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Abstract

RedLeaf is a new operating system developed from scratch
in Rust to explore the impact of language safety on operat-
ing system organization. In contrast to commodity systems,
RedLeaf does not rely on hardware address spaces for isola-
tion and instead uses only type and memory safety of the Rust
language. Departure from costly hardware isolation mecha-
nisms allows us to explore the design space of systems that
embrace lightweight fine-grained isolation. We develop a
new abstraction of a lightweight language-based isolation
domain that provides a unit of information hiding and fault
isolation. Domains can be dynamically loaded and cleanly
terminated, i.e., errors in one domain do not affect the ex-
ecution of other domains. Building on RedLeaf isolation
mechanisms, we demonstrate the possibility to implement
end-to-end zero-copy, fault isolation, and transparent recov-
ery of device drivers. To evaluate the practicality of RedLeaf
abstractions, we implement Rv6, a POSIX-subset operating
system as a collection of RedLeaf domains. Finally, to demon-
strate that Rust and fine-grained isolation are practical—we
develop efficient versions of a 10Gbps Intel ixgbe network
and NVMe solid-state disk device drivers that match the per-
formance of the fastest DPDK and SPDK equivalents.

1 Introduction

Four decades ago, early operating system designs identified
the ability to isolate kernel subsystems as a critical mecha-
nism for increasing the reliability and security of the entire
system [12,32]. Unfortunately, despite many attempts to in-
troduce fine-grained isolation to the kernel, modern systems
remain monolithic. Historically, software and hardware mech-
anisms remain prohibitively expensive for isolation of subsys-
tems with tightest performance budgets. Multiple hardware
projects explored the ability to implement fine-grained, low-
overhead isolation mechanisms in hardware [84,89,90]. How-
ever, focusing on performance, modern commodity CPUs
provide only basic support for coarse-grained isolation of
user applications. Similarly, for decades, overheads of safe
languages that can provide fine-grained isolation in software
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remained prohibitive for low-level operating system code.
Traditionally, safe languages require a managed runtime, and
specifically, garbage collection, to implement safety. Despite
many advances in garbage collection, its overhead is high for
systems designed to process millions of requests per second
per core (the fastest garbage collected languages experience
20-50% slowdown compared to C on a typical device driver
workload [28]).

For decades, breaking the design choice of a monolithic ker-
nel remained impractical. As a result, modern kernels suffer
from lack of isolation and its benefits: clean modularity, infor-
mation hiding, fault isolation, transparent subsystem recovery,
and fine-grained access control.

The historical balance of isolation and performance is
changing with the development of Rust, arguably, the first
practical language that achieves safety without garbage col-
lection [45]. Rust combines an old idea of linear types [86]
with pragmatic language design. Rust enforces type and mem-
ory safety through a restricted ownership model allowing
only one unique reference to each live object in memory. This
allows statically tracking the lifetime of the object and deallo-
cating it without a garbage collector. The runtime overhead
of the language is limited to bounds checking, which in many
cases can be concealed by modern superscalar out-of-order
CPUs that can predict and execute the correct path around
the check [28]. To enable practical non-linear data structures,
Rust provides a small set of carefully chosen primitives that
allow escaping strict limitations of the linear type system.

Rust is quickly gaining popularity as a tool for development
of low-level systems that traditionally were done in C [4,
24,40,47, 50, 65]. Low-overhead safety brings a range of
immediate security benefits—it is expected, that two-thirds
of vulnerabilities caused by low-level programming idioms
typical for unsafe languages can be eliminated through the
use of a safe language alone [20,22,67,69,77].

Unfortunately, recent projects mostly use Rust as a drop-
in replacement for C. We, however, argue that true benefits
of language safety lie in the possibility to enable practical,
lightweight, fine-grained isolation and a range of mechanisms



that remained in the focus of systems research but remained
impractical for decades: fault isolation [79], transparent de-
vice driver recovery [78], safe kernel extensions [13,75], fine-
grained capability-based access control [76], and more.

RedLeaf' is a new operating system aimed at exploring the
impact of language safety on operating system organization,
and specifically the ability to utilize fine-grained isolation
and its benefits in the kernel. RedLeaf is implemented from
scratch in Rust. It does not rely on hardware mechanisms for
isolation and instead uses only type and memory safety of the
Rust language.

Despite multiple projects exploring isolation in language-
based systems [6, 35, 39, 85] articulating principles of iso-
lation and providing a practical implementation in Rust re-
mains challenging. In general, safe languages provide mech-
anisms to control access to the fields of individual objects
(e.g., through pub access modifier in Rust) and protect point-
ers, i.e., restrict access to the state of the program transi-
tively reachable through visible global variables and explicitly
passed arguments. Control over references and communica-
tion channels allows isolating the state of the program on
function and module boundaries enforcing confidentiality and
integrity, and, more generally, constructing a broad range of
least-privilege systems through a collection of techniques
explored by object-capability languages [59].

Unfortunately, built-in language mechanisms alone are not
sufficient for implementing a system that isolates mutually
distrusting computations, e.g., an operating system kernel that
relies on language safety for isolating applications and kernel
subsystems. To protect the execution of the entire system, the
kernel needs a mechanism that isolates faults, i.e., provides
a way to terminate a faulting or misbehaving computation in
such a way that it leaves the system in a clean state. Specif-
ically, after the subsystem is terminated the isolation mech-
anisms should provide a way to 1) deallocate all resources
that were in use by the subsystem, 2) preserve the objects
that were allocated by the subsystem but then were passed
to other subsystems through communication channels, and
3) ensure that all future invocations of the interfaces exposed
by the terminated subsystem do not violate safety or block
the caller, but instead return an error. Fault isolation is chal-
lenging in the face of semantically-rich interfaces encouraged
by language-based systems—frequent exchange of references
all too often implies that a crash of a single component leaves
the entire system in a corrupted state [85].

Over the years the goal to isolate computations in language-
based systems came a long way from early single-user, single-
language, single-address space designs [9, 14,19, 25,34, 55,
71, 80] to ideas of heap isolation [6, 35] and use of linear
types to enforce it [39]. Nevertheless, today the principles of
language-based isolation are not well understood. Singular-
ity [39], which implemented fault isolation in Sing#, relied
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on a tight co-design of the language and operating system to
implement its isolation mechanisms. Nevertheless, several re-
cent systems suggesting the idea of using Rust for lightweight
isolation, e.g., Netbricks [68] and Splinter [47], struggled to
articulate the principles of implementing isolation, instead
falling back to substituting fault isolation for information
hiding already provided by Rust. Similar, Tock, a recent oper-
ating system in Rust, supports fault isolation of user processes
through traditional hardware mechanisms and a restricted sys-
tem call interface, but fails to provide fault isolation of its
device drivers (capsules) implemented in safe Rust [50].

Our work develops principles and mechanisms of fault iso-
lation in a safe language. We introduce an abstraction of
a language-based isolation domain that serves as a unit of
information hiding, loading, and fault isolation. To encapsu-
late domain’s state and implement fault isolation at domain
boundary, we develop the following principles:

e Heap isolation We enforce heap isolation as an invari-
ant across domains, i.e., domains never hold pointers into
private heaps of other domains. Heap isolation is key for
termination and unloading of crashing domains, since
no other domains hold pointers into the private heap of a
crashing domain, it’s safe to deallocate the entire heap.
To enable cross-domain communication, we introduce a
special shared heap that allows allocation of objects that
can be exchanged between domains.

o Exchangeable types To enforce heap isolation, we in-
troduce the idea of exchangeable types, i.e., types that
can be safely exchanged across domains without leaking
pointers to private heaps. Exchangeable types allow us to
statically enforce the invariant that objects allocated on
the shared heap cannot have pointers into private domain
heaps, but can have references to other objects on the
shared heap.

e Ownership tracking To deallocate resources owned by
a crashing domain on the shared heap, we track owner-
ship of all objects on the shared heap. When an object
is passed between domains we update its ownership
depending on whether it’s moved between domains or
borrowed in a read-only access. We rely on Rust’s own-
ership discipline to enforce that domains lose ownership
when they pass a reference to a shared object in a cross-
domain function call, i.e., Rust enforces that there are no
aliases into the passed object left in the caller domain.

o Interface validation To provide extensibility of the sys-
tem and allow domain authors to define custom inter-
faces for subsystems they implement while retaining iso-
lation, we validate all cross-domain interfaces enforcing
the invariant that interfaces are restricted to exchange-
able types and hence preventing them from breaking the
heap isolation invariants. We develop an interface defini-
tion language (IDL) that statically validates definitions
of cross-domain interfaces and generates implementa-
tions for them.



e Cross-domain call proxying We mediate all cross-
domain invocations with invocation proxies—a layer
of trusted code that interposes on all domain’s inter-
faces. Proxies update ownership of objects passed across
domains, provide support for unwinding execution of
threads from a crashed domain, and protect future in-
vocations of the domain after it is terminated. Our IDL
generates implementations of the proxy objects from
interface definitions.

