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Abstract—In this paper, we study network representation
learning for tripartite heterogeneous networks which learns node
representation features for networks with three types of node
entities. We argue that tripartite networks are common in real-
world applications, and the essential challenge of the represen-
tation learning is the heterogeneous relations between various
node types and links in the network. To tackle the challenge,
we develop a tripartite heterogeneous network embedding called
TriNE. The method considers unique user-item-tag tripartite
relationships, to build an objective function to model explicit
relationships between nodes (observed links), and also capture
implicit relationships between tripartite nodes (unobserved links
across tripartite node sets). The method organizes metapath-
guided random walks to create heterogeneous neighborhood
for all node types in the network. This information is then
utilized to train a heterogeneous skip-gram model based on a
joint optimization. Experiments on real-world tripartite networks
validate the performance of TriNE for the online user response
prediction using embedding node features.

Index Terms—machine learning, network representation learn-
ing, tripartite heterogeneous networks

I. INTRODUCTION

Many real-world applications have tripartite relationships

between different sets of entities. For example, e-commence

systems usually involve user-product-vendor connections

where users purchase products (user-product relations) and

products are made by vectors (product-vendor relations). Sim-

ilarly, health domains often have patient-disease-drug bonds,

where patients are diagnosed with different diseases (patient-

disease relations), and diseases can be treated by drugs

(disease-drug relations).

In a tripartite network, connections between entities are

unique and have very interesting (and useful) meanings. For

example, in a user-product-vendor tripartite network, the bi-

partite user-product and product-vendor relations are directly

observable, whereas the user-vendor bipartite relationship is

often unobservable which commonly refers to the loyalty

of users to the brand [1]. On the other hand, in a patient-

disease-drug tripartite network, the bipartite patient-disease

and disease-drug relations are easy to collect, whereas the

patient-drug bipartite relationship is often unknown and is

commonly tied to adverse drug relations [2]. Therefore, an
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accurate link prediction in a tripartite network setting is

important to understand how users respond to the third party.

Indeed, the unique three-party (i.e., tripartite) entity rela-

tionships provide useful information which is hard to be char-

acterized by traditional heterogeneous information networks.

This also provides challenges for existing network embedding

methods to be directly applied to the tripartite networks

• Imbalanced Nodes: tripartite networks have multiple

node types, and often have severely imbalanced nodes

where one type of nodes are often much more than other

types (e.g. number of users are far more than the number

of vendors). As a result, a traditional global random

walk based network representation learning, such as

node2vec [3], cannot learn effective features for tripartite

network nodes.

• Imbalanced network links: In many tripartite networks,

edges between two types of nodes, such as user-clicks

on advertisements [4] or user adverse drug reaction on

particular drugs [2] are rare events, which are making it

difficult to learn effective features for the link prediction

task.

While network embedding approaches, including bipar-

tite network embeddings, have been commonly studied re-

cently [5], no work currently exists to learn node representa-

tion for tripartite networks explicitly. Particularly in handling

the above two challenges for tripartite network embedding

learning.

Motivated by the above observations, in this paper, we pro-

pose TriNE, a tripartite network embedding learning algorithm

to learn features to represent nodes for tripartite heterogeneous

networks. TriNE considers coupled bipartite correlations to

build an objective function to model explicit relationships

between bipartite nodes (observed links between nodes), and

also capture implicit relationships between tripartite nodes

(unobserved links across tripartite node sets). The optimization

allows the metapath-guided random walks carry out on the

tripartite network to handle imbalanced node numbers for an

effective link prediction. Experiments on real-world tripartite

networks validate the performance of the proposed method.

II. RELATED WORK

Network representation learning has gained a lot of atten-

tions recently [5]. The classic dimension reduction methods

like LLE [6], ISOMAP [7], Laplacian eigenmaps [8] and
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their extensions [9], [10] adopted various versions of linear

and non-linear matrix factorization based techniques. Although

the performance of these methods are shown successful for

relatively small networks, but applying matrix decomposition

is not scalable for large networks.

The network embedding has shown the decent performance

in many data mining and recommendation systems. The initial

studies followed the word2vec idea [11] to extend the skip-

gram models for homogeneous networks like LINE [12],

node2vec [3]. These random walk based methods generate a

corpus of random walk samples which are fed into skip-gram

models to learn node embedding vectors.

