erdés-Renyi)
graphs [72], scale 15 through 21, from the generator in the STINGER codebase.

e GSANA uses DBLP [54] graphs from years 2015 and 2017 that have been created previ-
ously [68]. Detailed description of these graphs is provided in Section 5.3.

4.3 Choosing Performance Metrics

The Emu Chick is essentially a memory to memory architecture, so we primarily present results in
terms of memory bandwidth and effective bandwidth utilization. But comparing a new and novel
processor architecture (Emu) built on FPGAs to a well-established and optimized architecture built
on ASICs (Haswell) is difficult. Measuring bandwidth on the Haswell with the STREAM benchmark
[47] achieves much more of the theoretical peak memory bandwidth. The Emu Chick, however,
implements a full processor on an FPGA and cannot take advantage of deeply pipelined logic that
gives boosts to pure-FPGA accelerators, thus cannot achieve much of the theoretical hardware
peak. If we compare bandwidths against the DRAM peaks, then prototype novel architectures like
the Chick almost never appear competitive. Comparing against measured peak bandwidth may
provide an overly optimistic view of the prototype hardware.

We have chosen to primarily consider percentage of measured peak bandwidth given an ide-
alized problem model, but also report the raw bandwidth results. For integer SpMV and BFS, the
natural measures of IOPS (integer operations per second) and TEPS (traversed edges per second)
are proportional to the idealized effective bandwidth.

Our more recent tests have shown that the Emu hardware can achieve up to 1.6 GB/s per node
and 12.8 GB/s on eight nodes for the STREAM benchmark, which is used as the measured peak
memory bandwidth number. This increase in STREAM BW from previous work [73] is primarily
due to clock rate increases and bug fixes to improve system stability. Meanwhile, our four-socket,
2.2 GHz Haswell with 1,333-MHz memory achieves 100 GB/s or 25 GB/s per NUMA domain. So
the Emu FPGA-emulated processors achieve 11.7% of the theoretical peak, while the ASIC Haswell
processors achieve 58.6%. Note that we run with NUMA interleaving enabled, so many accesses
cross the slower QPI links. This provides the best Haswell performance for our pointer chasing
benchmark [73]. Disabling NUMA page interleaving brings the Haswell STREAM performance to
160 GB/s, which is 94% of the theoretical peak.

Lhttps://github.com/stingergraph/stinger/commit/149d5b562cb8685036517741bd6a91d62cb89631.
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Fig. 4. SpMV Laplacian Stencil Bandwidth, No Replication (eight nodelets).

5 RESULTS
5.1 SpMV—To Replicate or Not, That Is the Question

We first look at the effects of replication on the Emu, that is whether replicating the vector x in
Figure 2 provides a substantial benefit when compared to striping x across nodelets in the “no
replication” case.

Effective Bandwidth is the primary metric measured in our experiments. It is calculated as
the minimum number of bytes needed to complete the computation. On cache-based architectures
this is equivalent to the compulsory misses. For SpMV it is approximated by

BW = sizeof (A) + sizeof (x) + sizeof(y)‘

time
The numerator is a trivial lower-bound on data moved, since it counts only one load of A (which
enjoys no reuse) and one load each of the two vectors, x and y (assuming maximal reuse). The
motivation for ignoring multiple loads of x or y is that ideally on a cache-based architecture with
a “well-ordered” matrix, the vectors are cached and the computation is bandwidth limited by the
time to read A.

Figure 4 shows that the choice of grain size, or iterations/work assigned to a thread, can dramat-
ically affect performance for the non-replicated test case. The unit of work here is the number of
rows assigned to each thread. A fixed grain size of 16, while competitive for smaller graphs, does
not scale well to the entire node. For small grain sizes, too many threads are created with little
work per thread, resulting in slowdown due to thread creation overhead. A dynamic grain size
calculation is preferred to keep the maximum number of threads in flight, as can be seen with the
peak bandwidth achieved with 256 and 512 threads for a single node. Spikes in performance occur
whenever the matrix’s dimension is perfectly divisible by the threads per nodelet. This suggests
that the spikes occur whenever work is perfectly load balanced across threads within a nodelet.
Since we are using 32 and 64 threads per nodelet in Figure 4, this is seen for Laplacian Stencil sizes
(n) of 1,000, 2,000, 3,000, 4,000, 5,000, and 6,000.

