
ROSEMARY KIM, JAGDISH GANGOLLY, S. S. RAVI, AND
DANIEL J. ROSENKRANTZ
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Approach

This study examines a computational framework for segregation of duties
(SoD) in the design as well as implementation of accounting systems. The
framework consists of a model of workflows in accounting systems based on
workflow graphs, a partial order model of roles performed by the actors in
the accounting system, and a specification of SoD rules. We develop a set of
algorithms for four SoD rules that can be used in the enforcement of SoD.
For the SoD rule that precludes task type conflicts, our results show that
while compliance verification can be carried out efficiently, finding an SoD
compliant assignment of tasks is computationally intractable. For those
situations, we present an integer linear programming (ILP) formulation for
finding compliant assignments using public domain ILP solvers. For the
remaining three SoD rules, we demonstrate efficient ways of testing
compliance for a given assignment as well as finding compliant assignments.
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Internal control, a centre-piece of the Sarbanes-Oxley (SOX) Act, requires that
audit reports describe the scope of testing for internal controls and disclose
material weaknesses in such controls. Whalen and McKeon’s (2017) 13 year
review of SOX 404 disclosures showed that ineffective controls continue to be an
issue for non-accelerated1 management-only2 filers. In the fiscal year ending 2016,
ineffective internal controls were reported by 1,234 (36.9%) of management-only
filers, of whom 860 filers (70%) cited segregation of duties (SoD) weaknesses as
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1 Non-accelerated filers are public companies that have a public float of less than $75 million.

2 Assessment by management rather than by auditors as part of SOX 404 disclosure.
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one of the contributing causes. SoD therefore continues to be an important
internal control focus in corporate governance, especially for non-accelerated filers
as they compete in the market place with accelerated filers3 and large accelerated
filers.4

Much of the literature in accounting deals with internal controls in general.
Examples include studies that examine the relationship between internal control
weaknesses and firm size (Gao et al., 2009; Kinney, Jr. and Shepardson, 2011),
influence of formal internal controls on norms of behavior (Tayler and
Bloomfield, 2011), relationship between internal control deficiencies and firm risk
and cost of equity (Ogneva et al., 2007; Ashbaugh-Skaife et al., 2009; Gordon and
Wilford, 2012), relationship between internal control weaknesses and tax
avoidance (Bauer, 2016), relationship between internal control weaknesses and
CFO compensation (Hoitash et al., 2012), relationship between internal controls
over financial reporting and safeguarding of corporate resources (Gao and
Jia, 2016), and quality of accrual (Ashbaugh-Skaife et al., 2008). In some of these
studies, SoD was one of the variables in understanding internal control
weaknesses but not the central theme. On the other hand, there are some studies
that address SoD directly such as Kobelsky (2014) and Elsas (2008). Since a large
percentage of management filers state SoD issues as one of the contributing
causes of internal control weaknesses, study of SoD on its own assumes
importance. Our paper fills this need.
Since SoD seeks to prevent employee fraud by reducing the possibility of

collusion wherever there are conflicts of interest, it has always been important for
stewardship in accounting. It also has been an important concept in collateral
fields such as economics, organization theory, constitutional and political theory,
and even computer science. In economics, asymmetry of roles between the
principal and the agents in hierarchical organizations may give rise to conflicts of
interest since the agents have custody of assets, as well as powers to authorize and
execute transactions and to maintain records relating to those assets. Such conflicts
of interest can provide incentives to the agents to collude in order to perpetrate
employee fraud on the principal (Holmstrom and Milgrom, 1991; Itoh, 1991).
Segregation of duties in such situations is necessary to mitigate the incentives that
exist for collusion to perpetrate employee fraud (Tirole, 1986). SoD has also
occupied an important position in organization theory where increased size and
complexity of tasks can cause hierarchies to evolve and vertical segregation of
duties to develop so that the tasks can be coordinated and controlled (Lægaard, 2006).
In constitutional law and political theory, SoD underlies the principle of separation of
powers between legislative, executive, and judicial branches (Dworkin, 1978). The
motivation for studying SoD in all of these fields has been to divide-and-conquer the
motivations for collusion that can lead to adverse consequences.

3 Accelerated filers are public companies that have a public float of at least $75 million and less than
$700 million.

4 Large accelerated filers are public companies that a have public float of $700 million or more.
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In computer science, SoD occupies an important place in various areas including
development of secure operating systems (Clark and Wilson, 1987), role-based
access controls in databases (Sandhu, 1988, 1990), separation of concerns in object-
oriented modeling (Aksit, 1996), layering of Internet protocols (Zimmermann, 1980),
and the design of web languages (Van Kesteren and Stachowiak, 2015). Computer
operating systems and accounting systems share a common objective: to monitor and
control the resources they are assigned. A computer’s operating system continuously
gathers data on the operations being carried out and executes decisions or informs
users based on established algorithms to optimize the utilization of hardware
resources. An accounting system performs essentially the same functions for business
operations. Therefore, an accounting system is a good metaphor for a computer
operating system. A seminal paper where SoD was a shared interest in both
computer science and accounting is Clark and Wilson (1987) where concepts from
both areas were utilized to design multi-level security in operating systems.
Our objective in this paper is to bring to bear a computational perspective on

SoD analysis in accounting systems. We accomplish this by formulating SoD
problems in a rigorous mathematical framework and developing algorithms that
can be used in practice for testing SoD compliance. The algorithms we develop
can be used in the design as well as implementation phases of accounting systems.
In the design phase the algorithms can be used to find assignments of tasks-to-
roles and tasks-to-persons that are SoD compliant. If a compliant assignment does
not exist, the accounting workflow must be redesigned or persons with different
skills need to be recruited. In the implementation phase the algorithms can be
used to test if any given assignment is SoD compliant. In transaction processing, an
assignment can be used only if it is SoD compliant.
The algorithms we develop are useful to test static as well as dynamic5 SoD

properties. Static verification deals with compliance of assignments during the
system design phase. Dynamic verification deals with the roles assigned during
processing of transactions in real-time; it can detect deviations6 from the default
assignments and suspend transaction processing when necessary so that
appropriate actions can be taken to correct the effects of the infraction. Dynamic
verification therefore provides preventive and detective, as well as corrective, SoD
controls over transaction processing. Our use of the terms static and dynamic is
appropriate in accounting and auditing since auditors use static verification in
arriving at preliminary judgements about risk relating to material weaknesses and
dynamic verification during substantive testing of transactions.
Most of the research on SoD in accounting and auditing limits its focus to

conflicts of interest due to the nature of tasks, and places minimal emphasis on

5 Role-based access control literature uses static SoD to mean restrictions on roles at the time of
assignment and dynamic SoD to mean restrictions on activation and availability of privileges and
their duration when transactions are processed (Botha and Eloff, 2001).

6 Deviations can arise due to contingencies such as absences, vacations, and staff changes. Such
departures from design in the processing of transactions can violate SoD rules and increase the risk
of employee fraud. Therefore, it is necessary to develop algorithms to test that such assignment
changes do not violate SoD rules.
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hierarchies and roles in organizations that can lead to such conflicts. It also
abstracts away the impact of the structural properties of business processes on
SoD. The accounting literature also does not address the development of
algorithms for finding compliant task-role assignment to persons and for testing
compliance of any assignments. Our contributions in this paper can be
summarized as follows. First, we propose a graph theoretic study of SoD where
accounting systems are represented by directed acyclic graphs constructed from
accounting workflows, and privileges are bundled into roles which are
hierarchically organized. Second, we exploit the structural properties of
accounting workflows to propose SoD rules that incorporate conflict of interest
(CoI) arising out of causes other than the nature of tasks. Such rules considerably
reduce the size of the SoD rulebase. Third, we develop algorithms for finding as
well as testing compliant assignments that can be used in static as well as dynamic
contexts. Fourth, we study the efficiency of each algorithm, and where the
underlying problem is computationally intractable, we suggest a practical solution
approach using integer linear programming.

THE SETTING

Our study of SoD in accounting systems is based on a foundation consisting of three
parts: a model of workflow, a set of roles that are hierarchically organized, and a set
of SoD rules. We describe workflows in accounting systems by identifying tasks and
specifying preconditions that must be satisfied for the task to be initiated. We
consider a set of roles where each role is a bundle of privileges to access
information in the accounting system. The set of roles is assumed to be given and
organized hierarchically. The SoD rules specify how tasks in the workflow and the
roles should be assigned to persons such that segregation of duties is maintained.
Given a set of persons, an important function of accounting system design is to
assign tasks and roles to persons in such a way that SoD rules are complied with.
Those assignments also must adhere to the constraints imposed by the skill
requirements for the performance of tasks and skills possessed by the persons. This
model allows us to examine whether the design of an accounting system and the
processing of transactions comply with given SoD rules, if compliant allocation of
tasks to persons can be computed when they exist, and whether the algorithms are
efficient.7

Overview
In this section we provide definitions of terms used in this paper, such as tasks,
preconditions, persons, privileges, roles, role sets, assignments, and validity of
task-roles to people. Many of these concepts are integral to the two models
commonly used in business processes: model of accounting workflows using the

7 The efficiency of an algorithm is estimated by its running time as a function of the size of input data,
and is expressed using the Big O notation. An algorithm is efficient if that function is a polynomial
(Cormen et al., 2009).
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business process modelling notation (BPMN), and model of partial order of roles.
Our work on SoD is built on these two models. We illustrate these concepts using
an example of a purchasing system in accounting. Next, we provide a short
summary of matrix representations of the data in SoD problems and the graph
theoretic definitions needed for the rest of the paper. The final subsection presents
efficient algorithms for determining whether a given assignment is valid and for
determining whether there is a valid assignment for a given business process,
when no SoD rules are specified. These algorithms are useful in developing
algorithms for the corresponding problems when an SoD rule is also specified.

Basic Definitions
Model of workflows Accounting workflows monitor business processes, and they
are commonly modelled using the BPMN (Juhás et al., 2009; Best and Desel, 1990;
Deelman et al., 2005; Sadiq and Orlowska, 1999; Wu et al., 2013; Deelman
et al., 2015). The model of workflows consists of a directed acyclic graph (dag) D
(V, A) where each node in V is a task, and a directed edge (u, v) ∈ A indicates
that the task corresponding to u must be completed before starting the one
corresponding to v. We refer to D as the precedence dag of the business process.
Each node in this graph corresponds to a task in the model of the business process
for which SoD is being considered.

Privileges, roles, and role hierarchy Performing tasks requires access to
information called privileges.8 In general, a task requires more than one privilege.
Let Π = {π1, π2, …, πn} be the set of privileges. While individual privileges can be
assigned directly to persons, it is more efficient to first bundle privileges into a set
of roles R = {r1, r2, …, rm} so that each role is a subset of Π; that is, for any
ri ∈ R, ri ⊆ Π. We assume that the set R of roles is given. With n privileges in Π,
there are 2n possible roles. However, in most systems the number of roles actually
used will be much smaller.
Since roles in R are defined as subsets of the set of privileges Π, there is a

natural partial order <R on the set of roles R. Given any two roles ri and rj, the
ordered pair (ri, rj) ∈ <R if the set of privileges associated with ri is a strict subset
of the set of privileges associated with rj. If (ri, rj) ∈ <R, we say that rj strictly
dominates ri. Two roles ri and rj are incomparable if neither (ri, rj) nor (rj, ri)
appears in <R. We assume that <R is irreflexive; that is, for each r ∈ R, r,rð Þ �∈<R.
(Thus, no role strictly dominates itself.) This partial order reflects the
organizational hierarchy of privileges.
We now present an example to illustrate these concepts. Let

Π = {π1, π2, π3, π4, π5, π6} be a set of six privileges. Let roles r1, r2, r3, r4, r5, and r6
be defined as subsets of Π as shown in the table of Figure 1. The domination

8 Most modern database management systems are implemented using privileges. The privileges to
access data are bundled into roles, and the privileges to access system resources such as terminals
and computers are bundled into profiles. Default roles and profiles are assigned to people in the
organization, but they may be reassigned for each session used for processing a transaction.

ANALYSIS OF SOD RULES

169
© 2020 Accounting Foundation, The University of Sydney



relationship <R among these roles is shown as a directed graph9 in the figure; this
graph has a directed edge from ri to rj when rj strictly dominates ri (that is, the
pair (ri, rj) ∈ <R). For example, r3 strictly dominates r1 since the set of privileges
associated with r1 (namely, {π1}) is a strict subset of that associated with r3
(namely, {π1, π3}). Similarly, r4 strictly dominates r2. Roles r2 (privilege set = {π2})
and r3 (privilege set = {π1, π3}) are incomparable. To avoid clutter, in the directed
graph of Figure 1, we have not shown the domination edges which are implied by
transitivity. For example, since r5 strictly dominates r3 and r3 strictly dominates r1,
it follows by transitivity that r5 strictly dominates r1. However, the directed edge
(r1, r5) is not shown in the figure.

