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Abstract—In this paper, we study network representation
learning for tripartite heterogeneous networks which learns node
representation features for networks with three types of node
entities. We argue that tripartite networks are common in real-
world applications, and the essential challenge of the represen-
tation learning is the heterogeneous relations between various
node types and links in the network. To tackle the challenge,
we develop a tripartite heterogeneous network embedding called
TriNE. The method considers unique user-item-tag tripartite
relationships, to build an objective function to model explicit
relationships between nodes (observed links), and also capture
implicit relationships between tripartite nodes (unobserved links
across tripartite node sets). The method organizes metapath-
guided random walks to create heterogeneous neighborhood
for all node types in the network. This information is then
utilized to train a heterogeneous skip-gram model based on a
joint optimization. Experiments on real-world tripartite networks
validate the performance of TriNE for the online user response
prediction using embedding node features.

Index Terms—machine learning, network representation learn-
ing, tripartite heterogeneous networks

I. INTRODUCTION

Many real-world applications have tripartite relationships
between different sets of entities. For example, e-commence
systems usually involve user-product-vendor connections
where users purchase products (user-product relations) and
products are made by vectors (product-vendor relations). Sim-
ilarly, health domains often have patient-disease-drug bonds,
where patients are diagnosed with different diseases (patient-
disease relations), and diseases can be treated by drugs
(disease-drug relations).

In a tripartite network, connections between entities are
unique and have very interesting (and useful) meanings. For
example, in a user-product-vendor tripartite network, the bi-
partite user-product and product-vendor relations are directly
observable, whereas the user-vendor bipartite relationship is
often unobservable which commonly refers to the loyalty
of users to the brand [1]. On the other hand, in a patient-
disease-drug tripartite network, the bipartite patient-disease
and disease-drug relations are easy to collect, whereas the
patient-drug bipartite relationship is often unknown and is
commonly tied to adverse drug relations [2]. Therefore, an

This research is sponsored by U.S. National Science Foundation (NSF)
through Grants IIS-1763452 & CNS-1828181, and by Bidtellect Inc. through
a sponsorship agreement.

accurate link prediction in a tripartite network setting is
important to understand how users respond to the third party.

Indeed, the unique three-party (i.e., tripartite) entity rela-
tionships provide useful information which is hard to be char-
acterized by traditional heterogeneous information networks.
This also provides challenges for existing network embedding
methods to be directly applied to the tripartite networks

« Imbalanced Nodes: tripartite networks have multiple

node types, and often have severely imbalanced nodes
where one type of nodes are often much more than other
types (e.g. number of users are far more than the number
of vendors). As a result, a traditional global random
walk based network representation learning, such as
node2vec [3], cannot learn effective features for tripartite
network nodes.
Imbalanced network links: In many tripartite networks,
edges between two types of nodes, such as user-clicks
on advertisements [4] or user adverse drug reaction on
particular drugs [2] are rare events, which are making it
difficult to learn effective features for the link prediction
task.

While network embedding approaches, including bipar-
tite network embeddings, have been commonly studied re-
cently [5], no work currently exists to learn node representa-
tion for tripartite networks explicitly. Particularly in handling
the above two challenges for tripartite network embedding
learning.

Motivated by the above observations, in this paper, we pro-
pose TriNE, a tripartite network embedding learning algorithm
to learn features to represent nodes for tripartite heterogeneous
networks. TriNE considers coupled bipartite correlations to
build an objective function to model explicit relationships
between bipartite nodes (observed links between nodes), and
also capture implicit relationships between tripartite nodes
(unobserved links across tripartite node sets). The optimization
allows the metapath-guided random walks carry out on the
tripartite network to handle imbalanced node numbers for an
effective link prediction. Experiments on real-world tripartite
networks validate the performance of the proposed method.

II. RELATED WORK

Network representation learning has gained a lot of atten-
tions recently [S]. The classic dimension reduction methods
like LLE [6], ISOMAP [7], Laplacian eigenmaps [8] and
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their extensions [9], [10] adopted various versions of linear
and non-linear matrix factorization based techniques. Although
the performance of these methods are shown successful for
relatively small networks, but applying matrix decomposition
is not scalable for large networks.