Figure 5 shows the effects of replication in SpMV. Interestingly, for the largest matrix size both
Figures 4 and 5 have similar bandwidths, which indicates good scaling for larger data sizes without
replication at the potential cost of thread migration hotspots on certain nodelets. Without replica-
tion, we are guaranteed at least two migrations per row of the Laplacian Stencil due to the presence
of the first super and subdiagonals (Section 3.1). However, we note that using replication leads to
much more regular scaling curves across different numbers of threads and grain sizes.
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Figure 6 shows scaling of multi-node (64 nodelets) using replication and different numbers of
threads. The best run of SpMV achieves 6.11 GB/s with 4,096 threads, which is 50.8% of our up-
dated STREAM bandwidth number. However, it should also be noted from this figure that the best
scalability for all sizes (including smaller inputs) is achieved using 2,048 threads.

Table 3 shows the multi-node (run with 2,048 threads) bandwidth in MB/s for real-world graphs
along with their average and maximum degree (non-zero per row) values. The rows are sorted by
maximum degree, and if we exclude the graphs with large maximum degree (>600) we see similar
bandwidths. Most graphs showed bandwidths in excess of 600 MB/s, and many were comparable
to that of the synthetic Laplacians, which are very well structured. This behavior is in contrast to
a cache-based system where we expect performance to increase with increasing degree. The Emu
hardware demonstrates good performance independent of the structure of the graph, even ones
with high-degree vertices. However, this performance depends on replicating the vector X on each
nodelet, which might not be possible at larger scales.

For the high-maximum-degree graphs (Stanford, ins2), we attribute the poor performance to
load imbalance. Some of the rows in these graphs have a very high number of nonzeros. Since we
only partition work at the row level, a single thread will need to process these large rows and this
load imbalance results in slow running times. Current hardware limitations prevent exploring
mixing parallelism across and within matrix rows [57] leaving that level of performance benefit
to future work.
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Table 3. SpMV Multinode Bandwidths (in MB/s) for Real-world
Graphs [38] along with Matrix Dimension, Number of Non-zeros
(NN2Z), and the Average and Maximum Row Degrees

Matrix Rows NNZ AvgDeg Max Deg BW
mCZdepi 526K 2.1M 3.99 4 3870.31
ecologyl 1.0M 5.0M 5.00 5 4425.61
amazon03 401K 3.2M 7.99 10 4494.79
Delor295 296K 2.4M 8.12 11 4492.47
roadNet- 1.39M 3.84M 2.76 12 3811.57
mac_econ 206K 1.27M 6.17 44 3735.54
copZOk_A 121K 2.62M 21.65 81 4520.05
watson_2 352K  1.85M 5.25 93 3486.30
ca2010 710K 3.49M 491 141 4075.97
poisson3 86K 2.37TM 27.74 145 4031.20
gyro_k 17K 1.02M 58.82 360 2446.36
Vsp_ﬁna 140K 1.1M 7.90 669 1335.59
Stanford 282K 2.31M 8.20 38606 287.82
ins2 309K 2.75M 8.89 309412 43.91
Run with 4K threads.
80 4 12500
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Fig. 7. Comparison of remote writes versus migrating BFS on a multi-node Chick system for balanced (Erdos-
Rényi) graphs. Marking members of the frontier with remote writes is more efficient than moving entire
thread contexts back and forth between the edge list and the parent array.

5.2 Graph500: Migrating versus Remote Writes

Figure 7 compares the migrating threads and remote write BFS implementations for a “streaming”
or unordered BFS implementation. With the migrating threads algorithm, each thread will gen-
erally incur one migration per edge traversed, with a low amount of work between migrations.
The threads are blocked while migrating and do not make forward progress until they can resume
execution on the remote nodelet. In contrast, the remote writes algorithm allows each thread to
fire off many remote, non-blocking writes, which improves the throughput of the system due to
the smaller size of remote write packets.
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Fig. 8. Comparison of the performance of BFS on a single-node system between balanced (Erdds-Rényi)
graphs and unbalanced (RMAT) graphs running on a single node of the Emu Chick. Unbalanced graphs lead
to an uneven work distribution and low performance.

The effective bandwidth for BFS on a graph with a given scale and an edge factor of 16 is as
follows:

16 x 25¢ale 5 2 % 8
BW = - =TEPS x 2 X 8.
time

This does not include bandwidth for flags or other state data structures and so is a lower bound as
discussed in Section 5.1.