Tasks, role sets, and persons Consider an organization with a set T of tasks (given in
the model of workflows above) and a set P of persons. For each task, there is a set of
roles required to complete it. This is captured by a function fTR: T ! 2R which specifies
for each task t ∈ T, the subset of roles needed to complete t. These roles may be
assigned to one or more persons. If all the required roles are assigned to one person,
that person is solely responsible for the performance of the task. On the other hand, if
the required roles are assigned to more than one person, those persons are
jointly responsible for the performance of the task. This enables one to divide
the responsibility for a complex task among two or more persons in order to
ensure that collusion is required to perpetrate employee fraud. That is one of the
fundamental principles of SoD. We will refer to fTR(t) as the role set of task t.
Similarly, there is a set of roles that can be assigned to a person, and that set is

determined by the skills possessed by that person. This is captured by a function

FIGURE 1

AN EXAMPLE TO ILLUSTRATE ROLE HIERARCHY

Note: For simplicity, domination relationships implied by transitivity are not shown in the directed
graph.

9 This directed graph represents the Hasse Diagram (Liu, 1985) of the partial order.
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fPR: P ! 2R which specifies for each person p ∈ P, the subset of roles that can be
assigned to p. We will refer to fPR(p) as the role set of person p.

Business process Sets P, T, and R, along with functions fTR and fPR, constitute a
business process P; that is,

P= P,T,R, f TR, f PRf g ð1Þ
The tasks are represented in the dag for the business process whereas P, R, and
the partial order <R on the set of roles form the organizational model. Functions
fTR and fPR interface the business process model and the organizational model in
the implementation of SoD.

Task type For each task t ∈ T, its task type, denoted by λ(t), is given. In this
paper, we consider four common task types, namely A (authorization), C
(custody), E (execution), and R (recording). Thus, for each t ∈ T, λ(t) ∈ {A, C, E,
R}. Auditors often categorize tasks into the above task types to study SoD. Our
SoD rules are based on these four task types. However, our algorithms are
general and they do not rely on the number of roles being a small integer. In
presenting our analysis results, we will use τ as the number of task types.

Assignment Tasks must be assigned to persons. This can be accomplished by first
determining the roles required for performing the tasks and then assigning the
task-role pairs to persons. For this, we define the binary relation  from T to
R (that is,  ⊆ T ×R) as follows:

 = t,rð Þ : t ∈ T and r ∈ f TR tð Þf g ð2Þ

Thus, for each t ∈ T and each role r in the role set of t, the set  contains the
pair (t, r). Note that  can be computed from sets T, R, and the function fTR.
An assignment α is a function from  to P. For each task-role pair

t,rð Þ ∈ , α t,rð Þ specifies the person p who is assigned that task-role pair.
Throughout this paper, we use the phrase ‘a person is assigned a task’ to mean
that the person is assigned one or more roles in that task.

Validity of assignments An assignment α is valid10 if for every t,rð Þ ∈ , the
following condition holds: if α(t, r) = p then r∈ fPR(p). Thus, a valid assignment
has the property that if a person p is assigned role r in task t, then r is in the role
set of p. This ensures that no person p is assigned to a task that p cannot handle.
We also encapsulate information relating to business process concepts in three

matrices called TR (task-role), RP (role-person), and ALPHA (assignment) as
discussed in the next section and summarized in Appendix A. They will be used in
deriving some of our results. In Appendix A we summarize concepts from graph
theory that are used in our algorithms and proofs.

10 Validity is sometimes referred to in the literature as soundness (Knorr and Weidner, 2001).
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PURCHASE PROCESS EXAMPLE

Overview
We consider an example of a purchase process to illustrate some of our analytical
results relating to validity and viability11 of assignments for four SoD rules. Since SoD
Rule 1 is used extensively in audit practice, we use this purchase process example to
illustrate Algorithm 1 to test the validity of a given assignment, and Algorithm 3 to
test the viability of a given assignment. For the remaining three SoD rules we
construct simpler examples.12 We also establish results on finding viable assignments if
they exist. However, detailed examples are not provided as finding viable assignments
are beyond the scope of accounting and more relevant to information system design.

Model of Workflows for the Purchase Process
Consider a purchase process P consisting of tasks T = {t1, t2,…, t11} and preconditions
consisting of arcs A = {a1, a2, …, a12}. Figure 2 shows the dag for the process P where
circles represent tasks ti and arcs ai represent preconditions for the tasks. For example,
arc a1 shows that task t1 must be completed before task t2 can be started, and arcs a3
and a4 collectively show that both tasks t2 and t3 must be completed before task t4 can
be started. For P to be completed each of the tasks in T must be completed.

Privileges and Roles for the Purchase Process Example
For each task in the business process P represented by the dag in Figure 2,
Table 1 provides tasks, their description, role sets, and privileges needed to
accomplish the tasks. The first column of Table 1 gives the task number. The
second column specifies the role set of the task. For example, to perform task t6
(‘Prepare RR’), role r6 is required. The third column provides a description of the
task, and the type of the task is shown within parentheses. The last column gives
the privileges required to perform the task. For example, task ‘Distribute PR’ (t1)
requires that the person performing that task must play role r1, and task t6
requires that the person performing it must play role r6.

TR Matrix
The information on the role sets of tasks can be summarized in a matrix TR as in
Table 2. In this matrix, each row represents a task and each column represents a role.
An entry TR[i, j] is 1 if task i requires role j, and 0 otherwise. For example, the role
‘Privilege to access purchase requisition’ (r1) is required for the task ‘Distribute
purchase requisition’ (t1), and so the element TR[1, 1] in the matrix TR has the value
1. Since t1 does not require any other role, all remaining entries in the first row of
matrix TR are 0. Also, since the role set of task ‘Prepare receiving report’ (t6) has r6,
in the sixth row of the TR matrix, the entry in the sixth column is 1. Since t6 does not

11 An assignment is valid if the role assigned to every person is in their role set. Further, an
assignment is viable under an SoD rule if it is valid and compliant with the said rule.

12 Constructing accounting examples for those rules would have necessitated use of very large
business processes that would not illustrate well the working of our algorithms.
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require any other role, all other entries in the sixth row of TR are 0. In general, a
task may need more than one role, and a role may be needed by more than one task.

Role Sets of Persons and the RP Matrix
In this example, there are 12 persons labelled p1, p2, p3, …, p12. The roles that
persons can play are determined by their skills and captured by the function fPR:
P ! 2R. We assume that the function fPR is specified by Table 3.
The information in Table 3 is expressed in the matrix RP in Table 4. In this

matrix, rows represent the roles and columns represent the persons. An element
of the RP matrix has value 1 if the role corresponding to the row can be played by
the person corresponding to the column. For example, in the matrix in Table 4,
the value of element RP[7, 12] is 1 because the role r7 can be played by person
p12. But the value of element RP[7, 4] is 0 because role r7 cannot be played by
person p4.

Task-role Assignments
We will consider the assignment of persons to tasks summarized in Table 5 for the
discussion of the workings of the algorithms.

The Matrix ALPHA
The assignment in the above section can be summarized in the matrix ALPHA
where the rows denote tasks and columns denote the roles. Thus, the rows and
columns of ALPHA have the same denotations as the TR matrix. However,

FIGURE 2

A DIRECTED ACYCLIC GRAPH OF A PURCHASE PROCESS P
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TABLE 1

PRIVILEGES, TASK DESCRIPTIONS, AND ROLE SETS OF TASKS

Task
#

Role set of
task (fTR) Task Description Privileges

t1 r1 Distribute PR (E) π1: Privilege to access PR
t2 r2 Review & approve PR for vendor

& price (A)
π2: Privilege to access to approved

vendor list
π3: Privilege to access price list

t3 r3 Review & approve PR for π4: Access to budget information
budget (A) π5: Privilege to approve PR

t4 r4 Distribute approved π6: Privilege to access PO
PR/PO (E) π7: Privilege to distribute PO

t5 r5 Send PO to vendor (E) π6: Privilege to access PO
π8: Privilege to mail PO to vendors

t6 r6 Prepare RR (C) π9: Privilege to receive & open the
package

π6: Privilege of access to PO

t7 r7 Update inventory (R) π10: Privilege to access RR
π11: Privilege to input inventory

received

t8 r8 Match PO, RR, and VI π6: Privilege to access PO
(R) π12: Privilege to access RR

π13: Privilege to access VI
π14: Privilege to update the match

results

t9 r9 Approve payment of vendor
invoice (A)

π2: Privilege to access to approved
vendor list

π3: Privilege to access price list
π15: Privilege to authorize payments

to vendors

t10 r10 Prepare and sign check (A) π16: Privilege to sign the check

t11 r11 Mail check to vendor (E) π17: Privilege to mail check

A: Authorization C: Custody E: Execution R: Recording PR: Purchase Requisition PO: Purchase Order
RR: Receiving Report BOL: Bill of Lading VI: Vendor Invoice

TABLE 2

MATRIX FOR ROLE SETS OF TASKS (TR)

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

t1 1 0 0 0 0 0 0 0 0 0 0
t2 0 1 0 0 0 0 0 0 0 0 0
t3 0 0 1 0 0 0 0 0 0 0 0
t4 0 0 0 1 0 0 0 0 0 0 0
t5 0 0 0 0 1 0 0 0 0 0 0
t6 0 0 0 0 0 1 0 0 0 0 0
t7 0 0 0 0 0 0 1 0 0 0 0
t8 0 0 0 0 0 0 0 1 0 0 0
t9 0 0 0 0 0 0 0 0 1 0 0
t10 0 0 0 0 0 0 0 0 0 1 0
t11 0 0 0 0 0 0 0 0 0 0 1
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while the entries in the TR matrix are zeroes and ones, those in the ALPHA
matrix denote the identity of the persons (labels) to whom the task-role
combinations are assigned. The ALPHA matrix for the assignments in Table 5 is
given in Table 6.

TABLE 3

ROLE SETS OF PERSONS

Person Role Set of Person Person Role Set of Person

p1 {r1, r4, r11} p7 {r7, r8}
p2 {r2, r3, r9} p8 {r7, r8}
p3 {r2, r3, r11} p9 {r8, r9}
p4 {r1, r4, r11} p10 {r9, r10}
p5 {r5, r11} p11 {r1, r5, r11}
p6 {r6, r7, r8} p12 {r3, r7, r10}

TABLE 4

MATRIX FOR ROLE SETS OF PERSONS (RP)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

r1 1 0 0 1 0 0 0 0 0 0 1 0
r2 0 1 1 0 0 0 0 0 0 0 0 0
r3 0 1 1 0 0 0 0 0 0 0 0 1
r4 1 0 0 1 0 0 0 0 0 0 0 0
r5 0 0 0 0 1 0 0 0 0 0 1 0
r6 0 0 0 0 0 1 0 0 0 0 0 0
r7 0 0 0 0 0 1 1 1 0 0 0 1
r8 0 0 0 0 0 1 1 1 1 0 0 0
r9 0 1 0 0 0 0 0 0 1 1 0 0
r10 0 0 0 0 0 0 0 0 0 1 0 1
r11 1 0 1 1 1 0 0 0 0 0 1 0

TABLE 5

TASKS, ROLES, AND ASSIGNMENTS

Task Role Assignment

t1 r1 α(t1, r1) = p4
t2 r2 α(t2, r2) = p3
t3 r3 α(t3, r3) = p2
t4 r4 α(t4, r4) = p1
t5 r5 α(t5, r5) = p11
t6 r6 α(t6, r6) = p6
t7 r7 α(t7, r7) = p7
t8 r8 α(t8, r8) = p9
t9 r9 α(t9, r9) = p10
t10 r10 α(t10, r10) = p12
t11 r11 α(t11, r11) = p5
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Binary Relation  from T to R
The binary relation , which includes all task-role pairs (t, r) such that the role r is
in the role set of the task t, is another representation of the TR matrix. This binary
relation is useful because if the TR matrix is sparse (that is, contains only small
number of entries which are 1), the memory space needed to store  will be
significantly smaller than that used by the TR matrix. For the TR matrix shown in
Table 2, the binary relation  is as follows:

= f t1,r1ð Þ, t2,r2ð Þ, t3,r3ð Þ, t4,r4ð Þ, t5,r5ð Þ, t6,r6ð Þ, t7,r7ð Þ,
t8,r8ð Þ, t9,r9ð Þ, t10,r10ð Þ, t11,r11ð Þg ð3Þ

PRELIMINARY RESULTS WITHOUT SoD RULES

Given an assignment, we should be able to determine if it is valid. We should also be able
to determine if a business process  has a valid assignment; if there is no such
assignment, one can conclude that the persons in P do not possess all the skills
required for processing transactions. In this section we present our preliminary results
regarding valid assignments assuming that the matrices TR and RP and the assignment
function α given as the matrix ALPHA in the above section are available. The
algorithms given in this subsection do not consider any SoD rules. In the subsequent
sections of this paper, we present algorithms for testing the validity of a given
assignment and determining whether there is a valid assignment when an SoD rule is
also specified.

Lemma 1: There are polynomial time algorithms for the following problems:
(i) determining whether a given assignment α is valid and (ii) determining
whether there is a valid assignment for a given business process.

