
RedLeaf: Isolation and Communication in a Safe Operating System

Vikram Narayanan

University of California, Irvine

Tianjiao Huang

University of California, Irvine

David Detweiler

University of California, Irvine

Dan Appel

University of California, Irvine

Zhaofeng Li

University of California, Irvine

Gerd Zellweger

VMware Research

Anton Burtsev

University of California, Irvine

Abstract

RedLeaf is a new operating system developed from scratch

in Rust to explore the impact of language safety on operat-

ing system organization. In contrast to commodity systems,

RedLeaf does not rely on hardware address spaces for isola-

tion and instead uses only type and memory safety of the Rust

language. Departure from costly hardware isolation mecha-

nisms allows us to explore the design space of systems that

embrace lightweight fine-grained isolation. We develop a

new abstraction of a lightweight language-based isolation

domain that provides a unit of information hiding and fault

isolation. Domains can be dynamically loaded and cleanly

terminated, i.e., errors in one domain do not affect the ex-

ecution of other domains. Building on RedLeaf isolation

mechanisms, we demonstrate the possibility to implement

end-to-end zero-copy, fault isolation, and transparent recov-

ery of device drivers. To evaluate the practicality of RedLeaf

abstractions, we implement Rv6, a POSIX-subset operating

system as a collection of RedLeaf domains. Finally, to demon-

strate that Rust and fine-grained isolation are practical—we

develop efficient versions of a 10Gbps Intel ixgbe network

and NVMe solid-state disk device drivers that match the per-

formance of the fastest DPDK and SPDK equivalents.

1 Introduction

Four decades ago, early operating system designs identified

the ability to isolate kernel subsystems as a critical mecha-

nism for increasing the reliability and security of the entire

system [12, 32]. Unfortunately, despite many attempts to in-

troduce fine-grained isolation to the kernel, modern systems

remain monolithic. Historically, software and hardware mech-

anisms remain prohibitively expensive for isolation of subsys-

tems with tightest performance budgets. Multiple hardware

projects explored the ability to implement fine-grained, low-

overhead isolation mechanisms in hardware [84,89,90]. How-

ever, focusing on performance, modern commodity CPUs

provide only basic support for coarse-grained isolation of

user applications. Similarly, for decades, overheads of safe

languages that can provide fine-grained isolation in software

remained prohibitive for low-level operating system code.

Traditionally, safe languages require a managed runtime, and

specifically, garbage collection, to implement safety. Despite

many advances in garbage collection, its overhead is high for

systems designed to process millions of requests per second

per core (the fastest garbage collected languages experience

20-50% slowdown compared to C on a typical device driver

workload [28]).

For decades, breaking the design choice of a monolithic ker-

nel remained impractical. As a result, modern kernels suffer

from lack of isolation and its benefits: clean modularity, infor-

mation hiding, fault isolation, transparent subsystem recovery,

and fine-grained access control.

The historical balance of isolation and performance is

changing with the development of Rust, arguably, the first

practical language that achieves safety without garbage col-

lection [45]. Rust combines an old idea of linear types [86]

with pragmatic language design. Rust enforces type and mem-

ory safety through a restricted ownership model allowing

only one unique reference to each live object in memory. This

allows statically tracking the lifetime of the object and deallo-

cating it without a garbage collector. The runtime overhead

of the language is limited to bounds checking, which in many

cases can be concealed by modern superscalar out-of-order

CPUs that can predict and execute the correct path around

the check [28]. To enable practical non-linear data structures,

Rust provides a small set of carefully chosen primitives that

allow escaping strict limitations of the linear type system.

Rust is quickly gaining popularity as a tool for development

of low-level systems that traditionally were done in C [4,

24, 40, 47, 50, 65]. Low-overhead safety brings a range of

immediate security benefits—it is expected, that two-thirds

of vulnerabilities caused by low-level programming idioms

typical for unsafe languages can be eliminated through the

use of a safe language alone [20, 22, 67, 69, 77].

Unfortunately, recent projects mostly use Rust as a drop-

in replacement for C. We, however, argue that true benefits

of language safety lie in the possibility to enable practical,

lightweight, fine-grained isolation and a range of mechanisms

that remained in the focus of systems research but remained

impractical for decades: fault isolation [79], transparent de-

vice driver recovery [78], safe kernel extensions [13,75], fine-

grained capability-based access control [76], and more.

RedLeaf1 is a new operating system aimed at exploring the

impact of language safety on operating system organization,

and specifically the ability to utilize fine-grained isolation

and its benefits in the kernel. RedLeaf is implemented from

scratch in Rust. It does not rely on hardware mechanisms for

isolation and instead uses only type and memory safety of the

Rust language.

Despite multiple projects exploring isolation in language-

based systems [6, 35, 39, 85] articulating principles of iso-

lation and providing a practical implementation in Rust re-

mains challenging. In general, safe languages provide mech-

anisms to control access to the fields of individual objects

(e.g., through pub access modifier in Rust) and protect point-

ers, i.e., restrict access to the state of the program transi-

tively reachable through visible global variables and explicitly

passed arguments. Control over references and communica-

tion channels allows isolating the state of the program on

function and module boundaries enforcing confidentiality and

integrity, and, more generally, constructing a broad range of

least-privilege systems through a collection of techniques

explored by object-capability languages [59].

Unfortunately, built-in language mechanisms alone are not

sufficient for implementing a system that isolates mutually

distrusting computations, e.g., an operating system kernel that

relies on language safety for isolating applications and kernel

subsystems. To protect the execution of the entire system, the

kernel needs a mechanism that isolates faults, i.e., provides

a way to terminate a faulting or misbehaving computation in

such a way that it leaves the system in a clean state. Specif-

ically, after the subsystem is terminated the isolation mech-

anisms should provide a way to 1) deallocate all resources

that were in use by the subsystem, 2) preserve the objects

that were allocated by the subsystem but then were passed

to other subsystems through communication channels, and

3) ensure that all future invocations of the interfaces exposed

by the terminated subsystem do not violate safety or block

the caller, but instead return an error. Fault isolation is chal-

lenging in the face of semantically-rich interfaces encouraged

by language-based systems—frequent exchange of references

all too often implies that a crash of a single component leaves

the entire system in a corrupted state [85].

Over the years the goal to isolate computations in language-

based systems came a long way from early single-user, single-

language, single-address space designs [9, 14, 19, 25, 34, 55,

71, 80] to ideas of heap isolation [6, 35] and use of linear

types to enforce it [39]. Nevertheless, today the principles of

language-based isolation are not well understood. Singular-

ity [39], which implemented fault isolation in Sing#, relied

1Forming in the leaf tissue Rust fungi turn it red.

on a tight co-design of the language and operating system to

implement its isolation mechanisms. Nevertheless, several re-

cent systems suggesting the idea of using Rust for lightweight

isolation, e.g., Netbricks [68] and Splinter [47], struggled to

articulate the principles of implementing isolation, instead

falling back to substituting fault isolation for information

hiding already provided by Rust. Similar, Tock, a recent oper-

ating system in Rust, supports fault isolation of user processes

through traditional hardware mechanisms and a restricted sys-

tem call interface, but fails to provide fault isolation of its

device drivers (capsules) implemented in safe Rust [50].

Our work develops principles and mechanisms of fault iso-

lation in a safe language. We introduce an abstraction of

a language-based isolation domain that serves as a unit of

information hiding, loading, and fault isolation. To encapsu-

late domain’s state and implement fault isolation at domain

boundary, we develop the following principles:

• Heap isolation We enforce heap isolation as an invari-

ant across domains, i.e., domains never hold pointers into

private heaps of other domains. Heap isolation is key for

termination and unloading of crashing domains, since

no other domains hold pointers into the private heap of a

crashing domain, it’s safe to deallocate the entire heap.

To enable cross-domain communication, we introduce a

special shared heap that allows allocation of objects that

can be exchanged between domains.

• Exchangeable types To enforce heap isolation, we in-

troduce the idea of exchangeable types, i.e., types that

can be safely exchanged across domains without leaking

pointers to private heaps. Exchangeable types allow us to

statically enforce the invariant that objects allocated on

the shared heap cannot have pointers into private domain

heaps, but can have references to other objects on the

shared heap.

• Ownership tracking To deallocate resources owned by

a crashing domain on the shared heap, we track owner-

ship of all objects on the shared heap. When an object

is passed between domains we update its ownership

depending on whether it’s moved between domains or

borrowed in a read-only access. We rely on Rust’s own-

ership discipline to enforce that domains lose ownership

when they pass a reference to a shared object in a cross-

domain function call, i.e., Rust enforces that there are no

aliases into the passed object left in the caller domain.

• Interface validation To provide extensibility of the sys-

tem and allow domain authors to define custom inter-

faces for subsystems they implement while retaining iso-

lation, we validate all cross-domain interfaces enforcing

the invariant that interfaces are restricted to exchange-

able types and hence preventing them from breaking the

heap isolation invariants. We develop an interface defini-

tion language (IDL) that statically validates definitions

of cross-domain interfaces and generates implementa-

tions for them.

• Cross-domain call proxying We mediate all cross-

domain invocations with invocation proxies—a layer

of trusted code that interposes on all domain’s inter-

faces. Proxies update ownership of objects passed across

domains, provide support for unwinding execution of

threads from a crashed domain, and protect future in-

vocations of the domain after it is terminated. Our IDL

generates implementations of the proxy objects from

interface definitions.