The above principles allow us to enable fault-isolation
in a practical manner: isolation boundaries introduce mini-
mal overhead even in the face of semantically-rich interfaces.
When a domain crashes, we isolate the fault by unwinding ex-
ecution of all threads that currently execute inside the domain,
and deallocate domain’s resources without affecting the rest
of the system. Subsequent invocations of domain’s interfaces
return errors, but remain safe and do not trigger panics. All
objects allocated by the domain, but returned before the crash,
remain alive.

To test these principles we implement RedLeaf as a mi-
crokernel system in which a collection of isolated domains
implement functionality of the kernel: typical kernel subsys-
tems, POSIX-like interface, device drivers, and user applica-
tions. RedLeaf provides typical features of a modern kernel:
multi-core support, memory management, dynamic loading
of kernel extensions, POSIX-like user processes, and fast de-
vice drivers. Building on RedLeaf isolation mechanisms, we
demonstrate the possibility to transparently recover crash-
ing device drivers. We implement an idea similar to shadow
drivers [78], i.e., lightweight shadow domains that mediate
access to the device driver and restart it replaying its initial-
ization protocol after the crash.

To evaluate the generality of RedLeaf abstractions, we im-
plement Rv6, a POSIX-subset operating system on top of
RedLeaf. Rv6 follows the UNIX V6 specification [53]. De-
spite being a relatively simple kernel, Rv6 is a good platform
that illustrates how ideas of fine-grained, language-based iso-
lation can be applied to modern kernels centered around the
POSIX interface. Finally, to demonstrate that Rust and fine-
grained isolation introduces a non-prohibitive overhead, we
develop efficient versions of 10Gbps Intel Ixgbe network and
PCle-attached solid state-disk NVMe drivers.

We argue that a combination of practical language safety
and ownership discipline allows us to enable many classical
ideas of operating system research for the first time in an effi-
cient way. RedLeaf is fast, supports fine-grained isolation of
kernel subsystems [57,61,62,79], fault isolation [78,79], im-
plements end-to-end zero-copy communication [39], enables
user-level device drivers and kernel bypass [11,21,42,70],
and more.

2 Isolation in Language-Based Systems

Isolation has a long history of research in language-based sys-
tems that were exploring tradeoffs of enforcing lightweight

isolation boundaries through language safety, fine-grained
control of pointers, and type systems. Early operating sys-
tems applied safe languages for operating system develop-
ment [9,14,19,25,34,55,71,80]. These systems implemented
an “open” architecture, i.e., a single-user, single-language,
single-address space operating system that blurred the bound-
ary between the operating system and the application it-
self [48]. These systems relied on language safety to pro-
tect against accidental errors but did not provide isolation of
subsystems or user-applications (modern unikernels take a
similar approach [2,37,56]).

SPIN was the first to suggest language safety as a mech-
anism to implement isolation of dynamic kernel exten-
sions [13]. SPIN utilized Modula-3 pointers as capabilities to
enforce confidentiality and integrity, but since pointers were
exchanged across isolation boundaries it failed to provide
fault isolation—a crashing extension left the system in an
inconsistent state.

J-Kernel [85] and KaffeOS [6] were the first kernels to
point out the problem that language safety alone is not suffi-
cient for enforcing fault isolation and termination of untrusted
subsystems. To support termination of isolated domains in
Java, J-Kernel developed the idea of mediating accesses to all
objects that are shared across domains [85]. J-Kernel intro-
duces a special capability object that wraps the interface of
the original object shared across isolated subsystems. To sup-
port domain termination, all capabilities created by a crashing
domain were revoked hence dropping the reference to the
original object that was garbage collected and preventing the
future accesses by returning an exception. J-Kernel relied
on a custom class loader to validate cross-domain interfaces
(i.e., generate remote-invocation proxies at run-time instead
of using a static IDL compiler). To enforce isolation, J-Kernel
utilized a special calling convention that allowed passing ca-
pability references by reference, but required a deep copy for
regular unwrapped objects. Without ownership discipline for
shared objects, J-Kernel provided a somewhat limited fault
isolation model: the moment the domain that created the ob-
ject crashed, all references to the shared objects were revoked,
propagating faults into domains that acquired these objects
through cross-domain invocations. Moreover, lack of “move’
semantics, i.e., the ability to enforce that the caller lost access
to the object when it was passed to the callee, implied that
isolation required a deep copy of objects which is prohibitive
for isolation of modern, high-throughput device drivers.

Instead of mediating accesses to shared objects through
capability references, KaffeOS adopts the technique of “write
barriers” [88] that validate all pointer assignments throughout
the system and hence can enforce a specific pointer disci-
pline [6]. KaffeOS introduced separation of private domain
and special shared heaps designated for sharing of objects
across domains—explicit separation was critical to perform
the write barrier check, i.e., if assigned pointer belonged to a
specific heap. Write barriers were used to enforce the follow-
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ing invariants: 1) objects on the private heap were allowed to
have pointers into objects on the shared heap, but 2) objects
on the shared heap were constrained to the same shared heap.
On cross-domain invocations, when a reference to a shared
object was passed to another domain, the write barrier was
used to validate the invariants, and also to create a special
pair of objects responsible for reference counting and garbage
collecting shared objects. KaffeOS had the following fault
isolation model: when the creator of the object terminated,
other domains retained access to the object (reference count-
ing ensured that eventually objects were deallocated when all
sharers terminated). Unfortunately, while other domains were
able to access the objects after their creator crashed, it was
not sufficient for clean isolation—shared objects were poten-
tially left in an inconsistent state (e.g., if the crash happened
halfway through an object update), thus potentially halting
or crashing other domains. Similar to J-Kernel, isolation of
objects required a deep copy on a cross-domain invocation. Fi-
nally, performance overhead of mediating all pointer updates
was high.

Singularity OS introduced a new fault isolation model built
around a statically enforced ownership discipline [39]. Similar
to KaffeOS, in Singularity applications used isolated private
heaps and a special “exchange heap” for shared objects. A
pioneering design decision was to enforce single ownership of
objects allocated on the exchange heap, i.e., only one domain
could have a reference to an object on the shared heap at
a time. When a reference to an object was passed across
domains the ownership of the object was “moved” between
domains (an attempt to access the object after passing it to
another domain was rejected by the compiler). Singularity
developed a collection of novel static analysis and verification
techniques enforcing this property statically in a garbage
collected Sing# language. Single ownership was key for a
clean and practical fault isolation model—crashing domains
were not able to affect the rest of the system—not only their
private heaps were isolated, but a novel ownership discipline
allowed for isolation of the shared heap, i.e., there was no
way for a crashing domain to trigger revocation of shared
references in other domains, or leave shared objects in an
inconsistent state. Moreover, single ownership allowed secure
isolation in a zero-copy manner, i.e., the move semantics
guaranteed that the sender of an object was losing access to
it and hence allowed the receiver to update the object’s state
knowing that the sender was not able to access new state or
alter the old state underneath.