TABLE 6

MATRIX ALPHA FOR THE ASSIGNMENT SHOWN IN TABLE 5

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

t1 p4 0 0 0 0 0 0 0 0 0 0
t2 0 p3 0 0 0 0 0 0 0 0 0
t3 0 0 p2 0 0 0 0 0 0 0 0
t4 0 0 0 p1 0 0 0 0 0 0 0
t5 0 0 0 0 p11 0 0 0 0 0 0
t6 0 0 0 0 0 p6 0 0 0 0 0
t7 0 0 0 0 0 0 p7 0 0 0 0
t8 0 0 0 0 0 0 0 p9 0 0 0
t9 0 0 0 0 0 0 0 0 p10 0 0
t10 0 0 0 0 0 0 0 0 0 p12 0
t11 0 0 0 0 0 0 0 0 0 0 p5
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Proof of Part (i): A simple procedure to test whether a given assignment α is valid
is shown in Algorithm 1.

The correctness of the algorithm is obvious since it directly applies the definition
of validity for the given assignment α. To estimate the running time, note that the
number of iterations of the loop in Step 1 is at most jj . Since the function α is
specified by the ALPHA matrix, for given values of t and r, the value α(t, r) can
be obtained in O(1) time. Further, we can determine whether r is in the role set of
person p in O(1) time by checking whether the entry RP[r, p] = 1. Thus, the
algorithm runs in O jjð Þ time.

EXAMPLE 1
We provide an example to illustrate the working of Algorithm 1 based on the
running example described in the preceding section. The data is summarized in the
matrices TR and RP shown in Tables 2 and 4. For each pair t,rð Þ ∈  , Algorithm
1 tests if role r is in the role set of the person who is assigned the task-role pair. If
the role is not in the role set of the person, the assignment is not valid, and the
algorithm stops. Table 7 shows the iterations in the working of the algorithm. The
first two columns show the iteration number and the (t, r) pair from 
considered in that iteration. The third column gives the person to whom the (t, r)
pair in column two is assigned as given in the matrix ALPHA in Table 6. The
fourth column indicates whether the assignment is valid, and the last column gives
the reason why. The validity of an assignment depends on whether the role is in the
role set of the person; this is determined by checking the element RP[t, r]. We can
conclude from Table 7 that the assignment given by the matrix ALPHA is valid.

Now, suppose we swap the tasks assigned to persons p3 and p5 so that p3 is
assigned task t11 and p5 is assigned task t2. Table 8 shows the working of the
Algorithm 1 for the modified assignment. It can be seen that the algorithm will stop
after running the first two iterations because the assignment of task t2 to person p5
is not valid as the role r2 required by task t2 is not in the role set of the person p5.

Algorithm 1. Testing whether a given assignment α is valid (without any SoD
rule)

1 for each pair t,rð Þ ∈  do

2 Let p = α(t, r).

3 Check whether r is in the role set of p; if not, output “Assignment α is
invalid” and stop.

4 end

5 output “Assignment α is valid”.
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Proof of Part (ii): A simple procedure to find a valid assignment α (when one
exists) is shown in Algorithm 2.

TABLE 7

WORKING OF ALGORITHM 1 WHERE THE GIVEN ASSIGNMENT IS VALID

Iter. Pair Considered Chosen Assignment Validity Reason

1 (t1, r1) α(t1, r1) = p4 Valid RP[r1, p4] = 1
2 (t2, r2) α(t2, r2) = p3 Valid RP[r2, p3] = 1
3 (t3, r3) α(t3, r3) = p2 Valid RP[r3, p2] = 1
4 (t4, r4) α(t4, r4) = p1 Valid RP[r4, p1] = 1
5 (t5, r5) α(t5, r5) = p11 Valid RP[r5, p11] = 1
6 (t6, r6) α(t6, r6) = p6 Valid RP[r6, p6] = 1
7 (t7, r7) α(t7, r7) = p7 Valid RP[r7, p7] = 1
8 (t8, r8) α(t8, r8) = p9 Valid RP[r8, p9] = 1
9 (t9, r9) α(t9, r9) = p10 Valid RP[r9, p10] = 1
10 (t10, r10) α(t10, r10) = p12 Valid RP[r10, p12] = 1
11 (t11, r11) α(t11, r11) = p5 Valid RP[r11, p5] = 1

Conclusion: The given assignment is valid.

TABLE 8

WORKING OF ALGORITHM 1 WHERE THE GIVEN ASSIGNMENT IS NOT VALID

Iter. Pair Considered Chosen Assignment Validity Reason

1 (t1, r1) α(t1, r1) = p1 Valid RP[r1, p1] = 1
2 (t2, r2) α(t2, r2) = p5 Invalid RP[r2, p5] = 0

Conclusion: The given assignment α is invalid.

Algorithm 2. Finding a valid assignment (if one exists) without any SoD rule

1 for each pair t,rð Þ∈ do

2 if there is a person p such that r is in the role set of p then

3 Set α(t, r) = p.

4 else

5 output “No valid assignment” and stop.

6 end

7 end

8 output the assignment α.
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The algorithm tries to construct a valid assignment α as follows. For each
t,rð Þ ∈ , if there is a person p who can play role r (that is, r is in the role set of
p), it chooses p as the value of α(t, r) and tries the next pair in  . If there is no
such person, it can be seen that there is no valid assignment and the algorithm
stops after producing an appropriate message. If the algorithm succeeds in finding
a person for each task-role pair in  , it outputs the constructed assignment α.
Thus, the algorithm is correct.
To develop an efficient implementation of the algorithm, we first preprocess the

RP matrix and construct an array Z[1 . . |P|] so that Z[r] stores a person p who
can play role r. This can be done by going through each row r of the RP matrix
(whose rows correspond to roles) and finding a column p such that RP[r, p] = 1.
(If all the entries in row r of the RP matrix are zero, then we set Z[r] = –1 to
indicate that there is no person who can play the role r.) Clearly, the time needed
to construct the array Z is O(|R|× |P|). Given the array Z, we can find in O(1) time
whether there is a person who can play a given role r. Now, to estimate the
running time of Algorithm 2, note that the number of iterations of the loop in
Step 1 is at most j j. Once the array Z is available, the time used in each iteration
of the loop is O(1). So, the overall running time is O jj+ jRj× jPjð Þ. Since  and
the RP matrix are part of the input to the problem, the running time is linear in
the input size. □
In our purchase process example, jj is 11, the number of task role combinations

in equation (3). The number of roles jRj is 11, which is the number of rows in
Table 1. The number of people jPj is 12, which is the number of columns in
Table 4. The running time of the algorithm is given by O jj+ jRj× jPjð Þ equals 11
+ (11× 12) = 143. Since  and RP matrix are part of the input to the problem, the
running time is linear in the input size.
We now present two examples to illustrate Algorithm 2. For brevity, we have

chosen a smaller business process to illustrate this algorithm.

EXAMPLE 2
Consider a business process whose task set T is given by T = {t1, t2, t3}. Let
R = {r1, r2, r3, r4} denote the set of roles needed for the tasks and let P = {p1, p2,
p3, p4} denote the persons in the organization. Further, let the task-role
(TR) matrix and the role-person (RP) matrices for this business process be as
shown in Figure 3.

From the TR matrix, the set  of task-role pairs is given by

 = t1,r1ð Þ, t1,r2ð Þ, t2,r2ð Þ, t2,r3ð Þ, t3,r2ð Þ, t3,r4ð Þf g ð4Þ

We will apply Algorithm 2 to check whether there is a valid assignment α, and if
so, find one such assignment. Algorithm 2 considers each pair in  and tries to
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assign a person to that pair. Table 9 shows the assignment chosen in each of the
six iterations (one corresponding to each pair in ).
Thus, in this case, the algorithm finds a valid assignment given by the third

column of the above table. We note that in an assignment resulting from the
algorithm, there may be people with multiple roles (e.g., p1 is assigned roles r1 and
r2) and others who are not assigned any role (e.g., p4 is not assigned any role).

EXAMPLE 3
Suppose we change the RP matrix in Example 2 above so that all the entries in the row
corresponding to r4 are zero (that is, there is no person who can play the role r4). The
first five iterations will proceed in the manner indicated in Table 9. In Iteration 6, when
the algorithm considers the pair (t3, r4), it cannot find a person who can be assigned role
r4. Therefore, the algorithm will output the message ‘No valid assignment’.

In this section we developed a rigorous way of determining the validity of
assignments of task-role pairs to persons. The validity criterion ensures that
the assignments are consistent with the requirements of tasks and the skills of
persons.

FIGURE 3

TR AND RP MATRICES FOR EXAMPLE 2

TABLE 9

WORKING OF ALGORITHM 2

Iter. Pairs(t, r) Chosen Assignment Validity Reason

1 (t1, r1) α(t1, r1) = p1 Valid RP[r1, p1] = 1
2 (t1, r2) α(t1, r2) = p1 Valid RP[r2, p1] = 1
3 (t2, r2) α(t2, r2) = p1 Valid RP[r2, p1] = 1
4 (t2, r3) α(t2, r3) = p2 Valid RP[r3, p2] = 1
5 (t3, r2) α(t3, r2) = p2 Valid RP[r2, p2] = 1
6 (t3, r4) α(t3, r4) = p3 Valid RP[r4, p3] = 1
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CONFLICT OF INTEREST AND SoD RULES

Explicit and formal statements of SoD rules are essential for the development of
any system in enforcing SoD policies. However, it is very difficult to come up with
an exhaustive set of SoD rules that can be used in any situation. It is also
challenging to gather external social network information that is not usually
collected by organizations. For example, social networks such as family relationships
can lead to CoI. While this issue is important in the study of SoD, this paper focuses
on factors that are within the control of the organization and so beyond the scope of
this paper. Therefore we exploit the structural properties of business processes and
role hierarchies to derive SoD rules that are relevant and parsimonious. The data
relating to these properties are readily available since they are maintained by most
organizations even if only to satisfy the requirement of audits.
In accounting, there are no studies of formal SoD rules except for those that

incorporate them in conflict of interest matrices whose rows and columns
represent tasks. The entries are a measure of the risk used to assign tasks to
persons. In computer science there is a study by Knorr and Weidner (2001) that
formalizes SoD rules, but does not present rule descriptions that exploit the
structure of business processes. In this section, we introduce SoD rules in
the context of conflicts of interest, give their informal definitions, provide the
motivation for the traditional way of studying SoD only in terms of conflicts due
to the type of tasks, and finally discuss each of the four SoD rules considered in
this paper. The following section provides analytical results on the efficiency of
the algorithms for testing compliance of any given assignment as well as finding
compliant assignments for each SoD rule.
SoD rules encapsulate policies to mitigate the effects of conflicts of interest. So,

given a task and the person to whom it is assigned, an SoD rule determines if any
other task can or cannot be assigned to any person in the organization (Knorr and
Weidner, 2001). For example, for any two tasks ti and tj in a business process
where task ti precedes task tj, a typical SoD rule can be expressed as

ti,pkð Þ!¬ t j,pl
� � ð5Þ

where (ti, pk) indicates that task ti is assigned to person pk. The above rule states
that if task ti is assigned to person pk, then a subsequent task tj cannot be
assigned to person pl. This is a generalization of the traditional accounting SoD
rule for distinct tasks ti and tj and k = l. However, a disadvantage of this
approach is that for business processes of any size, the number of SoD rules will
be very large since, to be comprehensive, the rules must compare each pair of
tasks. So, if there are n tasks, the number of SoD rules will be at least n × (n
−1) ≈ n2. However, merely classifying tasks into types ignores the structural
properties of the business process and the organization. The number of rules can
therefore be reduced considerably by exploiting those structural properties. That
is the strategy we adopt in the rest of this paper. We now motivate the four SoD
rules we study in this paper.
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CoI Due to Task Type
Auditors have traditionally used just the nature of tasks to classify them into four
types: authorization, execution, recording, and custody. However, in general, we
can have an arbitrary number of task types so long as they relate to SoD. A
presumption of conflicts of interest is created when any two or more task types are
assigned to the same person, and the first SoD rule we study states that no person
should be assigned a role in more than one type of task within a business process.
This can be considered the baseline SoD Rule, and is our SoD Rule 1. However,
it does not consider conflicts of interest that arise due to factors other than those
due to task type. Our analytical results for this SoD Rule are in the first
subsection of the following section, titled ‘SoD Rule 1: CoI Due to Task Type’.
Conflicts of interest can also arise due to the following three factors: role conflicts,

role dominance, or common roles among tasks. In all of these three situations,
conflicts arise in large volume transaction processing due to social interactions
occasioned by two tasks that are part of an execution chain. An execution chain in a
business process for the purposes of this paper is a sequence of tasks that are
collectively important for maintaining control over the business process. Such
execution chains are a structural property of business processes that can be
analytically derived as place invariants of the Petri Net underlying the business
process (Lautenbach, 1987; Girault and Valk, 2001; Yamalidou et al., 1996).