The above principles allow us to enable fault-isolation

in a practical manner: isolation boundaries introduce mini-

mal overhead even in the face of semantically-rich interfaces.

When a domain crashes, we isolate the fault by unwinding ex-

ecution of all threads that currently execute inside the domain,

and deallocate domain’s resources without affecting the rest

of the system. Subsequent invocations of domain’s interfaces

return errors, but remain safe and do not trigger panics. All

objects allocated by the domain, but returned before the crash,

remain alive.

To test these principles we implement RedLeaf as a mi-

crokernel system in which a collection of isolated domains

implement functionality of the kernel: typical kernel subsys-

tems, POSIX-like interface, device drivers, and user applica-

tions. RedLeaf provides typical features of a modern kernel:

multi-core support, memory management, dynamic loading

of kernel extensions, POSIX-like user processes, and fast de-

vice drivers. Building on RedLeaf isolation mechanisms, we

demonstrate the possibility to transparently recover crash-

ing device drivers. We implement an idea similar to shadow

drivers [78], i.e., lightweight shadow domains that mediate

access to the device driver and restart it replaying its initial-

ization protocol after the crash.

To evaluate the generality of RedLeaf abstractions, we im-

plement Rv6, a POSIX-subset operating system on top of

RedLeaf. Rv6 follows the UNIX V6 specification [53]. De-

spite being a relatively simple kernel, Rv6 is a good platform

that illustrates how ideas of fine-grained, language-based iso-

lation can be applied to modern kernels centered around the

POSIX interface. Finally, to demonstrate that Rust and fine-

grained isolation introduces a non-prohibitive overhead, we

develop efficient versions of 10Gbps Intel Ixgbe network and

PCIe-attached solid state-disk NVMe drivers.

We argue that a combination of practical language safety

and ownership discipline allows us to enable many classical

ideas of operating system research for the first time in an effi-

cient way. RedLeaf is fast, supports fine-grained isolation of

kernel subsystems [57, 61, 62, 79], fault isolation [78, 79], im-

plements end-to-end zero-copy communication [39], enables

user-level device drivers and kernel bypass [11, 21, 42, 70],

and more.

2 Isolation in Language-Based Systems

Isolation has a long history of research in language-based sys-

tems that were exploring tradeoffs of enforcing lightweight

isolation boundaries through language safety, fine-grained

control of pointers, and type systems. Early operating sys-

tems applied safe languages for operating system develop-

ment [9,14,19,25,34,55,71,80]. These systems implemented

an “open” architecture, i.e., a single-user, single-language,

single-address space operating system that blurred the bound-

ary between the operating system and the application it-

self [48]. These systems relied on language safety to pro-

tect against accidental errors but did not provide isolation of

subsystems or user-applications (modern unikernels take a

similar approach [2, 37, 56]).

SPIN was the first to suggest language safety as a mech-

anism to implement isolation of dynamic kernel exten-

sions [13]. SPIN utilized Modula-3 pointers as capabilities to

enforce confidentiality and integrity, but since pointers were

exchanged across isolation boundaries it failed to provide

fault isolation—a crashing extension left the system in an

inconsistent state.

J-Kernel [85] and KaffeOS [6] were the first kernels to

point out the problem that language safety alone is not suffi-

cient for enforcing fault isolation and termination of untrusted

subsystems. To support termination of isolated domains in

Java, J-Kernel developed the idea of mediating accesses to all

objects that are shared across domains [85]. J-Kernel intro-

duces a special capability object that wraps the interface of

the original object shared across isolated subsystems. To sup-

port domain termination, all capabilities created by a crashing

domain were revoked hence dropping the reference to the

original object that was garbage collected and preventing the

future accesses by returning an exception. J-Kernel relied

on a custom class loader to validate cross-domain interfaces

(i.e., generate remote-invocation proxies at run-time instead

of using a static IDL compiler). To enforce isolation, J-Kernel

utilized a special calling convention that allowed passing ca-

pability references by reference, but required a deep copy for

regular unwrapped objects. Without ownership discipline for

shared objects, J-Kernel provided a somewhat limited fault

isolation model: the moment the domain that created the ob-

ject crashed, all references to the shared objects were revoked,

propagating faults into domains that acquired these objects

through cross-domain invocations. Moreover, lack of “move”

semantics, i.e., the ability to enforce that the caller lost access

to the object when it was passed to the callee, implied that

isolation required a deep copy of objects which is prohibitive

for isolation of modern, high-throughput device drivers.

Instead of mediating accesses to shared objects through

capability references, KaffeOS adopts the technique of “write

barriers” [88] that validate all pointer assignments throughout

the system and hence can enforce a specific pointer disci-

pline [6]. KaffeOS introduced separation of private domain

and special shared heaps designated for sharing of objects

across domains—explicit separation was critical to perform

the write barrier check, i.e., if assigned pointer belonged to a

specific heap. Write barriers were used to enforce the follow-

ing invariants: 1) objects on the private heap were allowed to

have pointers into objects on the shared heap, but 2) objects

on the shared heap were constrained to the same shared heap.

On cross-domain invocations, when a reference to a shared

object was passed to another domain, the write barrier was

used to validate the invariants, and also to create a special

pair of objects responsible for reference counting and garbage

collecting shared objects. KaffeOS had the following fault

isolation model: when the creator of the object terminated,

other domains retained access to the object (reference count-

ing ensured that eventually objects were deallocated when all

sharers terminated). Unfortunately, while other domains were

able to access the objects after their creator crashed, it was

not sufficient for clean isolation—shared objects were poten-

tially left in an inconsistent state (e.g., if the crash happened

halfway through an object update), thus potentially halting

or crashing other domains. Similar to J-Kernel, isolation of

objects required a deep copy on a cross-domain invocation. Fi-

nally, performance overhead of mediating all pointer updates

was high.

Singularity OS introduced a new fault isolation model built

around a statically enforced ownership discipline [39]. Similar

to KaffeOS, in Singularity applications used isolated private

heaps and a special “exchange heap” for shared objects. A

pioneering design decision was to enforce single ownership of

objects allocated on the exchange heap, i.e., only one domain

could have a reference to an object on the shared heap at

a time. When a reference to an object was passed across

domains the ownership of the object was “moved” between

domains (an attempt to access the object after passing it to

another domain was rejected by the compiler). Singularity

developed a collection of novel static analysis and verification

techniques enforcing this property statically in a garbage

collected Sing# language. Single ownership was key for a

clean and practical fault isolation model—crashing domains

were not able to affect the rest of the system—not only their

private heaps were isolated, but a novel ownership discipline

allowed for isolation of the shared heap, i.e., there was no

way for a crashing domain to trigger revocation of shared

references in other domains, or leave shared objects in an

inconsistent state. Moreover, single ownership allowed secure

isolation in a zero-copy manner, i.e., the move semantics

guaranteed that the sender of an object was losing access to

it and hence allowed the receiver to update the object’s state

knowing that the sender was not able to access new state or

alter the old state underneath.

Building on the insights from J-Kernel, KaffeOS, and Sin-

gularity, our work develops principles for enforcing fault iso-

lation in a safe language that enforces ownership. Similar

to J-Kernel, we adopt wrapping of interfaces with proxies.

We, however, generate proxies statically to avoid the run-time

overhead. We rely on heap isolation similar to KaffeOS and

Singularity. Our main reason for heap isolation is to be able

to deallocate the domain’s private heap without any seman-

tic knowledge of objects inside. We borrow move seman-

tics for the objects on the shared heap to provide clean fault

isolation and at the same time support zero-copy commu-

nication from Singularity. We, however, extend it with the

read-only borrow semantics which we need to support trans-

parent domain recovery without giving up zero-copy. Since

we implement RedLeaf in Rust, we benefit from its ownership

discipline that allows us to enforce the move semantics for

objects on the shared heap. Building on a body of research on

linear types [86], affine types, alias types [18, 87], and region-

based memory management [81], and being influenced by

languages like Sing# [29], Vault [30], and Cyclone [43], Rust

enforces ownership statically and without compromising us-

ability of the language. In contrast to Singularity that heavily

relies on the co-design of Sing# [29] and its communication

mechanisms, we develop RedLeaf’s isolation abstractions—

exchangeable types, interface validation, and cross-domain

call proxying—outside of the Rust language. This allows us

to clearly articulate the minimal set of principles required

to provide fault isolation, and develop a set of mechanisms

implementing them independently from the language, that,

arguably, allows adapting them to specific design tradeoffs.

Finally, we make several design choices aimed at practicality

of our system. We design and implement our isolation mecha-

nisms for the most common, “migrating threads” model [31]

instead of messages [39] to avoid a thread context switch on

the critical cross-domain call path and allow a more natural

programming idiom, e.g., in RedLeaf domain interfaces are

just Rust traits.

3 RedLeaf Architecture

RedLeaf is structured as a microkernel system that relies on

lightweight language-based domains for isolation (Figure 1).

The microkernel implements functionality required to start

threads of execution, memory management, domain loading,

scheduling, and interrupt forwarding. A collection of isolated

domains implement device drivers, personality of an operat-

ing system, i.e., the POSIX interface, and user applications

(Section 4.5). As RedLeaf does not rely on hardware isolation

primitives, all domains and the microkernel run in ring 0. Do-

mains, however, are restricted to safe Rust (i.e., microkernel

and trusted libraries are the only parts of RedLeaf that are

allowed to use unsafe Rust extensions).