Recently, several studies have been proposed for heteroge-

neous network embedding. Authors in [13] proposed a method

to encode inter- and intra-network edges in heterogeneous

networks. In [14], authors extended DeepWalk [15] method

by introducing metapath-guided random walks and a heteroge-

neous skip-gram model. SHNE method which was proposed in

[16] investigated to integrate semantic information along with

structural relations between nodes into the network embedding

procedure.

There are many studies developed based on the architec-

ture of graph neural networks. In [17], authors proposed a

metapath-based embedding method mainly designed using

a graph neural network(GNN). The representation of the

knowledge graph as the type of heterogeneous networks have

received a lot of interest recently. Knowledge graphs (KG)

are semantic heterogeneous networks including a collection

of entities with attributes that are inter-connected together

through edges. Here relations corresponding to edges may

have different types and functionalities. They are usually

described through a triplet like (Head, Relation, Tail) that

a relation connects head and tail entities. This structure

of data has been studied for different applications like the

link prediction. Recently, a study [18] elaborated a GNN-

based method for node embedding in knowledge graphs in

which weights of link between nodes like user and item in

the network are not available. They suggested a supervised

learning method to model a personalized scoring function

to determine weights that followed a relational heterogeneity

principle in the knowledge graph. In order to deal with data

sparsity problem, they designed a leave-one-out loss function

combined with a label smoothness regularization to predict

the weight values of links. They then were used to calculate

node embeddings through a local neighborhood aggregation.

In many knowledge graph based recommendation systems,

the interactions between two entities of user and item are

usually modelled by applying aggregation mechanisms like

average pooling and attention units over their user-defined

neighborhood based on calculated node embedding vectors.

Then, a sigmoid function with inner-product kernel is used to

represent the probability of links [12], [19]. The authors in [20]

proposed a neighborhood interaction model to integrate high

order neighbor-neighbor interactions for training in a graph

neural network. They improved the performance of predicting

user click-through rate values as the link between user and

item entities using a bi-attention network in their design.
In [21] authors suggested an end-to-end learning method

called RippleNet to unify the user preference propagation

within a knowledge graph embedding to calculate the distri-

bution of user interests regarding an item. In this paper, we

intend to propose a network representation method to embed a

tripartite heterogeneous network into a low-dimensional vector

space.

III. PRELIMINARIES & PROBLEM DEFINITION

Let G = {V, E} denotes a heterogeneous network (graph)

which includes a vertex set (V), an edge set E with different

types. They are characterized with two type mapping functions

as φ : V → O and ψ : E → R where O is the set of node

types and R is the set of edge types in the network. Each

vertex(entity) v ∈ V in the graph is associated with vertex type

using φ(v) ∈ O. Similarly, each edge e ∈ E belongs to an edge

type specified by ψ(e) ∈ R. A tripartite heterogeneous graph

is the specific type of the heterogeneous graph where |O| = 3
and |R| = 3. The node set V consists of three node types

V = V1 ∪ V2 ∪ V3, which in turn encompasses three types of

entities in the tripartite network, such as user nodes (V1), page

categories (V2), and item category nodes (V3) in a tripartite

user interaction network. Due to the tripartite network nature,

we assume network edges always connect nodes between two

different parties, i.e. E = E1 ∪ E2 ∪ E3 where E1 = (V1 ×
V2), E2 = (V2 × V3) and there is E3 = (V1 × V3). In the

case of recommendation systems and online advertising, the

portion of links between V1 and V3 are missing. Therefore,

the connectivity between users and items(Ads) is generally

evaluated as the target [19], [22], [23].
In the heterogeneous network, dealing with different types

of nodes brings in a semantic relationship between nodes and

edges. This complexity is generally described with a meta-data

modeling through the network schema and metapaths.

