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Abstract
User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly 
impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help 
determine the probability of an Ad viewer becoming a buying customer. To date, existing methods for Ad click prediction, 
or click-through rate prediction, mainly consider representing users as a static feature set and train machine learning classi-
fiers to predict clicks. Such approaches do not consider temporal variance and changes in user behaviors, and solely rely on 
given features for learning. In this paper, we propose two deep learning-based frameworks, LSTMcp and LSTMip , for user 
click prediction and user interest modeling. Our goal is to accurately predict (1) the probability of a user clicking on an Ad 
and (2) the probability of a user clicking a specific type of Ad campaign. To achieve the goal, we collect page information 
displayed to the users as a temporal sequence and use long short-term memory (LSTM) network to learn features that rep-
resents user interests as latent features. Experiments and comparisons on real-world data show that, compared to existing 
static set-based approaches, considering sequences and temporal variance of user requests results in improvements in user 
Ad response prediction and campaign specific user Ad click prediction.
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1  Introduction

Computational advertising is mainly concerned about using 
computational approaches to deliver/display/serve advertise-
ments (Ad) to audiences (i.e., users) interested in the Ad, at 
the right time [1]. The direct goal is to draw users’ attention, 
and once the Ads are served/displayed on the users’ device, 
they might take actions on the Ads and become potential 
buying customers. Due to the sheer volumes of online users, 

the large number of advertisements, and different back-
grounds and interests of users (including their changing 
habits and interests), finding users’ interests is often the key 
to determine whether a user is interested in a certain type of 
Ad or a specific Ad.

1.1 � Online Display Advertising Ecosystem

Figure 1 shows a simplified view of the online display adver-
tising ecosystem. Whenever a user, also called an audience, 
launches an URL request from a publisher’s web page, their 
request will immediately trigger an Ad call (i.e., an oppor-
tunity), if the requested web page contains publisher’s Ad 
banner (the placeholder for displaying the Ad). This Ad call 
creates an opportunity for the publisher to find an advertiser 
to place their Ad on the user requested page, so the Ad is 
eventually delivered to the user.

In a typical real-time bidding setting, publisher will for-
ward the Ad call as a bidding request to an AdExchange, 
where thousands of advertisers are connected and are look-
ing to buy the Ad opportunity and display Ads to users. 
After casting the bid auction, AdExchange collects all bid 
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responses from advertisers, through their DSP (demand-
ing side platform). The one with the highest bid wins the 
opportunity, and the advertiser’s Ad script will be for-
warded to the user requested pages, resulting in an Ad 
being displayed (or served) on the user’s device. A display 
of the Ad on the user device is then called an Ad impres-
sion, which concludes a real-time bidding circle normally 
happening within tens of milliseconds.

Once the Ad impression is served on the user’s end 
devices, users’ action can vary significantly, depending 
on the viewability [1] of the Ad impression and many 
other factors. In some cases, although an Ad is served on 
the user’s device, it might not be visible to the user (e.g., 
the Ad is not in the active browser window of the device, 
which is referred to as “below the fold”). As a result, no 
action or response is expected from the users.

If the served Ad impression is visible to the user, it is 
considered a view. In this case, if the user clicks on the Ad 
impression, it is referred to as an Ad click, and the users’ 
click action is considered as their response. After users 
click on the Ad, they are normally directed to another web 
page (i.e., landing page). If users finish certain required 
actions on the landing page, e.g., downloading a software, 
filling into a form or completing a transaction, this is con-
sidered a conversion. In this case, the conversion action 
followed by a click action is also considered as a user 
response.

In this paper, we focus on the prediction of user click, 
instead of conversion, but the general principle of using 
deep learning for user response prediction can also be 
applied for the conversion prediction task.

1.2 � User Response and Interest Prediction

In reality, due to the sheer volumes of online users and 
limited budget, advertisers cannot afford to place bid on 
every single Ad auction and have to determine possible 
interests of the users and then place bid on the audiences 
whose interests match the advertiser’s Ad campaigns 
[1]. (An Ad campaign is the set of advertisements with a 
specific advertising theme and objective, pre-defined by 
the advertiser. For example, a hotel chain may define an 
Ad campaign to promote its hotel sales during the spring 
break in South Florida.)

In a display advertising setting, finding users’ interest is 
approved to be a significant challenge, because according 
to the IAB openRTB specification [2], AdExchange often 
only passes very little information about the user, such as 
user device type, user agent, page domain name and URL. 
As a result, industry commonly relies on some generative 
modeling. Historical data are used to build tree-structured, 
whose parameters are used to derive the click-through rate 
(CTR) value of a new impression. Common generative mod-
els include CTR hierarchy trees [3] or hierarchical Bayesian 
frameworks [4]. One inherent advantage of the generative 
model is that the model provides transparent interpretabil-
ity for business to understand which factor(s) contribute the 
most to the CTR values. However, due to the limitations 
of the models, such methods can normally estimate only 
a handful of parameters (e.g., using a number of selected 
factors to split the tree hierarchy) and are unable to consider 
many rich information from users, publishers and Web sites 
for accurate CTR estimation.