We enforce the heap isolation invariant between domains.

To communicate, domains allocate shareable objects from

a global shared heap and exchange special pointers, remote

references (RRef<T>), to objects allocated on the shared heap

(Section 3.1). The ownership discipline allows us to imple-

ment lightweight zero-copy communication across isolated

domains (Section 3.1).

Domains communicate via normal, typed Rust function

invocations. Upon cross-domain invocation, the thread moves

between domains but continues execution on the same stack.

Domain developers provide an interface definition for the

RRef<T> keeps track of the owner domain and the number of

times it was borrowed immutably on cross-domain invoca-

tions.

Initially, RRef<T> is owned by the domain that allocates the

reference. If the reference is moved to another domain in

a cross-domain call, we change the owner identifier inside

RRef<T> moving ownership from one domain to another. All

cross-domain communication is mediated by trusted proxies,

so we can securely update the owner identifier from the proxy.

Rust’s ownership discipline ensures that there is always only

one remote reference to the object inside the domain, hence

when the reference is moved between domains on a cross-

domain call, the caller loses access to the object passing it

to the callee. If the reference is borrowed immutably in a

cross-domain call, we do not change the owner identifier

inside RRef<T>, but instead increment the counter that tracks

the number of times RRef<T> was borrowed.

Recursive references RRef<T>s can form hierarchies of ob-

jects. To avoid moving all RRef<T>s in the hierarchy recur-

sively on a cross-domain invocation, only the root of the

object hierarchy has a valid owner identifier (in Figure 2 only

object X has a valid domain identifier A, object Y does not).

Upon a cross-domain call, the root RRef<T> is updated by the

proxy which changes the domain identifier to move owner-

ship of the RRef<T> between domains. This requires a special

scheme for deallocating RRef<T>s in case of a crash: we scan

the entire RRef<T> registry to clean up resources owned by a

crashing domain. To prevent deallocation of children objects

of the hierarchy, we rely on the fact that they do not have a

valid RRef<T> identifier (we skip them during the scan). The

drop method of the root RRef<T> object walks the entire hier-

archy and deallocates all children objects (RRef<T>s cannot

form cycles). Note, we should carefully handle the case when

an RRef<T> is taken out of the hierarchy. To deallocate this

RRef<T> correctly we need to assign it a valid domain identi-

fier, i.e., Y gets a proper domain identifier when it is moved

out from X. We mediate RRef<T> field assignments with trusted

accessor methods. We generate accessor methods that pro-

vide the only way to take out an RRef<T> from an object field.

This allows us to mediate the move operation and update the

domain identifier for the moved RRef<T>. Note that accessors

cannot be enforced for the unnamed composite types, e.g.,

arrays and tuples. For these types we update ownership of all

composite elements upon crossing the domain boundary.

Reclaiming shared heap Ownership tracking allows us to

deallocate objects that are currently owned by the crashing do-

main. We maintain a global registry of all allocated RRef<T>s

(Figure 2). When a domain panics, we walk through the reg-

istry and deallocate all references that are owned by the crash-

ing domain. We defer deallocation if RRef<T> was borrowed

until the borrow count drops to zero. Deallocation of each

RRef<T> requires that we have a drop method for each RRef<T>

type and can identify the type of the reference dynamically.

Each RRef<T> has a unique type identifier generated by the

IDL compiler (the IDL knows all RRef<T> types in the system

as it generates all cross-domain interfaces). We store the type

identifier along with the RRef<T> and invoke the appropriate

drop method to correctly deallocate any, possibly, hierarchical

data structure on the shared heap.

3.1.4 Cross-Domain Call Proxying

To enforce fault isolation, RedLeaf relies on invocation prox-

ies to interpose on all cross-domain invocations (Figure 2).

A proxy object exposes an interface identical to the interface

it mediates. Hence the proxy interposition is transparent to

the user of the interface. To ensure isolation and safety, the

proxy implements the following inside each wrapped function:

1) The proxy checks if the domain is alive before perform-

ing the invocation. If the domain is alive, the proxy records

the fact that the thread moves between domains by updating

its state in the microkernel. We use this information to un-

wind all threads that happen to execute inside the domain

when it crashes. 2) For each invocation, the proxy creates a

lightweight continuation that captures the state of the thread

right before the cross-domain invocation. The continuation al-

lows us to unwind execution of the thread, and return an error

to the caller. 3) The proxy moves ownership of all RRef<T>s

passed as arguments between domains, or updates the bor-

row count for all references borrowed immutably. 4) Finally,

the proxy wraps all trait references passed as arguments: the

proxy creates a new proxy for each trait and passes the refer-

ence to the trait implemented by that proxy.

Thread unwinding To unwind execution of a thread from a

crashing domain, we capture the state of the thread right be-

fore it enters the callee domain. For each function of the trait

mediated by the proxy, we utilize an assembly trampoline that

saves all general registers into a continuation. The microker-

nel maintains a stack of continuations for each thread. Each

continuation contains the state of all general registers and a

pointer to an error handling function that has the signature

identical to the function exported by the domain’s interface.

If we have to unwind the thread, we restore the stack to the

state captured by the continuation, and invoke the error han-

dling function on the same stack and with the same values of

general registers. The error handling function returns an error

to the caller.

To cleanly return an error in case of a crash, we enforce the

following calling convention for all cross-domain invocations:

every cross-domain function must return RpcResult<T>, an

enumerated type that either holds the returned value or an

error (Figure 3). This allows us to implement the following

invariant: functions unwound from the crashed domain never

return corrupted data, but instead return an RpcResult<T> error.

3.1.5 Interface Validation

RedLeaf’s IDL compiler is responsible for validation of do-

main interfaces and generation of proxy code required for en-

forcing the ownership discipline on the shared heap. RedLeaf

pub trait BDev {
fn read(&self, block: u32, data: RRef<[u8; BSIZE]>)

-> RpcResult<RRef<[u8; BSIZE]>>;
fn write(&self, block: u32, data: &RRef<[u8; BSIZE]>)

-> RpcResult<()>;
}

#[create]

pub trait CreateBDev {
fn create(&self, pci: Box<dyn PCI>)
-> RpcResult<(Box<dyn Domain>, Box<dyn BDev>)>

}

Figure 3: BDev domain IDL interface definitions.

IDL is a subset of Rust extended with several attributes to

control generation of the code (Figure 3). This design choice

allows us to provide developers with the familiar Rust syntax

and also re-use Rust’s parsing infrastructure.

To implement an abstraction of an interface, we rely on

Rust’s traits. Traits provide a way to define a collection of

methods that a type has to implement to satisfy the trait,

hence defining a specific behavior. For example, the BDev trait

requires any type that provides it to implement two methods:

read() and write() (Figure 3). By exchanging references to

trait objects domains connect to the rest of the system and

establish communication with other domains.

Each domain provides an IDL definition for the create trait

that allows any domain that has access to this trait to create

domains of this type (Figure 3). Marked with the #[create]

attribute, the create trait both defines the type of the domain

entry function, and the trait that can be used to create the

domain. Specifically, the entry function of the BDev domain

takes the PCI trait as an argument and returns a pointer to

the BDev interface. Note that when the BDev domain is created

along with the BDev interface, the microkernel also returns the

Domain trait that allows creator of the domain to control it later.

The IDL generates Rust implementations of both the create

trait and the microkernel code used to create the domain of

this type.

Interface validation We perform interface validation as a

static analysis pass of the IDL compiler. The compiler starts

by parsing all dependent IDL files creating a unified abstract

syntax tree (AST), which is then passed to validation and

generation stages. During the interface validation pass, we

use the AST to extract relevant information for each type

that we validate. Essentially, we create a graph that encodes

information about all types and relationships between them.

We then use this graph to verify that each type is exchangeable

and that all isolation constraints are satisfied: methods of

cross-domain interfaces return RpcResult<T>, etc.

3.2 Zero-copy Communication

A combination of the Rust’s ownership discipline and the

single-ownership enforced on the shared heap allows us to

provide isolation without sacrificing end-to-end zero-copy

across the system. To utilize zero-copy communication, do-

mains allocate objects on the shared heap with using the

RRef<T> type. On every cross-domain invocation a mutable

reference (a reference that provides writable access to the

object) is moved between domains, or an immutable refer-

ence can be borrowed. If the invocation succeeds, i.e., the

callee domain does not panic, a set of RRef<T>s might be re-

turned by the callee moving the ownership to the caller. In

contrast to Rust itself, we do not allow borrowing of mutable

references. Borrowing of mutable references may result in an

inconsistent state in the face of a domain crash when damaged

objects are returned to the caller after the thread is unwound.

Hence, we require all mutable references to be moved and

returned explicitly. If a domain crashes, instead of a reference

an RpcResult<T> error is returned.

Zero-copy is challenging in the face of crashing domains

and the requirement to provide transparent recovery. A typical

recovery protocol re-starts the crashing domain and re-issues

the failing domain call, trying to conceal the crash from the

caller. This often requires that objects passed as arguments

in the re-started invocation are available inside the recovery

domain. It is possible to create a copy of each object before

each invocation, but this introduces significant overhead. To

recover domains without additional copies, we rely on sup-

port for immutable borrowing of RRef<T>s on cross-domain

invocations. For example, the write() method of the BDev in-

terface borrows an immutable reference to the data written

to the block device (Figure 3). If an immutable reference

is borrowed by the domain, Rust’s type system guarantees

that the domain cannot modify the borrowed object. Hence,

even if the domain crashes, it is safe to return the unmod-

ified read-only object to the caller. The caller can re-issue

the invocation as part of the recovery protocol providing the

immutable reference as an argument again. This allows imple-

menting transparent recovery without creating backup copies

of arguments on each invocation that can potentially crash.