Fig. 1. a) An example of heterogeneous network including three types of
nodes and inter-connecting edges b) Network schema

Formally, metapath is defined as a semantic path in the

heterogeneous graph. Following the network schema in this

case, the path is shown as a sequence of different relations

between node types as: A0
R0−−→ A1

R1−−→ A2 ...
Rn−−→ An+1

where R = R0R1R2...Rn describes a composite relation

between node type A0 and An+1.
Figure 1 shows an example of a tripartite network along

with the corresponding network schema. Different metapaths
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represent different semantic information. For example, meta-

path ”UPC” indicates a user visiting a page category which

contains an item’s category. Moreover, ”UPCPU” represents

two users who visit page categories including the same item

category type. With regard to metapaths, metapath-guided

random walks and metapath-guided neighbors concepts are

also introduced [24], [17]. The metapath-guided random walk

is considered as a random walk started from any node in the

network which follows the specific metapath to randomly se-

lect the next node of the walk. The generation of the next node

of the random walk is continuously repeated over the metapath

scheme until reaching to the user-defined length. Metapath-

guided neighbors are similarly defined as the visited nodes

when generating random walks followed by a given metapath.

In this case, local neighborhood around nodes are defined

according to the step travelled from a specific source node. So

the neighbors of each node is considered as the combination

of the visited nodes till given number of steps are taken. For

example, in Figure 1, if we denote i-step neighbors of the node

x guided by the metapath ρ as N i
ρ(x), so N1

ρ (U1) = {P3, P1},

N2
ρ (U1) = {U2, U3, C3, C1}. Then all metapath-guided neigh-

bors of the node U1 are Nρ(U1) = {P3, P1, U2, U3, C3, C1}.

Several studies in literature showed that metapaths and ex-

tended versions of metapaths i.e meta-graphs can be seen as

a tool to define the proximity and similarity measures [25],

[26], [27]. In this case, given a tripartite heterogeneous graph,

the goal of problem in this paper is defined as the encoding of

entities in the form of embedding vectors by using a proposed

embedding approach.

In the following section, we present a heterogeneous net-

work embedding called TriNE for tripartite heterogeneous

networks.

A. Tripartite heterogeneous network embedding

In order to learn the representation of nodes, algorithms like

DeepWalk [15] and node2vec [3] utilize the skip-gram model

followed by random walks to map the concepts of words and

context in word2vec [11] to networks. As those methods are

designed to handle homogeneous networks, inspired by the

recent progress on the network representation learning like

BiNE [28] to deal with bipartite networks, we formulate the

network representation learning method for tripartite hetero-

geneous networks through the skip-gram model to account the

implicit and explicit relations between nodes.

Figure 2 presents the overall workflow of our proposed

method. We consider a tripartite heterogeneous graph as the

input. The proposed method includes two major steps regard-

ing capturing explicit and implicit information in the network.

Explicit relations are observed edges between three types of

node and implicit relations are transitive relations for different

type nodes. They are characterized using metapath-guided

neighbors gathered from metapath-guided random walks. In

the embedding approach both explicit and implicit relations

are addressed through a joint optimization. Given tripartite

graph G = {V, E}, the goal is defined to learn a map function

to project each node v ∈ V in tripartite network to a low-

dimensional numerical vector ev ∈ R
d. It is expected that

the learned embedding vectors can incorporate informative

features to be used in the down-stream task like the predicting

links in the network.

B. Implicit relation modeling

Using the skip-gram architecture to model the network, the

context of each node v is defined as the set of surrounding

nodes Nc(v) connected to it through edges. For the embedding

of each node in the homogeneous graph, the probability to see

independently each member of Nc(v) in the embedded space

can be defined as

P (Nc(v) | v) =
∏

vx∈Nc(v)

P (vx | v; θ)
(1)

Therefore, the objective function is defined as a maximum

likelihood problem to maximize the probability to observe

the vector neighborhood as the context of each node in its

feature representation. According to the three types of nodes

in tripartite networks such as {V1,V2,V3}, three likelihood

functions can be defined separately. For the all nodes within

set V1, the first likelihood function is:

O1 = argmax
θ

∏

ui∈V1

∏

ux∈Nc(V1)(ui)

P (ux | ui; θ) (2)

where θ includes the embedding vectors of all nodes from

the type of V1. Nc(V1)(ui) also denotes all V1-type context

nodes connected to the node ui via metapath-guided random

neighbors in the network. In this case, P (ux | ui; θ) is usually

approximated as a heterogeneous softmax function using the

inner product kernel [3], i.e.:

P (ux | ui; θ) =
eθ

T
ux

θui

∑
uk∈V1

e
θTuk

θui
(3)

The maximization of the above optimization function is

computationally expensive because all nodes are used for

the calculation of the denominator in the softmax function.