The network embedding has shown the decent performance
in many data mining and recommendation systems. The initial
studies followed the word2vec idea [11] to extend the skip-
gram models for homogeneous networks like LINE [12],
node2vec [3]. These random walk based methods generate a
corpus of random walk samples which are fed into skip-gram
models to learn node embedding vectors.

Recently, several studies have been proposed for heteroge-
neous network embedding. Authors in [13] proposed a method
to encode inter- and intra-network edges in heterogeneous
networks. In [14], authors extended DeepWalk [15] method
by introducing metapath-guided random walks and a heteroge-
neous skip-gram model. SHNE method which was proposed in
[16] investigated to integrate semantic information along with
structural relations between nodes into the network embedding
procedure.

There are many studies developed based on the architec-
ture of graph neural networks. In [17], authors proposed a
metapath-based embedding method mainly designed using
a graph neural network(GNN). The representation of the
knowledge graph as the type of heterogeneous networks have
received a lot of interest recently. Knowledge graphs (KG)
are semantic heterogeneous networks including a collection
of entities with attributes that are inter-connected together
through edges. Here relations corresponding to edges may
have different types and functionalities. They are usually
described through a triplet like (Head, Relation, Tail) that
a relation connects head and tail entities. This structure
of data has been studied for different applications like the
link prediction. Recently, a study [18] elaborated a GNN-
based method for node embedding in knowledge graphs in
which weights of link between nodes like user and item in
the network are not available. They suggested a supervised
learning method to model a personalized scoring function
to determine weights that followed a relational heterogeneity
principle in the knowledge graph. In order to deal with data
sparsity problem, they designed a leave-one-out loss function
combined with a label smoothness regularization to predict
the weight values of links. They then were used to calculate
node embeddings through a local neighborhood aggregation.
In many knowledge graph based recommendation systems,
the interactions between two entities of user and item are
usually modelled by applying aggregation mechanisms like
average pooling and attention units over their user-defined
neighborhood based on calculated node embedding vectors.
Then, a sigmoid function with inner-product kernel is used to
represent the probability of links [12], [19]. The authors in [20]
proposed a neighborhood interaction model to integrate high
order neighbor-neighbor interactions for training in a graph
neural network. They improved the performance of predicting
user click-through rate values as the link between user and
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item entities using a bi-attention network in their design.

In [21] authors suggested an end-to-end learning method
called RippleNet to unify the user preference propagation
within a knowledge graph embedding to calculate the distri-
bution of user interests regarding an item. In this paper, we
intend to propose a network representation method to embed a
tripartite heterogeneous network into a low-dimensional vector
space.

III. PRELIMINARIES & PROBLEM DEFINITION

Let G = {V,&} denotes a heterogeneous network (graph)
which includes a vertex set (V), an edge set £ with different
types. They are characterized with two type mapping functions
as ¢ :V — O and ¢ : £ — R where O is the set of node
types and R is the set of edge types in the network. Each
vertex(entity) v € V in the graph is associated with vertex type
using ¢(v) € O. Similarly, each edge e € £ belongs to an edge
type specified by (e) € R. A tripartite heterogeneous graph
is the specific type of the heterogeneous graph where |O| = 3
and |R| = 3. The node set V consists of three node types
Y = V; UV, U Vs, which in turn encompasses three types of
entities in the tripartite network, such as user nodes (V);), page
categories (V»), and item category nodes (Vs3) in a tripartite
user interaction network. Due to the tripartite network nature,
we assume network edges always connect nodes between two
different parties, i.e. £ = £ UE UE3 where B = (V) x
Vs), &2 = (V2 x V3) and there is &3 = (V1 x V3). In the
case of recommendation systems and online advertising, the
portion of links between V; and Vs are missing. Therefore,
the connectivity between users and items(Ads) is generally
evaluated as the target [19], [22], [23].

In the heterogeneous network, dealing with different types
of nodes brings in a semantic relationship between nodes and
edges. This complexity is generally described with a meta-data
modeling through the network schema and metapaths.