Fig. 1   A conceptual view of the real-time bidding system for display 
advertising. From left to right, a user/audience visits a publisher’s 
web page containing one or multiple Ad banners. The publisher sends 
audience information to an AdExchage. The AdExchange sends Ad 
inventory, as a bid request, to advertisers which use demanding side 
platform (DSP) to manage their bids. The advertises place bids as a 

bid response. The bidder with the highest bidding price wins the bid 
and receives winning notice from the AdExchage. The winning bid-
der sends Ad scripts to the publisher’s web page and rendered in the 
Ad banner, resulting in the advertiser’s Ad being displayed/served on 
the audience’s device
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Different from generative models, the increasing popu-
larity of machine learning, particularly deep learning, has 
driven a set of predictive modeling methods, which treat 
user clicks as binary events, and uses supervised learning to 
train a classifier to predict the likelihood of an Ad impres-
sion being clicked by users [5], including some deep neural 
network-based CTR estimation methods [6]. Such methods 
normally work on tens of thousands of features and are often 
more powerful than generative models, but have very little 
transparency in terms of the model interpretability.

1.3 � Challenges and Solutions

While existing predictive methods have made significant 
progress, they often consider user information as a static 
feature set. By doing so, they ignore temporal changes in the 
user information and therefore cannot accurately predict user 
interests. In reality, users may have diverse interests, and 
their behaviors might be consistent only in a short period 
of time. Therefore, when ignoring temporal order informa-
tion, user behaviors may appear to be rather random. For 
example, Fig. 2 reports the category information of the web 
pages users visited in one day1,2 (i.e., the interests of the 
users), where Fig. 2a shows the interests of the users who 
clicked on the “Technology and Computing” Ad campaign, 
and Fig. 2b shows the interests of the users who clicked 
on the “Shopping” Ad campaign. The results show that if 
temporal information were ignored, user interests are nearly 
evenly spread out across several page categories, meaning 
users have been visiting different types of web pages, mak-
ing it difficult to estimate connections between users’ page 
visits and Ad campaigns they are interested in.

In this paper, we propose to consider temporal user infor-
mation to estimate user clicks and user interests. We gen-
eralize these two problems as a binary classification task 
(for user click prediction) and a multi-class classification 
task (for user interest prediction). More specifically, we 
collect users’ page visits as a temporal sequence and train 
deep LSTM (long short-term memory) networks to make 
predictions [7]. A unique strength of the proposed model is 
that it considers users’ temporal information to model their 
response and interests.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews related work in CTR prediction, user interest 
modeling and IAB page categorization. Section 3 reports the 
proposed LSTM frameworks for user response prediction 

and user interest modeling, followed by experiments and 
validations reported in Sect. 4. We conclude the paper in 
Sect. 5.

2 � Preliminary and Related Work

2.1 � Click‑Through Rate (CTR) Prediction

For online advertising, click-through rate prediction is one 
of the most essential tasks whose accuracy influences the 
revenue of businesses in this domain. Most research in CTR 

Fig. 2   Histogram of requested pages based on users’ clicks on two 
specific types of Ad campaigns: a “Technology and Computing” 
campaign and b “Shopping” campaign. The x-axis denotes the cat-
egory of pages visited by users who clicked on the “Technology and 
Computing” (a) or “Shopping” campaigns, and the y-axis shows the 
percentage of each page category. Overall, if the temporal orders 
were ignored, users’ page visits are nearly evenly spread out across 
multiple categories, making it difficult to estimate connections 
between users’ page visits and Ads they are interested in

1  This work is sponsored by an industry partner and the data used in 
the study and the experiments are collected from the industry part-
ner’s bidding engine.
2  The user visited pages are referred to as the web pages on which 
the industry partners’ Ads have been served/displayed to the users.



15Deep Learning for User Interest and Response Prediction in Online Display Advertising﻿	

1 3

estimation is based on well-studied data analytic techniques. 
For example, key features like landing page URL, keywords, 
Ad title, Ad text, etc. can be extracted from search advertis-
ing and then help train logistic regression model to predict 
whether a search advertisement will be clicked [8]. The 
conclusion showed through experiments that with regres-
sion model and their feature set, CTR estimation gained a 
significant improvement in terms of mean squared errors 
(MSE). For display advertising, machine learning models 
[9] have also been commonly used to predict CTR by using 
multivariate linear regression, Poisson regression and sup-
port vector regression (SVR), where sophisticated models 
like SVR has shown to have the best accuracy [9].

One main challenge in CTR and user response (e.g., 
click) prediction is that data are usually represented in cat-
egorical format. The approach to transform them into high-
dimensional binary feature representation results in the 
sparsity issue. In addition, nonlinearity is also a common 
issue in click-through prediction in which using linear model 
like logistic regression classifier is more dependent on syn-
thetic features and fails to learn nonlinear relationship [8]. 
To tackle these challenges, research [10] proposed to take 
advantage of the data hierarchy in nature by clustering and 
data continuity in time to use information from data close to 
the events of interest in contextual advertising. To capture 
nonlinearity, [11] introduced factorization machines (FMs) 
to address interaction among features. With great capabil-
ity of deep neural networks, factorization machines were 
used to build an embedding layer to capture pattern between 
inter-field categories followed by fully connected layers in 
some studies [6, 12]. The authors in [12] introduced a prod-
uct layer between embedding layer and DNN layer without 
pre-training of factorization machine. The negative point in 
this model is that they focused more on high-order feature 
interactions. To address this issue, DeepFM was proposed 
[6] to integrate the architecture of factorization machines 
and deep neural networks in a hybrid design for modeling 
both low-order and high-order feature interactions.