Building on the insights from J-Kernel, KaffeOS, and Sin-
gularity, our work develops principles for enforcing fault iso-
lation in a safe language that enforces ownership. Similar
to J-Kernel, we adopt wrapping of interfaces with proxies.
We, however, generate proxies statically to avoid the run-time
overhead. We rely on heap isolation similar to KaffeOS and
Singularity. Our main reason for heap isolation is to be able
to deallocate the domain’s private heap without any seman-

tic knowledge of objects inside. We borrow move seman-
tics for the objects on the shared heap to provide clean fault
isolation and at the same time support zero-copy commu-
nication from Singularity. We, however, extend it with the
read-only borrow semantics which we need to support trans-
parent domain recovery without giving up zero-copy. Since
we implement RedLeaf in Rust, we benefit from its ownership
discipline that allows us to enforce the move semantics for
objects on the shared heap. Building on a body of research on
linear types [86], affine types, alias types [18, 87], and region-
based memory management [81], and being influenced by
languages like Sing# [29], Vault [30], and Cyclone [43], Rust
enforces ownership statically and without compromising us-
ability of the language. In contrast to Singularity that heavily
relies on the co-design of Sing# [29] and its communication
mechanisms, we develop RedLeaf’s isolation abstractions—
exchangeable types, interface validation, and cross-domain
call proxying—outside of the Rust language. This allows us
to clearly articulate the minimal set of principles required
to provide fault isolation, and develop a set of mechanisms
implementing them independently from the language, that,
arguably, allows adapting them to specific design tradeoffs.
Finally, we make several design choices aimed at practicality
of our system. We design and implement our isolation mecha-
nisms for the most common, “migrating threads” model [31]
instead of messages [39] to avoid a thread context switch on
the critical cross-domain call path and allow a more natural
programming idiom, e.g., in RedLeaf domain interfaces are
just Rust traits.

3 RedLeaf Architecture

RedLeaf is structured as a microkernel system that relies on
lightweight language-based domains for isolation (Figure 1).
The microkernel implements functionality required to start
threads of execution, memory management, domain loading,
scheduling, and interrupt forwarding. A collection of isolated
domains implement device drivers, personality of an operat-
ing system, i.e., the POSIX interface, and user applications
(Section 4.5). As RedLeaf does not rely on hardware isolation
primitives, all domains and the microkernel run in ring 0. Do-
mains, however, are restricted to safe Rust (i.e., microkernel
and trusted libraries are the only parts of RedLeaf that are
allowed to use unsafe Rust extensions).

We enforce the heap isolation invariant between domains.
To communicate, domains allocate shareable objects from
a global shared heap and exchange special pointers, remote
references (RRef<T>), to objects allocated on the shared heap
(Section 3.1). The ownership discipline allows us to imple-
ment lightweight zero-copy communication across isolated
domains (Section 3.1).

Domains communicate via normal, typed Rust function
invocations. Upon cross-domain invocation, the thread moves
between domains but continues execution on the same stack.
Domain developers provide an interface definition for the
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Figure 1: RedLeaf architecture

domain’s entry point and its interfaces. The RedLeaf IDL
compiler automatically generates code for creating and ini-
tializing domains and checks the validity of all types passed
across domain boundaries (Section 3.1.5).

RedLeaf mediates all cross-domain communication with
trusted proxy objects. Proxies are automatically generated
from the IDL definitions by the IDL compiler (Section 3.1.5).
On every domain entry, the proxy checks if a domain is alive
and if so, it creates a lightweight continuation that allows us
to unwind execution of the thread if the domain crashes.

In RedLeaf references to objects and traits are capabilities.
In Rust, a trait declares a set of methods that a type must
implement hence providing an abstraction of an interface. To
expose their functionality, domains exchange references to
traits via cross-domain calls. We rely on capability-based
access control [76] to enforce the principle of least privilege
and enable flexible operating system organizations: e.g., we
implement several scenarios in which applications talk to
the device driver directly bypassing the kernel, and even can
link against device driver libraries leveraging DPDK-style
user-level device driver access.

Protection model The core assumptions behind RedLeaf
are that we trust (1) the Rust compiler to implement lan-
guage safety correctly, and (2) Rust core libraries that use
unsafe code, e.g., types that implement interior mutability,
etc. RedLeaf’s TCB includes the microkernel, a small set of

trusted RedLeaf crates required to implement hardware inter-
faces and low-level abstractions, device crates that provide
a safe interface to hardware resources, e.g., access to DMA
buffers, etc., the RedLeaf IDL compiler, and the RedLeaf
trusted compilation environment. At the moment, we do not
address vulnerabilities in unsafe Rust extensions, but again
speculate that eventually all unsafe code will be verified for
functional correctness [5, 8, 82]. Specifically, the RustBelt
project provides a guide for ensuring that unsafe code is en-
capsulated within a safe interface [44].

We trust devices to be non-malicious. This requirement
can be relaxed in the future by using IOMMUSs to protect
physical memory. Finally, we do not protect against side-
channel attacks; while these are important, addressing them
is simply beyond the scope of the current work. We speculate
that hardware counter-measures to alleviate the information
leakage will find their way in the future CPUs [41].

3.1 Domains and Fault Isolation

In RedLeaf domains are units of information hiding, fault iso-
lation, and composition. Device drivers, kernel subsystems,
e.g., file system, network stack, etc., and user programs are
loaded as domains. Each domain starts with a reference to
a microkernel system-call interface as one of its arguments.
This interface allows every domain to create threads of exe-
cution, allocate memory, create synchronization objects, etc.
By default, the microkernel system call interface is the only
authority of the domain, i.e., the only interface through which
the domain can affect the rest of the system. Domains how-
ever can define a custom type for an entry function requesting
additional references to objects and interfaces to be passed
when it is created. By default, we do not create a new thread
of execution for the domain.

Every domain, however, can create threads from the init
function called by the microkernel when the domain is loaded.
Internally, the microkernel keeps track of all resources cre-
ated on behalf of each domain: allocated memory, registered
interrupt threads, etc. Threads can outlive the domain creating
them as they enter other domains where they can run indefi-
nitely. Those threads continue running until they return to the
crashed domain and it is the last domain in their continuation
chain.

Fault isolation RedLeaf domains provide support for fault-
isolation. We define fault isolation in the following manner.
We say that a domain crashes and needs to be terminated
when one of the threads that enters the domain panics. Panic
potentially leaves objects reachable from inside the domain
in an inconsistent state, making further progress of any of the
threads inside the domain impractical (i.e., even if threads
do not deadlock or panic, the results of the computation are
undefined). Then, we say that the fault is isolated if the follow-
ing conditions hold. First, we can unwind all threads running
inside the crashing domain to the domain entry point and
return an error to the caller. Second, subsequent attempts to
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Figure 2: Inter-domain communication. Domain A invokes method
foo() of domain B. The proxy that interposes on the invocation
moves the ownership of the object pointed by x between domains.

invoke the domain return errors but do not violate safety guar-
antees or result in panics. Third, all resources of the crashed
domain can be safely deallocated, i.e., other domains do not
hold references into the heap of the crashed domain (heap
isolation invariant), and we can reclaim all resources owned
by the domain without leaks. Fourth, threads in other domains
continue execution, and can continue accessing objects that
were allocated by the crashed domain, but were moved to
other domains before the crash.

Enforcing fault isolation is challenging. In RedLeaf iso-
lated subsystems export complex, semantically rich interfaces,
i.e., domains are free to exchange references to interfaces and
hierarchies of objects. We make several design choices that
allow us to cleanly encapsulate domain’s state and yet support
semantically rich interfaces and zero-copy communication.

3.1.1 Heap Isolation and Sharing

Private and shared heaps To provide fault isolation across
domains and ensure safe termination of domains, we enforce
heap isolation across domains, i.e., objects allocated on the
private heap, stack, or global data section of the domain can
not be reached from outside of the domain. This invariant
allows us to safely terminate any domain at any moment
of execution. Since no other domain holds pointers into the
private heap of a terminated domain, it is safe to deallocate
the entire heap.