Our initial graph engine implementation does not attempt to evenly partition the graph across
the nodelets in the system. The neighbor list of each vertex is co-located with the vertex on a single
nodelet. RMAT graphs specified by Graph500 have highly skewed degree distributions, leading to
uneven work distribution on the Emu. Figure 8 shows that BFS with balanced Erds-Rényi graphs
instead leads a higher performance of 18 MTEPS (288 MB/s) versus 4 MTEPS (64 MB/s) for the
RMAT graph. We were unable to collect BFS results for RMAT graphs on the multi-node Emu
system due to a hardware bug that currently causes the algorithm to deadlock. Future work will
enhance the graph construction algorithm to create a better partition for power-law graphs.

Figure 9 plots results for four configurations of BFS running with balanced graphs: Emu single-
and multi-node and two BFS results from the Haswell system. The performance of a single node of
the Emu Chick saturates at 18 MTEPS while the full multi-node configuration reaches 80 MTEPS on
a scale 21 graph, with an equivalent bandwidth utilization of 1280 MB/s. On the Haswell platform,
the MEATBEE (backported Emu Cilk) implementation reaches a peak of 105 MTEPS, outperform-
ing the STINGER (naive Cilk) implementation of BFS at 88 MTEPS, likely due to the reduction of
atomic operations as discussed in Section 3.2.

5.3 GsSANA Graph Alignment—Data Layout

For our tests, we use DBLP [54] graphs from years 2015 and 2017 that have been created pre-
viously [68]. This pair of graphs is called DBLP (0), and they have nearly 48K, 59K vertices and
453K, 656K edges,respectively. These graphs are used in the experiments shown in Figure 10. For
the experiments shown in Figure 11, we filter some vertices and their edges from the two graphs
in DBLP (0), resulting in seven different graph pairs for alignment. The properties of these seven
pairs are shown in Table 4.
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Fig. 10. GsANA, Bandwidth vs. Threads for ALL (rightmost bars represent PAIR results), run on HW (eight
nodelets).

Table 4. Generated Graphs for Alignment

Graphs: 512 1024 2048 4096 8192 16384 32768
Vil, V2] 05K K 2K 4K 8K 16K 32K

|E;| 13K 44K 14K 35K 88K 186K 385K
|E, | 1K 3K 15K 30K 69K 147K 310K
IT| 4 85 77 163 187 267 276
|B| 32 32 64 64 128 128 256

K = 1024; |T|: number of tasks; | B|: bucket size.
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Fig. 11. csaNA, Experiments on DBLP graphs on HW (eight nodelets).

We present similarity computation results for the Emu hardware on different sized graphs and
execution schemes that are defined/named by combining the layout with the similarity computa-
tion. For instance, BLK-ALL refers to the case where we use the block partitioned vertex layout
and run ALL parallel similarity computation. Bandwidth is measured for GSANA by the formula:

(IBI + IBIIB'| + Zvuen Xvoen RW (o (1,0))) x sizeof (u)

BW = Z Z time

VBeQT; VB €
QT,.Neig(B)

Note that GsANA spends more than 90% of the total execution time for the similarity computa-
tion on an Intel Haswell CPU. This work focuses on the the similarity computation stage. We follow
an offline approach; vertex layouts are created and then written into binary files on a Haswell-
based machine. The layout files are read as inputs on the Emu platform. This pre-processing time
takes less than a second on a Haswell CPU. Our Emu execution timings do not include the reading
these input files.

In a task, pairwise vertex similarities are computed between the vertices in a bucket B € QT;
and the vertices in a bucket B” € QT,.Neig(B). Therefore in each task, every vertex u € B is read
once and every vertex v € B’ is read |B| times. Additional read and write cost comes from the
similarity function o(u, v) that is called for every vertex pair u, v with u € B and v € B’. Hence,
the total data movement can be gathered by aggregating the size of the bucket reads and the
size of the number of reads and writes required by the similarity function. Bandwidth is the ratio
between the total data movement over the execution time. We adopted the following similarity
metrics from GSANA [68]: degree (A), vertex type (), adjacent vertex type (), adjacent edge
type (7g), and vertex attribute (Cy). Since the similarity function consists of four different simi-
larity metrics, we can define the required number of reads and writes of the similarity function
as RW (o (u,v)) = RW(t(u,v)) + RW(5(u,v)) + RW(ry (u,v)) + RW (1g(u,v)) + RW(Cy (u,v)). In
this equation, the degree (A) and the type (r) similarity functions require one memory read for
each vertex and then one read and update for the similarity value. Therefore, RW (r(u, v)) =
RW(A(u,v)) = 4. The adjacent vertex (ry) and the edge (rg) type similarity functions require
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reading all adjacent edges of the two vertices and one read and update for the similarity value.
Therefore, RW (ry (u,v)) = RW (rg(u,v)) = IN(u)| + [N(v)| + 2. The vertex attribute similarity
function (Cy) requires reading attributes of the two vertices and one read and update for the sim-
ilarity value. Therefore, RW (Cy (u,v)) = |A(u)| + |A(v)| + 2.