In addition to traditional machine learning methods, deep 
neural networks are also used to detect interaction between 
features gathered from user behaviors in the web. In stud-
ies like [13], convolutional neural networks were extended 
to learn complex interaction between elements in a certain 
alignment of Ad impressions to predict clicks. The later 
studies [6] showed that these networks are biased to neigh-
boring features which may come up with local minimum 
solution with high time complexity. Because recurrent neu-
ral networks are able to retain memory between samples 
and capture relations between instances for long time steps 
in input data, RNN-based methods have been leveraged to 
model sequential dependency on click data. The authors in 
[14] used these networks to consider user browsing behavior 
for click-through prediction to deal with externalities. In this 

case, click on an Ad might be affected by the quality of Ads 
shown in the long sequence of Ads. RNN networks were 
also employed [31] using click-through logs of a commercial 
search engine to model the user queries as a sequence of user 
context to predict the Ad click behavior and next item rec-
ommendation. Addressing the location of users, some work 
like [16] studies on deep spatial temporal residual networks 
to find the best trajectories which can be attached with cer-
tain Ads to increase the rate of influenced users in targeted 
locations. Meanwhile, some work [15] also demonstrated 
that the accuracy of prediction can be improved using tech-
niques like subsampling, feature hashing through multitask 
formalizing of the problem.

2.2 � User Interest Modeling

Understanding user interests is one of the major challenges 
of online digital advertising because the essential goal of 
advertising is to find best matching between audience (users) 
and advertisements. In search advertising, users’ search key-
words provide well-informed context information to under-
stand their interests at the time of search. For real-time news 
stream advertising call, [17] proposed a novel rank-aware 
block-oriented inverted index to match news feed as a query 
to retrieve k most relevant Ads. For display advertising, 
user context information is very difficult to collect mainly 
because publishers and AdExchange often provide very lit-
tle user information (such as domain names and page URL 
which are often noisy and inaccurate). In addition, user and 
data privacy regulations, such as EU GDRP (EU General 
Data Protection Regulation [18]), also forbid the collection 
of user identity information for advertising.

Because users’ interactions with systems are limited to 
simple keywords used by users in search engines and the 
history of categories of Web sites visited by them in e-com-
merce domain, we need a model to predict user interest and 
describe their potential preference. Due to the demand for 
providing more optimal personalized online services for 
users, some work have been conducted through text mining 
to analyze search engine logs and user feedback. In [19], 
the result of analyzing online and search logs showed that 
user intent for product search can be classified into three 
categories of target finding, decision making and explora-
tion. Using RNNs to predict user purchasing intent after the 
stream of clicks in e-commerce Web sites has also been stud-
ied in [20]. Using spatial and temporal contextual informa-
tion in RNNs is another study which tries to predict the next 
location of users [21]. Recently [22] has been presented to 
extract latent temporal user interests and capture the dynam-
ics of interest via the combination of attention mechanism 
and gated recurrent unit-based neural network from user 
behaviors. In [23], the authors proposed a self-attention net-
work with bias encoding to model session as the intrinsic 
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component in user behavioral sequences based on their 
observations that user have homogeneous behaviors within 
sessions and heterogeneous interactions between sessions.

Although deep learning (including RNNs) has been used 
to model users interests, existing methods mainly consider 
users log information as a static feature sect. As we show 
in Fig. 2, user interests are often limited to a short context 
period. Therefore, in this paper, we propose to use temporal 
sequence of various page categories visited by users to train 
RNN-based models to predict user clicks and user interests.

2.3 � IAB Page Categorization

In the digital advertising industry, the majority of systems 
(particularly online advertising) operate based on real-time 
bidding (RTB) mechanism to sell, buy and display Ads in 
real time according to end users’ visit as shown in Fig. 1. 
For the purpose of meeting market’s demand for security, 
transparency and trust in advertising, Interactive Advertising 
Bureau (IAB) organization provides industry standards and 
develop legal support for the digital advertising. As part of 
these standards, in order to differentiate Ads in terms of their 
content and quality, a categorization in the form of taxonomy 
is provided. The two-tier taxonomy defines 24 first-level and 
360 second-level categories for Ad impressions [24]. A por-
tion of the IAB categorization is shown in Fig. 3.

Based on the IAB categorization, industry also provides 
online services to allow real-time query of the page cat-
egory (using page URL as the query), so advertiser can 
instantaneously obtain the category of the page the user 
is currently visiting, before placing a bid on the user. In 
our research, we rely on the industry partner’s system to 
collect page categorizations of the web pages which users 
have visited during a short period of time, and then use 
deep learning to learn user interests for prediction.

3 � Deep Learning for User Response 
and Interest Modeling

When it comes to digital advertising for predicting the 
probability of click on Ads, there is a lack of sufficient 
information about user intentions and their interest for 
web surfing. Therefore, it is necessary to seek an efficient 
approach to estimate user interests based on their histori-
cal web behaviors. In this regard, user web surfing and 
Ads are important elements which should be considered 
as features for learning. Obtaining reasonable features to 
mine information can be a critical factor to achieve an 
efficient system.

Fig. 3   A portion of the schema of the two-tier IAB (Interactive 
Advertising Bureau) Ad categorization. All Ad campaigns are catego-
rized into two tiers. The first tier includes 24 categorizes (the figure 
only includes 10 first tier categorizes), and each first tier category 

includes a number of sub-categorizes (shown as the list underneath 
each top tier category). In our experiments, we use 10 first tier cam-
paign category listed in this figure
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3.1 � Problem Definition

Let U be the a set of users {u1, u2, u3,… , un} and R be a set 
of events. Each event denoted by rtiuj represents the occur-
rence that an advertisement is displayed to a user uj in a 
specific context at time ti . In this case, the event is encoded 
as a real-valued vector (rtiui ∈ ℝ

d) . The context in display 
advertising industry is the page visited by the user which is 
in turn described by a hierarchy of page category IDs cor-
responding to various contextual information with different 
levels of granularity [15, 25].

