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S C I E N T I F I C  C O M M U N I T Y

Spatial inequalities leave micropolitan areas 
and Indigenous populations underserved by informal 
STEM learning institutions

Rachel A. Short1*†, Rhonda Struminger1†, Jill Zarestky2, James Pippin1†, Minna Wong3, 

Lauren Vilen2, A. Michelle Lawing1†

Informal learning institutions (ILIs) create opportunities to increase public understanding of science and promote 
increased inclusion of groups underrepresented in Science, Technology, Engineering, and Math (STEM) careers 
but are not equally distributed across the United States. We explore geographic gaps in the ILI landscape and 
identify three groups of underserved counties based on the interaction between population density and poverty 
percentage. Among ILIs, National Park Service lands, biological field stations, and marine laboratories occur in 
areas with the fewest sites for informal learning opportunities and have the greatest potential to reach under-
served populations, particularly in rural or high poverty counties. Most counties that are underserved by ILIs 
occur in the Great Plains, the southeast, and the northwest. Furthermore, these counties have higher Indigenous 
populations who are underrepresented in STEM careers. These unexpected geographic gaps represent opportu-
nities for investments in ILI offerings through collaborations and expansion of existing resources.

INTRODUCTION

Public understanding of science requires more than content knowl-
edge; it also requires knowledge of the nature of science and positive 
beliefs about science (1). A comprehensive understanding of science 
supports a better informed public that can make evidence-based de-
cisions (2) and contributes to a healthier population; greater interest 
in Science, Technology, Engineering, and Mathematics (STEM) 
careers; and higher earnings (3–5). Unfortunately, access to infor-
mation is unequal, with rural and poor communities receiving the 
fewest programs for public education in science and science literacy 
(6–8). Consensus from the National Academies of Sciences, Engi-
neering, and Medicine (5) refers to science literacy as “familiarity 
with the enterprise and practice of science” [also see (9)]. Invest-
ments in improving public science literacy have historically focused 
on the classroom (10); yet, with most people in the United States 
spending only an estimated 5% of their lives inside of formal class-
room settings (11), informal learning experiences can be valuable 
for science literacy, especially for adults (12, 13).

In contrast to a classroom’s formality, places of informal learn-
ing provide opportunities for visitors to learn through inquiry (14) 
and educate the public through engaging experiences (12). Informal 
learning is recognized as “including learner choice, low consequence 
assessment, and structures that build on the learners’ motivations, 
culture, and competence” (4). Informal learning occurs in homes, at 
work, through digital media, and within dedicated institutions and 
outdoor spaces. Inclusion of a variety of learning environments that 
complement each other produces a richer STEM learning ecosystem 
(15). As such, informal learning institutions (ILIs) are important 

places where informal STEM learning occurs (4). ILIs, such as 
museums and science centers, increase appreciation for science (16), 
increase understanding of the nature of science (14), and positively 
influence attitudes and beliefs about science and technology (12). Other 
STEM-related ILIs include botanical gardens and arboretums, zoos 
and aquariums, public libraries, National Park Service (NPS) lands, and 
biological field stations and marine laboratories (FSMLs). Although 
visitor experiences differ across types, ILIs comprise a geographic 
landscape of informal learning opportunities for the general public.

ILIs can make STEM knowledge relevant, accessible, and mean-
ingful (15), which can be especially important for members of un-
derrepresented groups in the sciences who may feel excluded from 
informal STEM learning (17, 18) or who may not recognize the via-
bility of STEM careers (5, 19). Minorities, girls and women, and 
rural and poor populations are persistently underrepresented in the 
sciences (8, 20, 21). Creating informal STEM education opportunities 
within underserved areas and for underrepresented groups can 
reduce barriers, promote science literacy, and contribute to better 
representation in STEM careers (4). While close proximity removes 
a distance-based obstacle, it does not ensure equity or even accessi-
bility. Many people visit ILIs annually (22) and are willing to travel 
to do so (23), but structural barriers, such as entry and day trip costs, 
and socially exclusive practices related to class and ethnicity limit 
the diversity of ILI audiences (17, 18, 24). As a consequence, and 
despite these obstacles, to realize the benefits of broadening partici-
pation in STEM via ILIs, we first need to know the populations that 
currently are least able to participate in informal STEM learning 
opportunities because of distance.