4 Implementation

While introducing a range of novel abstractions, we guide the

design of RedLeaf by principles of practicality and perfor-

mance. To a degree, RedLeaf is designed as a replacement for

full-featured, commodity kernels like Linux.

4.1 Microkernel

The RedLeaf microkernel provides a minimal interface for

creating and loading isolated domains, threads of execution,

scheduling, low-level interrupt dispatch, and memory man-

agement. RedLeaf implements memory management mech-

anisms similar to Linux—a combination of buddy [46] and

slab [16] allocators provides an interface for heap allocation

inside the microkernel (the Box<T> mechanism). Each domain

runs its own allocator internally and requests regions of mem-

ory directly from the kernel buddy allocator.

We implement the low-level interrupt entry and exit code in

assembly. While Rust provides support for the x86-interrupt

function ABI (a way to write a Rust function that takes the

x86 interrupt stack frame as an argument), in practice, it is

not useful as we need the ability to interpose on the entry and

exit from the interrupt, for example, to save all CPU registers.

In RedLeaf device drivers are implemented in user domains

(the microkernel itself does not handle any device interrupts

besides timer and NMI). Domains register threads as interrupt

handlers for device-generated interrupts. For each external

interrupt, the microkernel maintains a list of threads waiting

for an interrupt. The threads are put back on the scheduler run

queue when the interrupt is received.

4.2 Dynamic Domain Loading

In RedLeaf domains are compiled independently from the

kernel and are loaded dynamically. Rust itself provides no

support for dynamic extensions (except Splinter [47], existing

Rust systems statically link all the code they execute [7, 50,

68]). Conceptually, the safety of dynamic extensions relies

on the following invariant: types of all data structures that

cross a domain boundary, including the type of the entry point

function, and all types passed through any interfaces reachable

through the entry function are the same, i.e., have identical

meaning and implementation, across the entire system. This

ensures that even though parts of the system are compiled

separately type safety guarantees are preserved across domain

boundaries.

To ensure that types have the same meaning across all

components of the system, RedLeaf relies on a trusted compi-

lation environment. This environment allows the microkernel

to check that domains are compiled against the same ver-

sions of IDL interface definitions, and with the same compiler

version, and flags. When a domain is compiled, the trusted

environment signs the fingerprint that captures all IDL files,

and a string of compiler flags. The microkernel verifies the

integrity of the domain when it is loaded. Additionally, we

enforce that domains are restricted to only safe Rust, and link

against a white-listed set of Rust libraries.

Code generation Domain creation and loading rely on the

code generated by the IDL compiler (Figure 4). IDL en-

sures safety at domain boundaries and allows support for

user-defined domain interfaces. From the definitions of do-

main interfaces (Figure 4, 1) and its create function (2) the

IDL generates the following code: 1) Rust implementations

of all interfaces (3) and the create (4) trait, 2) a trusted

entry point function (5) that is placed in the domain’s build

tree and compiled along with the rest of the domain to en-

sure that domain’s entry function matches the domain create

code, hence preserving safety on the domain boundary, 3) a

microkernel domain create function that creates domains with

a specific type signature of the entry point function (6), and

4) implementation of the proxy for this interface (7). By

controlling the generation of the entry point, we ensure that

the types of the entry function inside the microkernel and

inside the domain match. If a domain tries to violate safety by

changing the type of its entry function the compilation fails.

4.3 Safe Device Drivers

In RedLeaf device drivers are implemented as regular do-

mains with no additional privileges. Like other domains they

are restricted to the safe subset of Rust. To access the hard-

ware, we provide device drivers with a collection of trusted

crates that implement a safe interface to the hardware inter-

face of the device, e.g., access to device registers and its DMA

engines. For example, the ixgbe device crate provides access

to the BAR region of the device, and abstracts its submit and

receive queues with the collection of methods for adding and

removing requests from the buffers.

Device driver domains are created by the init domain when

the system boots. Each PCI device takes a reference to the

PCI trait that is implemented inside the pci domain. Similar to

other driver domains, the PCI driver relies on a trusted crate

to enumerate all hardware devices on the bus. The trusted

crate constructs BARAddr objects that contain addresses of PCI

BAR regions. We protect each BARAddr object with a custom

type, so it can only be used inside the trusted device crate

that implements access to this specific BAR region. The pci

domain probes device drivers with matching device identifiers.

The driver receives a reference to the BARAddr object and starts

accessing the device via its trusted crate.

4.4 Device Driver Recovery

Lightweight isolation mechanisms and clean domain inter-

faces allow us to implement transparent device driver recovery

with shadow drivers [78]. We develop shadow drivers as nor-

mal unprivileged RedLeaf domains. Similar to proxy objects,

the shadow driver wraps the interface of the device driver

and exposes an identical interface. In contrast to the proxy

which is relatively simple and can be generated from the IDL

definition, the shadow driver is intelligent as it implements

a driver-specific recovery protocol. The shadow driver inter-

poses on all communication with the driver. During normal

operation, the shadow passes all calls to the real device driver.

However, it saves all information required for the recovery

of the driver (e.g., references to PCI trait, and other parts of

the device initialization protocol). If the driver crashes, the

shadow driver receives an error from the proxy domain. The

proxy itself receives the error when the thread is unwound

through the continuation mechanism. Instead of returning an

error to its caller, the shadow triggers the domain recovery

protocol. It creates a new driver domain and replays its initial-

ization protocol, by interposing on all external communication

of the driver.

4.5 Rv6 Operating System Personality

To evaluate the generality of RedLeaf’s abstractions, we im-

plemented Rv6, a POSIX-subset operating system on top of

RedLeaf. At a high-level, Rv6 follows the implementation of

the xv6 operating system [73], but is implemented as a collec-

tion of isolated RedLeaf domains. Specifically, we implement

Rv6 as the following domains: the core kernel, file system,

the trait object provided by the proxy domain. The proxy

domain uses a microkernel system call to move the thread

from the callee to the caller domain, creates continuation to

unwind the thread to the entry point in case the invocation

fails, and invokes the trait of the callee domain. On the return

path, a similar sequence moves the thread from the callee

domain back into the caller. In RedLeaf, a null cross-domain

invocation via a proxy object (Table 1) introduces an overhead

of 124 cycles. Saving the state of the thread, i.e., creating

continuation, takes 86 cycles as it requires saving all general

registers. Passing one RRef<T> adds an overhead of 17 cycles

as RRef<T> is moved between domains. To understand the low-

level overhead of transparent recovery, we measure the latency

of performing the same invocation via a shadow domain. In

case of a shadow the invocation crosses two proxies and a user-

built shadow domain and takes 286 cycles due to additional

crossing of proxy and shadow domains.

Most recent Intel CPUs implement support for ring 0 en-

forcement of memory protection keys, protection keys su-

pervisor (PKS) [3], finally enabling low-overhead isolation

mechanism for the privileged kernel code. Nevertheless, even

with low-overhead hardware isolation mechanisms, a zero-

copy fault-isolation scheme requires ownership discipline for

shared objects that arguably requires support from the pro-

gramming language, i.e., either a static analysis [39] or a type

system that can enforce single-ownership.

Overheads of Rust Memory safety guarantees of Rust come

at a cost. In addition to the checks required to ensure safety

at runtime, some Rust abstractions have a non-zero runtime

cost, e.g., types that implement interior mutability, option

types, etc. To measure the overheads introduced by Rust lan-

guage itself, we develop a simple hash table that uses an

open-addressing scheme and relies on the Fowler–Noll–Vo

(FNV) hashing function with linear probing to store eight byte

keys and values. Using the same hashing logic, we develop

three implementations: 1) in plain C, 2) in idiomatic Rust (the

style encouraged by the Rust programming manual), and 3) in

C-style Rust that essentially uses C programming idioms but

in Rust. Specifically, in C-style Rust, we avoid 1) using higher-

order functions and 2) the Option<T> type that we utilize in

the idiomatic code to distinguish between the occupied and

unoccupied entries in the table. Without the Option<T> type

that adds at least one additional byte to the key-value pair, we

benefit from a tight, cache-aligned representation of key-value

pairs in memory to avoid additional cache misses. We vary

the number of entries in the hash table from 212 to 226 and

keep the hash-table 75% full. On most hash table sizes, our

implementation in idiomatic Rust remains 25% slower than

the one in plain C, whereas C-style Rust performs equal to or

even better than plain C, although by only 3-10 cycles (Fig-

ure 5). We attribute this to a more compact code generated by

the Rust compiler (47 instructions on the critical get/set path

in C-style Rust versus 50 instructions in C).