CoI Due to Role Conflicts
Conflicts of interest can arise due to the nature of roles that persons assume in
processing transactions. Since roles are bundles of privileges, conflicts can arise
because information can leak through a person whose role provides a wider set of
privileges than those required to perform the task. This breaks the cardinal rule of
internal control that each person should have only the minimum set of privileges
required to perform a task (principle of minimum privilege). Controlling role
conflicts is important because roles are constantly being activated and deactivated in
such contexts, and errors in the assignment of task-role pairs to persons can increase
the risk of employee fraud. One way to avoid such conflicts of interest is to require
that a person assume at most one role within a business process. Therefore, our
SoD Rule 2 states that no person may perform more than one role within a business
process. Our analytical results for this SoD Rule are in the second subsection of the
following section, titled ‘SoD Rule 2: CoI Due to Role Conflicts’.

CoI Due to Role Dominance
In organizations that are organized hierarchically, conflicts of interests can arise
when for any two tasks which are in a chain of execution in a business process and
which are performed by different employees, the role assumed by one dominates
the role assumed by the other. This is because the person assuming the dominant
role can perpetrate fraud by coaxing the one assuming the dominated role into
colluding. One way to avoid such conflicts of interest is to require that when any
two persons are assigned tasks of the same type within a chain (that is, directed
path), they should not be assigned roles where one role strictly dominates the other.
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Therefore, our third SoD Rule 3 (Non-Dominating Roles Along Directed Paths)
states the following: any two persons who are assigned tasks of the same type within
a directed path should not be assigned roles where one role strictly dominates the
other. Our analytical results for this SoD Rule are in the third subsection of the
following section, titled ‘SoD Rule 3: CoI Due to Role Dominance’.

CoI Due to Common Roles Among Tasks
Conflicts can also arise when two tasks in an execution chain require the same
role. In those situations if the same role is assigned to the same person, the
opportunity to test or reconcile the work on the first task is lost; moreover, the
person can perpetrate employee fraud. For example, the tasks t2 (‘Review &
approve PR for vendor & price’) and t9 (‘Approve payment of vendor invoice’) in
Figure 2 and Table 1 are both authorization tasks. They are also on the same
execution chain as can be easily verified from Figure 2. If both of these tasks are
assigned to the same person, then the person authorizing a vendor and price is
also authorizing payments to the vendor. That increases the risk of vendor fraud
and kickbacks. Such conflicts of interest can be avoided altogether simply by
requiring that the two tasks be assigned to different persons. Therefore, our fourth
SoD Rule 4 (CoI due to common roles among tasks) states the following: for any
two tasks in an execution chain and any role that is needed for both the tasks, the
role should be assigned to two different people. Our analytical results for this SoD
Rule are in the fourth subsection of the following section, titled ‘SoD Rule 4: CoI
Due to Common Roles Among Tasks’.

FORMAL ANALYSIS OF SoD RULES

In this section, we first state each SoD rule informally and then express it formally
using the definitions in the second section of the paper and in Appendix A. For
each SoD rule, we address two problems. The first problem is to determine
whether a given assignment α is valid and satisfies the corresponding SoD rule.
The second problem is to determine whether there exists an assignment α that is
valid and satisfies the corresponding SoD rule. Our results show that all but one of
these problems are efficiently solvable. For the problem which is computationally
intractable (that is, NP-complete), we present an integer linear programming
(ILP) formulation that can be solved in practice using public domain ILP solvers.
We consider each SoD rule in a separate subsection.
The following definition of a viable assignment is used throughout this paper.

Definition 1: An assignment α is viable under a given SoD rule if α is valid and
satisfies the rule.

Validity does not ensure that assignments are consistent with SoD rules; it only
ensures that for each task-role pair assigned to a person p, the role set of
p includes the role. Viability, on the other hand, ensures that assignments are valid
and comply with the SoD rules.
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SoD Rule 1: CoI Due to Task Type
The first SoD rule that we consider imposes a restriction on the type of tasks that can
be assigned to any person. We begin with informal and formal statements of the rule.
SoD Rule 1: (CoI Due to Task Type) No person should be assigned a role in more

than one type of task within a business process. In other words, if a person p is
assigned roles in two or more tasks, then all such tasks must be of the same type.
A Formal Statement of SoD Rule 1: For each person p, let Tp ⊆ T be the set of

tasks in which p is assigned a role by α; that is,

Tp = t : there is an r ∈ R for which α t,rð Þ= pf g:

A valid assignment α satisifies SoD Rule 1 iff for every person p ∈ P and every
pair of tasks ti and tj in Tp, λ(ti) = λ(tj).
We now present our results for SoD Rule 1. First, we show that testing whether

a given assignment α is viable under SoD Rule 1 can be done efficiently.

Theorem 1: There is a polynomial time algorithm to determine whether a given
assignment α is viable under SoD Rule 1.

Proof: Our procedure for solving this problem is shown in Algorithm 3.

Algorithm 3. Testing whether a given assignment α is viable under SoD Rule 1

1 Check if α is valid using Algorithm 1. If α is invalid, output “Assignment α is
invalid” and stop.
/* Check whether each person is assigned at most one type of
task. */

2 Let W[1 . . | P|] be an array where each entry is initialized to –1. (See text for
the significance of the W array.)

3 for each entry t,rð Þ ∈  do

4 Let p = ALPHA[t, r].

5 if (W[p] = − 1) then

6 W[p] = λ(t).

7 else if (W[p] 6¼ λ(t)) then

8 output “Assignment α is not viable under SoD Rule 1” and stop.

9 end

10 end

11 output “Assignment α is viable under SoD Rule 1”.
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The algorithm first checks whether α is valid using Algorithm 1. If α is valid, it
checks whether all the tasks assigned to each person are of the same type. To do
this efficiently, the algorithm uses an array W with jPj elements such that each entry
W[p] stores the type of task assigned to person p. We use the convention that if no
task has been assigned to p, then W[p] = −1. Each entry of the array W is
initialized to –1. It is assumed that the assignment α is given by the matrix ALPHA.
The algorithm goes through each task-role pair t,rð Þ ∈ . Suppose ALPHA[t, r] =
p and the type of task t is λ(t). If W[p] = –1 (that is, t is the first task assigned to
p), the algorithm sets W[p] = λ(t). Otherwise, it checks whether W[p] = λ(t). If it is
the case, the algorithm considers the next entry of  ; if not, it reports that SoD
Rule 1 is not satisfied and stops. Thus, the correctness of the algorithm is evident.
To estimate the running time of Algorithm 3, note that from Lemma 1, checking

whether α is valid can be done in O jjð Þ time after reading in the ALPHA matrix.
The time to read the ALPHA matrix is O(|T|× |R|) and the time to initialize the
W array is O(P). To check whether α satisfies SoD Rule 1, we note that each
iteration of the for loop in Step 3 uses O(1) time. Thus, the time used by the loop
is O ð Þ. Hence, the running time over all the steps is O jj+ jPj+ jTj× jRjð Þ. Since
jj ≤ jT j × jRj, the running time can be simplified to O(|P| + |T|× |R|). Since P and
ALPHA are all inputs to the problem, the running time of the algorithm is linear
in the input size. □

EXAMPLE 4
Consider the matrices TR, RP, and ALPHA in Tables 2, 4, and 6 respectively.
First, we set up an array W[1 . . |P|] and initialize all components to –1. The
algorithm tests each (t, r) pair in  for viability. The results are shown in Table 10.
For example, the pair (t1, r1), λ(t1) is E, and the task-role pair assignment for t1
from Table 5 is p4. Since all components of W are set initially set to –1, we have W
[1] = −1, and so this value is reset to λ t1ð Þ=E. Since in all 11 iterations W[p] = −1,
they are replaced by the task type. The algorithm finds that all the jobs assigned to
each person are of the same type and concludes that the given assignment is
viable under SoD Rule 1.

Now, consider a modified assignment in which tasks t6 and t7 are both assigned to
person p6. The matrix RP shows that both tasks are in the role set of p6. So, the
assignment is valid. Table 11 shows the working of Algorithm 3. The first six iterations
work exactly as in Table 10. During the seventh iteration, the algorithm notices that
person p6 is assigned both tasks t6 and t7 which are of different types. Thus, the
algorithm concludes that the given assignment is not viable under SoD Rule 1.
When all tasks are of the same type, any valid assignment α is trivially viable

under SoD Rule 1. Thus, for this special case, the problem of determining whether
there is a viable assignment under SoD Rule 1 reduces to the problem of merely
checking whether there is a valid assignment; by Part (ii) of Lemma 1, this special
case can be solved efficiently. However, with just two types of tasks, we
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demonstrate in Theorem 2 that determining whether there is a viable assignment
under SoD Rule 1 is computationally intractable. (As mentioned earlier, auditors
have used four task types in analyzing SoD.) To cope with this intractability, we
provide an integer linear programming formulation for the problem of finding an
assignment that is viable under SoD Rule 1.

Theorem 2: Given a business process, the problem of determining whether there is a
viable assignment under SoD Rule 1 is NP-complete even when there
are only two types of tasks.

Proof: See Appendix B.1.

An integer linear programming formulation Theorem 2 points out that in general,
determining whether a viable assignment exists under SoD Rule 1 is computationally
intractable. Hence, there is no efficient algorithm for the problem unless the

TABLE 11

WORKING OF ALGORITHM 3 WHERE THE ASSIGNMENT IS NOT VIABLE

Iter.
No.

(t, r)
pair λ(t) α(t, r) = p Viability W[p]

1 (t1, r1) E p4 W p4½ �= −1: ∴Post W p4½ �= λ t1ð Þ=E
2 (t2, r2) A p3 W p3½ �= −1: ∴Post W p3½ �= λ t2ð Þ=A
3 (t3, r3) A p2 W p2½ �= −1: ∴Post W p2½ �= λ t3ð Þ=A
4 (t4, r4) E p1 W p1½ �= −1: ∴Post W p1½ �= λ t4ð Þ=E
5 (t5, r5) E p11 W p11½ �= −1: ∴Post W p11½ �= λ t5ð Þ=E
6 (t6, r6) C p6 W p6½ �= −1: ∴Post W p6½ �= λ t6ð Þ=C
7 (t7, r7) R p6 W p6½ �=C: ∴Assignment α is not viable under SoD Rule 1

since λ(t7)= R.

Conclusion: Assignment is not viable under SoD Rule 1.

TABLE 10

WORKING OF ALGORITHM 3 WHERE THE GIVEN ASSIGNMENT IS VIABLE

Iter. No. (t, r) pair λ(t) α(t, r) = p Viability W[p]

1 (t1, r1) E p4 W p4½ �= −1: ∴Post W p4½ �= λ t1ð Þ=E
2 (t2, r2) A p3 W p3½ �= −1: ∴Post W p3½ �= λ t2ð Þ=A
3 (t3, r3) A p2 W p2½ �= −1: ∴Post W p2½ �= λ t3ð Þ=A
4 (t4, r4) E p1 W p1½ �= −1: ∴Post W p3½ �= λ t4ð Þ=E
5 (t5, r5) E p11 W p11½ �= −1: ∴Post W p11½ �= λ t5ð Þ=E
6 (t6, r6) C p6 W p6½ �= −1: ∴Post W p6½ �= λ t6ð Þ=C
7 (t7, r7) R p7 W p7½ �= −1: ∴Post W p7½ �= λ t7ð Þ=R
8 (t8, r8) R p9 W p9½ �= −1: ∴Post W p9½ �= λ t8ð Þ=R
9 (t9, r9) A p10 W p10½ �= −1: ∴Post W p10½ �= λ t9ð Þ=A
10 (t10, r10) A p12 W p12½ �= −1: ∴Post W p12½ �= λ t10ð Þ=A
11 (t11, r11) E p5 W p5½ �= −1: ∴Post W p5½ �= λ t11ð Þ=E

Conclusion: Assignment is viable under SoD Rule 1.
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complexity classes P and NP are equal (Garey and Johnson, 1979). We now present
a {0,1} integer linear programming (ILP) formulation for the problem so that it can
be solved in practice using public domain ILP solvers such as Gurobi (2018). Since
our goal is to check whether there exists a viable assignment under SoD Rule 1, our
formulation does not involve any optimization objective. When the ILP has a
solution, we will explain how a viable assignment can be found efficiently from any
solution to the ILP.
(a) Variables: For each person i (1 ≤ i ≤ jPj) and task type j (1 ≤ j ≤ τ, where τ

is the number of task types), we use a {0, 1}-valued variable xij which takes on the
value 1 if person i is assigned a task of type j; otherwise, the value of xij is
0. (Thus, the number of variables is τ jPj.)
(b) Constraints: The linear constraints to be satisfied by the above variables are

given below.
(i) Under SoD Rule 1, each person must be assigned tasks of at most one type.