The set of pre-defined page categories is denoted by ℂ 
equals to {c1, c2,… , c|ℂ|} where |ℂ| is the number of catego-
ries (like tier 2 categories in Fig. 3). For a page visited by 
user uj at time step ti , its page categories can be shown in the 
form of array like [c1, c2, c3,…] . For each user uj ∈ U , we 
take the history of web pages visited by the user and denote 
it by ruj = {r

t1
uj
, r

t2
uj
,… , r

tm
uj
} . Because of the variety in the 

number of Web sites visited by users, we have ruj ∈ ℝ
m×d 

where m is the maximum sequence length. Thus, given the 
historical records of all users as R = {ru1 , ru2 ,… , run} where 
R ∈ ℝ

n×m×d , d < |ℂ| , our objective is using historical user 
activities as the chronological sequence of requests before 
an arbitrary time step ti to achieve the following two predic-
tion tasks:

•	 User Response Prediction Predict the probability that a 
user may interact with an Ad at ti by generating a click 
response. In our solution, we formulate this task as a 
binary classification task.

•	 User Interest Prediction Predict which type of campaign 
Ad a user might click. In our solution, we formulate this 
task as a multi-class classification task.

3.2 � LSTM for User Modeling

Recurrent neural network (RNN) is an extension of feed-
forward networks and has been successfully applied in vari-
ous sequence data analysis and temporal sequence modeling 
[26]. While traditional RNN networks are unable to learn all 
term dependencies in sequences because of gradient van-
ishing or exploding problem [27], long short-term memory 
(LSTM) networks were introduced to use special multiple-
gate structured cell to replace hidden layer nodes. Using 
LSTM cells in these networks has been shown as an efficient 
way to overcome these problems [27]. As shown in Fig. 4a, 
each LSTM cell (the building block of the LSTM network) 
includes three gate entries: input gate, forget gate and out-
put gates, to control memorization and updating information 
learned from sequences. By taking more computational costs 
through these added elements, the flow of gradient across 
input sequences is tried to become stable. For each element 

Fig. 4   An LSTM cell and its 
network architecture. a Shows 
the detailed view of an LSTM 
cell, b shows a single-layer 
LSTM network with respect to 
the input, represented in a third-
order tensor [sample, feature, 
time step], and c shows the 
unfolded structure of the single-
layer LSTM network in b. In 
our research, we stack three 
LSTM layers to form a deep 
LSTM network (detailed in the 
experimental settings)
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of input sequence, the following internal operations are done 
in LSTM blocks to follow one forward pass:

According to Fig. 4, at each time step t forget gate in LSTM 
uses a sigmoid activation function in Eq. (1) to determine 
what amount of previous information should be retained 
from the cell state as the storage of historical information 
through weights and biases. Then, cell state is computed to 
store information by taking two following steps. Using input 
gate, Eq. (2) chooses which input values should be consid-
ered. In Eq. (4), tanh function builds new candidates which 
is added to value determined by forget cell in the previous 
time step. At last, Eq. (5) decides which part of current state 
should be shown in output gate to be used for the next round 
of training process.

Two significant challenges in online display advertising 
to model user response and user interest using deep learning 
approaches like LSTM networks are that the collection of 
online user behavior data are (1) in multi-variant categori-
cal form because each page may belong to one or multiple 
categories and (2) user sequences of historical data may have 
different lengths because users’ responses and actions vary 
over time. They result in multi-length sequences, where data 
points of each time step may also include variant features. 
More specifically, in our model, the historical data collected 
for user modeling contains page category IDs of the pages 
that a user visited during a short period of time. For a user 
at a particular time step, we have an array of category IDs 

(1)f (t) = �(Wixt + Vf h(t − 1) + bf ),

(2)i(t) = �(Wf xt + Vih(t − 1) + bi),

(3)c(t) = f (t)⊙ c(t − 1) + i(t)⊙ tan h(Wch(t − 1) + bc),

(4)o(t) = �(Woxt + Voh(t − 1) + bo),

(5)h(t) = o(t)⊙ tan h(c(t − 1)).

of the page visited by the user discussed in Problem Defini-
tion section. Such IDs are represented as [c1, c2,…] which 
are in different lengths. Table 1 shows the sample of input 
sequential data used for user modeling.

3.2.1 � One‑Hot Encoding with Thresholding

In order to handle multi-length page categories as features to 
describe each visited page, we use one-hot encoding to rep-
resent them as sparse binary features. For each user, we have 
a sequence of visited pages attributed by a couple of page 
category IDs that corresponds to their content. Therefore, 
each time step can be shown as binary vector with length 
equal to the maximum number of categorical variables 
where 1 indicates the presence of each possible value from 
the original data. For example, in Table 1, at time step t1 the 
visited page of user u2 is described by an array of page cat-
egory IDs as features can be shown as [0, 1, 1, 0, 0, 0,… , 0] . 
The dimension of vectors for time step is determined by the 
number of unique page category IDs in the dataset that in 
our example, it equals to |ℂ| = 18.

Concatenating these vectors generates a matrix with high 
dimensionality. Therefore, for features like page category 
IDs with high cardinality, using one-hot encoding usu-
ally leads to extra computational costs. In the past, much 
research has been done to work with such sparse binary 
features [11, 12]. To address this problem and in order to 
reduce the dimension of these vectors, we used an alterna-
tive to encode more frequent page category IDs based on a 
threshold-based approach. In this case, page category IDs 
are sorted based on the number of their occurrences. Those 
with repetitions more than the user-defined threshold will be 
kept for the next parts. 