0

0.25

0.5

0.75

1

1.25

1.5

12 14 16 18 20 22 24 26T
S

C
 r

a
ti
o

 n
o

rm
a

liz
e

d
 t

o
 C

Number of elements in the hash table (power of two)

idiomatic-rust-set()
c-style-rust-set()

idiomatic-rust-get()
c-style-rust-get()

Figure 5: C vs Rust performance comparison

0

4

8

12

16

20

Tx-64-1 Tx-64-32 Rx-64-1 Rx-64-32

P
k
ts

/s
 (

M
ill

io
n

)

Linux
DPDK

redleaf-driver

redleaf-domain
redleaf-shadow

rv6-domain

rv6-shadow
line rate

Figure 6: Ixgbe driver performance

5.2 Device Drivers

One of the critical assumptions behind RedLeaf is that Rust’s

safety is practical for development of the fastest subsystems

of a modern operating system kernel. Today, operating with

latencies of low hundreds of cycles per I/O request, device

drivers that provide access to high-throughput I/O interfaces,

network adapters and low-latency non-volatile PCIe-attached

storage, have the tightest performance budgets among all

kernel components. To understand if overheads of Rust’s zero-

cost abstractions allow the development of such low-overhead

subsystems, we develop two device drivers: 1) an Intel 82599

10Gbps Ethernet driver (Ixgbe), and 2) an NVMe driver for

PCIe-attached SSDs.

5.2.1 Ixgbe Network Driver

We compare the performance of RedLeaf’s Ixgbe driver with

the performance of a highly-optimized driver from the DPDK

user-space packet processing framework [21] on Linux. Both

DPDK and our driver work in polling mode, allowing them

to achieve peak performance. We configure RedLeaf to run

several configurations: 1) redleaf-driver: the benchmark ap-

plication links statically with the driver (this configuration is

closest to user-level packet frameworks like DPDK; similarly,

we pass-through the Ixgbe interface directly to the RedLeaf);

2) redleaf-domain: the benchmark application runs in a sep-

arate domain, but accesses the driver domain directly via a

proxy (this configuration represents the case when the net-

work device driver is shared across multiple isolated applica-

tions [38]); 3) rv6-domain: the benchmark application runs as

an Rv6 program, it first enters the Rv6 with a system call and

then calls into the driver (this configuration is analogous to a

setup of a commodity operating system kernel in which user

0

20

40

60

80

100

tx-1 tx-32

P
k
ts

/s
 (

M
ill

io
n

)

redleaf-driver
redleaf-domain

redleaf-shadow
rv6-domain

rv6-shadow

Figure 7: Software-only nullnet driver performance

applications access I/O interfaces via a kernel network stack).

Further, we run the last two configurations with and with-

out the shadow driver (redleaf-shadow and rv6-shadow), which

introduces an additional domain crossing into the shadow

(these two configurations evaluate overheads of the transpar-

ent driver recovery). In all our tests, we pin the application

thread to a single CPU core.

We send 64 byte packets and measure the performance

on two batch sizes: 1 and 32 packets (Figure 6). For packet

receive tests, we use a fast packet generator from the DPDK

framework to generate packets at line-rate. On packet trans-

mit and receive tests, Linux achieves 0.89 Mpps due to its

overly general network stack and synchronous socket inter-

face (Figure 6). On a batch of one, DPDK achieves 6.7 Mpps

and is 7% faster than RedLeaf (6.5 Mpps) for both RX

and TX paths (Figure 6). On a batch of 32 packets, both

drivers achieve the line-rate performance of a 10GbE inter-

face (14.2 Mpps). To understand the impact of cross-domain

invocations, we run the benchmark application as a separate

domain (redleaf-domain) and as an Rv6 program (rv6-domain).

The overhead of domain crossings is apparent on a batch

size of one, where RedLeaf can send and receive packets

at the rate of 4 Mpps per-core with one domain crossing

(redleaf-domain) and 2.9 Mpps if the invocation involves

shadow domain (redleaf-shadow). With two domain cross-

ings, the performance drops to 2.8 Mpps (rv6-domain) and

2.4 Mpps if the driver is accessed via a shadow (rv6-shadow).

On a batch of 32 packets, the overhead of domain crossings

disappears as all configurations saturate the device.

Nullnet To further investigate the overheads of isolation

without the limits introduced by the device itself, we de-

velop a software-only nullnet driver that simply returns the

packet to the caller instead of queuing it to the device (Fig-

ure 7). On a batch of one, the overheads of multiple domain

crossings limit the theoretical performance of nullnet driver

from 29.5 Mpps per-core that can be achieved if the appli-

cation is linked statically with the driver (redleaf-driver) to

5.3 Mpps when nullnet is accessed from the Rv6 application

(rv6-domain). Adding a shadow driver lowers this number to

3.6 Mpps (rv6-shadow). Similarly, on a batch of 32 packets,

nullnet achieves 94 Mpps if the applicaiton is run in the same

domain as the driver. The performance drops to 67 Mpps when

the benchmark code runs as an Rv6 application (rv6-domain),

and to 55 Mpps if the Rv6 application involves a shadow

driver (rv6-shadow).

0

100

200

300

400

500

read-4k-1 read-4k-32 write-4k-1 write-4k-32

IO
P

S
 (

K
)

fio
SPDK

redleaf-driver

redleaf-domain
redleaf-shadow

rv6-domain

rv6-shadow

Figure 8: Performance of the NVMe driver

5.2.2 NVMe Driver

To understand the performance of RedLeaf’s NVMe driver,

we compare it with the multi-queue block driver in the Linux

kernel and a well-optimized NVMe driver from the SPDK

storage framework [42]. Both SPDK and RedLeaf drivers

work in polling mode. Similar to Ixgbe, we evaluate several

configurations: 1) statically linked (redleaf-driver); 2) requir-

ing one domain crossing (redleaf-domain); and 3) running as

an Rv6 user program (rv6-domain). We run the last two config-

urations with and without the shadow driver (redleaf-shadow

and rv6-shadow). All tests are limited to a single CPU core.

We perform sequential read and write tests with a block

size of 4KB on a batch size of 1 and 32 requests (Figure 8). On

Linux, we use fio, a fast I/O generator; on SPDK and RedLeaf,

we develop similar benchmark applications that submit a set

of requests at once, and then poll for completed requests.

To set an optimal baseline for our evaluation, we chose the

configuration parameters that can give us the fastest path to

the device. Specifically, on Linux, we configure fio to use the

asynchronous libaio library to overlap I/O submissions, and

bypass the page cache with the direct I/O flag.

On sequential read tests, fio on Linux achieves 13K IOPS

and 141K IOPS per-core on the batch size of 1 and 32 respec-

tively (Figure 8). On a batch size of one, the RedLeaf driver

is 1% faster (457K IOPS per-core) than SPDK (452K IOPS

per-core). Both drivers achieve maximum device read perfor-

mance. SDPK is slower as it performs additional processing

aimed at collecting performance statistics on each request. On

a batch size of 32, the RedLeaf driver is less than 1% slower

(453K IOPS versus 454K IOPS SPDK). On sequential write

tests with a batch size of 32, Linux is within 3% of the de-

vice’s maximum throughput of around 256K IOPS. RedLeaf

is less than one percent slower (255K IOPS). Since NVMe is

a slower device compared to Ixgbe, the overheads of domain

crossings are minimal for both batch sizes. With one domain

crossing, the performance even goes up by 0.7% (we attribute

this to a varying pattern of accessing the doorbell register of

the device that gets thrashed between the device and CPU).

5.3 Application Benchmarks

To understand the performance overheads of safety and iso-

lation on application workloads, we develop several applica-

tions that traditionally depend on a fast data plane of the op-

Linux
DPDK

redleaf-driver
redleaf-domain

redleaf-shadow
rv6-domain
rv6-shadow

line rate

0

4

8

12

16

maglev-32

P
k
ts

/s
 (

M
ill

io
n

s
)

0

50

100

150

200

httpd

P
k
ts

/s
 (

T
h

o
u

s
a

n
d

s
)

Figure 9: Performance of Maglev and Httpd

0

4

8

8-8
-1

M

16-6
4-1

M

64-6
4-1

M

8-8
-1

6M

16-6
4-1

6M

64-6
4-1

6M

P
k
ts

/s
 (

M
ill

io
n
)

c-dpdk
redleaf-driver

Figure 10: Key-value store

erating system kernel: 1) Maglev load balancer (maglev) [26],

2) a network-attached key-value store (kv-store), and 3) a

minimal web server (httpd).

Maglev load-balancer Maglev is a load balancer developed

by Google to evenly distribute incoming client flows among

a set of backend servers [26]. For each new flow, Maglev se-

lects one of the available backends by performing a lookup

in a hash table, size of which is proportional to the number

of backend servers (65,537 in our experiments). Consistent

hashing allows even distribution of flows across all servers.

Maglev then records the chosen backend in a hash table, a flow

tracking table, that is used to redirect packets from the same

flow to the same backend server. The size of the flow tracking

table is proportional to the number of flows (we choose 1 M

flows for our experiments). Processing a packet requires a

lookup in the flow tracking table if it is an existing flow, or

a lookup of a backend server and an insertion into the flow

tracking table to record the new flow. To compare RedLeaf

performance with both a commodity and the fastest possible

setup, we develop C and Rust versions of the core Maglev

logic. Moreover, we evaluate two C versions: one to run as a

normal Linux program that uses the socket interface and an-

other developed to work as a network function for the DPDK

network processing framework [21]. In all versions we follow

the same code logic and, if possible, apply the same optimiza-

tions. Again, on all setups, we restrict execution to one CPU

core. Running as a Linux program, maglev is limited to 1 Mpps

per-core due to the synchronous socket interface of the Linux

kernel and a generic network stack (Figure 9). Operating on a

batch of 32 packets, the maglev DPDK function is capable of

achieving 9.7 Mpps per-core due to a well-optimized network

device driver. Linked statically against the driver, RedLeaf

application (redleaf-driver) achieves 7.2 Mpps per-core. Per-

formance drops with additional domain crossings. Running as

an Rv6 application, maglev can forward at 5.3 Mpps per-core

without and 5.1 Mpps with the shadow domain.