The general approach is to adopt a negative sampling which

randomly samples relatively small set of nodes from some

pre-defined distributions to approximate the denominator of

softmax function. Here we employ a locality sensitive hashing

method [28] as follows: Given a node in the network, by

defining the bucket of its neighbors based on the topological

structure of tripartite network, negative samples are chosen

from the remaining nodes different from the neighbors of

the node. Therefore, instead of using softmax function to

parameterize P (ux | ui; θ) in Eq. (2), the following equation

is used:

P (ux | ui; θ) =
∏

z∈{ux}∪Ne(V1)(ui)

P (z | ui; θ) (4)

where Ne(V1)(ui) shows the negative samples of the node ui

sampled among the V1 set and P (z | ui; θ) is also defined as:

P (z | ui; θ) =

{
σ(θTui

θz) if z is context of ui

1− σ(θTui
θz) z ∈ Ne(V1)(ui)

(5)
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Fig. 2. Tripartite network embedding structure. The algorithm includes two major components to capture explicit relations (edges) and implicit relations
between nodes. The result is fused using a joint optimization to generate node embedding vectors.

In the similar way, for each node v ∈ V2 and w ∈ V3, the

optimization function can be shown as:

O2 = argmax
θ

∏

v∈V2

∏

vx∈Nc(V2)(v)

P (vx | v; θ)
(6)

O3 = argmax
θ

∏

w∈V3

∏

wx∈Nc(V3)(w)

P (wx | w; θ)
(7)

where P (vx | v; θ) and P (wx | w; θ) are also parameterized

by the function introduced in Eq. (4) and (5):

C. Tripartite Random Walk

The procedure of optimization in our task includes the

objective functions O1, O2 and O3 each of which are based

on node samples which can be visited in the network to build

context nodes and negative samples. In order to transform

the structure of network into the skip-gram model, we follow

metapath-guided random walks to traverse node paths in the

tripartite graph to incorporate meaningful semantic relations

in sequence of nodes.

Here we perform a biased and flexible truncated

random walk by using the centrality measure calculated

by HITS method [28] to control the number of random

walk per node for learning implicit relations between

same type of nodes. At each step, the transition from

each node to the next one is dependant to the type

of node. We highlight the core procedure given a

heterogeneous graph G = {V, E} and the metapath scheme

ρ = v0
R0−−→ v1

R1−−→ v2 ...
Rt−−→ vt

Rt+1−−−→ vt+1 ...
Rn−−→ vn+1. In

each step, we select the next node using the following

probability:

p(vi+1|vi, ρ) =

⎧⎪⎨
⎪⎩

1

|N(1)
ρ (vi)|

if (vi+1, vi) ∈ N(1)
ρ (vi) and φ(vi+1) = t + 1

0 otherwise

(8)

where N
(1)
ρ (vi) is the first order neighbor of the node vi

guided by the metapath of ρ, vi is t-type node and vi+1 has

the type of t + 1 according to ρ. In tripartite network, there

is no directed links within same type nodes, which means

that the first order proximity between same type nodes is

zero. Therefore, as it is shown in Figure 2, in the implicit

relationship modeling, we generate a corpus of random walks

guided by specified metapath schemes to incorporate the

semantic information between nodes. Then, for each type of

nodes, we check the random walks and filter out the nodes with

different node types. In this case, we will have a sequence of

nodes with same type to be used for skip-gram modeling. For

each type nodes, we will optimize the loss functions O1, O2

and O3.

D. Explicit Relationship Modeling

In previous sections, we discussed the approach to pre-

serve the high order proximity within each set of node type

through the metapath-guided random walk and the skip-gram

model. However, the information conveyed by observed inter-

connecting edges in the tripartite graph is also important to

consider. The weight of links show the tie strength and the

local first order proximity between two nodes in the network.