3.2.2 � Bucketing and Padding

The variable length of sequences, like samples in Table 1, 
is another technical challenge. To handle sequences of any 
length and capture short and long dependencies in input 

Table 1   Schema of the data representation

We represent each audience (user) and his/her actions as multi-dimensional temporal sequence. Each row in the table denotes an audience, and 
t1, t2,… , tn denote temporal order of the sequence. (If i > j , then ti happens after tj .) c1, c2,… , cm denote the IAB tier 2 page category of the web 
page visited by the users. The click icon  denotes an Ad click event from the audience. Not all sequences result in click events

User t1 t2 t3 t4 ... t
n

Temporal order of audience response
u1 r

t1

u1
∶ [c1, c2, c3] r

t2

u1
∶ [c1, c3] r

t3

u1
∶ [c1, c4, c5, c6]  – – –

u2 r
t1

u2
∶ [c2, c3] r

t2

u2
∶ [c4]   – – – –

u3 r
t1

u3
∶ [c10, c7, c3, c20] r

t2

u3
∶ [c1, c3, c15] r

t3

u3
∶ [c6, c12, c22, c24, c1, c3] – – –

u4 r
t1

u4
∶ [c8, c14, c30] r

t2

u4
∶ [c2, c6] r

t3

u4
∶ [c11, c16, c21] r

t4

u4
∶ [c4, c7]  – –

... . . . . . .
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data, padding with constant value (e.g., inserting zeros) is 
a straightforward strategy to make input dimensions fixed. 
However, applying this approach to train LSTM with wide 
range of sequence lengths not only is computationally 
expensive, also adds extra zero values resulting in bias in 
outcomes and changes input data distribution. Therefore, 
we propose to combine padding and bucketing to best uti-
lize temporal information in sequences without inserting too 
many padding symbols.

In Fig. 5, we report the length of user sequences for both 
click users (i.e., users who have a click event) and non-click 
users (i.e., users who do not have a click event). The results 
show that both click and non-click users’ sequence lengths 
follow power-law distribution, meaning majority user 
sequences have short length (below 100).

To combine bucketing and padding, we construct sev-
eral buckets in training samples, where sequences in each 
bucket have the same lengths corresponding to the range 
of sequence length in the dataset. Each sample is assigned 
to one bucket corresponding to its length. In this case, pad-
ding of samples mitigates to inside of buckets being used 
just for assigned sequences as much as necessary to fit into 
the bucket. As the most important item in the sequence of 
request page categories is the last item that corresponds 
to the possible user click response, we use pre-padding 
approach. It means that each short sample inside buckets 
with the length lower than bucket size is pre-padded to 
become a sample with length equal to the maximum length 
in that bucket.

Following the idea, we designed an ensemble learn-
ing method for multi-class classification task. Rather than 
using the original splitting to generate buckets as the repre-
sentative subset of samples in input space, we just use the 
sequence length of buckets to indicate one representation of 
samples through truncating time steps. It means that for each 
representation, all samples in input data are trimmed to the 
selected sequence length by removing some time steps from 
the beginning of sequences. Then in order to obtain classi-
fication, we build one LSTM model for each representation. 
The final result of classification is generated by applying 
majority voting as the result merger of all models.

3.3 � LSTMcp : User Click Prediction Framework

Figure 6 briefly describes the structure of our proposed 
method for user click prediction problem as a binary clas-
sification. It includes the stacked LSTM model consisting 
of three LSTM layers followed by one fully connected 
layer with sigmoid activation to combine the output of hid-
den neurons in previous layers to predict click instances. 
In this case, the loss function is defined as the weighted 
binary cross-entropy which aims to maximize the prob-
ability of correct prediction. The weight introduced in this 
function allows a trade-off between recall and precision 
in both classes to mitigate the negative effect of the class 
imbalance problem [28] in our task:

Fig. 5   Distribution of sequence lengths for a click users and b non-
click users (i.e., users with or without click events). Both plots, shown 
in log–log scale, follow the power-law distribution, meaning major-

ity of samples have sequence length less 100. Samples with larger 
sequence length are rare
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where N is the number of samples in training set. yi ∈ [0, 1] 
is target label, and p(xi) ∈ [0, 1] is the predicted value gen-
erated as the output of network. It represents the likelihood 
that how likely the sample xi has a click response at the end. 
w is the coefficient which determines the cost of positive 
error relative to the misclassification error of negative ones.

3.4 � LSTMip : User Interest Prediction Framework

Figure 7 outlines the model for user interest prediction. It is 
defined as multi-class classification to classify the number 

(6)
L = 1∕N ×

N∑

j=1

(yi × −log(p(xi)) × w + (1 − yi)

× −log(1 − p(xi))).

of clicks in 10 different advertising campaigns. The number 
of buckets are defined uniformly over the range of sequence 
length in the dataset. Then, for each bucket, one representa-
tion of data is generated by trimming all longer samples and 
pre-padding shorter samples to the selected sequence length. 
Then prediction is made by following the ensemble learning 
approach. In this figure, LSTM block follows the structure 
mentioned in Fig. 6 except the last layer having softmax 
activation function. In this case, the objective function is 
similar to Eq. (6) when w = 1 . It is actually an unweighted 
categorical cross-entropy loss function in which p(xi) is the 
output of the network after softmax layer.