Web-page
Category

b)

Fig. 1. a) An example of heterogeneous network including three types of
nodes and inter-connecting edges b) Network schema

Formally, metapath is defined as a semantic path in the
heterogeneous graph. Following the network schema in this
case, the path is shown as a sequence of different relations
between node types as: Ag ELN Aq LN Ay ... B, Ant1
where R = RyR;Rs...R, describes a composite relation
between node type Ag and A, 4.

Figure 1 shows an example of a tripartite network along
with the corresponding network schema. Different metapaths
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represent different semantic information. For example, meta-
path "UPC” indicates a user visiting a page category which
contains an item’s category. Moreover, "UPCPU” represents
two users who visit page categories including the same item
category type. With regard to metapaths, metapath-guided
random walks and metapath-guided neighbors concepts are
also introduced [24], [17]. The metapath-guided random walk
is considered as a random walk started from any node in the
network which follows the specific metapath to randomly se-
lect the next node of the walk. The generation of the next node
of the random walk is continuously repeated over the metapath
scheme until reaching to the user-defined length. Metapath-
guided neighbors are similarly defined as the visited nodes
when generating random walks followed by a given metapath.
In this case, local neighborhood around nodes are defined
according to the step travelled from a specific source node. So
the neighbors of each node is considered as the combination
of the visited nodes till given number of steps are taken. For
example, in Figure 1, if we denote i-step neighbors of the node
 guided by the metapath p as N (x), so N (Uy) = {Ps, P1},
N2(Uy) = {Us,Us, Cs, C1 }. Then all metapath-guided neigh-
bors of the node U; are N,(Uy) = {Ps, P1,Us,Us, C3,Ch }.
Several studies in literature showed that metapaths and ex-
tended versions of metapaths i.e meta-graphs can be seen as
a tool to define the proximity and similarity measures [25],
[26], [27]. In this case, given a tripartite heterogeneous graph,
the goal of problem in this paper is defined as the encoding of
entities in the form of embedding vectors by using a proposed
embedding approach.

In the following section, we present a heterogeneous net-
work embedding called TriNE for tripartite heterogeneous
networks.

A. Tripartite heterogeneous network embedding

In order to learn the representation of nodes, algorithms like
DeepWalk [15] and node2vec [3] utilize the skip-gram model
followed by random walks to map the concepts of words and
context in word2vec [11] to networks. As those methods are
designed to handle homogeneous networks, inspired by the
recent progress on the network representation learning like
BiNE [28] to deal with bipartite networks, we formulate the
network representation learning method for tripartite hetero-
geneous networks through the skip-gram model to account the
implicit and explicit relations between nodes.

Figure 2 presents the overall workflow of our proposed
method. We consider a tripartite heterogeneous graph as the
input. The proposed method includes two major steps regard-
ing capturing explicit and implicit information in the network.
Explicit relations are observed edges between three types of
node and implicit relations are transitive relations for different
type nodes. They are characterized using metapath-guided
neighbors gathered from metapath-guided random walks. In
the embedding approach both explicit and implicit relations
are addressed through a joint optimization. Given tripartite
graph G = {V, £}, the goal is defined to learn a map function
to project each node v € V in tripartite network to a low-
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dimensional numerical vector e, € R It is expected that
the learned embedding vectors can incorporate informative
features to be used in the down-stream task like the predicting
links in the network.

B. Implicit relation modeling

Using the skip-gram architecture to model the network, the
context of each node v is defined as the set of surrounding
nodes N.(v) connected to it through edges. For the embedding
of each node in the homogeneous graph, the probability to see
independently each member of N.(v) in the embedded space
can be defined as

P(Ne(v)[v) =[] Plve]|v;0)

vg ENc(v)

ey

Therefore, the objective function is defined as a maximum
likelihood problem to maximize the probability to observe
the vector neighborhood as the context of each node in its
feature representation. According to the three types of nodes
in tripartite networks such as {V1, Vs, Vs}, three likelihood
functions can be defined separately. For the all nodes within
set V, the first likelihood function is:

0O, = argrglax H H

i €V1 ug ENe(yy) (uq)