Therefore, in order to model these observed relations, given

G = {V, E}, the following joint probability between each pair

of nodes (ui,vj), (vj , wk) and (ui, wk) can be defined where

V = {V1,V2,V3}, ui ∈ V1, vj ∈ V2, wk ∈ V3 and E1 is the
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subset of links in the graph between the pair of ui and vj , E2
denotes the edges starting from a node in V2 and ended to a

node in V3 and E3 indicates the set of edges between pair of

nodes from V3 and V1 node type sets respectively.

P1(ui, vj) =
wij∑

eij∈E1
wij

P2(vj , wk) =
wjk∑

ejk∈E2
wjk

P3(ui, wk) =
wik∑

eik∈E3
wik

(9)

In this case, wij and wjk are the weights of edge eij and ejk
between nodes in V1 and V2 or V2 and V3 parties respectively.

To model these first order proximity information inspired by

[28], we use the sigmoid function with the inner product kernel

to estimate joint probability functions:

P̂1(ui, vj) =
1

1 + e
θuTi

θvj

P̂2(vj , wk) =
1

1 + e
θvTj θwk

P̂3(ui, wk) =
1

1 + eθuTi
θwk

(10)

where θui
, θvj

and θwk
are the low-dimensional embedding

vectors corresponding to nodes ui, vj and wk in three types

of nodes in the network. In order to preserve edge connection

information, we define the objective function in form of

KL-divergence [12] to minimize the difference between the

distribution of edges and the reconstructed distribution:

O4 = KL(P1||P̂1) = α1 −
∑

ejk∈E1

wjk log P̂1(ui, vj) (11)

O5 = KL(P2||P̂2) = α2 −
∑

ejk∈E2

wjk log P̂2(vj , wk) (12)

O6 = KL(P3||P̂3) = α2 −
∑

eik∈E3

wik log P̂3(ui, wk) (13)

E. Model Training

To address implicit and explicit information in the tripartite

network, we leverage the negative sampling strategy and

metapath-guided random walks in addition to a reconstruction

distribution function to define multiple objective functions.

To preserve those information, the optimization step can be

formed into a joint optimization framework through combining

the objective functions as:

maxL = α1O1 + α2O2 + α3O3 + β1O4 + β2O5 + β3O6 (14)

where α1, α2, α3, β1, β2, and β3 are hyper parameters.

For optimization, similar to other embedding methods like

node2vec, we first create three corpora of vertex sequences

through metapath-guided random walks per node type. For

each node, we set up context nodes and negative nodes with

the same node type in the sampled node sequence. Then we

utilize Stochastic Gradient Descent algorithm to optimize the

joint model. To calculate the gradient step to update the node

embedding and context vectors, we follow the formulations

discussed in [28] to optimize the objective function. Therefore,

the gradient of element β1O4 can be calculated as follows. It

is applied also for β1O5 and β1O6 elements respectively:

�ui = �ui − η(γwij(1− σ(�uT
i .�vj)).�vj) (15)

�vi = �vi − η(γwij(1− σ(�uT
i .�vj)).�uj) (16)

In the second step, we update node embedding and context

vectors by calculating the gradient α1O1 element. We repeat

this rule for two other objective function components; α2O2

and α3O3. The update rules are calculated as follows

�ui = �vi − η{
∑

{vc}∪Nns
S

(vj)

α1(I(z, ui)− σ(�uT
i .�θz)).�θz} (17)

�θz = �θz − η{α1(I(z, ui)− σ(�uT
i .�θz)).�ui} (18)

Where I(z, ui) is defined as an indicator function to specify

that if node z is located in the context of node ui or not. The

pseudo code of training algorithm is listed in Algorithm 1.

F. TriNE Algorithm

Algorithm 1 lists the detailed procedure of the proposed

tripartite network embedding method. It starts with initializ-

ing the node embedding vectors and context vectors. In the

next step, the corpus of metapath-guided random walks are

generated. They are split into three corpora with regard to

node types to make homogeneous node sequences. Then, they

are fed into the training procedure. The training iterations

are repeated until the change between subsequent iterations

become so small.