Fig. 6   Proposed user click pre-
diction framework ( LSTMcp ). 
Given user request and response 
historical data, our goal is to 
train stacked LSTM classifiers 
to predict whether a new user is 
going to click an Ad or not, i.e., 
a binary classification task
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4 � Experiments

In this section, we report experiments and comparisons 
made with several baseline methods on real-world data col-
lected from our industry partner’s DSP platform.

4.1 � Benchmark Data

We pulled out data from our industry partner’s DSP and 
prepared two datasets to validate user click and user interest 
predictions.

•	 Post-View Click Dataset This dataset is mainly used for 
validating binary user click prediction. We pulled 5.6 mil-
lion users’ request records from 1-day log events. These 
anonymous records include chronological sequences of 
various request categories which represent user browsing 
interactions. In this case, there are two types of positive 
and negative responses from users where success occurs 
if a post-view click takes place at end of a chain of visited 
impressions. Because of the rarity of positive responses 
(click) in digital advertising, this dataset suffers from 
severe class imbalance problem. Therefore, to deal with 
this issue, we use random down-sampling to obtain a 
training set with class distribution ratio of 10:90% cor-
responding to positive:negative samples.

•	 Multi-Campaign Click Dataset This dataset includes his-
torical records with positive response in post-view click 
dataset. The positive response in this case is defined as 
occurred when users click on an Ad whose campaigns 
have categories mentioned in the first tier of Fig. 3. This 
dataset is mainly used for validating multi-class user 
interest prediction.

One issue we encountered in these datasets is that the 
sequence lengths are severely skewed where a large propor-
tion of sequences are very short in length even less than 3 
time steps, as shown in Fig. 5. Our bucketing and padding 
combined approach, introduced in Sect. 3.2, is specially 
designed to handle this challenge.

4.2 � Baseline Methods

In order to assess the proposed frameworks for user click and 
user interest models, we implement two types of baselines 
approaches: (1) generic machine learning-based approaches 
and (2) deep learning-based approaches. All baselines 
use the ensemble framework shown in Figs. 6 and 7. All 
approaches are compared based on the same training/test 
data and are using same number of base classifiers.

4.2.1 � Generic Machine Learning‑Based Approaches

In order to validate the performance gain of deep learning-
based methods, compared to generic machine learning 
algorithms, we implement ensemble frameworks similar 
to Figs. 6 and  7, using different types of generic machine 
learning method, including naive Bayes, random forest, 
logistic regression, linear support vector machine (SVM) 
and SVM.

For fair comparisons, all ensemble frameworks use the 
same number of base classifiers, so methods are taking 
advantage of additional base classifier for a better perfor-
mance gain. In the following results, we directly use each 
classifier, such as naive Bayes or random forest, to refer 
to the ensemble framework implemented using respective 
machine learning algorithms.

4.2.2 � Deep Learning‑Based Approaches

•	 CNN Convolutional neural networks (CNN) and LSTM 
are two commonly used deep learning algorithms. To 
compare their performance for user click and interest pre-
diction, we use CNN as base classifiers to train ensemble 
frameworks, and refer to the results as CNN in the tables/
figures below.

•	 DeepFM DeepFM is of the hybrid architecture includ-
ing factorization machines and deep neural networks 
extended on wide and deep method [29] to learn high-

Fig. 7   Proposed user interest prediction framework ( LSTMip ). Given 
user request and response historical data, our goal is to train stacked 
LSTM classifiers to predict which Ad campaign a new user is going 
to click, i.e., a multi-class classification task
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order and low-order interactions of input data without 
any feature engineering. In our experiment, we use 
DeepFM as a base classifier to train ensemble frame-
works for user click and interest predictions.

•	 ����cp : LSTMcp is the proposed method which uses the 
framework in Fig. 6 for user click prediction.

•	 LSTMip : LSTMip is the proposed method which uses the 
framework in Fig. 7 for user interest prediction.

•	 LSTM¬bp : In order to validate whether the bucketing 
and padding (Sect. 3.2.2) provide additional benefits for 
user interest prediction, we implement the framework in 
Fig. 7 using LSTM as the base classifier, but removing the 
bucketing and padding modules. In other words, LSTM¬bp 
and LSTMip are similar, except that the former does not 
have the bucketing and padding. If LSTMip outperforms 
LSTM¬bp , it would imply that bucketing and padding pro-
vides additional benefits for user interest modeling.

4.3 � Experimental Settings and Performance Metrics

4.3.1 � Experimental Settings

We implemented seven methods for comparisons (includ-
ing our proposed method). All neural network-based models 
were implemented through TensorFlow and CUDA to take 
advantage of using GPU and trained by Adam optimiza-
tion as a variant of gradient descent. The remaining models 
are built using scikit-learn library in Python. For training 
models, the dataset is split into training, test and validation 
sets using 70:20:10 ratio. In the data preprocessing step, 
we convert input sequential data to binary vector by one-
hot encoding with multiple categorical campaign IDs and 
disposing of less frequent ones. So we select top categori-
cal campaign IDs based on frequency using a threshold to 
keep those categories with more 1000 occurrence in our 
dataset. To control over-fitting problem in neural networks 
early stopping mechanism is used to stop after 10 subse-
quent epochs if there is no progress on the validation set. 
Dropout rate was set at 0.4 for neural networks. For the rest 
of methods, L2 norm regularization is used in the training 
process. All experiments are evaluated based on fivefold 
cross-validation.