Here, we map ILIs in the United States and explore their relative 
densities in the informal learning landscape to determine the national 
geographic distribution of each type. We identify ILI deserts where 
there are currently fewer sites for informal STEM education and more 
opportunities for ILI development, collaboration, and expansion of 
existing resources. We expect counties with higher population 
densities to have more ILIs because of larger potential audiences and 
counties with higher poverty to have fewer ILIs because of fewer 
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financial resources. In addition, we explore the racial and ethnic 
demographics of underserved counties to determine whether popula-
tions with few informal learning opportunities are also those popu-
lations who are underrepresented in STEM careers.

RESULTS

Our results document the landscape of ILIs across the United States 
and indicate geographic gaps across the Great Plains, the southeast, 
and the northwest (Fig. 1A). NPS lands and FSMLs occur in areas 
with lower ILI densities than other ILI types; botanical gardens oc-
cur in areas with the highest ILI densities (F5,20278 = 22.37, P < 0.001; 
Fig. 1B). Geographic distributions vary depending on the type of ILI 
(Fig. 1, C to H); NPS lands (Fig. 1C) are much denser in western 
states and along the East Coast, whereas botanical gardens (Fig. 1H) 
are sparse across the interior west and dense on the coasts. The density 
of libraries most closely reflects the overall density of all ILIs.

There are 48 counties with no ILIs, and these counties are 
primarily in the middle part of the country from North Dakota to 
Texas (Fig. 2A), which leaves 327,121 people underserved (0.10% of 
the U.S. population). Low densities of ILIs are in the southeast and 
the Intermountain West (Fig. 1A), and high densities of ILIs are in 
the Northeast, near the Great Lakes in the Midwest, and along the 
West Coast. These geographic patterns are related to population 
density and poverty levels in those areas. When considered together, 
population density, poverty, and their interaction explain ILI density 
(R2

McFadden = 0.322, P < 0.05; Table 1). Counties with low population 
density and high poverty have fewer ILIs. Residuals of a general 
linear model with a rational quadratic correlation structure to 
account for spatial autocorrelation are higher in the northeast and 
across the central Midwest, and residuals are lower in the southeast 
and the Intermountain West (Fig. 2A). There are 21 counties in the 
lowest 0.5% of ILI residuals (s < −2.5), and these counties are pri-
marily in the southeast and northwest (Fig. 2A). These counties 

have a total of only 29 ILIs (m = 1.4 ILIs per county) and include 
1,372,650 people or 0.43% of the U.S. population.

 ILI density residuals were further used to investigate which 
counties are more underserved by ILIs than expected based on 
Rural-Urban Continuum Codes (RUCCs) and poverty percentages. 
RUCC 1 includes counties in the largest metro areas (more than 
1 million people) and has large positive residual values, which indi-
cates that these counties have more ILIs than expected for their 
population densities and poverty levels (Fig. 2B). Other metro counties 
with 250,000 to 1,000,000 residents (RUCC 2) and fewer than 
250,000 (RUCC 3) have nearly as many ILIs as expected. Counties that 
are completely rural or have an urban area with less than 2500 people 
have more ILIs than expected, regardless of whether they are adjacent 
(RUCC 8) or not adjacent to a metro area (RUCC 9). Most non-metro 
counties have nearly as many ILIs as expected. This occurs in coun-
ties with an urban area of 20,000 people or more that are adjacent to 
a metro area (RUCC 4) and in counties with an urban population of 
2500 to 19,999 that are either adjacent (RUCC 6) or not adjacent 
(RUCC 7) to a metro area. The exception is RUCC 5, which in-
cludes counties with an urban area of 20,000 people or more that 
are not adjacent to a metro area. RUCC 5 counties have the largest 
negative ILI residuals (m = −0.30, s = 0.67) and, therefore, the fewest 
ILIs relative to the expectation based on their population densities 
and poverty levels. The 92 RUCC 5 counties include 5,028,805 people 
(1.6% of the U.S. population).