This leads to the following set of constraints:

Xτ

j = 1

xij ≤ 1 for each i, 1 ≤ i ≤ jP j ð6Þ

(ii) Let Tj ⊆ T denote the subset of all tasks whose type is j, 1 ≤ j ≤ τ. Further,
let Rj denote the union of the role sets of the tasks in Tj. (Thus, Rj is the set of
roles needed to complete all the tasks in Tj. We note that Rj can be computed
from the TR matrix.) For each r ∈ Rj, let Pr ⊆ P denote the subset of people who
can play role r. (Note that Pr can be obtained from the RP matrix.) We need to
ensure that each role in Rj is assigned to a person i such that i is assigned to one
or more tasks of type j and r appears in the role set of i. This leads to the
following set of constraints:

X
i ∈ Pr

xij ≥ 1 for each role r ∈ R j, 1 ≤ j ≤ τ ð7Þ

This completes the specification of the ILP for ASSIGN-R1. It can be verified that
there is a viable assignment under SoD Rule 1 if there is a solution to the above
set of constraints.
When there is a solution to the above ILP, a viable assignment α can be

constructed from the values of the variables xij as follows. We consider each task
type j (1 ≤ j ≤ τ) separately. As mentioned above, let Tj denote the subset of all
the tasks of type j and let Pj denote the subset of people who have been assigned
tasks of type j. Since all the tasks in Tj are of the same type, assigning each role
r needed for the tasks in Tj to a person in Pj whose role set includes r gives a
viable assignment under SoD Rule 1. The constraints specified by equation (7)
ensure that for each j, each role needed for Tj can be assigned to someone in Pj.
This method of constructing a viable assignment α from the solution to the ILP is
summarized in Algorithm 4.
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SoD Rule 2: CoI Due to Role Conflicts
The SoD rule considered in this section imposes a restriction on the number of
roles that can be assigned to any person. We begin with informal and formal
statements of the rule.
SoD Rule 2: (CoI Due to Role Conflicts) A person should have at most one

assigned role within a business process.
A Formal Statement of SoD Rule 2: For each person p, let Rp ⊆ R be the set of

roles assigned by α; that is,

Rp = r : there is a t ∈ T for which α t,rð Þ= pf g:

A valid assignment α satisifies SoD Rule 2 iff for every person p ∈ P, jRpj ≤ 1.
We now present our results for SoD Rule 2.

Theorem 3: The following problems can be solved in polynomial time:
(i) determining whether a given assignment α is viable under SoD
Rule 2 and (ii) given a business process, determining whether there is
a viable assignment under SoD Rule 2.

Proof: See Appendix B.2.

SoD Rule 3: CoI Due to Role Dominance
This SoD rule involves pairs of tasks which are of the same type and for which
there is a directed path with one or more edges in the precedence dag D of the
business process. The rule also involves pairs of roles which have the strict

Algorithm 4. Finding a viable assignment under SoD Rule 1 from a solution to
the ILP

1 for j = 1 to τ do

2 Let Pj = {i : xij = 1}. (See text for the significance of Pj and Tj.)

3 Using the TR matrix, find Rj, the set of all roles needed for the tasks in Tj.

4 for each role r ∈ Rj do

5 Find a person p ∈ Pj whose role set includes r.

6 For each t ∈ Tj such that task t has role r, let α(t, r) = p.

7 end

8 end

9 output Assignment α constructed above.
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domination relationship defined in the second section of this paper. Since D is
acyclic, the reader should bear in mind that there is no directed path with one
or more edges from a task t to itself in D. Further, we use the phrase ‘a person
is assigned a task’ to mean that the person is assigned one or more roles in that
task. Informal and formal statements of the SoD rule considered in this
section are as follows.
SoD Rule 3: (CoI Due to Role Dominance) Any two persons who are assigned

tasks of the same type within a directed path should not be assigned roles where
one role strictly dominates the other.
A Formal Statement of SoD Rule 3: A valid assignment α satisfies SoD Rule 3

iff for any pair of tasks ti and tj and for any pair of roles rx and ry that satisfy all
the following four conditions:

(i) there is a directed path from ti to tj in G,
(ii) λ(ti) = λ(tj) (that is, tx and ty are of the same type),
(iii) rx ∈ fTR(ti) and ry ∈ fTR(tj) (that is, roles rx and ry are required for tasks ti

and tj respectively), and
(iv) one of the pairs (rx, ry) or (ry, rx) appears in <R (that is, one of rx and ry

strictly dominates the other in the role hierarchy), the assignment α satisfies
the condition α(ti, rx) = α(tj, ry).

To develop our results for SoD Rule 3, we first define a graph representation
(called the auxiliary graph) that allows us to identify a simple graph theoretic
property that captures SoD Rule 3.

Definition 2:
(a) two tasks ti and tj are linked if (i) ti and tj are of the same type and (ii) there is

a directed path with one or more edges in the precedence dag from the node
representing ti to the one representing tj or vice versa;

(b) two roles rx and ry are linked if one of rx and ry strictly dominates the other
(that is, either (rx, ry) or (ry, rx) appears in <R);

(c) given a task t and a role r, (t, r) is a relevant task-role pair (or RTR pair) if r
appears in the role set of t (note that the binary relation  gives all the RTR
pairs);

(d) two RTR pairs (ti, rx) and (tj, ry) are linked if tasks ti and tj are linked and
roles rx and ry are linked.

The following observation is a direct consequence of the above definition and the
formal specification of SoD Rule 3.
Observation 1. Let (ti, rx) and (tj, ry) be two linked RTR pairs in a business process.
Any assignment that satisfies SoD Rule 3 must assign the same person to both the
RTR pairs. □
We now define a graph which is useful in developing the main results of this

subsection.
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Definition 3: The auxiliary graph H(VH, EH) of a business process is an undirected
graph defined as follows. The node set V H is in one-to-one
correspondence with the set of RTR pairs of the business process. An
edge {u, v} is in EH if and only if the RTR pairs corresponding to u
and v are linked.

The following lemma uses the auxiliary graph to generalize Observation 1.

Lemma 2: Let H(VH, EH) be the auxiliary graph of a business process.
Suppose there is a path π = hu1, u2, …, uri in H with one or more
edges. Then in any assignment that satisfies SoD Rule 3, all the
RTR pairs corresponding to the nodes in π must be assigned to the
same person.

Proof: We use simple induction on the number of edges in the path. The basis
is for a path with one edge {u1, u2}. In this case, by Observation 1, the RTR
pairs corresponding to u1 and u2 must be assigned to the same person. So,
assume that for some k ≥ 1, the result holds for all paths with at most k edges
in H. Now, consider a path π0 = hu1, u2, …, uk, uk + 1i with k + 1 edges. By the
inductive hypothesis, all the RTR pairs corresponding to u1 through uk must
be assigned to the same person to satisfy SoD Rule 3. Further, by
Observation 1, the RTR pairs corresponding to uk and uk + 1 must also be
assigned to the same person. Hence, the RTR pairs corresponding to all the
nodes in π0 must be assigned to the same person. This completes the inductive
proof. □
A simple consequence of Lemma 2 is the following: any assignment that

satisfies SoD Rule 3 must assign all the RTR pairs corresponding to the nodes
of any connected component of the auxiliary graph to the same person. It can
also be seen that any assignment that assigns the same person for all the RTR
pairs corresponding to all the nodes in each connected component of the
auxiliary graph satisfies SoD Rule 3. These two observations lead to the
following result for testing whether or not a given assignment satisfies SoD
Rule 3.

Corollary 1: An assignment α satisfies SoD Rule 3 iff for each connected component
H0 of the auxiliary graph H, α assigns all the RTR pairs corresponding
to the nodes in H0 to the same person. □

We now prove the main results of this subsection.

Theorem 4: The following problems can be solved in polynomial time:
(i) determining whether a given assignment α is viable under SoD
Rule 3 and (ii) given a business process, determining whether there is
an assignment that is viable under SoD Rule 3.
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Proof of Part (i): Our procedure to test whether a given assignment α is viable
under SoD Rule 3 is shown in Algorithm 5. The algorithm first checks whether α
is valid. It then checks whether the given assignment satisfies SoD Rule 3 using
Corollary 1. So, the correctness of the algorithm is obvious.
To estimate its running time, recall that Step 1 can be done in O jjð Þ time (Part

(i) of Lemma 1). The auxiliary graph H has jVH j = jj nodes, and thus at most

O j j2
� �

edges. As stated in Appendix A, we assume that checking whether there

is a directed path between a given pair of tasks in the precedence dag and
checking whether there is a strict domination relationship between a given
pair of roles can be done in O(1) time. Hence, the auxiliary graph construction

(Step 2) can be carried out in O j j2
� �

time. Since H has j j nodes and O j j2
� �

edges, finding the connected components of H (Step 3) can be done in O j j2
� �

time. For each connected component H0 of H with NH 0 nodes, we can check (using
the matrix representation ALPHA of α) whether α assigns all the RTR pairs
corresponding to the nodes of H0 to the same person in time O NH 0ð Þ. Therefore,
over all the connected components, the time used by the algorithm in Step 4 is

O(|VH|) = O jjð Þ. So, the running time of the algorithm is O j j2
� �

.

We now present examples to illustrate Algorithm 5.

EXAMPLE 5
The set T of tasks for the business process considered here has four tasks; that is,
T = {t1, t2, t3, t4}. Of these, t1 and t3 are of Type 1 while t2 and t4 are of Type 2. The
set of roles R and people are given by R = {r1, r2, r3, r4} and P = {p1, p2, p3, p4}.
For simplicity, we will assume that the role-person (RP) matrix has all its
entries to be 1; that is, each person in P can be assigned any of the roles in
R. The dependency graph and the task-role (TR) matrix for this business

Algorithm 5. Testing whether a given assignment α is viable under SoD Rule 3

1 Check if α is valid using Algorithm 1. If α is invalid, output “Assignment α is
invalid” and stop.

2 Using the relevant RTR pairs (given by the relation ), construct the auxiliary
graph H.

3 Find the connected components of H.
4 for each connected component H0 of H do
5 Check whether α assigns all the RTR pairs corresponding to the nodes of

H0 to the same person p. If not, output “Assignment α does not satisfy
SoD Rule 3” and stop.

6 end
7 output “Assignment α is viable under SoD Rule 3”.
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process are shown in Figure 4. Let the partial order <R on the roles be
given by

< R = r1,r3ð Þ, r1,r4ð Þ, r2,r4ð Þ, r3,r4ð Þf g
From the TR matrix, the set  of relevant task-role pairs (that is, RTR pairs) is

given by

= t1,r1ð Þ, t1,r2ð Þ, t2,r2ð Þ, t2,r3ð Þ, t3,r3ð Þ, t3,r4ð Þ, t4,r1ð Þ, t4,r4ð Þf g

For this example, the set of linked pairs of tasks is {(t1, t3), (t2, t4)} and the set
of linked roles is the same as <R. Using this information, the auxiliary graph
H constructed in Step 2 of Algorithm 5 is shown in Figure 5.
Let us first consider the following assignment α for this business

process.

α t1,r1ð Þ= p1 α t1,r2ð Þ= p2 α t2,r2ð Þ= p3 α t2,r3ð Þ= p4
α t3,r3ð Þ= p1 α t3,r4ð Þ= p2 α t4,r1ð Þ= p3 α t4,r4ð Þ= p4

The above assignment α is valid since each person can play any of the four
roles. For an assignment to be viable under SoD Rule 2, it must be valid and
for each connected component of the auxiliary graph, all the RTR pairs in
that component must be assigned to the same person. In the above
assignment, even though the two RTR pairs (t1, r1) and (t1, r2) are in the
same connected component (namely, H1) of the auxiliary graph H, the given
assignment α assigns those two RTR pairs to two different people, namely p1

FIGURE 4

DEPENDENCY GRAPH AND TR MATRIX FOR EXAMPLE 5

Note: In the dependency graph, two forms of circles to show that tasks t1 and t3 are of Type 1 while
tasks t2 and t4 are of Type 2.
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and p2. Thus, Algorithm 5 outputs the message ‘Assignment α does not
satisfy SoD Rule 3’.

EXAMPLE 6
For the business process in Example 5, let us consider the following assignment α1
(instead of α).

α1 t1,r1ð Þ= p2 α1 t1,r2ð Þ= p2 α1 t2,r2ð Þ= p3 α1 t2,r3ð Þ= p3
α1 t3,r3ð Þ= p2 α1 t3,r4ð Þ= p2 α1 t4,r1ð Þ= p3 α1 t4,r4ð Þ= p3

As before, α1 is also a valid assignment. Further, all the RTR pairs in the
connected component H1 are assigned to p2 while all the RTR pairs in
the connected component H2 are assigned to p3. Thus, Algorithm 5 outputs the
message ‘Assignment α is viable under SoD Rule 3’.

Proof of Part (ii): Our method to determine whether there is a viable assignment
under SoD Rule 3 is shown in Algorithm 6. When the answer is ‘yes’, the
algorithm also outputs one such assignment.
Since the algorithm merely implements the condition mentioned in

Corollary 1, its correctness is obvious. We now estimate its running time. As

mentioned in the proof of Part (i), Steps 1 and 2 can be done in O j j2
� �

time.