4.3.2 � Data Preparation and Model Training

Because LSTM requires input to be arranged in tensor for-
mat, for our proposed method, we represent data as a third-
order tensor ( ℝn×m×d ), where n, m and d correspond to the 
number of users, the frequent sequence length and the num-
ber of most frequent page category IDs, respectively (in our 
experiments, we set m = 70 and d = 153 which are based 
on the statistical characteristics of the data. For remaining 
methods, their input data are collected by projecting the 

third-order tensor data ( ℝn×m×d ) to a second-order tensor 
ℝ

n×d , by adding up values in sequence length dimension). 
So all other baselines (except the proposed method) do not 
consider temporal information of the users’ requests, but 
aggregate users’ requests as a table for learning.

Each model is trained by minimizing weighted binary 
cross-entropy shown in Eq. (6). By default, we use cost ratio 
as 5 for positive samples because of the effectiveness seen in 
our experiments. All modes are trained based on the same 
training sets (the training sets are converted to a third-order 
tensor or a second-order tensor when needed) and are evalu-
ated on the same test sets.

4.3.3 � Performance Metrics

We use area under the receiver operating characteristics 
curve (AUC) as the major evaluation metric because it shows 
the model accuracy of ranking positive cases versus negative 
ones. We also employ accuracy, F1-measure, precision and 
recall as additional performance metrics.

4.4 � Performance Comparison

4.4.1 � User Click Prediction Results

As a binary classification task, the performance of proposed 
method is compared with SVM, random forest and logistic 
regression in addition to a variant of convolutional neural 
network (CNN) [30] and DeepFM method [6]. The first 
neural-based opponent (CNN) includes the convolutions 
layers with three filter windows ( h = 3 , 4, 5) followed by 
dropout regularization ( p = 0.2 ). The deep component in the 
DeepFM model consists of a three-layer feed-forward neural 
network with 400-400-400 hidden neurons and dropout rate 
at 0.5. Since input data have an extremely imbalanced class 
distribution with around 5,646,569 non-click user sequences 
(negative samples) versus 31,144 click user sequences (posi-
tive samples), we use random under-sampling and ensemble 
learning to build the model in Fig. 7.

Table 2   User click prediction results (binary classification task)

The better performance in experiments are shown by bold-face values

Method Precision Recall F1-measure AUC​ Accuracy

Naive Bayes 0.2969 0.2730 0.2844 0.6029 0.8708
Random forest 0.2991 0.2770 0.2876 0.6048 0.8709
Logistic regres-

sion
0.3355 0.3027 0.3183 0.6202 0.8780

Linear SVM 0.3699 0.2474 0.2963 0.6018 0.8895
SVM 0.3938 0.2176 0.2803 0.5914 0.8949
CNN 0.3423 0.4427 0.3862 0.6769 0.8672
DeepFM 0.3077 0.4148 0.3533 0.6589 0.8571
LSTMcp 0.3140 0.5183 0.3910 0.7003 0.8481
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Table 2 reports the result of prediction using different 
methods. The first obvious result is that deep learning meth-
ods outperform the remaining methods which verifies the 
power of neural networks to capture nonlinear correlation 
between input features and classes. Comparing three deep 
learning methods based on AUC–ROC score and the average 
score of F1-measure and recall, our proposed method is the 
best among all. As our proposed method pays more atten-
tion to history of requested pages before click, having higher 
performance in our proposed method shows the importance 
of this feature in click prediction.

4.4.2 � User Interest Prediction Results

For multi-class user interest prediction task, we compare 
proposed approach with naive Bayes, random forest (with 
100 tree estimators), logistic regression and two versions of 

SVM with linear and RBF kernels and DeepFM methods. 
The input data are click samples used in the previous task 
for click response prediction.

In Fig. 8, we report the Receiver Operating Characteristic 
(ROC) curves and AUC values of different methods for user 
interest prediction. In addition, Table 3 also summarizes the 
performance of different methods for user interest prediction 
using other performance metrics. Considering the AUC val-
ues, the overall results in Table 3 illustrate that the proposed 
method in this classification task outperforms the others. It 
shows the effectiveness of LSTMip network in detecting the 
correlation of sequential data and click response. Having the 
higher performance for neural network approaches compared 
to linear classifiers like LR and linear SVM emphasizes 
the importance of nonlinear latent patterns in input space. 
According to results, SVM predictors with nonlinear RBF 
kernel are not successful either in this task or the previous 

Fig. 8   Receiver operating characteristic (ROC) curve and the AUC values for user interest prediction. Each colored curve denote the ROC curve 
prediction for one campaign category (there are 10 campaign categories in total). Each plot denotes one type of classifier used for learning
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one. It may because of the reason that they cannot learn 
hyperplanes in nonlinear kernel spaces under too sparse 
data. Comparing among deep learning models, it can be seen 
that under the same LSTM classifier, applying bucketing and 
padding has achieved the higher performance compared to 
others including the base model and DeepFM methods.

Among all methods, although our proposed method 
obtains the precision score to be comparable to others, it 
achieves at least 0.01 gain in AUC–ROC score over base-
line models. Considering the accuracy values, although the 
performance of methods are below 0.5, it still is higher than 
0.1 using random classification for this multi-class classifi-
cation. Hence, it can show that using bucketing and padding 
technique can provide the great effectiveness in classification 
performance and be a great help for training deep networks 
to learn user interests.

4.4.3 � Parameter Sensitivity Study

In this subsection, we conduct experiments to study the sen-
sitivity of the proposed frameworks, shown in Figs. 6 and 7, 
with respect to different number of classifiers (n) for user 
click and use interest prediction.