To support efficient cross-domain communication, we pro-
vide a special, global shared heap for objects that can be sent
across domains. Domains allocate objects on the shared heap
in a way similar to the normal heap allocation with the Rust
Box<T> type that allocates a value of type T on the heap. We
construct a special type, remote reference or RRef<T>, that allo-
cates a value of type T on the shared heap (Figure 2). RRef<T>
consists of two parts: a small metadata and the value itself.

The RRef<T> metadata contains an identifier of the domain
currently owning the reference, borrow counter, and type in-
formation for the value. The RRef<T> metadata along with the
value are allocated on the shared heap that allows RRef<T> to
outlive the domain that originally allocates it.

Memory allocation on the domain heap To provide encap-
sulation of domain’s private heap, we implement a two-level
memory allocation scheme. At the bottom, the microkernel
provides domains with an interface for allocating untyped
coarse-grained memory regions (larger than one page). Each
coarse-grained allocation is recorded in the heap registry. To
serve fine-grained typed allocations on the domain’s private
heap, each domain links against a trusted crate that provides
the Rust memory allocation interface, Box<T>. Domain heap
allocations follow the rules of the Rust’s ownership discipline,
i.e., objects are deallocated when they go out of scope. The
two-level scheme has the following benefit: allocating only
large memory regions, the microkernel records all memory
allocated by the domain without significant performance over-
heads. If the domain panics, the microkernel walks the registry
of all untyped memory regions allocated by the allocator as-
signed to the domain and deallocates them without calling
any destructors. Such untyped, coarse-grained deallocation is
safe as we ensure the heap isolation invariant: other domains
have no references into the deallocated heap.

3.1.2 Exchangeable Types

Objects allocated on the shared heap are subject to the fol-
lowing rule: they can be composed of only of exchangeable
types. Exchangeable types enforce the invariant that objects
on the shared heap cannot have pointers into private or shared
heaps, but can have Rref<T>s to other objects allocated on the
shared heap. RedLeaf’s IDL compiler validates this invariant
when generating interfaces of the domain (Section 3.1.5). We
define exchangeable types as the following set: 1) RRef<T>
itself, 2) a subset of Rust primitive Copy types, e.g., u32, u64,
but not references in the general case, nor pointers, 3) anony-
mous (tuples, arrays) and named (enums, structs) composite
types constructed out of exchangeable types, 4) references
to traits with methods that receive exchangeable types. Also,
all trait methods are required to follow the following call-
ing convention that requires them to return the RpcResult<T>
type to support clean abort semantics for threads returning
from crashing domains (Section 3.1). The IDL checks inter-
face definition and validates that all types are well-formed
(Section 3.1.5).

3.1.3 Ownership Tracking

In RedLeaf RrRef<T>s can be freely passed between domains.
We allow RRef<T>s to be moved or borrowed immutably. How-
ever, we implement an ownership discipline for RRef<T>s that
is enforced on cross-domain invocations. Ownership track-
ing allows us to safely deallocate objects on the shared heap
owned by a crashing domain. The metadata section of the



RRef<T> keeps track of the owner domain and the number of
times it was borrowed immutably on cross-domain invoca-
tions.

Initially, RRef<T> is owned by the domain that allocates the
reference. If the reference is moved to another domain in
a cross-domain call, we change the owner identifier inside
RRef<T> moving ownership from one domain to another. All
cross-domain communication is mediated by trusted proxies,
so we can securely update the owner identifier from the proxy.
Rust’s ownership discipline ensures that there is always only
one remote reference to the object inside the domain, hence
when the reference is moved between domains on a cross-
domain call, the caller loses access to the object passing it
to the callee. If the reference is borrowed immutably in a
cross-domain call, we do not change the owner identifier
inside RRef<T>, but instead increment the counter that tracks
the number of times RRef<T> was borrowed.

Recursive references RrRef<T>s can form hierarchies of ob-
jects. To avoid moving all RRef<T>s in the hierarchy recur-
sively on a cross-domain invocation, only the root of the
object hierarchy has a valid owner identifier (in Figure 2 only
object x has a valid domain identifier A, object Y does not).
Upon a cross-domain call, the root RRef<T> is updated by the
proxy which changes the domain identifier to move owner-
ship of the RRef<T> between domains. This requires a special
scheme for deallocating RRef<T>s in case of a crash: we scan
the entire RRef<T> registry to clean up resources owned by a
crashing domain. To prevent deallocation of children objects
of the hierarchy, we rely on the fact that they do not have a
valid Rref<T> identifier (we skip them during the scan). The
drop method of the root RRef<T> object walks the entire hier-
archy and deallocates all children objects (RRef<T>s cannot
form cycles). Note, we should carefully handle the case when
an RRef<T> is taken out of the hierarchy. To deallocate this
RRef<T> correctly we need to assign it a valid domain identi-
fier, i.e., Y gets a proper domain identifier when it is moved
out from X. We mediate RRef<T> field assignments with trusted
accessor methods. We generate accessor methods that pro-
vide the only way to take out an RRef<T> from an object field.
This allows us to mediate the move operation and update the
domain identifier for the moved RrRef<T>. Note that accessors
cannot be enforced for the unnamed composite types, e.g.,
arrays and tuples. For these types we update ownership of all
composite elements upon crossing the domain boundary.

Reclaiming shared heap Ownership tracking allows us to
deallocate objects that are currently owned by the crashing do-
main. We maintain a global registry of all allocated RRef<T>s
(Figure 2). When a domain panics, we walk through the reg-
istry and deallocate all references that are owned by the crash-
ing domain. We defer deallocation if RRef<T> was borrowed
until the borrow count drops to zero. Deallocation of each
RRef<T> requires that we have a drop method for each RRef<T>
type and can identify the type of the reference dynamically.
Each Rref<T> has a unique type identifier generated by the

IDL compiler (the IDL knows all RRef<T> types in the system
as it generates all cross-domain interfaces). We store the type
identifier along with the RRef<T> and invoke the appropriate
drop method to correctly deallocate any, possibly, hierarchical
data structure on the shared heap.

3.14 Cross-Domain Call Proxying

To enforce fault isolation, RedLeaf relies on invocation prox-
ies to interpose on all cross-domain invocations (Figure 2).
A proxy object exposes an interface identical to the interface
it mediates. Hence the proxy interposition is transparent to
the user of the interface. To ensure isolation and safety, the
proxy implements the following inside each wrapped function:
1) The proxy checks if the domain is alive before perform-
ing the invocation. If the domain is alive, the proxy records
the fact that the thread moves between domains by updating
its state in the microkernel. We use this information to un-
wind all threads that happen to execute inside the domain
when it crashes. 2) For each invocation, the proxy creates a
lightweight continuation that captures the state of the thread
right before the cross-domain invocation. The continuation al-
lows us to unwind execution of the thread, and return an error
to the caller. 3) The proxy moves ownership of all RRef<T>s
passed as arguments between domains, or updates the bor-
row count for all references borrowed immutably. 4) Finally,
the proxy wraps all trait references passed as arguments: the
proxy creates a new proxy for each trait and passes the refer-
ence to the trait implemented by that proxy.

Thread unwinding To unwind execution of a thread from a
crashing domain, we capture the state of the thread right be-
fore it enters the callee domain. For each function of the trait
mediated by the proxy, we utilize an assembly trampoline that
saves all general registers into a continuation. The microker-
nel maintains a stack of continuations for each thread. Each
continuation contains the state of all general registers and a
pointer to an error handling function that has the signature
identical to the function exported by the domain’s interface.
If we have to unwind the thread, we restore the stack to the
state captured by the continuation, and invoke the error han-
dling function on the same stack and with the same values of
general registers. The error handling function returns an error
to the caller.

To cleanly return an error in case of a crash, we enforce the
following calling convention for all cross-domain invocations:
every cross-domain function must return RpcResult<T>, an
enumerated type that either holds the returned value or an
error (Figure 3). This allows us to implement the following
invariant: functions unwound from the crashed domain never
return corrupted data, but instead return an RpcResult<T> eITor.