P(uy | ui; 0) 2)

where 6 includes the embedding vectors of all nodes from
the type of V1. N¢(y,)(u;) also denotes all V;-type context
nodes connected to the node u; via metapath-guided random
neighbors in the network. In this case, P(uy, | u;; ) is usually
approximated as a heterogeneous softmax function using the
inner product kernel [3], i.e.:

T
69“1

Ou,;

Plus | ui;6) = o 3

T Ou;

uR€EV1 €

The maximization of the above optimization function is
computationally expensive because all nodes are used for
the calculation of the denominator in the softmax function.
The general approach is to adopt a negative sampling which
randomly samples relatively small set of nodes from some
pre-defined distributions to approximate the denominator of
softmax function. Here we employ a locality sensitive hashing
method [28] as follows: Given a node in the network, by
defining the bucket of its neighbors based on the topological
structure of tripartite network, negative samples are chosen
from the remaining nodes different from the neighbors of
the node. Therefore, instead of using softmax function to
parameterize P(u, | u;;0) in Eq. (2), the following equation

is used:
11

P(uy | ui;0) = P(z | ui;0)
2€{ugz }UNe (v, ) (ui)

“

where N (y,)(u;) shows the negative samples of the node u;
sampled among the V; set and P(z | u;;0) is also defined as:

0(957» 0) if z is context of u;

5
1-— 0'(95:62) YAS Ne(vl>(ui) )

P(z | u;;0) = {
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Fig. 2. Tripartite network embedding structure. The algorithm includes two major components to capture explicit relations (edges) and implicit relations
between nodes. The result is fused using a joint optimization to generate node embedding vectors.

In the similar way, for each node v € V5 and w € Vs, the

optimization function can be shown as: (esalon ) \NTl(ﬂ if (vig1,v:) € NS (v;) and $(vig1) = ¢ + 1
p(vit1|vi, p) = p (Vi
Oz = arggnax H H P(vg | v;6) ©) 0 otherwise ©
vEV2 vy ENe (v) . .
’ v2) where Nél)(vi) is the first order neighbor of the node v;
Os — argmax H H Plw. | w;0) , guided by the metapath (')f P, V; 18 t-type n’ode and v;41 has
P) ) the type of ¢ 4+ 1 according to p. In tripartite network, there

weV3 wg €Ne (vy) (w) . . . - .
3 is no directed links within same type nodes, which means

where P(v, | v;0) and P(w, | w;6) are also parameterized that the first order proximity between same type nodes is

by the function introduced in Eq. (4) and (5): zero. Therefore, as it is shown in Figure 2, in the implicit
relationship modeling, we generate a corpus of random walks
C. Tripartite Random Walk guided by specified metapath schemes to incorporate the

semantic information between nodes. Then, for each type of
nodes, we check the random walks and filter out the nodes with
different node types. In this case, we will have a sequence of
nodes with same type to be used for skip-gram modeling. For
each type nodes, we will optimize the loss functions O1, O2
and Os.

The procedure of optimization in our task includes the
objective functions O1, Os and O3 each of which are based
on node samples which can be visited in the network to build
context nodes and negative samples. In order to transform
the structure of network into the skip-gram model, we follow
metapath-guided random walks to traverse node paths in the
tripartite graph to incorporate meaningful semantic relations
in sequence of nodes.

Here we perform a biased and flexible truncated
random walk by using the centrality measure calculated
by HITS method [28] to control the number of random
walk per node for learning implicit relations between
same type of nodes. At each step, the transition from
each node to the next one is dependant to the type
of node. We highlight the core procedure given a
heterogeneous graph G = {V, £} and the metapath scheme

D. Explicit Relationship Modeling

In previous sections, we discussed the approach to pre-
serve the high order proximity within each set of node type
through the metapath-guided random walk and the skip-gram
model. However, the information conveyed by observed inter-
connecting edges in the tripartite graph is also important to
consider. The weight of links show the tie strength and the
local first order proximity between two nodes in the network.
Therefore, in order to model these observed relations, given
G = {V, &}, the following joint probability between each pair