Key-value store Key-value stores are de facto standard build-

ing blocks for a range of datacenter systems ranging from

social networks [64] to key-value databases [23]. To eval-

uate RedLeaf’s ability to support the development of effi-

cient datacenter applications, we develop a prototype of a

network-attached key-value store, kv-store. Our prototype is

designed to utilize a range of modern optimizations similar to

Mica [52], e.g., a user-level device driver like DPDK, parti-

tioned design aimed at avoiding cross-core cache-coherence

traffic, packet flow steering to guarantee that request is di-

rected to the specific CPU core where the key is stored, no

locks and no allocations on the request processing path, etc.

Our implementation relies on a hash table that uses open

addressing scheme with linear probing and the FNV hash

function. In our experiments, we compare the performance

of two implementations: a C version developed for DPDK,

and a Rust version that executes in the same domain with the

driver (redleaf-driver), i.e., the configuration that is closest

to DPDK. We evaluate two hash table sizes: 1 M and 16 M en-

tries with three sets of key and value pairs (<8B,8B>, <16B,64B>,

<64B,64B>). The RedLeaf version is implemented in a C-style

Rust code, i.e., we avoid Rust abstractions that have run-time

overhead (e.g., Option<T>, and RefCell<T> types). This ensures

that we can control the memory layout of the key-value pair

to avoid additional cache misses. Despite our optimizations,

RedLeaf achieves only 61-86% performance of the C DPDK

version. The main reason for the performance degradation is

that being implemented in safe Rust, our code uses vectors,

Vec<T>, to represent packet data. To create a response, we need

to extend this vector thrice by calling the extend_from_slice()

function to copy the response header, key, and value into the

response packet. This function checks if the vector needs to be

grown and performs a copy. In contrast, the C implementation

benefits from a much lighter unsafe invocation of memcpy().

As an exercise, we implemented the packet serialization logic

with unsafe Rust typecast that allowed us to achieve 85-94%

of the C’s performance. However, we do not allow unsafe

Rust inside RedLeaf domains.

Web server The latency of web page loading plays a critical

role in both the user experience, and the rank of the page

assigned by a search engine [15, 66]. We develop a prototype

of a web server, httpd, that can serve static HTTP content. Our

prototype uses a simple run-to-completion execution model

that polls incoming requests from all open connections in a

round-robin fashion. For each request, it performs request

parsing and replies with the requested static web page. We

compare our implementation with one of the de facto industry

standard web servers, Nginx [63]. In our tests, we use the wrk

HTTP load generator [1], which we configure to run with one

thread and 20 open connections. On Linux, Nginx can serve

0

500

1000

1500

2000

0 2 4 6 8 10

0

200

400

600

800

R
e

a
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

W
ri
te

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Time (sec)

Read Write

Figure 11: Block device recovery (FS write).

70.9 K requests per second, whereas our implementation of

httpd achieves 212 K requests per second in a configuration

where the application is run in the same domain as the driver

(redleaf-driver) and network stack (Figure 9). Specifically,

we benefit from low-latency access to the network stack and

the network device driver. Running as an Rv6 domain, httpd

achieves the rate of 181.4 K packets per second (178.9 K if it

uses a shadow).

5.4 Device Driver Recovery

To evaluate the overheads introduced by the transparent de-

vice driver recovery, we develop a test in which an Rv6 pro-

gram accesses the Rv6 file system backed by an in-memory

block device. Running as an Rv6 program, the benchmark

application continuously reads and writes files in the Rv6 file

system using 4K blocks. The Rv6 file system accesses the

block device via a shadow driver that can perform recovery of

the block device in case of a crash. During the test, we trigger

a crash of the block device driver every second (Figure 11).

Automatic recovery triggers a small drop in performance. For

reads, the throughput with and without restarts averages at

2062 MB/s and 2164 MB/s respectively (a 5% drop in perfor-

mance). For writes, the total throughput averages at 356 MB/s

with restarts and 423 MB/s without restarts (a 16% drop in

performance).

6 Related Work

Several recent projects use Rust for building low-level high-

performance systems, including data storage [33, 47, 60], net-

work function virtualization [68], web engine [74], and sev-

eral operating systems [17, 24, 50, 51], unikernels [49] and

hypervisors [4, 36, 40]. Firecracker [4], Intel Cloud Hyper-

visor [40], and Google Chrome OS Virtual Machine Moni-

tor [36] replace Qemu hardware emulator with a Rust-based

implementation. Redox [24] utilizes Rust for development

of a microkernel-based operating system (both microkernel

and user-level device drivers are implemented in Rust, but are

free to use unsafe Rust). The device drivers run in ring 3 and

use traditional hardware mechanisms for isolation and system

calls for communication with the microkernel. By and large,

all these systems leverage Rust as a safe alternative to C, but

do not explore the capabilities of Rust that go beyond type

and memory safety.

Tock develops many principles of minimizing the use of

unsafe Rust in a hardware-facing kernel code [50]. Tock is

structured as a minimal core kernel and a collection of de-

vice drivers (capsules). Tock relies on Rust’s language safety

for isolation of the capsules (in Tock user applications are

isolated with commodity hardware mechanisms). To ensure

isolation, Tock forbids unsafe extensions in capsules but does

not restrict sharing of pointers between capsules and the main

kernel (this is similar to language systems using pointers as

capabilities, e.g., SPIN [13]). As a result, a fault in any of the

capsules halts the entire system. Our work builds on many

design principles aimed at minimizing the amount of unsafe

Rust code developed by Tock but extends them with support

for fault isolation and dynamic loading of extensions. Sim-

ilar to Tock, Netbricks [68] and Splinter [47] rely on Rust

for isolation of network functions and user-defined database

extensions. None of the systems provides support for deallo-

cating resources of crashing subsystems, recovery, or generic

exchange of interfaces and object references.

7 Conclusions

“A Journey, not a Destination” [39], Singularity OS laid the

foundation for many concepts that influenced the design of

Rust. In turn, by enabling the principles of fault isolation

in Rust itself, our work completes the cycle of this journey.

RedLeaf, however, is just a step forward, not a final design—

while guided by principles of practicality and performance,

our work is, first, a collection of mechanisms and an experi-

mentation platform for enabling future system architectures

that leverage language safety. Rust provides systems develop-

ers the mechanisms we were waiting for decades: practical,

zero-cost safety, and a type system that enforces ownership.

Arguably, the isolation that we implement is the most crit-

ical mechanism as it provides a foundation for enforcing a

range of abstractions in systems with faulty and mistrusting

components. By articulating principles of isolation, our work

unlocks future exploration of abstractions enabled by the iso-

lation and safety: secure dynamic extensions, fine-grained

access control, least privilege, collocation of computation and

data, transparent recovery, and many more.

Acknowledgments

We would like to thank USENIX ATC 2020 and OSDI 2020

reviewers and our shepherd, Michael Swift, for numerous in-

sights helping us to improve this work. Also, we would like

to thank the Utah CloudLab team, and especially Mike Hibler,

for his continuous support in accommodating our hardware re-

quests. We thank Abhiram Balasubramanian for helping with

RedLeaf device drivers and Nivedha Krishnakumar for assist-

ing us with low-level performance analysis. This research is

supported in part by the National Science Foundation under

Grant Numbers 1837051 and 1840197, Intel and VMWare.

References

[1] wrk - a HTTP benchmarking tool. https://github.

com/wg/wrk.

[2] Erlang on Xen. http://erlangonxen.org/, 2012.

[3] Intel 64 and IA-32 Architectures Software Developer’s

Manual, 2020. https://software.intel.com/

content/www/us/en/develop/download/intel-64-

and-ia-32-architectures-sdm-combined-volumes-

1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html.

[4] Alexandru Agache, Marc Brooker, Alexandra Iordache,

Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and

Diana-Maria Popa. Firecracker: Lightweight Virtualiza-

tion for Serverless Applications. In Proceedings of the

17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20), pages 419–434, 2020.

[5] Vytautas Astrauskas, Peter Müller, Federico Poli, and

Alexander J. Summers. Leveraging Rust Types for Mod-

ular Specification and Verification. In Proceedings of

the ACM on Programming Languages (OOPSLA), vol-

ume 3, pages 147:1–147:30.

[6] Godmar Back and Wilson C Hsieh. The KaffeOS

Java Runtime System. ACM Transactions on Program-

ming Languages and Systems (TOPLAS), 27(4):583–

630, 2005.

[7] Abhiram Balasubramanian, Marek S. Baranowski, An-

ton Burtsev, Aurojit Panda, Zvonimir Rakamarić, and

Leonid Ryzhyk. System Programming in Rust: Beyond

Safety. In Proceedings of the 16th Workshop on Hot Top-

ics in Operating Systems (HotOS ’17), pages 156–161,

2017.

[8] Marek Baranowski, Shaobo He, and Zvonimir Raka-

marić. Verifying Rust Programs with SMACK. In Pro-

ceedings of the 16th International Symposium on Auto-

mated Technology for Verification and Analysis (ATVA),

volume 11138 of Lecture Notes in Computer Science,

pages 528–535. Springer, 2018.