3.1.5 Interface Validation

RedLeaf’s IDL compiler is responsible for validation of do-
main interfaces and generation of proxy code required for en-
forcing the ownership discipline on the shared heap. RedLeaf



pub trait BDev {
fn read(&self, block: u32, data: RRef<[u8; BSIZE]>)
-> RpcResult<RRef<[u8; BSIZE]>>;
fn write(&self, block: u32, data: &RRef<[u8; BSIZE]>)
-> RpcResult<()>;
}

#[create]
pub trait CreateBDev {
fn create(&self, pci: Box<dyn PCI>)
-> RpcResult<(Box<dyn Domain>, Box<dyn BDev>)>

Figure 3: BDev domain IDL interface definitions.

IDL is a subset of Rust extended with several attributes to
control generation of the code (Figure 3). This design choice
allows us to provide developers with the familiar Rust syntax
and also re-use Rust’s parsing infrastructure.

To implement an abstraction of an interface, we rely on
Rust’s traits. Traits provide a way to define a collection of
methods that a type has to implement to satisfy the trait,
hence defining a specific behavior. For example, the BDev trait
requires any type that provides it to implement two methods:
read() and write() (Figure 3). By exchanging references to
trait objects domains connect to the rest of the system and
establish communication with other domains.

Each domain provides an IDL definition for the create trait
that allows any domain that has access to this trait to create
domains of this type (Figure 3). Marked with the #[create]
attribute, the create trait both defines the type of the domain
entry function, and the trait that can be used to create the
domain. Specifically, the entry function of the BDev domain
takes the PCI trait as an argument and returns a pointer to
the BDev interface. Note that when the Bbev domain is created
along with the Bpev interface, the microkernel also returns the
Domain trait that allows creator of the domain to control it later.
The IDL generates Rust implementations of both the create
trait and the microkernel code used to create the domain of
this type.

Interface validation We perform interface validation as a
static analysis pass of the IDL compiler. The compiler starts
by parsing all dependent IDL files creating a unified abstract
syntax tree (AST), which is then passed to validation and
generation stages. During the interface validation pass, we
use the AST to extract relevant information for each type
that we validate. Essentially, we create a graph that encodes
information about all types and relationships between them.
We then use this graph to verify that each type is exchangeable
and that all isolation constraints are satisfied: methods of
cross-domain interfaces return RpcResult<T>, etc.

3.2 Zero-copy Communication

A combination of the Rust’s ownership discipline and the
single-ownership enforced on the shared heap allows us to
provide isolation without sacrificing end-to-end zero-copy
across the system. To utilize zero-copy communication, do-
mains allocate objects on the shared heap with using the

RRef<T> type. On every cross-domain invocation a mutable
reference (a reference that provides writable access to the
object) is moved between domains, or an immutable refer-
ence can be borrowed. If the invocation succeeds, i.e., the
callee domain does not panic, a set of RRef<T>s might be re-
turned by the callee moving the ownership to the caller. In
contrast to Rust itself, we do not allow borrowing of mutable
references. Borrowing of mutable references may result in an
inconsistent state in the face of a domain crash when damaged
objects are returned to the caller after the thread is unwound.
Hence, we require all mutable references to be moved and
returned explicitly. If a domain crashes, instead of a reference
an RpcResult<T> error is returned.

Zero-copy is challenging in the face of crashing domains
and the requirement to provide transparent recovery. A typical
recovery protocol re-starts the crashing domain and re-issues
the failing domain call, trying to conceal the crash from the
caller. This often requires that objects passed as arguments
in the re-started invocation are available inside the recovery
domain. It is possible to create a copy of each object before
each invocation, but this introduces significant overhead. To
recover domains without additional copies, we rely on sup-
port for immutable borrowing of RRef<T>s on cross-domain
invocations. For example, the write() method of the BDev in-
terface borrows an immutable reference to the data written
to the block device (Figure 3). If an immutable reference
is borrowed by the domain, Rust’s type system guarantees
that the domain cannot modify the borrowed object. Hence,
even if the domain crashes, it is safe to return the unmod-
ified read-only object to the caller. The caller can re-issue
the invocation as part of the recovery protocol providing the
immutable reference as an argument again. This allows imple-
menting transparent recovery without creating backup copies
of arguments on each invocation that can potentially crash.

4 Implementation

While introducing a range of novel abstractions, we guide the
design of RedLeaf by principles of practicality and perfor-
mance. To a degree, RedLeaf is designed as a replacement for
full-featured, commodity kernels like Linux.

4.1 Microkernel

The RedLeaf microkernel provides a minimal interface for
creating and loading isolated domains, threads of execution,
scheduling, low-level interrupt dispatch, and memory man-
agement. RedLeaf implements memory management mech-
anisms similar to Linux—a combination of buddy [46] and
slab [16] allocators provides an interface for heap allocation
inside the microkernel (the Box<T> mechanism). Each domain
runs its own allocator internally and requests regions of mem-
ory directly from the kernel buddy allocator.

We implement the low-level interrupt entry and exit code in
assembly. While Rust provides support for the x86-interrupt
function ABI (a way to write a Rust function that takes the



x86 interrupt stack frame as an argument), in practice, it is
not useful as we need the ability to interpose on the entry and
exit from the interrupt, for example, to save all CPU registers.

In RedLeaf device drivers are implemented in user domains
(the microkernel itself does not handle any device interrupts
besides timer and NMI). Domains register threads as interrupt
handlers for device-generated interrupts. For each external
interrupt, the microkernel maintains a list of threads waiting
for an interrupt. The threads are put back on the scheduler run
queue when the interrupt is received.

4.2 Dynamic Domain Loading

In RedLeaf domains are compiled independently from the
kernel and are loaded dynamically. Rust itself provides no
support for dynamic extensions (except Splinter [47], existing
Rust systems statically link all the code they execute [7, 50,
68]). Conceptually, the safety of dynamic extensions relies
on the following invariant: types of all data structures that
cross a domain boundary, including the type of the entry point
function, and all types passed through any interfaces reachable
through the entry function are the same, i.e., have identical
meaning and implementation, across the entire system. This
ensures that even though parts of the system are compiled
separately type safety guarantees are preserved across domain
boundaries.

To ensure that types have the same meaning across all
components of the system, RedLeaf relies on a trusted compi-
lation environment. This environment allows the microkernel
to check that domains are compiled against the same ver-
sions of IDL interface definitions, and with the same compiler
version, and flags. When a domain is compiled, the trusted
environment signs the fingerprint that captures all IDL files,
and a string of compiler flags. The microkernel verifies the
integrity of the domain when it is loaded. Additionally, we
enforce that domains are restricted to only safe Rust, and link
against a white-listed set of Rust libraries.

Code generation Domain creation and loading rely on the
code generated by the IDL compiler (Figure 4). IDL en-
sures safety at domain boundaries and allows support for
user-defined domain interfaces. From the definitions of do-
main interfaces (Figure 4, @) and its create function (@) the
IDL generates the following code: 1) Rust implementations
of all interfaces (@) and the create (@) trait, 2) a trusted
entry point function (@) that is placed in the domain’s build
tree and compiled along with the rest of the domain to en-
sure that domain’s entry function matches the domain create
code, hence preserving safety on the domain boundary, 3) a
microkernel domain create function that creates domains with
a specific type signature of the entry point function (@), and
4) implementation of the proxy for this interface ((7)). By
controlling the generation of the entry point, we ensure that
the types of the entry function inside the microkernel and
inside the domain match. If a domain tries to violate safety by
changing the type of its entry function the compilation fails.

4.3 Safe Device Drivers

In RedLeaf device drivers are implemented as regular do-
mains with no additional privileges. Like other domains they
are restricted to the safe subset of Rust. To access the hard-
ware, we provide device drivers with a collection of trusted
crates that implement a safe interface to the hardware inter-
face of the device, e.g., access to device registers and its DMA
engines. For example, the ixgbe device crate provides access
to the BAR region of the device, and abstracts its submit and
receive queues with the collection of methods for adding and
removing requests from the buffers.