The last three similarity metrics from GsaNA [68] require comparing the neighborhood of two
vertices, which causes a significant number of thread migrations if the two vertices appear in dif-
ferent nodelets. Therefore, these metrics are good candidates to test the capabilities of the current
hardware.

Figure 10 displays the bandwidth results of the similarity computation schemes for increasing
numbers of threads, in different execution schemes. In these experiments, we only present results
of the PAIR computation scheme with the largest number of threads. Since the PAIR scheme does
many unpredictable recursive spawns, controlling the number of threads for this scheme is very
hard and not accurate. Therefore, for increasing number of threads, we only consider ALL with
BLK and HCB vertex layouts. We observe that in the BLK layout, our final speedup is 43X using
ALL and 52X using PAIR. In the HCB layout, our final speedup is 49x using ALL and 68X using
PAIR. As can be seen in Figure 10, when we increase the number of threads from 128 to 256, the
bandwidth decreases by 4% in BLK-ALL scheme, because the coarse grained nature of ALL cannot
give better workload balance and thread migrations hurt the performance.

Figure 11 presents results for all graphs in different execution schemes. We observe that the
HCB vertex layout improves the execution time by 10% to 36% in all datasets by decreasing the
number of thread migrations. As expected, this improvement increases with the graph size. This
improvement in a x86 architecture is reported as 10% in Reference [69]. Second, we see that the
PAIR computation scheme enjoys improvements with both vertex layouts, because it has a finer
grained task parallelism and hence better workload distribution.

Figure 12 displays strong scaling results for BLK and HCB vertex layouts with the ALL scheme
on single-node and multi-node setups for the DBLP graph with 2,048 vertices. Here the strong
scaling is given with respect to the single thread execution time of the BLK layout on the multi-
node setup. On the multi-node setup, hardware crashed for GSANA when 128 threads were used.
We observe from this figure that multi-node setup is slower than the single node setup—multi-node
execution times are about 25% to 30% slower than the single-node execution times. This is so as the
inter-node migrations are much more expensive. The proposed layout and computational schemes
help to improve efficiency of the algorithms on both multi-node and single-node experiments. HCB
layout improves ALL layout about 12% to 3%.

Final observations: We observe that the finer granularity of tasks in PAIR and locality-aware
vertex layout with HCB give an important improvement in terms of the bandwidth (i.e., execu-
tion time). However, because of recursive spawns PAIR may cause too many unpredictable thread
migrations if the data layout is random. Additionally, although HCB helps to reduce the number
of thread migrations significantly, this layout may create hotspots if it puts many neighboring
buckets into the same nodelet. Our approach of balancing the number of edges per nodelet tries
to alleviate these issues.

6 EMU ARCHITECTURAL DISCUSSION

The Emu architecture inverts the traditional scheme of hauling data to and from a grid of process-
ing elements. In this architecture, the data are static, and small logical units of computation move
throughout the system, and the load balancing is closely related to data layout and distribution,
since threads can only run on local processing elements. During development, we encountered
surprises that sometimes imposed >10X execution time penalties. Our work mapping irregular
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Fig. 12. GsANA, strong scaling experiments on DBLP graph (2048 vertices) on HW (Multi-node and single-
node).

algorithms to the Emu architecture expose the following issues needed to achieve relatively high
performance:

(1) Thread stack placement and remote thread migrations back to a “home” nodelet that
contains the thread stack.

(2) Balancing the workload is difficult when using irregular data structures like graphs.

(3) The Emu is a non-uniform PGAS system with variable costs for remote “put” and “get”
operations.

(4) The tension between top-down task programming on bottom-up data allocation has
proven difficult to capture in current programming systems.

Thread stack placement: A stack frame is allocated on a nodelet when a new thread is
spawned. Threads carry their registers with them when they migrate, but stack accesses require a
migration back to the originating nodelet. If a thread needs to access its stack while manipulating
remote data, then it will migrate back and forth (ping-pong). We can limit the usage of thread
stacks and ping-pong migration by obeying the following rules when writing a function that is
expected to migrate:

(1) Maximize the use of inlined function calls. Normal function calls require a migration back
to the home nodelet to save the register set.