[9] Fred Barnes, Christian Jacobsen, and Brian Vinter.

RMoX: A Raw-Metal occam Experiment. In Com-

municating Process Architectures 2003, volume 61 of

Concurrent Systems Engineering Series, pages 182–196,

September 2003.

[10] Andrew Baumann, Jonathan Appavoo, Orran Krieger,

and Timothy Roscoe. A Fork() in the Road. In Pro-

ceedings of the Workshop on Hot Topics in Operating

Systems (HotOS ’19), page 14–22, 2019.

[11] Adam Belay, George Prekas, Ana Klimovic, Samuel

Grossman, Christos Kozyrakis, and Edouard Bugnion.

IX: A Protected Dataplane Operating System for High

Throughput and Low Latency. In Proceedings of the

11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’14), pages 49–65, October

2014.

[12] D. Bell and L. LaPadula. Secure computer system: Uni-

fied exposition and Multics interpretation. Technical

Report ESD-TR-75-306, MITRE Corp., March 1976.

[13] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.

Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-

tensibility Safety and Performance in the SPIN Operat-

ing System. In Proceedings of the 15th ACM Sympo-

sium on Operating Systems Principles (SOSP ’95), page

267–283, 1995.

[14] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and

Henry M. Levy. The Development of the Emerald Pro-

gramming Language. In Proceedings of the 3rd ACM

SIGPLAN Conference on History of Programming Lan-

guages (HOPL III), page 11–1–11–51, 2007.

[15] Google Webmaster Central Blog. Using

site speed in web search ranking. https:

//webmasters.googleblog.com/2010/04/using-

site-speed-in-web-search-ranking.html.

[16] Jeff Bonwick. The Slab Allocator: An Object-

Caching Kernel Memory Allocator. In Proceedings

of the USENIX Summer 1994 Technical Conference

(USTC’94), page 6, 1994.

[17] Kevin Boos and Lin Zhong. Theseus: A State Spill-Free

Operating System. In Proceedings of the 9th Workshop

on Programming Languages and Operating Systems

(PLOS’17), page 29–35, 2017.

[18] John Boyland. Alias burying: Unique variables without

destructive reads. Software: Practice and Experience,

31(6):533–553, 2001.

[19] Hank Bromley and Richard Lamson. LISP Lore: A

Guide to Programming the Lisp Machine. Springer

Science & Business Media, 2012.

[20] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,

Nickolai Zeldovich, and M. Frans Kaashoek. Linux

Kernel Vulnerabilities: State-of-the-Art Defenses and

Open Problems. In Proceedings of the 2nd Asia-Pacific

Workshop on Systems (APSys ’11), pages 5:1–5:5, 2011.

[21] Intel Corporation. DPDK: Data Plane Development Kit.

http://dpdk.org/.

[22] Cody Cutler, M Frans Kaashoek, and Robert T Mor-

ris. The benefits and costs of writing a POSIX kernel

in a high-level language. In Proceedings of the 13th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’18), pages 89–105, 2018.

[23] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex

Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: Amazon’s Highly Avail-

able Key-Value Store. In Proceedings of the 21st ACM

SIGOPS Symposium on Operating Systems Principles

(SOSP ’07), page 205–220, 2007.

[24] Redox Project Developers. Redox - Your Next(Gen) OS.

http://www.redox-os.org/.

[25] Sean M Dorward, Rob Pike, David Leo Presotto, Den-

nis M Ritchie, Howard W Trickey, and Philip Winterbot-

tom. The Inferno operating system. Bell Labs Technical

Journal, 2(1):5–18, 1997.

[26] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody

Smith, Roman Kononov, Eric Mann-Hielscher, Ardas

Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-

nah Dylan Hosein. Maglev: A Fast and Reliable Soft-

ware Network Load Balancer. In Proceedings of the

13th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’16), pages 523–535, March

2016.

[27] Kevin Elphinstone and Gernot Heiser. From L3 to SeL4

What Have We Learnt in 20 Years of L4 Microkernels?

In Proceedings of the 24th ACM Symposium on Oper-

ating Systems Principles (SOSP ’13), page 133–150,

2013.

[28] Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Eg-

ger, Esaú García Sánchez-Torija, Thomas Günzel, Sebas-

tian Di Luzio, Alexandru Obada, Maximilian Stadlmeier,

Sebastian Voit, et al. The Case for Writing Network

Drivers in High-Level Programming Languages. In Pro-

ceedings of the 2019 ACM/IEEE Symposium on Archi-

tectures for Networking and Communications Systems

(ANCS), pages 1–13. IEEE, 2019.

[29] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion

Hodson, Galen Hunt, James R. Larus, and Steven Levi.

Language Support for Fast and Reliable Message-Based

Communication in Singularity OS. In Proceedings of

the 1st ACM SIGOPS/EuroSys European Conference on

Computer Systems 2006 (EuroSys ’06), page 177–190,

2006.

[30] Manuel Fahndrich and Robert DeLine. Adoption and Fo-

cus: Practical Linear Types for Imperative Programming.

In Proceedings of the ACM SIGPLAN 2002 Conference

on Programming Language Design and Implementation

(PLDI ’02), pages 13–24, 2002.

[31] Bryan Ford and Jay Lepreau. Evolving Mach 3.0 to a

Migrating Thread Model. In Proceedings of the USENIX

Winter 1994 Technical Conference on USENIX Winter

1994 Technical Conference (WTEC ’94), pages 97–114,

1994.

[32] Lester J Fraim. Scomp: A Solution to the Multilevel

Security Problem. Computer, 16(07):26–34, July 1983.

[33] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens,

Lara Timbó Araújo, Martin Ek, Eddie Kohler, M. Frans

Kaashoek, and Robert Morris. Noria: Dynamic,

Partially-Stateful Data-Flow for High-Performance Web

Applications. In Proceedings of the 12th USENIX Con-

ference on Operating Systems Design and Implementa-

tion (OSDI’18), page 213–231, 2018.

[34] Adele Goldberg and David Robson. Smalltalk-80: The

Language and its Implementation. Addison-Wesley

Longman Publishing Co., Inc., 1983.

[35] Michael Golm, Meik Felser, Christian Wawersich, and

Jürgen Kleinöder. The JX Operating System. In Pro-

ceedings of the General Track of the Annual Conference

on USENIX Annual Technical Conference (ATC ’02),

page 45–58, 2002.

[36] Google. Google Chrome OS Virtual Machine

Monitor. https://chromium.googlesource.com/

chromiumos/platform/crosvm.

[37] Haskell Lightweight Virtual Machine (HaLVM). http:

//corp.galois.com/halvm.

[38] Mohammad Hedayati, Spyridoula Gravani, Ethan John-

son, John Criswell, Michael L. Scott, Kai Shen, and

Mike Marty. Hodor: Intra-Process Isolation for High-

Throughput Data Plane Libraries. In Proceedings of the

2019 USENIX Annual Technical Conference (USENIX

ATC ’19), pages 489–504, July 2019.

[39] Galen C. Hunt and James R. Larus. Singularity: Re-

thinking the Software Stack. ACM SIGOPS Operating

Systems Review, 41(2):37–49, April 2007.

[40] Intel. Cloud Hypervisor VMM. https://github.com/

cloud-hypervisor/cloud-hypervisor.

[41] Intel. Side Channel Mitigation by Product CPU

Model. https://www.intel.com/content/www/us/

en/architecture-and-technology/engineering-

new-protections-into-hardware.html.

[42] Intel Corporation. Storage Performance Development

Kit (SPDK). https://spdk.io.

[43] Trevor Jim, J. Greg Morrisett, Dan Grossman,

Michael W. Hicks, James Cheney, and Yanling Wang.

Cyclone: A safe dialect of C. In Proceedings of

the General Track: 2002 USENIX Annual Technical

Conference (ATC ’02), pages 275–288, June 2002.

[44] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,

and Derek Dreyer. RustBelt: Securing the Foundations

of the Rust Programming Language. In Proceedings

of the ACM on Programming Languages (POPL), vol-

ume 2, pages 1–34, 2017.

[45] Steve Klabnik and Carol Nichols. The Rust Program-

ming Language. No Starch Press, 2019.

[46] Kenneth C. Knowlton. A Fast Storage Allocator. Com-

munications of the ACM, 8(10):623–624, October 1965.

[47] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian

Zhang, Robert Ricci, and Ryan Stutsman. Splinter: Bare-

Metal Extensions for Multi-Tenant Low-Latency Stor-

age. In Proceedings of the 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

’18), pages 627–643, October 2018.

[48] Butler W. Lampson and Robert F. Sproull. An Open Op-

erating System for a Single-User Machine. In Proceed-

ings of the 7th ACM Symposium on Operating Systems

Principles (SOSP ’79), page 98–105. 1979.

[49] Stefan Lankes, Jens Breitbart, and Simon Pickartz. Ex-

ploring Rust for Unikernel Development. In Proceed-

ings of the 10th Workshop on Programming Languages

and Operating Systems (PLOS’19), page 8–15, 2019.

[50] Amit Levy, Bradford Campbell, Branden Ghena,

Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and Philip

Levis. Multiprogramming a 64kB Computer Safely

and Efficiently. In Proceedings of the 26th Sympo-

sium on Operating Systems Principles (SOSP ’17), page

234–251, 2017.

[51] Alex Light. Reenix: Implementing a Unix-like operating

system in Rust. Undergraduate Honors Theses, Brown

University, 2015.