Device driver domains are created by the init domain when
the system boots. Each PCI device takes a reference to the
PCI trait that is implemented inside the pci domain. Similar to
other driver domains, the PCI driver relies on a trusted crate
to enumerate all hardware devices on the bus. The trusted
crate constructs BARAddr objects that contain addresses of PCI
BAR regions. We protect each BARAddr object with a custom
type, so it can only be used inside the trusted device crate
that implements access to this specific BAR region. The pci
domain probes device drivers with matching device identifiers.
The driver receives a reference to the BARAddr object and starts
accessing the device via its trusted crate.

4.4 Device Driver Recovery

Lightweight isolation mechanisms and clean domain inter-
faces allow us to implement transparent device driver recovery
with shadow drivers [78]. We develop shadow drivers as nor-
mal unprivileged RedLeaf domains. Similar to proxy objects,
the shadow driver wraps the interface of the device driver
and exposes an identical interface. In contrast to the proxy
which is relatively simple and can be generated from the IDL
definition, the shadow driver is intelligent as it implements
a driver-specific recovery protocol. The shadow driver inter-
poses on all communication with the driver. During normal
operation, the shadow passes all calls to the real device driver.
However, it saves all information required for the recovery
of the driver (e.g., references to PCI trait, and other parts of
the device initialization protocol). If the driver crashes, the
shadow driver receives an error from the proxy domain. The
proxy itself receives the error when the thread is unwound
through the continuation mechanism. Instead of returning an
error to its caller, the shadow triggers the domain recovery
protocol. It creates a new driver domain and replays its initial-
ization protocol, by interposing on all external communication
of the driver.

4.5 Rv6 Operating System Personality

To evaluate the generality of RedLeaf’s abstractions, we im-
plemented Rv6, a POSIX-subset operating system on top of
RedLeaf. At a high-level, Rv6 follows the implementation of
the xv6 operating system [73], but is implemented as a collec-
tion of isolated RedLeaf domains. Specifically, we implement
Rv6 as the following domains: the core kernel, file system,
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network stack subsystem, network and disk device drivers,
and collection of user domains. User domains communicate
with the core kernel through the Rv6 system call interface.
The core kernel dispatches the system call to either the file
system or a network stack. The file system itself communi-
cates with one of the RedLeaf block device drivers to get
access to disk. We implemented three block device drivers:
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RedLeaf cross-domain invocation via shadow 279
RedLeaf cross-domain via shadow (passing an RRef<T>) 297

in-memory, AHCI, and NVMe. The file system implements
journaling, buffer cache, inode, and naming layers. The net-
work subsystem implements the TCP/IP stack and connects
to the network device driver (we currently implement only
one driver that supports a 10Gbps Intel Ixgbe device). We do
not support the full semantics of the fork() system call as we
do not rely on address spaces and hence cannot virtualize and
clone the address space of the domain. Instead, we provide
a combination of create system calls that allow user appli-
cations to load and start new domains [10]. Rv6 boots into
a shell that supports pipes and I/O redirection and can start
other applications similar to a typical UNIX system.

5 [Evaluation

We conduct all experiments in the openly-available CloudLab
network testbed [72].2 For network-based experiments, we
utilize two CloudLab ¢220g2 servers configured with two
Intel ES-2660 v3 10-core Haswell CPUs running at 2.6 GHz,
160 GB RAM, and a dual-port Intel X520 10Gb NIC. We
run our NVMe benchmarks on a CloudLab d430 node that is
configured with two 2.4 GHz 64-bit 8-Core E5-2630 Haswell
CPUgs, and a PCle-attached 400GB Intel P3700 Series SSD.
Linux machines run 64-bit Ubuntu 18.04 with a 4.8.4 kernel
configured without any speculative execution attack mitiga-
tions as recent Intel CPUs address a range of speculative
execution attacks in hardware. All RedLeaf experiments are
performed on bare-metal hardware. In all the experiments,
we disable hyper-threading, turbo boost, CPU idle states, and
frequency scaling to reduce the variance in benchmarking.

5.1 Overheads of Domain Isolation

Language based isolation versus hardware mechanisms
To understand the benefits of language-based isolation over
traditional hardware mechanisms, we compare RedLeaf’s

’RedLeaf is available at https://mars- research.github.io/
redleaf.

Table 1: Language-based cross-domain invocation vs hardware iso-
lation mechanisms.

cross-domain calls with the synchronous IPC mechanism im-
plemented by the sel.4 microkernel [27], and a recent kernel-
isolation framework that utilizes VMFUNC-based extended
page table (EPT) switching [62]. We choose seL.4 as it im-
plements the fastest synchronous IPC across several mod-
ern microkernels [58]. We configure seL.4 without meltdown
mitigations. On the c220g2, server seL.4 achieves the cross-
domain invocation latency of 834 cycles (Table 1).

Recent Intel CPU introduces two new hardware isolation
primitives—memory protection keys (MPK) and EPT switch-
ing with VM functions—provide support for memory iso-
lation with overheads comparable to system calls [83] (99-
105 cycles for MPK [38, 83] and 268-396 cycles for VM-
FUNC [38,58,62,83]). Unfortunately, both primitives require
complex mechanisms to enforce isolation, e.g., binary rewrit-
ing [58, 83], protection with hardware breakpoints [38], exe-
cution under control of a hypervisor [54, 58, 62]. Moreover,
since neither MPK nor EPT switching are designed to support
isolation of privileged ring 0 code, additional techniques are
required to ensure isolation of kernel subsystems [62].

To compare the performance of EPT-based isolation with
language-based techniques we use in RedLeaf, we configure
LVDs, a recent EPT-based kernel isolation framework [62] to
perform ten million cross-domain invocations and measure
the latency in cycles with the RDTSC instruction. In LVDs,
the cross-domain call relies on the VMFUNC instruction to
switch the root of the EPT and selects a new stack in the callee
domain. LVDs, however, require no additional switches of a
privilege level or a page-table. A single VMFUNC instruction
takes 169 cycles, while a complete call/reply invocation takes
396 cycles on the ¢220g2 server (Table 1).

In RedLeaf, a cross-domain call is initiated by invoking



the trait object provided by the proxy domain. The proxy
domain uses a microkernel system call to move the thread
from the callee to the caller domain, creates continuation to
unwind the thread to the entry point in case the invocation
fails, and invokes the trait of the callee domain. On the return
path, a similar sequence moves the thread from the callee
domain back into the caller. In RedLeaf, a null cross-domain
invocation via a proxy object (Table 1) introduces an overhead
of 124 cycles. Saving the state of the thread, i.e., creating
continuation, takes 86 cycles as it requires saving all general
registers. Passing one RRef<T> adds an overhead of 17 cycles
as RRef<T> is moved between domains. To understand the low-
level overhead of transparent recovery, we measure the latency
of performing the same invocation via a shadow domain. In
case of a shadow the invocation crosses two proxies and a user-
built shadow domain and takes 286 cycles due to additional
crossing of proxy and shadow domains.

Most recent Intel CPUs implement support for ring O en-
forcement of memory protection keys, protection keys su-
pervisor (PKS) [3], finally enabling low-overhead isolation
mechanism for the privileged kernel code. Nevertheless, even
with low-overhead hardware isolation mechanisms, a zero-
copy fault-isolation scheme requires ownership discipline for
shared objects that arguably requires support from the pro-
gramming language, i.e., either a static analysis [39] or a type
system that can enforce single-ownership.