. . of nodes (u;,v;), (vj, wy) and (u;, wy) can be defined where
each step, we select the next node using the following V= Vi, Vo, Vs)}, w; € Vi, v; € Vo, wy, € Vs and & is the
probability: Poe el » ’

_ Ry Ry R RH—I Ry
p=7Vg — V] —> V2 ... —> V¢ —> V¢4] ... —> Upy1. In
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subset of links in the graph between the pair of u; and v;, &
denotes the edges starting from a node in 1, and ended to a
node in V3 and &3 indicates the set of edges between pair of
nodes from Vs and V; node type sets respectively.

wij
P (. v:) =
l(uu'UJ) ZEUEZI wij

Wik
Pa(vj,wp) = =——— 9
’ D, ee Wik ®

Wik

Ps(us, wy) = ik

Zem egg Wik

In this case, w;; and w;;, are the weights of edge e;; and e
between nodes in V; and Vs or Vs, and V5 parties respectively.
To model these first order proximity information inspired by
[28], we use the sigmoid function with the inner product kernel
to estimate joint probability functions:

~ 1
Py (ui,vg) =
1 +ee"T"i9"i
. 1
Py(vj,wr) = ——5= (10)
1 + e Wi
~ 1
Py(us,wg) = ————
o ¥ 14 %% Owi

where 0y, 0y, and Oy, are the low-dimensional embedding
vectors corresponding to nodes u;, v; and wy, in three types
of nodes in the network. In order to preserve edge connection
information, we define the objective function in form of
KL-divergence [12] to minimize the difference between the
distribution of edges and the reconstructed distribution:

O4ZKL(P1||]§1):O(1— Z wjklogpl(ui7v_j)

ejk€EL

an

Os = KL(Ps||Py) = s — Z w;i log Py (v, wy,)

ejLEE2

(12)

O()- = KL(P;;HP;;) = g — Z Wik logﬁs(ui,wk)

e, EE3

13)

E. Model Training

To address implicit and explicit information in the tripartite
network, we leverage the negative sampling strategy and
metapath-guided random walks in addition to a reconstruction
distribution function to define multiple objective functions.
To preserve those information, the optimization step can be
formed into a joint optimization framework through combining
the objective functions as:

max £ = a101 + @202 + a303 + 104 + 205 + 5306 (14)

where «y, as, as, f1, B2, and [3 are hyper parameters.
For optimization, similar to other embedding methods like
node2vec, we first create three corpora of vertex sequences
through metapath-guided random walks per node type. For
each node, we set up context nodes and negative nodes with
the same node type in the sampled node sequence. Then we
utilize Stochastic Gradient Descent algorithm to optimize the
joint model. To calculate the gradient step to update the node
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embedding and context vectors, we follow the formulations
discussed in [28] to optimize the objective function. Therefore,
the gradient of element 3104 can be calculated as follows. It
is applied also for 5105 and 31 0g elements respectively:

1

—

P = di = n(ywii (1 — o(i@; .;)).7)
))-i;)
In the second step, we update node embedding and context
vectors by calculating the gradient o1 O; element. We repeat

this rule for two other objective function components; asO2
and a303. The update rules are calculated as follows

>

{ve}UNgG? (vy)

IS

15)

_. T

@ = U —n(ywi; (1 = o(U; .U

L

16)

<

i = —n{ on (I(z,wi) — o(d@} .62)).0.} a7

0. =0, —n{on(I(z,ui) — 0@l .0.)).d:} (18)

Where I(z,u;) is defined as an indicator function to specify
that if node z is located in the context of node u; or not. The
pseudo code of training algorithm is listed in Algorithm 1.

F. TriNE Algorithm

Algorithm 1 lists the detailed procedure of the proposed
tripartite network embedding method. It starts with initializ-
ing the node embedding vectors and context vectors. In the
next step, the corpus of metapath-guided random walks are
generated. They are split into three corpora with regard to
node types to make homogeneous node sequences. Then, they
are fed into the training procedure. The training iterations
are repeated until the change between subsequent iterations
become so small.