IV. EXPERIMENTS

A. Benchmark Datasets

In our experiments, we use two tripartite heterogeneous

networks prepared from two real-world datasets including

VisualizeUs [29] and MovieLens [29]. The former contains

records from the tagging behavior of users on photos in which

the weighted edges denote the number of times to have tagging

of user on a specific image. The Latter is one of widely

movie recommendation dataset consisting of tagging records

of various users with regard to the list of movie items. The

summary of some basic statistics of prepared datasets is listed

in Table I.

B. Experimental Settings

As the common way to evaluate network embedding ap-

proaches, we choose the link prediction application for the

evaluation task based on the intuition that the better represen-

tation of node in an embedding method can help us to predict

links better in the network. Therefore, the link prediction can

be cast as a binary classification problem to predict whether a

user tags an image or a movie category. The link embedding

vector samples are organized by calculating the average of

embedding vectors of edge nodes. we randomly select one

fifth of link samples as the test set while the remaining are

the training set. We use the same embedding dimension as 128
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Algorithm 1: TriNE: Tripartite Network Embedding

Learning

Data: G = {V, E}: a tripartite heterogeneous graph;

metapath scheme set: ρ = {ρ1, ρ2, ...},

embedding dimension size: d, number of

negative samples: ns, minimal and maximal

number of random walk per node: minT,MaxT ,

Neighborhood size: k, random walk length: l
Result: The node embedding vectors: U ∈ R

|V1×d|,
P ∈ R

|V2×d|, C ∈ R
|V3×d|

1 Initialize the embedding vectors in U, P and C;

2 Initialize the context vectors θux
, θpy

, θcz in U, P and

C;

3 for v ∈ V do
4 w = max(H(v),minT,maxT ); where H(v) is

the HITS centrality measure;

5 for l = 1,· · · ,w do
6 Cur=MetapathRandomWalk(G, ρ, v,minT,maxT )

S+=Cur;

7 end
8 end
9 SU , SP , SC=FilterNodeSequenceByType(S);

10

11 for E = E1, E2, E3 do
12 for each edge e ∈ E do
13 u, v ← e.u, e.v;

14 update 	u and 	v by Eq.(15) and Eq.(16);

15 S1,S2= SU , SP if e ∈ E1 else SP , SC if e ∈
E2 else SU , SC ;

16 for vi, vc in the window of random walk S1 do
17 Do negative sampling;

18 Update 	vi by Eq.(17);

19 Update 	θz by Eq.(18) where

z ∈ {vc} ∪Nns
S (vj);

20 end
21 for vi, vc in the window of random walk S2 do
22 Do negative sampling;

23 Update 	vi by Eq.(17);

24 Update 	θz by Eq.(18) where

z ∈ {vc} ∪Nns
S (vj);

25 end
26 end
27 end
28

29 MetapathRandomWalk(G, ρ, v,minT,maxT )

30 s[0] ← v;

31 for i = 1, · · · , l − 1 do
32 choose randomly u using Eq.(8);

33 s+=u;

34 end
35 return s;

to make a fair comparison between methods. We compare our

proposed method with two other methods, i.e., metapath2vec

TABLE I
BASIC STATISTICS OF TWO DATASETS

Dataset # of Users # of Tags # of Items # of Edges

VisualizeUs 3,911 21,076 5,013 46,546

MovieLens 58,834 8,704 2,462 660,800

[14] and BiNE [28]. To evaluate the effectiveness of network

embedding, we also consider the concatenation of embedding

feature vectors of different methods for more comparisons. All

experiments are evaluated based on the 5-fold cross validation.

After getting a representation of network embedding methods

for user type nodes as the target in training and test set, we

train a binary classifier using a MLP neural network(3 layers

with 100 neurons) on the training set to predict the link on

the test set. We compare the result with different classifiers,

including Support vector Machines (SVM) with RBF kernel

and logistic regression (LR). We use the Area Under Receiver

Operating Characteristics Curve (AUC-ROC) as the major

evaluation metric because it shows the model accuracy of

ranking positive cases versus negative ones. Besides, we also

employ the area under precision-recall curve (AUC-PR) along

with the F1 score as the additional performance metrics.

C. Baselines

We compare the performance of the proposed method TriNE

with following baseline methods.