Overheads of Rust Memory safety guarantees of Rust come
at a cost. In addition to the checks required to ensure safety
at runtime, some Rust abstractions have a non-zero runtime
cost, e.g., types that implement interior mutability, option
types, etc. To measure the overheads introduced by Rust lan-
guage itself, we develop a simple hash table that uses an
open-addressing scheme and relies on the Fowler—Noll-Vo
(FNV) hashing function with linear probing to store eight byte
keys and values. Using the same hashing logic, we develop
three implementations: 1) in plain C, 2) in idiomatic Rust (the
style encouraged by the Rust programming manual), and 3) in
C-style Rust that essentially uses C programming idioms but
in Rust. Specifically, in C-style Rust, we avoid 1) using higher-
order functions and 2) the option<T> type that we utilize in
the idiomatic code to distinguish between the occupied and
unoccupied entries in the table. Without the option<T> type
that adds at least one additional byte to the key-value pair, we
benefit from a tight, cache-aligned representation of key-value
pairs in memory to avoid additional cache misses. We vary
the number of entries in the hash table from 2'2 to 22 and
keep the hash-table 75% full. On most hash table sizes, our
implementation in idiomatic Rust remains 25% slower than
the one in plain C, whereas C-style Rust performs equal to or
even better than plain C, although by only 3-10 cycles (Fig-
ure 5). We attribute this to a more compact code generated by
the Rust compiler (47 instructions on the critical get/set path
in C-style Rust versus 50 instructions in C).
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Figure 5: C vs Rust performance comparison
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5.2 Device Drivers

One of the critical assumptions behind RedLeaf is that Rust’s
safety is practical for development of the fastest subsystems
of a modern operating system kernel. Today, operating with
latencies of low hundreds of cycles per I/O request, device
drivers that provide access to high-throughput I/O interfaces,
network adapters and low-latency non-volatile PCle-attached
storage, have the tightest performance budgets among all
kernel components. To understand if overheads of Rust’s zero-
cost abstractions allow the development of such low-overhead
subsystems, we develop two device drivers: 1) an Intel 82599
10Gbps Ethernet driver (Ixgbe), and 2) an NVMe driver for
PCle-attached SSDs.

5.2.1 Ixgbe Network Driver

We compare the performance of RedLeaf’s Ixgbe driver with
the performance of a highly-optimized driver from the DPDK
user-space packet processing framework [21] on Linux. Both
DPDK and our driver work in polling mode, allowing them
to achieve peak performance. We configure RedLeaf to run
several configurations: 1) redleaf-driver: the benchmark ap-
plication links statically with the driver (this configuration is
closest to user-level packet frameworks like DPDK; similarly,
we pass-through the Ixgbe interface directly to the RedLeaf);
2) redleaf-domain: the benchmark application runs in a sep-
arate domain, but accesses the driver domain directly via a
proxy (this configuration represents the case when the net-
work device driver is shared across multiple isolated applica-
tions [38]); 3) rve-domain: the benchmark application runs as
an Rv6 program, it first enters the Rv6 with a system call and
then calls into the driver (this configuration is analogous to a
setup of a commodity operating system kernel in which user
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applications access I/O interfaces via a kernel network stack).
Further, we run the last two configurations with and with-
out the shadow driver (redleaf-shadow and rvé-shadow), which
introduces an additional domain crossing into the shadow
(these two configurations evaluate overheads of the transpar-
ent driver recovery). In all our tests, we pin the application
thread to a single CPU core.

We send 64 byte packets and measure the performance
on two batch sizes: 1 and 32 packets (Figure 6). For packet
receive tests, we use a fast packet generator from the DPDK
framework to generate packets at line-rate. On packet trans-
mit and receive tests, Linux achieves 0.89 Mpps due to its
overly general network stack and synchronous socket inter-
face (Figure 6). On a batch of one, DPDK achieves 6.7 Mpps
and is 7% faster than RedLeaf (6.5 Mpps) for both RX
and TX paths (Figure 6). On a batch of 32 packets, both
drivers achieve the line-rate performance of a 10GbE inter-
face (14.2 Mpps). To understand the impact of cross-domain
invocations, we run the benchmark application as a separate
domain (redleaf-domain) and as an Rv6 program (rv6-domain).
The overhead of domain crossings is apparent on a batch
size of one, where RedLeaf can send and receive packets
at the rate of 4 Mpps per-core with one domain crossing
(redleaf-domain) and 2.9 Mpps if the invocation involves
shadow domain (redleaf-shadow). With two domain cross-
ings, the performance drops to 2.8 Mpps (rv6-domain) and
2.4 Mpps if the driver is accessed via a shadow (rv6-shadow).
On a batch of 32 packets, the overhead of domain crossings
disappears as all configurations saturate the device.

Nullnet To further investigate the overheads of isolation
without the limits introduced by the device itself, we de-
velop a software-only nullnet driver that simply returns the
packet to the caller instead of queuing it to the device (Fig-
ure 7). On a batch of one, the overheads of multiple domain
crossings limit the theoretical performance of nullnet driver
from 29.5 Mpps per-core that can be achieved if the appli-
cation is linked statically with the driver (redleaf-driver) to
5.3 Mpps when nullnet is accessed from the Rv6 application
(rv6-domain). Adding a shadow driver lowers this number to
3.6 Mpps (rv6-shadow). Similarly, on a batch of 32 packets,
nullnet achieves 94 Mpps if the applicaiton is run in the same
domain as the driver. The performance drops to 67 Mpps when
the benchmark code runs as an Rv6 application (rv6-domain),
and to 55 Mpps if the Rv6 application involves a shadow
driver (rv6-shadow).
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Figure 8: Performance of the NVMe driver

5.2.2 NVMe Driver

To understand the performance of RedLeaf’s NVMe driver,
we compare it with the multi-queue block driver in the Linux
kernel and a well-optimized NVMe driver from the SPDK
storage framework [42]. Both SPDK and RedLeaf drivers
work in polling mode. Similar to Ixgbe, we evaluate several
configurations: 1) statically linked (redleaf-driver); 2) requir-
ing one domain crossing (redleaf-domain); and 3) running as
an Rv6 user program (rv6-domain). We run the last two config-
urations with and without the shadow driver (redleaf-shadow
and rv6-shadow). All tests are limited to a single CPU core.

We perform sequential read and write tests with a block
size of 4KB on a batch size of 1 and 32 requests (Figure 8). On
Linux, we use fio, a fast /O generator; on SPDK and RedLeaf,
we develop similar benchmark applications that submit a set
of requests at once, and then poll for completed requests.
To set an optimal baseline for our evaluation, we chose the
configuration parameters that can give us the fastest path to
the device. Specifically, on Linux, we configure fio to use the
asynchronous libaio library to overlap I/O submissions, and
bypass the page cache with the direct I/O flag.

On sequential read tests, fio on Linux achieves 13K IOPS
and 141K TOPS per-core on the batch size of 1 and 32 respec-
tively (Figure 8). On a batch size of one, the RedLeaf driver
is 1% faster (457K IOPS per-core) than SPDK (452K IOPS
per-core). Both drivers achieve maximum device read perfor-
mance. SDPK is slower as it performs additional processing
aimed at collecting performance statistics on each request. On
a batch size of 32, the RedLeaf driver is less than 1% slower
(453K IOPS versus 454K IOPS SPDK). On sequential write
tests with a batch size of 32, Linux is within 3% of the de-
vice’s maximum throughput of around 256K IOPS. RedLeaf
is less than one percent slower (255K IOPS). Since NVMe is
a slower device compared to Ixgbe, the overheads of domain
crossings are minimal for both batch sizes. With one domain
crossing, the performance even goes up by 0.7% (we attribute
this to a varying pattern of accessing the doorbell register of
the device that gets thrashed between the device and CPU).

5.3 Application Benchmarks

To understand the performance overheads of safety and iso-
lation on application workloads, we develop several applica-
tions that traditionally depend on a fast data plane of the op-
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erating system kernel: 1) Maglev load balancer (maglev) [26],
2) a network-attached key-value store (kv-store), and 3) a
minimal web server (httpd).