IV. EXPERIMENTS
A. Benchmark Datasets

In our experiments, we use two tripartite heterogeneous
networks prepared from two real-world datasets including
VisualizeUs [29] and MovieLens [29]. The former contains
records from the tagging behavior of users on photos in which
the weighted edges denote the number of times to have tagging
of user on a specific image. The Latter is one of widely
movie recommendation dataset consisting of tagging records
of various users with regard to the list of movie items. The
summary of some basic statistics of prepared datasets is listed
in Table L.

B. Experimental Settings

As the common way to evaluate network embedding ap-
proaches, we choose the link prediction application for the
evaluation task based on the intuition that the better represen-
tation of node in an embedding method can help us to predict
links better in the network. Therefore, the link prediction can
be cast as a binary classification problem to predict whether a
user tags an image or a movie category. The link embedding
vector samples are organized by calculating the average of
embedding vectors of edge nodes. we randomly select one
fifth of link samples as the test set while the remaining are
the training set. We use the same embedding dimension as 128
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Algorithm 1: TriNE: Tripartite Network Embedding
Learning

Data: G = {V,£}: a tripartite heterogeneous graph;
metapath scheme set: p = {p1, p2, ...},
embedding dimension size: d, number of
negative samples: ns, minimal and maximal
number of random walk per node: minT, MaxT,
Neighborhood size: k, random walk length: {

Result: The node embedding vectors: U € RIVixdl

Pc R|V2><d\, Ce R|V3><d\
1 Initialize the embedding vectors in U, P and C;
2 Initialize the context vectors 0, , 0, , 0., in U, P and

C;
3 forveldo
4 w = max(H (), minT, maxT); where H(v) is
the HITS centrality measure;

5 for ! =1,---,w do

Cur=MetapathRandomWalk(G, p, v, minT, maxT)

S+=Cur;

y

7 end

8 end

9 Sy, Sp, Sc=FilterNodeSequenceByType(S);
10

1 for £ =£&,,&,& do

12 for each edge e € E do

13 U,V 4 e.u, e.v;
14 update & and ¢ by Eq.(15) and Eq.(16);
15 S51,55= Sy, Sp if e € & else Sp,S¢ if e €
&y else Sy, Sc;

16 for v;, v. in the window of random walk S; do
17 Do negative sampling;
18 Update v; by Eq.(17);
19 Update 0. by Eq.(18) where

z € {vc} UNZG*(vj);
20 end
21 for v;, v, in the window of random walk Sy do
22 Do negative sampling;
23 Update v; by Eq.(17);
24 Update 0. by Eq.(18) where

2 € {ve UNE (v));
25 end
26 end
27 end
28

29 MetapathRandomWalk(G, p, v, minT, maxT)
30 s[0] « v;

st fori=1,---,l—1do

32 choose randomly wu using Eq.(8);

33 s+=u;

34 end

35 return s;

to make a fair comparison between methods. We compare our
proposed method with two other methods, i.e., metapath2vec

TABLE I
BASIC STATISTICS OF TWO DATASETS

Dataset  # of Users # of Tags # of Items # of Edges
VisualizeUs 3,911 21,076 5,013 46,546
58,834 8,704 2,462 660,800

MovieLens

[14] and BiNE [28]. To evaluate the effectiveness of network
embedding, we also consider the concatenation of embedding
feature vectors of different methods for more comparisons. All
experiments are evaluated based on the 5-fold cross validation.
After getting a representation of network embedding methods
for user type nodes as the target in training and test set, we
train a binary classifier using a MLP neural network(3 layers
with 100 neurons) on the training set to predict the link on
the test set. We compare the result with different classifiers,
including Support vector Machines (SVM) with RBF kernel
and logistic regression (LR). We use the Area Under Receiver
Operating Characteristics Curve (AUC-ROC) as the major
evaluation metric because it shows the model accuracy of
ranking positive cases versus negative ones. Besides, we also
employ the area under precision-recall curve (AUC-PR) along
with the F1 score as the additional performance metrics.