• Metapath2vec: The baseline representation learning

method [14] for heterogeneous networks which applies

metapath-guided random walks to model a heterogeneous

skip-gram model.

• BiNE: The method [28] develops embedding vectors for

bipartite networks. In our experiment, as the original

datasets are in the form of tripartite networks, we execute

this method on the subset of bipartite network including

desired node types for the link prediction task.

• Metapath2vec+BiNE: In this experiment, we com-

bine the embedding vectors calculated by metapath2vec

method [14] with BiNE.

• Metapath2vec+TriNE: To evaluate the quality of fea-

tures extracted from the proposed method, we concatenate

the embedding vectors provided by the proposed method

with those made by Metapath2vec method [14].

D. Performance Comparison

Table II reports the performance of different methods in two

datasets.

TriNE outperforms the baselines In table II, we show

that by applying the proposed embedding methods we can

perform better than other approaches. In the case of using the

MLP classifier, The proposed embedding method TriNE com-

bined metapath2vec shows the best performance in almost all

cases. It indicates the effectiveness of incorporating metapath

semantic relations to learn node embedding vectors.

Hybrid embeddings is helpful. Comparing different meth-

ods, it can be seen that TriNE and also the hybrid method of
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TABLE II
AVERAGE PERFORMANCE OF THE PROPOSED METHOD AND THE OTHER BASELINES ON TWO DATASETS

Classifier Algorithm
Visualize-US MovieLens

AUC-ROC AUC-PR F1 AUC-ROC AUC-PR F1

LR

Metapath2vec 0.5807 0.1811 0.2165 0.6045 0.2683 0.2903
BiNE 0.6053 0.2016 0.2718 0.6687 0.2833 0.3061
TriNE 0.6311 0.2243 0.3009 0.6795 0.3795 0.4401
Metapath2vec+BiNE 0.6675 0.2569 0.3494 0.7168 0.3398 0.3799
Metapath2vec+TriNE 0.6185 0.2972 0.3220 0.6793 0.4208 0.4339

MLP

Metapath2vec 0.7829 0.4398 0.4210 0.7366 0.3518 0.4052
BiNE 0.6788 0.1942 0.2415 0.6994 0.3094 0.3939
TriNE 0.7396 0.4314 0.4296 0.7146 0.3150 0.3475
Metapath2vec+BiNE 0.8424 0.4353 0.3373 0.7417 0.3467 0.3299
Metapath2vec+TriNE 0.8289 0.6196 0.5254 0.7452 0.3920 0.4280

SVM (RBF)

Metapath2vec 0.5631 0.3532 0.2153 0.5475 0.3776 0.1726
BiNE 0.5113 0.1683 0.0442 0.5434 0.3170 0.1571
TriNE 0.6585 0.5319 0.4551 0.5396 0.3909 0.1459
Metapath2vec+BiNE 0.5657 0.3542 0.2208 0.5632 0.3951 0.2206
Metapath2vec+TriNE 0.5575 0.3624 0.1957 0.5515 0.4215 0.1870

metapath2vec and TriNE generally outperform the all baseline

methods. We show that applying heterogeneous skip-gram

models for all node types is more effective method for the

link prediction. The variant of TriNE to combine embedded

features with metapath2vec method outperform the remaining

methods based on the majority of metrics. It presents the

usefulness of metapath-guided random walks than typical

random walks to capture the discriminative information for

the link prediction.

V. CONCLUSION

In this paper, we proposed a tripartite network embedding

learning method to model explicit relationships between nodes

(observed links between nodes), and also capture implicit

relationships between tripartite nodes (unobserved links across

tripartite node sets). We applied a joint optimization to train a

heterogeneous skip-gram model to capture semantic and struc-

tural relations collected by utilizing metapath-guided random

walks. We validated the performance of the proposed method

on real-world data gathered for the link prediction task in the

movie and image tagging. The results showed the effectiveness

of the proposed method.

In our study, we applied a linear combination of multiple

loss terms as the objective function to jointly model explicit

and implicit relations in the tripartite heterogeneous graph

for the link prediction task. In our future work, we are

seeking to investigate a non-linear combination for the network

representation learning in the other applicable tasks.
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