(2) Write lightweight worker functions using fewer than 16 registers to prevent stack spills.

(3) Don’t pass arguments by reference to the worker function. Dereferencing a pointer to
a variable inside the caller’s stack frame forces a migration back to the home nodelet.
Pointers to replicated data circumvent this migration.

Workload balance and distributed data structures: One of the main challenges in obtaining
good performance on the Emu Chick prototype is the initial placement of data and distribution to
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remote nodelets. While the current Emu hardware contains a hardware-supported credit system to
control the overall amount of dynamic parallelism the choice of placement is still critical to avoid
thread migration hotspots for SpMV and BFS. In the case of SpMV, replication reduces thread mi-
gration in each iteration, but replication is also not scalable to more complex, related algorithms
like MTTKRP or SpGEMM. The implementations of graph alignment using gsaNA uses data place-
ment techniques like HCB and PAIR-wise comparisons to group threads on the same nodelets with
related data and limit thread migration, which dramatically improves their performance.

Non-uniform PGAS operations: Emu’s implementation of PGAS utilizes “put”-style remote
operations (add, min, max, etc.) and “get” operations where a thread is migrated to read a local
piece of data. Thread migration is efficient when many get operations need to access the same
nodelet-local memory channel. The performance difference observed between put and get oper-
ations is due to how these two operations interact differently with load balancing. A put can be
done without changing the location of the thread, while a get means that multiple threads may
have to share significant resources on the same nodelet for a while. Additionally, a stream of gets
with spatial locality can be faster than multiple put operations. This non-uniformity means that
kernels that need to access finely grained data in random order should be implemented as put
operations wherever possible while get operations should only be used when larger chunks of
data are read together. A major outstanding question is how this scheme compares with explic-
itly remote references plus task migrations via remote calls as in UPC++[5]. The tradeoff between
hardware simplicity and software flexibility is difficult to measure without implementations of
both. Tractable abstract models miss implementation details like switch fabric traffic contention
or task-switching cache overhead.

Top-down task programming on bottom-up data allocation: The Cilk-based fork/join
model emphasizes a top-down approach to maximize parallelism without regard to data or thread
location. Memory allocation on the Emu system, however, follows the bottom-up approach of UPC
[19] or SHMEM [14]. The Cilk model allows quickly writing highly parallel codes, but achieving
high performance (bandwidth utilization) requires controlling thread locations. We do not yet
have a good way to relieve these tensions. Languages like Chapel [13] and X10 [15] provide a
high-level view of data distribution but lack implicit thread migration. The GAANA results on the
highly dynamic variant in Algorithm 5 demonstrate how migrations on locality-emphasizing data
distribution can achieve relatively high performance. To our knowledge there is little work on pro-
gramming systems that incorporate implicit and light-weight thread migration, but Charm++[1]
and Legion [7] provide experience in programming heavier-weight task migration and locality in
different environments.

Note that the Emu compiler is rapidly evolving to include intra-node cilk_for and Cilk+ re-
ducers. Experimental support became available at the time of writing and still is being evaluated.
Balancing remote memory operations and thread migrations in reducer and parallel scan imple-
mentations for the Emu architecture is ongoing work.

7 RELATED WORK

Advances in memory and integration technologies provide opportunities for profitably moving
computation closer to data [62]. Some proposed architectures return to the older processor-in-
memory (PIM) and “intelligent RAM” [56] ideas. Simulations of architectures focusing on near-
data processing [32] including in-memory [31] and near-memory [30] show great promise for
increasing performance while also drastically reducing energy usage.

Other hardware architectures have tackled massive-scale data analysis to differing degrees of
success. The Tera MTA / Cray XMT [24, 51] provide high bandwidth utilization by tolerating long
memory latencies in applications that can produce enough threads to source enough memory
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operations. In the XMT all memory interactions are remote incurring the full network latency on
each access. The Chick instead moves threads to memory on reads, assuming there will be a cluster
of reads for nearby data. The Chick processor needs to tolerate less latency and need not keep as
many threads in flight. Also, unlike the XMT, the Chick runs the operating system on the stationary
processors, currently PowerPC, so the Chick processors need not deal with I/O interrupts and
highly sequential OS code. Similarly to the XMT, programming the Chick requires language and
library extensions. Future work with performance portability frameworks like Kokkos [25] will
explore how much must be exposed to programmers. Another approach is to push memory-centric
aspects to an accelerator like Sparc M7’s data analytics accelerator [2] for database operations or
Graphicionado [33] for graph analysis.