Let γ denote the number of connected components of H. For each connected
component H0 with NH 0 nodes, we can find the set R0 of roles used in the RTR

FIGURE 5

THE AUXILIARY GRAPH H FOR EXAMPLE 5. THE GRAPH CONSISTS OF TWO
CONNECTED COMPONENTS, DENOTED BY H1 AND H2
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pairs of H0 in O jRj+NH 0ð Þ time using a vector of size jRj in a manner similar to
that used in the proof of Part (i) of Theorem . Since NH 0 ≤ jj, the time used for
this computation is O jRj+ jjð Þ. Using the RP matrix, we can check whether there
is a person p whose role set is a superset of R0 in O(|R|× |P|) time. Thus, the time
used by the algorithm for each iteration of the loop in Step 3 is O(|R|× |P|).
Hence, the total time for Step 3 is O γ jRj+ jj+ jRj× jPjð Þð Þ = O γ jj+ jRj× jPjð Þð Þ.
Step 8 can be done in O jjð Þ time. So, the running time of the algorithm is

O j j2 + γ jj+ jRj× jPjð Þ
� �

. Since γ ≤ jj, the running time of the algorithm can be

simplified to O j j2 + jj× jRj× jPj
� �

, which is a polynomial function of the input

size. □
SoD Rule 3 used a particular binary relationship between RTR pairs; for

two RTR pairs (ti, rx) and (tj, ry), this relationship requires the corresponding
pair of tasks and roles to be linked. The polynomial time algorithms
presented in the proofs of Part (i) and Part (ii) of Theorems 4 can be
generalized to SoD Rules based on any binary relation on the set of RTR
pairs, as long as one can efficiently determine whether two given RTR pairs
are related.

SoD Rule 4: CoI Due to Common Roles Among Tasks
Recall from the earlier section on SoD Rule 3, the notion of linked tasks: two
tasks ti and tj are linked if they are of the same type and there is a directed
path from ti to tj or vice versa in the precedence dag. SoD Rule 4 also

Algorithm 6. Finding a viable assignment α under SoD Rule 3

1 Using the relevant RTR pairs (given by the relation ), construct the auxiliary
graph H.

2 Find the connected components of H.

3 for each connected component H0 of H do

4 Let R0 be the set of roles needed to complete the tasks corresponding to the
RTR pairs represented by the nodes in H0.

5 Check (using the RP matrix) whether there is a person p such that the role
set of p includes every role in R0.

6 If so, for each RTR pair (t, r) that corresponds to a node in H0, let
α(r, t) = p; otherwise, output “There is no viable assignment” and stop.

7 end

8 output Assignment α constructed above.
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concerns linked tasks. Informal and formal statements of this rule are as
follows.
SoD Rule 4: (CoI Due to Common Roles Among Tasks) For any two linked

tasks and any role that is needed for both the tasks, the role should be assigned to
two different people.
A Formal Statement of SoD Rule 4: A valid assignment α satisfies SoD Rule 4

iff the following condition holds: for any pair of tasks ti and tj and any role r such
that (i) there is a directed path from ti to tj in the precedence dag D,
(ii) λ(ti) = λ(tj) (that is, ti and tj are of the same type) and (iii) r ∈ fTR(ti) \ fTR(tj)
(that is, role r is required in both ti and tj), the assignment α satisfies the condition
α(ti, r) 6¼ α(tj, r).
We first show that there is an efficient algorithm to check whether a given

assignment α is viable under SoD Rule 4.

Theorem 5: There is a polynomial time algorithm to determine whether a given
assignment α is viable under SoD Rule 4.

Proof: Our method of checking whether a given assignment α is viable under SoD
Rule 4 is shown in Algorithm 7.
The correctness of the algorithm is obvious since it directly implements the test

mentioned in the formal statement of SoD Rule 4. To estimate its running time,
recall that testing whether a given assignment is valid (Step 1) can be done in
O jjð Þ time. The number of iterations of the loop in Step 2 is at most |T|2. In each
iteration, determining whether two tasks are linked can be done in O(1) time

Algorithm 7. Testing whether a given assignment α is viable under SoD Rule 4

1 Check if α is valid using Algorithm 1. If α is invalid, output “Assignment α is
invalid” and stop.

2 for each pair ti and tj of linked tasks do

3 Find the set Rij of roles needed by both ti and tj.

4 for each role r ∈ Rij do

5 if (α(ti, r) = α(tj, r)) then

6 output “Assignment α does not satisfy SoD Rule 4” and stop.

7 end

8 end

9 end

10 output “Assignment α is viable under SoD Rule 4”.
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using the preprocessing steps mentioned in Appendix A2. For a pair of tasks ti
and tj, the set Rij of roles that are needed for both ti and tj can be found in O(|R|)
time using the TR matrix. For each role r∈Rij, the test in the body of the loop in
Step 4 can be done in O(1) time using the matrix representation of the given
assignment α. Thus, the total time used by the loop in Step 4 is O(|R|). Hence, the
time for each iteration of the loop in Step 2 is O(|R|). So, the total time for Step 2 is
O(|T|2×|R|). Therefore, the running time of the algorithm is O jj+ Tj j2 × jRj

� �
. Since

jj ≤ jT j × jRj , the running time can be simplified to O(|T |2×|R|), which is a
polynomial function of the input size. □
We now present examples to illustrate Algorithm 7.

EXAMPLE 7
The set T of tasks for the business process considered here has four tasks; that is,
T = {t1, t2, t3, t4}. Of these, t1 and t3 are of type 1 while t2 and t4 are of type 2.
The set of roles R and people are given by R = {r1, r2, r3, r4} and P = {p1, p2, p3,
p4}. For simplicity, we will assume that the role-person (RP) matrix has all its
entries as 1; that is, every person in P can be assigned any of the roles in R.
The dependency graph (which is the same as the one used to illustrate
Algorithm 5) and the task-role (TR) matrix for this business process are shown in
Figure 6. From the TR matrix, the set  of task-role pairs is given by
= t1,r1ð Þ, t1,r2ð Þ, t2,r2ð Þ, t2,r3ð Þ, t2,r4ð Þ, t3,r1ð Þ, t3,r2ð Þ, t3,r4ð Þ, t4,r3ð Þ, t4,r4ð Þf g.

For this example, the set of linked pairs of tasks is {(t1, t3), (t2, t4)}. Consider
the following assignment α.

FIGURE 6

DEPENDENCY GRAPH AND TR MATRIX FOR EXAMPLE 7

Note: In the dependency graph, two forms of circles to show that tasks t1 and t3 are of Type 1 while
tasks t2 and t4 are of Type 2.
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α t1,r1ð Þ= p1 α t1,r2ð Þ= p2 α t2,r2ð Þ= p3 α t2,r3ð Þ= p4 α t2,r4ð Þ= p4
α t3,r1ð Þ= p1 α t3,r2ð Þ= p2 α t3,r4ð Þ= p3 α t4,r3ð Þ= p4 α t4,r4ð Þ= p4

The above assignment α is valid since each person can play any of the four
roles. For an assignment to be viable under SoD Rule 4, it must be valid and for
each pair (ti, tj) of linked tasks and each role r that is needed in both ti and tj, the
people assigned the role in ti and tj must be different. In the above example, (t1, t3)
is a linked pair of tasks and role r1 is needed by both t1 and t3. However, the
assignment α chooses the same person (namely, p1) for the role r1 in both t1 and
t3. Thus, Algorithm 7 would output the message ‘Assignment α does not satisfy
SoD Rule 4’.

EXAMPLE 8
For the business process in Example 7, consider the following assignment α1.

α1 t1,r1ð Þ= p1 α1 t1,r2ð Þ= p2 α1 t2,r2ð Þ= p3 α1 t2,r3ð Þ= p4 α1 t2,r4ð Þ= p1
α1 t3,r1ð Þ= p2 α1 t3,r2ð Þ= p3 α1 t3,r4ð Þ= p3 α1 t4,r3ð Þ= p2 α1 t4,r4ð Þ= p4

The above assignment α1 is valid since each person can play any of the four
roles. Algorithm 7 first considers the linked pair of tasks (t1, t3) and notices that
roles r1 and r2 appear in both of these tasks. However, α1 assigns (t1, r1) to p1 and
(t3, r1) to p2. Further, α1 assigns (t1, r2) to p2 and (t3, r2) to p3. Thus, the condition
for SoD Rule 3 is satisfied for the linked pair of tasks (t1, t3). In a similar manner,
it can be verified that the condition for SoD Rule 3 is satisfied for the other linked
pair of tasks, namely (t2, t4). Thus, Algorithm 7 would output the message
‘Assignment α1 is viable under SoD Rule 4’.
In the remainder of this subsection, we show (see Theorem 6) that the problem

of determining whether a given business process has a viable assignment under
SoD Rule 4 can be solved efficiently. As a first step towards that result, we
observe that the rule imposes constraints only on tasks of the same type; thus, we
can consider each task type separately. Moreover, among the tasks of the same
type, the rule applies to each role that is needed by one or more tasks of the
chosen type. Thus, the problem can be further decomposed by considering each
role separately within each set of tasks of the same type. Hence, we have a
separate subproblem for each combination of task type and role. We state this
formally below.
Observation 2. Given a business process, there is a viable assignment under SoD
Rule 4 for the business process iff there is an assignment that is viable under the rule
for each subproblem specified by a task type i and role j, where role j is needed by
at least one task of type i. □
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In view of Observation 2, we focus on determining whether there is a viable
assignment under Rule 4 for each subproblem specified by a task type and a role. The
following definitions help us to develop an efficient algorithm for a given subproblem.
Definition 4:
(a) let D(V, A) be the precedence dag of the given business process, for 1 ≤ i ≤ τ,

the type i precedence dag, denoted by Di(Vi, Ai), is defined as follows and the node
set Vi ⊆ V consists of all the tasks of type i. For two nodes u and v in Vi, the directed
edge (u, v) is in Ai iff there is a directed path with at least one edge from u to v in
the original precedence dag D;
(b) let Ri denote the set of all roles needed for one or more tasks of type i. for

each role j ∈ Ri, define the type-role (i, j) precedence dag, denoted by D j
i V j

i ,A
j
i

� �
,

as follows and the node set V j
i ⊆Vi consists of all the tasks in V i which require role

j. For two nodes u and v in V j
i , the directed edge (u, v) is in A j

i iff there is a directed
path with at least one edge from u to v in the type i precedence dag Di.
A direct consequence of the definition of the type-role precedence graph is the

following.
Observation 3. Consider the type-role precedence dag D j

i . Let u and v be two

distinct nodes in D j
i . If there is a path from u to v in D j

i , then the edge (u, v) is also

in D j
i . □

The following lemma shows how the definition of the type-role precedence dag
is useful for SoD Rule 4.

Lemma 3: Consider the type-role precedence dag D j
i for task type i and role j. Let u

and v two distinct nodes in D j
i such that the edge (u, v) in D j

i . Any
assignment α that is viable under SoD Rule 4 must satisfy the condition
α(u, j) 6¼ α(v, j).

Proof: Since the edge (u, v) is in D j
i , by the definition of D j

i , there is a path from
u to v in the original dag D. Further, the tasks corresponding to u and v are of the
same type (namely, type i) and they both require role j. Therefore, by the
definition of SoD Rule 4, it follows that for any assignment that satisfies the rule,
α(u, j) 6¼ α(v, j). □
We introduce an additional definition that is useful in constructing a viable

assignment to a given subproblem. Given a dag Q(VQ, AQ), the level number of
any node u ∈ VQ, denoted by L(u), is the number of nodes in a longest directed
path ending at u. To compute the level numbers of nodes in a dag efficiently, we
use the following recursive definition.

Definition 5: Given a dag Q(VQ, AQ), the level number L(u) of a node u can be
computed as follows: (i) if u has no incoming edges in D j

i , then
L(u) = 1, and (ii) if u has one or more incoming edges in Q, then L
(u) = 1 +max{L(w) : (w, v)∈AQ}.
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It can be verified that the two definitions of the level number given above are
equivalent. The following is an observation regarding level numbers.
Observation 4. Suppose u and v are two distinct nodes in a dag Q such that L
(u) = L(v). Then there is no directed path in D j

i between u and v. □
Since the computation of level numbers plays an important role in determining

whether a given business process has an viable assignment under SoD Rule 4, we
now present an efficient algorithm for that computation. This algorithm uses the
following fact about dags (Cormen et al., 2009).
Fact 1. Each nonempty dag Q(VQ, AQ) has at least one node with no incoming
edges. □

Lemma 4: Given a dag Q(VQ, AQ) represented by its jVQj × jVQj adjacency matrix,
the level numbers of all the nodes in VQ can be computed in
O(|VQ|

2) time.

Proof: A procedure for computing the level numbers of all the nodes in a dag
Q(VQ, AQ) is shown in Algorithm 8. In each iteration, the algorithm looks for the
set of all nodes with no incoming edges. It succeeds in finding such a set because
of Fact 1 and the observation that a dag continues to remain acyclic when some of
the nodes and edges are removed.