C. Baselines

We compare the performance of the proposed method TriNE

with following baseline methods.

o Metapath2vec: The baseline representation learning
method [14] for heterogeneous networks which applies
metapath-guided random walks to model a heterogeneous
skip-gram model.

o BiNE: The method [28] develops embedding vectors for
bipartite networks. In our experiment, as the original
datasets are in the form of tripartite networks, we execute
this method on the subset of bipartite network including
desired node types for the link prediction task.

o Metapath2vec+BiNE: In this experiment, we com-
bine the embedding vectors calculated by metapath2vec
method [14] with BiNE.

o Metapath2vec+TriNE: To evaluate the quality of fea-
tures extracted from the proposed method, we concatenate
the embedding vectors provided by the proposed method
with those made by Metapath2vec method [14].

D. Performance Comparison

Table II reports the performance of different methods in two
datasets.

TriNE outperforms the baselines In table II, we show
that by applying the proposed embedding methods we can
perform better than other approaches. In the case of using the
MLP classifier, The proposed embedding method TriNE com-
bined metapath2vec shows the best performance in almost all
cases. It indicates the effectiveness of incorporating metapath
semantic relations to learn node embedding vectors.

Hybrid embeddings is helpful. Comparing different meth-
ods, it can be seen that TriNE and also the hybrid method of
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TABLE 1I
AVERAGE PERFORMANCE OF THE PROPOSED METHOD AND THE OTHER BASELINES ON TWO DATASETS

Classifier Algorithm Visualize-US MovieLens
AUC-ROC | AUC-PR | FI AUC-ROC | AUC-PR | FI
Metapath2vec 0.5807 0.1811 0.2165 | 0.6045 0.2683 0.2903
BiNE 0.6053 0.2016 0.2718 | 0.6687 0.2833 0.3061
LR TriNE 0.6311 0.2243 0.3009 | 0.6795 0.3795 0.4401
Metapath2vec+BiNE 0.6675 0.2569 0.3494 | 0.7168 0.3398 0.3799
Metapath2vec+TriNE | 0.6185 0.2972 0.3220 | 0.6793 0.4208 0.4339
Metapath2vec 0.7829 0.4398 0.4210 | 0.7366 0.3518 0.4052
BiNE 0.6788 0.1942 0.2415 | 0.6994 0.3094 0.3939
MLP TriNE 0.7396 0.4314 0.4296 | 0.7146 0.3150 0.3475
Metapath2vec+BiNE 0.8424 0.4353 0.3373 | 0.7417 0.3467 0.3299
Metapath2vec+TriNE | 0.8289 0.6196 0.5254 | 0.7452 0.3920 0.4280
Metapath2vec 0.5631 0.3532 0.2153 | 0.5475 0.3776 0.1726
BiNE 0.5113 0.1683 0.0442 | 0.5434 0.3170 0.1571
SVM (RBF) TriNE 0.6585 0.5319 0.4551 | 0.5396 0.3909 0.1459
Metapath2vec+BiNE 0.5657 0.3542 0.2208 | 0.5632 0.3951 0.2206
Metapath2vec+TriNE | 0.5575 0.3624 0.1957 | 0.5515 0.4215 0.1870

metapath2vec and TriNE generally outperform the all baseline
methods. We show that applying heterogeneous skip-gram
models for all node types is more effective method for the
link prediction. The variant of TriNE to combine embedded
features with metapath2vec method outperform the remaining
methods based on the majority of metrics. It presents the
usefulness of metapath-guided random walks than typical
random walks to capture the discriminative information for
the link prediction.

V. CONCLUSION

In this paper, we proposed a tripartite network embedding
learning method to model explicit relationships between nodes
(observed links between nodes), and also capture implicit
relationships between tripartite nodes (unobserved links across
tripartite node sets). We applied a joint optimization to train a
heterogeneous skip-gram model to capture semantic and struc-
tural relations collected by utilizing metapath-guided random
walks. We validated the performance of the proposed method
on real-world data gathered for the link prediction task in the
movie and image tagging. The results showed the effectiveness
of the proposed method.

In our study, we applied a linear combination of multiple
loss terms as the objective function to jointly model explicit
and implicit relations in the tripartite heterogeneous graph
for the link prediction task. In our future work, we are
seeking to investigate a non-linear combination for the network
representation learning in the other applicable tasks.
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