Moving computation to data via software has a successful history in supercomputing via
Charm++[1], which manages dynamic load balancing on distributed memory systems by migrat-
ing the computational objects. Similarly, data analysis systems like Hadoop moved computation
to data when the network was the primary data bottleneck [4]. The Emu Chick also is strongly
related to other PGAS approaches and is a continuation of the mNUMA architecture [65]. Other
approaches to hardware PGAS acceleration include advanced RDMA networks with embedded
address translation and atomic operations [21, 29, 58, 61]. The Emu architecture supports remote
memory operations to varying degrees and side-steps many other issues through thread migra-
tion. Remote operations pin a thread so that the acknowledgment can be delivered. How to trade
between migration and remote operations, as well as exposing that tradeoff, is an open question.

SpMV: There has been a large body of work on SpMV including on emerging architectures
[12, 67] but somewhat limited recent work that is directly related to PGAS systems. However,
future work with SpMV on Emu will investigate new state-of-the-art formats and algorithms such
as SparseX, which uses the Compressed Sparse eXtended (CSX) as an alternative data layout for
storing matrices [27].

BFS: The implemented version of BFS builds on the standard Graph500 code with optimiza-
tions for Cilk and Emu. The two-phase implementation used in this work has some similarities to
direction-optimizing BFS [10], in that the remote "put” phase mirrors the bottom-up algorithm.
Other notable current implementations include optimized, distributed versions [64] and a recent
PGAS version [18]. The implementation provided in this article contrasts with previous PGAS
work due to asymmetric costs for remote get operations as discussed in Section 6. NUMA opti-
mizations [70] similarly are read-oriented but lack thread migration.

Graph Alignment: Graph alignment methods are traditionally [20, 28] classified into four ba-
sic categories: spectral methods [44, 52, 55, 63, 74]; graph structure similarity methods [3, 42, 46,
438, 49]; tree search or table search methods [17, 40, 45, 60]; and integer linear programming meth-
ods [8, 26, 36, 39]. Final [74] is a recent work that targets labeled network alignment problem
by extending the concept of IsoRank [63] to use attribute information of the vertices and edges.
All of these methods have scalability issues. GsaNa [68, 69] leverages global graph structure and
reduces the problem space and exploits the semantic information to alleviate most of the scala-
bility issues. In addition to these sequential algorithms, we are aware of two parallel approaches
for global graph alignment. The first one [37] decomposes the ranking calculations of IsoRank’s
similarity matrix using the singular value decomposition. The second one is a shared memory
parallel algorithm [53] that is based on the belief propagation (BP) solution for integer program
relaxation [8]. It uses shared memory parallel matrix operations for BP iterations and also im-
plements an approximate weighted bipartite matching algorithm. While these parallel algorithms
show an important improvement over the state-of-the-art sequential algorithms, the graphs used
in the experiments are small in size and there is a high structural similarity. To the best of our
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knowledge, the use of GSANA in Reference [69] and in this article presents the first method for
parallel alignment of labeled graphs.

Other recent work has also looked to extend from low-level characterizations like those pre-
sented here by providing initial Emu-focused implementations of Breadth-First Search [11], Jac-
card index computation [41], bitonic sort [66], and compiler optimizations like loop fusion, edge
flipping, and remote updates to reduce migrations [16].

8 CONCLUSION

In this study, we focus on optimizing several irregular algorithms using programming strategies for
the Emu system including replication, remote writes, and data layout and placement. We argue that
these three types of programming optimizations are key for achieving good workload balance on
the Emu system and that they may even be useful to optimize Cilk-oriented codes for x86 systems
(as with BFS).

By analogy, back-porting GPU-centric optimizations to processors often provides improved
performance. That is, in the same way that GPU architecture and programming encourages (or
“forces”) programmers to parallelize and vectorize explicitly, the Emu design requires upfront de-
cisions about data placement and one-sided communication that can lead to more scalable code.
Future work would aim to evaluate whether these programming strategies can be generalized in
this fashion.

By adopting a “put-only” strategy, our BFS implementation achieves 80 MTEPS on balanced
graphs. Our SpMV implementation makes use of replicated arrays to reach 50% of measured
STREAM bandwidth while processing sparse data. We present two parallelization schemes and
two vertex layouts for parallel similarity computation with the GSANA graph aligner, achieving
strong scaling up to 68X on the Emu system. Using the HCB vertex layout further improves the
execution time by up to 36%.
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