Thus, the set of nodes will become empty at some stage and the algorithm will
terminate. It can be seen through a simple inductive argument (on the number of
nodes in a longest path ending at a node) that for each node u, the value L(u)
computed by the algorithm is the number of nodes in a longest path ending at u.
We now discuss how Algorithm 8 can be implemented efficiently. Let 

denote the jVQ j × jVQj adjacency matrix of Q. In addition to , we use an array
C[1 . . |VQ|] of counters, where each entry C[u] stores the number of incoming
edges to node u. Initially, all the entries of the C array can be computed in

Algorithm 8. Computing the level numbers of nodes in a dag Q(VQ, AQ)

1 Set k = 1. (Variable k is used for assigning levels to nodes in the dag Q(VQ, AQ).)

2 while there are nodes in VQ do

3 Find the subset Zk consisting of all the nodes with no incoming edges. For
each node u ∈ Zk, let L(u) = k.

4 Remove all the nodes in Zk from VQ. (This step also removes all the edges
incident on the nodes in Zk.)

5 k = k + 1.

6 end
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O(|VQ|
2) time using  ; this is because the value C[u] is the number of 1’s in the

column corresponding to u in . During any iteration, the set Zk of all the nodes
with no incoming edges can be found in O(|VQ|) time using the C array; assigning
the level number k to all the nodes in Zk can also be in O(|VQ|) time. Removing
the nodes in Zk and deleting each edge incident on those nodes can be done
by changing the appropriate entry of the matrix  from 1 to 0. When the
incoming edge to a node u is deleted, the counter C[u] is decremented by
1. Thus, deleting each edge can be implemented to run in O(1) time. Since the
number of edges in Q is at most |VQ|

2, the total time spent by the algorithm to
assign level numbers to all the nodes is O(|VQ|

2), which is linear in the input
size. □
The following lemma uses the notion of level numbers to develop a necessary

and sufficient condition for the existence of a viable assignment under SoD Rule
4 for each subproblem.

Lemma 5: Consider the dagD j
i (V

j
i , A

j
i ) and suppose for each node u ∈ V j

i , the level

number L(u) has been computed. Let ℓ = max L uð Þ : u ∈ D j
i

n o
. There

is a viable assignment under SoD Rule 4 for the subproblem defined by a
task type i and role j iff the number of people who can play role j is at
least ℓ.

Proof:
(i) If part: Assume that there are at least ℓ people who can play role j. Consider a
subset P j

i = {p1, p2, …, pℓ} of such people with ℓ members. Using P j
i , we can

construct an assignment α j
i that is viable under SoD Rule 4 for the subproblem

defined by tasks of type i and role j as follows. For each node u ∈ V j
i , we set

α j
i u, jð Þ = pk, where k = L(u). Using Observation 4, it can be verified that this

assignment is viable under SoD Rule 4 for the subproblem under consideration.
(ii) Only If part: Suppose there is a viable assignment α j

i under SoD Rule 4 for the
subproblem defined by task type i and role j. Since ℓ is the maximum level
number, there is a node u such that a longest path in D j

i ending in u has ℓ nodes.
Let π = hu1, u2,…, uℓ−1, uℓ = ui be such a path. By Observation 3, for each pair of
distinct nodes ux and uy in π, with x<y, D j

i contains the edge (ux, uy). Since α j
i

satisfies SoD Rule 4, by Lemma 3, α j
i cannot assign the same person for role j for

any pair of tasks in the path π. Thus, α j
i must use at least ℓ people who can play

role j. □
The following lemma shows that the construction of an assignment for a given

subproblem (mentioned in the proof of the ‘If part’ of Lemma 5) can be carried
out efficiently.

Lemma 6: Let D j
i denote the dag corresponding to the subproblem specified by task

type i and role j. Let ℓ denote the largest level number assigned by
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Algorithm 8 to a node of D j
i . Suppose the number of people who can

play role j is at least ℓ. Then a viable assignment under SoD Rule 4 for
the subproblem can be constructed efficiently.

Proof: Our procedure for creating a viable assignment for the subproblem given
by dag D j

i is shown in Algorithm 9. The procedure follows the method discussed
in the proof of the ‘If part’ of Lemma 5.

As before, we assume that the directed graph D j
i is stored using its adjacency

matrix AD j
i , which is of size jV j

i j × jV j
i j . From Lemma 4, we know that

level assignments for all nodes (Step 1) can be done in O V j
i

��� ���2
� �

time. Since jV j
i j

≤ jT j , the time used for level assignment is O(|T|2). Step 2 can be completed in

O(|P|) time using the RP matrix and Step 3 can be done in O jV j
i j

� �
= O(|T|)

time. So, the overall running time of Algorithm 9 is O(|T|2+|P|). □
We now present our algorithm for determining whether there is a viable

assignment under SoD Rule 4.

Theorem 6: Given a business process, there is a polynomial time
algorithm to determine whether there is a viable assignment under
SoD Rule 4.

Proof: The basic idea is to decompose the problem into subproblems, where each
subproblem is specified by a task type and a role. For each subproblem, we apply
the algorithm given in the proof of Lemma 5. We thus obtain the procedure
shown in Algorithm 10 for determining whether there is a viable assignment under
SoD Rule 4. The correctness of the algorithm is a direct consequence of
Observation 2 and Lemma 5.

Algorithm 9. Constructing the assignment α j
i in the Proof of Lemma 6

1 Assign level numbers to the nodes of Dj
i (V

j
i , A

j
i ) using Algorithm 8. Let ℓ be

the maximum level number assigned to a node.
2 Let P j

i = {p1, p2,…, pℓ} denote a set of ℓ people who can play role j.

3 for u ∈ V j
i do

4 Let k = L(u); set α j
i u, jð Þ=pk.

5 end
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Algorithm 10. Finding a viable assignment α under SoD Rule 4

1 for i = 1 to τ do

2 Let Ri be the set of all roles needed to complete the tasks of type i. (Ri can
be computed from the TR matrix.)

3 for each j ∈ Ri do

4 Construct the type-role precedence dag Dj
i .

5 Assign level numbers to the nodes of Dj
i using Algorithm 8. Let ℓ be the

largest level number assigned.

6 if (the number of people who can play role j is ≥ ℓ) then

7 Construct assignment α j
i using Algorithm 9.

8 else

9 output “There is no viable assignment” and stop.

10 end

11 end

12 end

13 Construct the assignment α by combining the assignments for each subproblem
computed above.

14 output the assignment α.

TABLE 12

SUMMARY OF RESULTS

SoD Rule SoD EnforcementFunction Algorithm No.
Theorem or
Lemma No.

0 No SoD Rule Testing validity of a given
assignment

1 Lemma 1(i)

Finding a valid assignment 2 Lemma 1(ii)

1 Avoid task type conflict Testing viability for SoD Rule 1 3 Theorem 1
Finding a viable assignment for

SoD Rule 1
4 Theorem 2

2 Avoid role conflict Testing viability for SoD Rule 2 Similar to
Algorithm 3

Theorem 3(i)

Finding a viable assignment for
SoD Rule 2

11 Theorem 3(ii)

3 Avoid dominating roles along
directed paths

Testing viability for SoD Rule 3 5 Theorem 4(i)

Finding a viable assignment for
SoD Rule 3

6 Theorem 4(ii)

4 Avoid role conflicts along
directed paths

Testing viability for SoD Rule 4 7 Theorem 5

Finding a viable assignment for
SoD Rule 4

10 Theorem 6
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The running time of Algorithm 10 can be estimated as follows. Since each
subproblem is specified by a task type and role, the number of subproblems
is τ j Rj. The loop in Step 3 tries to construct a partial assignment for each
subproblem. As mentioned in the proof of Lemma 6, such a partial
assignment can be constructed in O(|T|2+|P|) time. Therefore, the time for
solving all the subproblems is O(τ|R|×(|T|2+|P|)). Hence, Algorithm 10 runs
in O(τ|R|×(|T|2+|P|)) time, which is a polynomial function of the input
size. □
Summary of Results: The above results are summarized in Table 12.

CONCLUSIONS AND FUTURE WORK

In this paper, we provide a computational framework for the study of SoD. Our
framework includes a model of accounting workflows, a set of hierarchically
organized roles, and a set of four SoD rules. We address the issue of enforcing
SoD rules in accounting systems by developing a set of efficient algorithms. They
are enforced in the context of assignment of tasks (in accounting workflows) to
people. Our paper answers two fundamental questions for any business process.
First, is a given assignment SoD compliant? Second, is there a compliant
assignment? We present algorithms to answer these two fundamental questions
for each of the four SoD rules. We also analyze the computation time used by
our algorithms.
Our results show that there are efficient algorithms for answering the first

question for all four SoD rules (see Theorems 1, 3, 4, and 5). The results for the
second question are mixed. We present efficient algorithms for the last three SoD
rules (see Theorems 3, 4, and 6). We also show (see Theorem 2) that the problem
of finding a viable assignment for SoD Rule 1 (that is, avoiding task type conflict),
is computationally intractable (NP-complete). For that case, we provide an integer
linear programming (ILP) formulation which can be used in practice to check
whether a viable assignment exists, and if so, to find one such assignment. These
results are summarized in Table 12.
We close by pointing out possible directions for future research. First is to

investigate suitable generalizations of the SoD rules considered in this paper.
For example, SoD Rule 1 can be generalized to allow a person to handle
k types of tasks for some k ≥ 2. Likewise, SoD Rule 2 can be generalized to
allow a person to play r roles for some r ≥ 2. Another direction is to formulate
new SoD rules that also consider resource constraints. For example, when there
are many tasks and the number of persons in an organization is small, a natural
constraint is to limit the number of people assigned to each task. Finally, when
there is no viable assignment for a given SoD rule, the question of how the rule
can be revised to obtain a viable assignment is also an interesting research
direction.
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APPENDIX A
MATRIX REPRESENTATIONS AND GRAPH THEORETIC DEFINITIONS

A.1. Review of Matrix Representations
As can be seen from the various algorithms presented in this paper, it is
advantageous to represent some of the input data in the form of Boolean matrices,
that is, matrices where each entry is either 0 or 1. The following Boolean matrices
were defined in several subsections of the section titled ‘The Setting’. For the
reader’s convenience, we have summarized the definitions below.

(a) The Task-Role Matrix, denoted by TR, has one row corresponding to each
task and one column corresponding to each role. An entry TR[i, j] is 1 if task
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i requires role j and 0 otherwise. The TR matrix provides an alternative
representation of the function fTR and the binary relation  defined in The
Setting’.
(b) The Role-Person Matrix, denoted by RP, has one row corresponding to

each role and one column corresponding to each person. An entry RP[j, k] is 1 if
role j can be played by person k and 0 otherwise. The RP matrix provides an
alternative representation of the function fPR defined in The Setting’ .

As mentioned earlier, a given assignment α of task-role pairs to persons can also
be represented as a matrix. This matrix, which we denote by ALPHA, has the same
number of rows and columns as the TR matrix. However, ALPHA is not Boolean;
its entries take on values from {0, 1, 2, …, jPj} with the following convention: if task
i does not need role j (that is, i, jð Þ �∈ ), then ALPHA[i, j] = 0; otherwise, ALPHA
[i, j] stores the value of α(i, j), which is in the range 1 through jPj. The advantage
of this matrix representation is that given a task i and a role j, the person
p assigned to that task-role pair can be found in constant (that is, O(1)) time.

A.2. Relevant Graph Theoretic Definitions
We give below some definitions and results from graph theory which are used in
this paper. These definitions and results can be found in most standard texts on
algorithms and graph theory such as Cormen et al. (2009) and West (2003).
An undirected graph G(V, E) is connected if for each pair of nodes u and v in

V, there is a path between u and v in G. When a graph is not connected, it consists
of two or more connected components; for any two nodes u and v in the same
connected component, there is a path between u and v that uses only nodes within
that connected component. Several standard algorithms for finding the connected
components of an undirected graph G(V, E) are known; these algorithms run in O
(|V| + |E|) time (Cormen et al., 2009). We use the idea of connected components in
our formal analysis of SoD rules.
A bipartite graph G(V1, V2, E) is an undirected graph in which the node set is

partitioned into two subsets V1 and V2 and each edge in E joins a node in V1 to a
node in V2. Given a bipartite graph G(V1, V2, E), a matching in G is a subset M of
edges such that no two edges of M share an end point. A matching of largest
cardinality is called a maximum matching. It is well known that for any bipartite

graph G(V1, V2, E), a maximum matching can be found in O jEj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijV1 j + jV2 j
p� �

time (Cormen et al., 2009). We use this result in the section titled ‘SoD Rule 2:
CoI Due to Role Conflicts’.
In some sections, we use directed graphs. In such graphs, a directed edge from

node i to node j is denoted by (i, j). We assume that each directed graph H(VH,
AH) is given by its adjacency matrix representation in Cormen et al. (2009), which
uses a jVHj × jVHj Boolean matrix, say MH, to store the directed edges. An entry
MH[i, j] is 1 if the edge (i, j) is in AH; it is 0 otherwise.
In the section titled ‘SoD Rule 4: CoI Due to Common Roles Among Tasks’,

we also use some known results regarding directed acyclic graphs (dags). Consider
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a dag D(V, A) and two nodes u and v in V such that there is a directed path from
u to v in D. The length of such a path can be measured by either the number of
directed edges or the number of nodes. A longest path from u to v in D is a path
with the maximum number of directed edges (or nodes).
Some of the SoD rules considered in this paper use the precedence dag D(V, A)

of the business process. These rules involve pairs of tasks between which there is a
directed path in D with one or more edges. (Since D is acyclic, there is no directed
path with one or more edges from a task and itself.) Thus, to develop algorithms for
those SoD rules, we need to determine whether there is a directed path with one or
more edges between a given pair of tasks. In designing and analyzing these
algorithms, we assume that through an appropriate preprocessing step, a Boolean
jV j × jVj reachability matrix RM has been constructed for D. For any two nodes
u and v in D, the RM[u, v] = 1 if there is a directed path with one or more edges
from u to v and 0 otherwise. Thus, given two nodes u and v in D, the RM matrix
enables us to check in O(1) time whether there is a directed path with one or more
edges from u to v. It is well known that the necessary preprocessing step (that is,
computing the transitive closure of D) can be done efficiently (Cormen et al., 2009).
Similarly, we assume that the strict domination relationship among the roles

introduced in the second section of the paper is stored in a suitable matrix so that
given two roles r1 and r2, we can determine in O(1) time whether one of them
strictly dominates the other.