Maglev load-balancer Maglev is a load balancer developed
by Google to evenly distribute incoming client flows among
a set of backend servers [26]. For each new flow, Maglev se-
lects one of the available backends by performing a lookup
in a hash table, size of which is proportional to the number
of backend servers (65,537 in our experiments). Consistent
hashing allows even distribution of flows across all servers.
Maglev then records the chosen backend in a hash table, a flow
tracking table, that is used to redirect packets from the same
flow to the same backend server. The size of the flow tracking
table is proportional to the number of flows (we choose 1 M
flows for our experiments). Processing a packet requires a
lookup in the flow tracking table if it is an existing flow, or
a lookup of a backend server and an insertion into the flow
tracking table to record the new flow. To compare RedLeaf
performance with both a commodity and the fastest possible
setup, we develop C and Rust versions of the core Maglev
logic. Moreover, we evaluate two C versions: one to run as a
normal Linux program that uses the socket interface and an-
other developed to work as a network function for the DPDK
network processing framework [21]. In all versions we follow
the same code logic and, if possible, apply the same optimiza-
tions. Again, on all setups, we restrict execution to one CPU
core. Running as a Linux program, maglev is limited to 1 Mpps
per-core due to the synchronous socket interface of the Linux
kernel and a generic network stack (Figure 9). Operating on a
batch of 32 packets, the maglev DPDK function is capable of
achieving 9.7 Mpps per-core due to a well-optimized network
device driver. Linked statically against the driver, RedLeaf

application (redleaf-driver) achieves 7.2 Mpps per-core. Per-
formance drops with additional domain crossings. Running as
an Rv6 application, maglev can forward at 5.3 Mpps per-core
without and 5.1 Mpps with the shadow domain.

Key-value store Key-value stores are de facto standard build-
ing blocks for a range of datacenter systems ranging from
social networks [64] to key-value databases [23]. To eval-
uate RedLeaf’s ability to support the development of effi-
cient datacenter applications, we develop a prototype of a
network-attached key-value store, kv-store. Our prototype is
designed to utilize a range of modern optimizations similar to
Mica [52], e.g., a user-level device driver like DPDK, parti-
tioned design aimed at avoiding cross-core cache-coherence
traffic, packet flow steering to guarantee that request is di-
rected to the specific CPU core where the key is stored, no
locks and no allocations on the request processing path, etc.
Our implementation relies on a hash table that uses open
addressing scheme with linear probing and the FNV hash
function. In our experiments, we compare the performance
of two implementations: a C version developed for DPDK,
and a Rust version that executes in the same domain with the
driver (redleaf-driver), i.e., the configuration that is closest
to DPDK. We evaluate two hash table sizes: 1 M and 16 M en-
tries with three sets of key and value pairs (<88, 88>, <168, 648>,
<648B,64B>). The RedLeaf version is implemented in a C-style
Rust code, i.e., we avoid Rust abstractions that have run-time
overhead (e.g., Option<T>, and RefCell<T> types). This ensures
that we can control the memory layout of the key-value pair
to avoid additional cache misses. Despite our optimizations,
RedLeaf achieves only 61-86% performance of the C DPDK
version. The main reason for the performance degradation is
that being implemented in safe Rust, our code uses vectors,
Vec<T>, to represent packet data. To create a response, we need
to extend this vector thrice by calling the extend_from_slice()
function to copy the response header, key, and value into the
response packet. This function checks if the vector needs to be
grown and performs a copy. In contrast, the C implementation
benefits from a much lighter unsafe invocation of memcpy().
As an exercise, we implemented the packet serialization logic
with unsafe Rust typecast that allowed us to achieve 85-94%
of the C’s performance. However, we do not allow unsafe
Rust inside RedLeaf domains.

Web server The latency of web page loading plays a critical
role in both the user experience, and the rank of the page
assigned by a search engine [15,66]. We develop a prototype
of a web server, httpd, that can serve static HTTP content. Our
prototype uses a simple run-to-completion execution model
that polls incoming requests from all open connections in a
round-robin fashion. For each request, it performs request
parsing and replies with the requested static web page. We
compare our implementation with one of the de facto industry
standard web servers, Nginx [63]. In our tests, we use the wrk
HTTP load generator [1], which we configure to run with one
thread and 20 open connections. On Linux, Nginx can serve
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Figure 11: Block device recovery (FS write).

70.9 K requests per second, whereas our implementation of
httpd achieves 212 K requests per second in a configuration
where the application is run in the same domain as the driver
(redleaf-driver) and network stack (Figure 9). Specifically,
we benefit from low-latency access to the network stack and
the network device driver. Running as an Rv6 domain, httpd
achieves the rate of 181.4 K packets per second (178.9 K if it
uses a shadow).

5.4 Device Driver Recovery

To evaluate the overheads introduced by the transparent de-
vice driver recovery, we develop a test in which an Rv6 pro-
gram accesses the Rv6 file system backed by an in-memory
block device. Running as an Rv6 program, the benchmark
application continuously reads and writes files in the Rv6 file
system using 4K blocks. The Rv6 file system accesses the
block device via a shadow driver that can perform recovery of
the block device in case of a crash. During the test, we trigger
a crash of the block device driver every second (Figure 11).
Automatic recovery triggers a small drop in performance. For
reads, the throughput with and without restarts averages at
2062 MB/s and 2164 MB/s respectively (a 5% drop in perfor-
mance). For writes, the total throughput averages at 356 MB/s
with restarts and 423 MB/s without restarts (a 16% drop in
performance).

6 Related Work

Several recent projects use Rust for building low-level high-
performance systems, including data storage [33,47,60], net-
work function virtualization [68], web engine [74], and sev-
eral operating systems [17,24,50, 51], unikernels [49] and
hypervisors [4, 36, 40]. Firecracker [4], Intel Cloud Hyper-
visor [40], and Google Chrome OS Virtual Machine Moni-
tor [36] replace Qemu hardware emulator with a Rust-based
implementation. Redox [24] utilizes Rust for development
of a microkernel-based operating system (both microkernel
and user-level device drivers are implemented in Rust, but are
free to use unsafe Rust). The device drivers run in ring 3 and
use traditional hardware mechanisms for isolation and system
calls for communication with the microkernel. By and large,
all these systems leverage Rust as a safe alternative to C, but
do not explore the capabilities of Rust that go beyond type
and memory safety.

Tock develops many principles of minimizing the use of
unsafe Rust in a hardware-facing kernel code [50]. Tock is
structured as a minimal core kernel and a collection of de-
vice drivers (capsules). Tock relies on Rust’s language safety
for isolation of the capsules (in Tock user applications are
isolated with commodity hardware mechanisms). To ensure
isolation, Tock forbids unsafe extensions in capsules but does
not restrict sharing of pointers between capsules and the main
kernel (this is similar to language systems using pointers as
capabilities, e.g., SPIN [13]). As a result, a fault in any of the
capsules halts the entire system. Our work builds on many
design principles aimed at minimizing the amount of unsafe
Rust code developed by Tock but extends them with support
for fault isolation and dynamic loading of extensions. Sim-
ilar to Tock, Netbricks [68] and Splinter [47] rely on Rust
for isolation of network functions and user-defined database
extensions. None of the systems provides support for deallo-
cating resources of crashing subsystems, recovery, or generic
exchange of interfaces and object references.

7 Conclusions

“A Journey, not a Destination” [39], Singularity OS laid the
foundation for many concepts that influenced the design of
Rust. In turn, by enabling the principles of fault isolation
in Rust itself, our work completes the cycle of this journey.
RedLeaf, however, is just a step forward, not a final design—
while guided by principles of practicality and performance,
our work is, first, a collection of mechanisms and an experi-
mentation platform for enabling future system architectures
that leverage language safety. Rust provides systems develop-
ers the mechanisms we were waiting for decades: practical,
zero-cost safety, and a type system that enforces ownership.
Arguably, the isolation that we implement is the most crit-
ical mechanism as it provides a foundation for enforcing a
range of abstractions in systems with faulty and mistrusting
components. By articulating principles of isolation, our work
unlocks future exploration of abstractions enabled by the iso-
lation and safety: secure dynamic extensions, fine-grained
access control, least privilege, collocation of computation and
data, transparent recovery, and many more.
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