Parameter Sensitivity for User Click Prediction In this 
section, we report the performance of our method using dif-
ferent number of classifiers (n) for user click prediction. The 
results are reported in terms of AUC–ROC and accuracy 
scores in Table 4. We test this parameter by changing the 

value and considering other parameters take their default 
values.

The reported values include the worst mean AUC–ROC 
scores, the best mean AUC–ROC scores and the mean 
AUC–ROC scores of proposed framework in addition to the 
average majority voting AUC–ROC scores, i.e., the score 
to classify samples to the class which obtains the largest 
number of votes. Our objective is to study how ensemble 
size affects the performance of various methods in the user 
click prediction by setting the value of classifier number 
(n) as 3, 5 and 7. According to the results in terms of AUC 
scores, when increasing the number of classifiers for the 
majority voting, the values of AUC and accuracy scores rise 
as the more information is added from multiple classifiers. 
Compared to the single classifier, the ensemble-based ver-
sion of method provides an improvement in the performance 
of user click prediction. In terms of the AUC score, the best 
performance is obtained at the ensemble size of 3 which is 
mentioned in the prior experiments and shown in Fig. 6. 
When (n) exceeds this value, the performance becomes more 
stable. Using the higher number of classifiers for majority 
voting, our method still outperforms the baseline methods. 
This can represent that there is a robustness in the function-
ality of the method. Taking the accuracy scores into account 
for the proposed method, no ensemble method using a single 
classifier has the worst performance among all. We can see 
that with the increase in n, the accuracy of the proposed 
method is generally higher than the mean accuracy value and 
is also higher than the accuracy of method with no ensemble 
(ensemble size 1).

It is worth noting that in Table 4, our method ( LSTMcp ) 
does not show the best accuracy compared to other methods 
(such as SVM) for the same ensemble size represented in 
Table 2. This is mainly because our goal is to maximize 
the user click and user interest prediction in terms of the 
AUC scores, which combines the accuracy on both posi-
tive (clicks) and negative (non-clicks) instances. Because 
user clicks are only a small portion of the dataset, accuracy 
does not reflect the genuine performance of the classifier 
for prediction.

Parameter Sensitivity for User Interest Prediction In 
the second part, we investigate the variation of ensem-
ble size on the performance of proposed method for user 
interest prediction. The experimental results are shown 

Table 3   User interest prediction results (multi-class classification 
task)

Method Precision Recall F1-measure AUC​ Accuracy

Naive Bayes 0.2486 0.2940 0.2713 0.6708 0.2713
Random forest 0.3640 0.3401 0.3697 0.7404 0.3697
Logistic regres-

sion
0.3268 0.3894 0.3268 0.7172 0.3268

Linear SVM 0.4004 0.2316 0.3207 0.7177 0.3207
SVM 0.1037 0.0654 0.0691 0.4593 0.0691
DeepFM 0.4007 0.3355 0.3777 0.7529 0.3777
LSTM¬bp 0.3907 0.3368 0.3766 0.7511 0.3766
LSTMip 0.4015 0.3447 0.3845 0.7624 0.3845

Table 4   Sensitivity study of the 
proposed framework ( LSTMcp ) 
with respect to the ensemble 
size (n) for user click prediction

Ensem-
ble size

AUC​ Accuracy

Min Max Mean Majority voting Min Max Mean Majority voting

1 0.6964 0.6964 0.6964 0.6964 0.8466 0.8466 0.8466 0.8466
3 0.6957 0.7015 0.6984 0.7003 0.8405 0.8507 0.8456 0.8481
5 0.6932 0.7011 0.6970 0.6997 0.8392 0.8539 0.8469 0.8503
7 0.6902 0.7028 0.6961 0.6991 0.8352 0.8572 0.8477 0.8512
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in Table 5. We study how the ensemble size impacts on 
the performance by setting the number of classifiers as 
1, 5, 10 and 15 for the comparison. Following the same 
approach in the previous part, the presented values in 
the table are the worst and the best mean values of both 
accuracy and AUC–ROC scores in conjunction with the 
corresponding majority voting scores. Similar to the pre-
vious experiments, these values are calculated by using 
the specified number of classifiers over fivefold cross-val-
idation. According to the results, the performance with 
ensemble size (n) 5, 10 and 15 is better than that of n = 
1 for single classifier. In the proposed method, we choose 
ensemble size as 10 to be a standard number of iterations, 
although beyond the scope of this study, larger ensemble 
sizes may generate interesting outputs. In addition, using 
ensemble-based approach for the proposed method pro-
vided the majority voted AUC–ROC and accuracy scores 
greater than the mean AUC–ROC and accuracy scores. 
Both evaluation metrics increase in general by increasing 
the ensemble size. Because of using ensemble approach, 
separate classifiers are assigned to different buckets. It 
turns out recent time points in the sequence data are con-
sidered including less number of padding values as the 
noise via bucketing and padding approach. The perfor-
mance becomes relatively stable for the larger ensemble 
size.

5 � Conclusion

CTR estimation is one of the most important steps in real-
time bidding for computational advertising. In this paper, 
we focus on the task to build a new framework for user 
click response and user interest prediction using LSTM-
based deep neural networks. Using padding and bucket-
ing to learn binary user click prediction and multi-class 
user interest prediction, our method allows sequences to 
have variable lengths and different number of dimensions 
and can maximally leverage temporal information in user 
sequences for learning. Experiments and comparisons on 
real-world data collected from our industry partner show 
that our method is able to encode useful latent temporal 
information in request sequences to predict users’ response 
and interest in online digital advertising.
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