APPENDIX B
PROOFS OF SOME THEOREMS

B.1. Proof of Theorem 2
Statement of Theorem 2: Given a business process, the problem of determining
whether there is a viable assignment under SoD Rule 1 is NP-complete even when
there are only two types of tasks.
Proof: We will use ASSIGN-R1 to denote the the problem of determining whether
there is a viable assignment under SoD Rule 1.
The ASSIGN-R1 problem is in NP since one can guess an assignment α and test

in polynomial time (using Algorithm 3) that it is viable under Rule 1.
To prove NP-hardness, we use a reduction from the 3SAT problem which is

well known to be NP-complete (Garey and Johnson (1979)). An instance I of
3SAT consists of a set X = {x1, x2, …, xn} of n Boolean variables and a set
Y = {Y1, Y2, …, Ym} of m clauses, with each clause containing exactly three
literals. The question is whether there is an assignment of a Boolean value to each
variable in X such that under that assignment, each clause in Y evaluates to True.
Given an instance I of 3SAT, we construct an instance I0 of ASSIGN-R1 as follows.

(a) The business process of I0 has only tasks of two types, denoted by A and B.
Each task involves only one role and the roles are all distinct. (Thus, the number
of roles is equal to the number of tasks.)
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(b) For each variable xi, we create two people, denoted by pi, 0 and pi,
1, 1 ≤ i ≤ n. Persons pi, 0 and pi, 1 correspond to the literals �xi and xi respectively.
Thus, the set P = {p1, 0, p1, 1, p2, 0, p2, 1, …, pn, 0, pn, 1} has a total of 2n people.
(c) For each variable xi, we also create a task ti, 1 ≤ i ≤ n. The type of ti is A and

it needs just one role ri. The role sets of both pi, 0 and pi, 1 include ri, 1 ≤ i ≤ n.
However, ri is not in the role set of any other person in P. Thus, for 1 ≤ i ≤ n, ti
must be assigned to exactly one of pi, 0 and pi, 1.
(d) For each clause Yj, we create one task wj and its unique role rn + j, 1 ≤ j ≤ m.

The type of task wj is B. The role rn + j appears in the role set of each person
whose corresponding literal appears in clause Yj.
(e) Thus, the set T of n + m tasks is given by T = {t1, t2, …, tn, w1, w2, …, wm}

and the set R of n + m roles is given by R = {r1, r2, …, rn −1, rn, rn + 1, …, rn + m}.

This completes the construction of the ASSIGN-R1 instance I0. It can be seen that
the construction can be carried out in polynomial time. We now show that there is
a solution to the ASSIGN-R1 instance I0 if and only if there is a solution to the
3SAT instance I. Throughout this proof, the reader should bear in mind that each
task in T has a unique role. So, assigning a task to a person p is the same as
assigning the corresponding role to p.
Suppose there is a solution to the 3SAT instance I. We construct a solution to

the ASSIGN-R1 instance I0 as follows. To begin with, all the tasks are unassigned.
Consider each variable xi, 1 ≤ i ≤ n.

(i) If the solution to 3SAT sets xi to True, we assign task ti (of type A) to pi, 0.
Also, suppose the positive literal xi occurs in the set Ci of clauses given by Ci =
Y j1 , Y j2 , …, Y jℓ


 �
. Let Ti = w j1 ,w j2 ,…,w jℓ


 �
be the tasks corresponding to the

clauses in Ci. Further, let T
0
i denote the subset of Ti such that none of the tasks in

T 0
i has been assigned to a person. We assign all the tasks in T 0

i (each of which is of
type B) to pi, 1.
(ii) If the solution to 3SAT sets xi to False, we assign task ti (of type A) to pi, 1.

Also, suppose the negated literal �xi occurs in the set of clauses Ci given by Ci =
Y j1 , Y j2 , …, Y jℓ


 �
. Let Ti = w j1 ,w j2 ,…,w jℓ


 �
be the tasks corresponding to the

clauses in Ci. Further, let T
0
i denote the subset of Ti such that none of the tasks in

T 0
i has been assigned to a person. We assign all the tasks in T 0

i (each of which is of
type B) to pi, 0.

It can be verified that this method produces a valid assignment α (that is, α
assigns each role r to a person whose role set includes r) that satisfies SoD Rule
1 (that is, all the tasks assigned to each person are of the same type). In other
words, we have a solution to the ASSIGN-R1 instance I0.
Now, suppose there is a solution to the ASSIGN-R1 instance I0. We construct a

solution to the 3SAT instance I as follows. For each i, 1 ≤ i ≤ n, if task ti is
assigned to pi, 0, we set xi = True; otherwise, we set xi = False. To show that this
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gives a solution to the 3SAT instance I, consider any clause Yj and the
corresponding task wj. Note that wj is of type B. There are two cases to consider.

Case 1: Task wj is assigned to pi, 1 for some i.

Here, by our construction of instance I0, the unnegated literal xi appears in Yj.
Further, since a task of type B has been assigned to pi, 1, task ti (of type A) must be
assigned to pi, 0. Hence, our truth assignment step sets xi to True. Since the
unnegated literal xi appears in Yj, we conclude that Yj is satisfied.

Case 2: Task wj is assigned to pi, 0 for some i.

Here, by our construction of instance I0, the negated literal �xi appears in Yj.
Further, since a task of type B has been assigned to pi, 0, task ti (of type A) must be
assigned to pi, 1. Hence, our truth assignment step sets xi to False. Since the
negated literal �xi appears in Yj, we conclude that Yj is satisfied.
This completes the proof of Theorem 2. □

B.2. Proof of Theorem 3
Statement of Theorem 3: The following problems can be solved in polynomial
time: (i) determining whether a given assignment α is viable under SoD Rule 2 and
(ii) given a business process, determining whether there is a viable assignment under
SoD Rule 2.
Proof of Part (i): Our algorithm first checks if α is valid using the algorithm
presented in the proof of Part (i) of Lemma 1. If α is valid, it needs to check
whether the number of roles assigned to each person is at most one. This can be
done efficiently in a manner similar to that presented in Algorithm 3. The idea is
to construct an array W with jPj elements such that each entry W[p] stores the
role assigned to person p. We use the convention that if no role has been assigned
to p, then W[p] = −1. Each entry of the array W is initialized to –1. The algorithm
goes through each (t, r) pair in . Suppose ALPHA[t, r] = p. If W[p] = −1 (that is,
r is the first role assigned to p), it sets W[p] to r. Otherwise, it checks whether W
[p] = r. If it is the case, it consider the next entry of  ; otherwise, it report that
SoD Rule 2 is not satisfied and stops. Thus, the correctness of the algorithm is
obvious.
To estimate the running time, note that from Lemma 1, checking whether α is valid

can be done in O jjð Þ time. To check whether α satisfies SoD Rule 2, we note that
the time to construct the array W is linear in the size of W and ALPHA; that is,
the time is O(|P| + |T|× |R|). As can be seen from the above description, the algorithm
uses O(1) time for each task-role pair in ; thus, the time to process all the task-role
pairs in  is O jjð Þ . So, determining whether each person has been assigned at
most one role can be done in O jPj+ jTj× jRj+ jjð Þ time, which can be simplified
to O(|P| + |T|× |R|) since j j ≤ jT j × jRj. Since P and ALPHA are all inputs to the
problem, the running time of the algorithm is linear in the input size.
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We now present examples to illustrate the algorithm in the above proof for
determining whether a given assignment is viable under SoD Rule 2.

EXAMPLE 9
This example uses the same business process as the one used in Example 2. In
that example, T = {t1, t2, t3}, R = {r1, r2, r3, r4} and P = {p1, p2, p3, p4}. For the
reader’s convenience, in Figure 7 we reproduce the task-role (TR) and the role-
person (RP) matrices for the business process of Example 2. As before, from the
TR matrix, the set  of task-role pairs is given by

= t1,r1ð Þ, t1,r2ð Þ, t2,r2ð Þ, t2,r3ð Þ, t3,r2ð Þ, t3,r4ð Þf g: ð1Þ

Let us first consider the following assignment α generated in Example 2.

α t1,r1ð Þ= p1 α t1,r2ð Þ= p1 α t2,r2ð Þ= p1
α t2,r3ð Þ= p2 α t3,r2ð Þ= p2 α t3,r4ð Þ= p3

ð2Þ

As mentioned in the discussion for Example 2, the above assignment α is valid.
For an assignment to be viable under SoD Rule 2, it must be valid and each
person must be assigned at most one role. In the assignment α, we note that p1 has
two roles, namely r1 and r2. Hence, our algorithm would report that the above
assignment is not viable under SoD Rule 2.

EXAMPLE 10
For the business process in Example 9, let us consider the following assignment α1
(instead of the assignment α used in Example 9).

FIGURE 7

TR AND RP MATRICES FOR EXAMPLE 9

Note: These were also used in Example 2.
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α1 t1,r1ð Þ= p1 α1 t1,r2ð Þ= p2 α1 t2,r2ð Þ= p2
α1 t2,r3ð Þ= p4 α1 t3,r2ð Þ= p2 α1 t3,r4ð Þ= p3

ð3Þ

Using the RP matrix, it can be seen that the assignment is valid. Further, each
person is assigned is exactly one role: the roles assigned to p1, p2, p3 and p4 are r1,
r2, r4 and r3 respectively. Thus, our algorithm would report that α1 is a viable
assignment under SoD Rule 2.
Proof of Part (ii): Our procedure for testing whether there is a viable

assignment under SoD Rule 2 is shown in Algorithm 11. (It uses the notion of
matching in bipartite graphs introduced in Section A.2.) We will now argue the
correctness of the algorithm and explain how to construct such a viable assignment
when the algorithm reports ‘Yes’.

Suppose the algorithm outputs ‘Yes’. The matching M with jRj edges gives an
assignment of at most one role to each person as follows: for each edge {p, r} ∈ M,
the role represented by r is assigned to the person represented by p in every task
that needs role r. (This is indicated in the loop in Step 6 of Algorithm 11.) By the
definition of G, the presence of the edge {p, r} ensures that the person represented
by p can play the role represented by r. Further, the fact that the matching has jRj

Algorithm 11. Finding a viable assignment under SoD Rule 2

1 Construct the bipartite graph G(VP, VR, E), where the node sets VP and VR

are in one-to-one correspondence with sets P (the set of people) and R (the
set of roles) respectively. For each node p ∈ VP and r ∈ VR, the edge {p, r} is
in E if and only if the role set of the person represented by p includes the
role represented by r.

2 Find a maximum matching M in G.

3 if (| M| 6¼ | R| ) then

4 output “There is no viable assignment under SoD Rule 2“.

5 else

6 for each edge {p, r} in M do

7 Assign role r in all the tasks that need r to person p.

8 end

9 output the assignment.

10 end
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edges ensures that each role is assigned to some person. Hence, we have a viable
assignment under SoD Rule 2.
For the converse, suppose there is a viable assignment under SoD Rule 1;

that is, each role is assigned to some person and each person is assigned at
most one role (across all tasks). It can be seen that the assignment
corresponds to a matching with jRj edges in G. Thus, the algorithm would
output ‘Yes’.
To estimate the running time, we note that in Step 1 of Algorithm 11, the graph

G can be constructed using the RP matrix in O(|P| × |R|) time. Since G has jPj + jRj
nodes and at most jPj × jRj edges, finding a maximum matching in G (Step 2) can

be done in O jPj× jRj× ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijPj + jRjp� �
time as mentioned in Section A.2. To

construct the assignment (when one exists), the number of iterations of the loop in
Step 6 is jM j = jRj. For each role r, we can find the set of all tasks that need role
r in O(|T|) time using the TR matrix. Therefore, finding a viable assignment can
be done in O(|R|× |T|) time. Therefore, the overall running time is

O jPj× jRj× ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijPj + jRjp
+ jRj× jTj

� �
. □
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