[52] Hyeontaek Lim, Dongsu Han, David G. Andersen, and

Michael Kaminsky. MICA: A Holistic Approach to Fast

In-Memory Key-Value Storage. In Proceedings of the

11th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’14), pages 429–444, April

2014.

[53] John Lions. Lions’ commentary on UNIX 6th edition

with source code. Peer-to-Peer Communications, Inc.,

1996.

[54] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and

Yubin Xia. Thwarting Memory Disclosure with Efficient

Hypervisor-Enforced Intra-Domain Isolation. In Pro-

ceedings of the 22nd ACM SIGSAC Conference on Com-

puter and Communications Security (CCS ’15), page

1607–1619, 2015.

[55] Peter W Madany, Susan Keohan, Douglas Kramer, and

Tom Saulpaugh. JavaOS: A Standalone Java Environ-

ment. White Paper, Sun Microsystems, Mountain View,

CA, 1996.

[56] Anil Madhavapeddy, Richard Mortier, Charalampos Rot-

sos, David Scott, Balraj Singh, Thomas Gazagnaire,

Steven Smith, Steven Hand, and Jon Crowcroft. Uniker-

nels: Library Operating Systems for the Cloud. ACM

SIGARCH Computer Architecture News, 41(1):461–472,

March 2013.

[57] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,

Nickolai Zeldovich, and M. Frans Kaashoek. Software

Fault Isolation with API Integrity and Multi-Principal

Modules. In Proceedings of the 23rd ACM Sympo-

sium on Operating Systems Principles (SOSP ’11), page

115–128, 2011.

[58] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and

Haibo Chen. SkyBridge: Fast and Secure Inter-Process

Communication for Microkernels. In Proceedings of

the 14th EuroSys Conference 2019 (EuroSys ’19), 2019.

[59] Mark Samuel Miller. Robust Composition: Towards a

Unified Approach to Access Control and Concurrency

Control. PhD thesis, Johns Hopkins University, May

2006.

[60] Derek G. Murray, Frank McSherry, Michael Isard, Re-

becca Isaacs, Paul Barham, and Martin Abadi. Incre-

mental, Iterative Data Processing with Timely Dataflow.

Communications of the ACM, 59(10):75–83, September

2016.

[61] Vikram Narayanan, Abhiram Balasubramanian, Charlie

Jacobsen, Sarah Spall, Scott Bauer, Michael Quigley,

Aftab Hussain, Abdullah Younis, Junjie Shen, Moinak

Bhattacharyya, and Anton Burtsev. LXDs: Towards

Isolation of Kernel Subsystems. In Proceedings of the

2019 USENIX Annual Technical Conference (USENIX

ATC ’19), pages 269–284, July 2019.

[62] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent

Jaeger, and Anton Burtsev. Lightweight Kernel Isolation

with Virtualization and VM Functions. In Proceedings

of the 16th ACM SIGPLAN/SIGOPS International Con-

ference on Virtual Execution Environments (VEE ’20),

page 157–171, 2020.

[63] Nginx. Nginx: High Performance Load Balancer, Web

Server, and Reverse Proxy. https://www.nginx.com/.

[64] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc

Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,

Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,

Tony Tung, and Venkateshwaran Venkataramani. Scal-

ing Memcache at Facebook. In Proceedings of the 10th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI ’13), pages 385–398, April 2013.

[65] Oreboot developers. Oreboot. https://github.com/

oreboot/oreboot.

[66] Addy Osmani and Ilya Grigorik. Speed is

now a landing page factor for Google Search

and Ads. https://developers.google.com/web/

updates/2018/07/search-ads-speed.

[67] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe

Calvès, Julia Lawall, and Gilles Muller. Faults in Linux:

Ten Years Later. In Proceedings of the 16th Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS XVI),

page 305–318, 2011.

[68] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,

Sylvia Ratnasamy, and Scott Shenker. NetBricks: Tak-

ing the V out of NFV. In Proceedings of the 12th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’16), pages 203–216, November

2016.

[69] Matthew Parkinson. Digital Security by Design: Se-

curity and Legacy at Microsoft. https://vimeo.com/

376180843, 2019. ISCF Digital Security by Design:

Collaboration Development Workshop.

[70] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,

Doug Woos, Arvind Krishnamurthy, Thomas Anderson,

and Timothy Roscoe. Arrakis: The Operating System is

the Control Plane. In Proceedings of the 11th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI ’14), pages 1–16, October 2014.

[71] David D Redell, Yogen K Dalal, Thomas R Horsley,

Hugh C Lauer, William C Lynch, Paul R McJones, Hal G

Murray, and Stephen C Purcell. Pilot: An Operating

System for a Personal Computer. Communications of

the ACM, 23(2):81–92, 1980.

[72] Robert Ricci, Eric Eide, and CloudLab Team. Introduc-

ing CloudLab: Scientific Infrastructure for Advancing

Cloud Architectures and Applications. ; login:: the

magazine of USENIX & SAGE, 39(6):36–38, 2014.

[73] Robert Morris Russ Cox, Frans Kaashoek. Xv6, a simple

Unix-like teaching operating system. https://pdos.

csail.mit.edu/6.828/2019/xv6.html, 2019.

[74] Servo, the Parallel Browser Engine Project. http://

www.servo.org.

[75] Christopher Small and Margo I. Seltzer. VINO: An

Integrated Platform for Operating System and Database

Research. Technical Report TR 30-94, Harvard Uni-

versity, Division of Engineering and Applied Sciences,

1994.

[76] Marc Stiegler. The E Language in a Walnut, 2000. http:

//www.skyhunter.com/marcs/ewalnut.html.

[77] Jeff Vander Stoep. Android: protecting the kernel. Linux

Security Summit, 2016.

[78] Michael M Swift, Muthukaruppan Annamalai, Brian N

Bershad, and Henry M Levy. Recovering Device

Drivers. ACM Transactions on Computer Systems

(TOCS), 24(4):333–360, 2006.

[79] Michael M Swift, Steven Martin, Henry M Levy, and

Susan J Eggers. Nooks: An Architecture for Reliable

Device Drivers. In Proceedings of the 10th workshop

on ACM SIGOPS European workshop, pages 102–107,

2002.

[80] Daniel C Swinehart, Polle T Zellweger, Richard J Beach,

and Robert B Hagmann. A Structural View of the Cedar

Programming Environment. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 8(4):419–

490, 1986.

[81] Mads Tofte and Jean-Pierre Talpin. Region-Based

Memory Management. Information and Computation,

132(2):109–176, 1997.

[82] J. Toman, S. Pernsteiner, and E. Torlak. Crust: A

Bounded Verifier for Rust (N). In 2015 30th IEEE/ACM

International Conference on Automated Software Engi-

neering (ASE), pages 75–80, November 2015.

[83] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.

Duarte, Michael Sammler, Peter Druschel, and Deepak

Garg. ERIM: Secure, Efficient In-process Isolation with

Protection Keys (MPK). In Proceedings of the 28th

USENIX Security Symposium (USENIX Security ’19),

pages 1221–1238, August 2019.

[84] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and

M. Valero. CODOMs: Protecting Software with Code-

centric Memory Domains. In Proceedings of the 2014

ACM/IEEE 41st International Symposium on Computer

Architecture (ISCA), pages 469–480, June 2014.

[85] Thorsten von Eicken, Chi-Chao Chang, Grzegorz Cza-

jkowski, Chris Hawblitzel, Deyu Hu, and Dan Spoon-

hower. J-Kernel: A Capability-Based Operating System

for Java. In Secure Internet Programming: Security Is-

sues for Mobile and Distributed Objects, pages 369–393.

1999.

[86] Philip Wadler. Linear Types Can Change the World!

In IFIP TC 2 Working Conference on Programming

Concepts and Methods, pages 347–359, 1990.

[87] David Walker and Greg Morrisett. Alias Types for Re-

cursive Data Structures (Extended Version). Technical

Report TR2000-1787, Cornell University, March 2000.

[88] Paul R. Wilson. Uniprocessor Garbage Collection Tech-

niques. In Memory Management, pages 1–42, 1992.

[89] Emmett Witchel, Junghwan Rhee, and Krste Asanović.

Mondrix: Memory Isolation for Linux Using Mondriaan

Memory Protection. In Proceedings of the 20th ACM

Symposium on Operating Systems Principles (SOSP

’05), page 31–44, 2005.

[90] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore,

J. Anderson, B. Davis, B. Laurie, P. G. Neumann, R. Nor-

ton, and M. Roe. The CHERI capability model: Revisit-

ing RISC in an age of risk. In Proceedings of the 2014

ACM/IEEE 41st International Symposium on Computer

Architecture (ISCA), pages 457–468, 2014.

	Introduction
	Isolation in Language-Based Systems
	RedLeaf Architecture
	Domains and Fault Isolation
	Heap Isolation and Sharing
	Exchangeable Types
	Ownership Tracking
	Cross-Domain Call Proxying
	Interface Validation

	Zero-copy Communication

	Implementation
	Microkernel
	Dynamic Domain Loading
	Safe Device Drivers
	Device Driver Recovery
	Rv6 Operating System Personality

	Evaluation
	Overheads of Domain Isolation
	Device Drivers
	Ixgbe Network Driver
	NVMe Driver

	Application Benchmarks
	Device Driver Recovery

	Related Work
	Conclusions
	Acknowledgments