There is an inverse relationship between ILI residuals and poverty, 
so that counties with a low poverty percentage (poverty category 1) 
have large positive residuals and more ILIs, whereas counties with a 
high poverty percentage (poverty category 6) have large negative 
residuals and fewer ILIs (Fig. 2B). Poverty category 5 (23.6 to 31.4% 
poverty) has the lowest residuals and fewest ILIs; this group in-
cludes 1,229,241 people (0.38% of the U.S. population). However, 
none of the poverty categories have a mean residual value as low as 
RUCC 5 counties (Fig. 2, A and B).

Fig. 1. Landscape of ILIs in the United States (density per 1000 km2). (A) Kernel density surface of all ILIs displayed as six quantiles (cell size = 1000 m2; m = 6.5 ILI per 

1000 km2). (B) Mean density of ILIs per 1000 km2 at each type (abbreviations follow) with SE bars [colors correspond to (A) and (C) to (H)]. (C) National Park Service (NPS) 

lands. (D) Biological field stations and marine laboratories (FSMLs). (E) Zoos, aquariums, and wildlife conservation (ZOO). (F) Science museums, children’s museums, and 

planetariums (MUS). (G) Libraries (LIB). (H) Botanical gardens, arboretums, and nature centers (BOT). All densities are displayed as six quantiles, and values associated with 

each break are in table S4. Mean values for the bar plot are provided in table S5. All ILI point data with associated kernel density values are in data file S1.

 o
n
 O

c
to

b
e
r 1

0
, 2

0
2
0

h
ttp

://a
d
v
a
n
c
e
s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



Short et al., Sci. Adv. 2020; 6 : eabb3819     9 October 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 7

Underserved counties
We further examined the demographics of counties that we identified 
as underserved. There are 48 counties with no ILIs (Fig. 3A), 21 counties 
in the lowest 0.5% of ILI residuals (Fig. 3B), and 92 counties in RUCC 5 
(Fig. 3C). Five RUCC 5 counties also have residuals in the lowest 0.5%. 
These counties are Campbell, WY; Garfield, OK; Lamar, TX; Val 
Verde, TX; and Laurens, GA. They include a total of 256,365 people, 
and each occurs in a different poverty category from 1 to 5, respec-
tively. In all, these 156 underserved counties (5.0%) are home to 
6,472,211 people (2.0% of the U.S. population).

Underserved counties occur across the Rural-Urban Continuum 
depending on the group. Counties without ILIs are mostly (48%) in 
RUCC 9—completely rural or urban with less than 2500 people and not 
adjacent to a metro area. Counties with ILI residuals in the lowest 0.5% 
are mostly the mid-metro counties with 250,000 to 1,000,000 residents 
(RUCC 2; 24%) or the largest non-metro counties with an urban area 
of 20,000 people that are not adjacent to a metro area (RUCC 5; 24%). 
Counties in RUCC 5 are micropolitan areas with urban cores of 10,000 

to 50,000 people (25), such as Gillette, WY; Carlsbad, NM; and Elko, 
NV (Fig. 3C).

All underserved counties occur across the poverty categories. 
Most counties without ILIs (40%) are in poverty category 1 (0 to 
10.1% poverty) with a mean poverty of 17%. Most counties with ILI 
residuals in the lowest 0.5% (29%) and counties in RUCC 5 (39%) 
are in poverty category 3 (14.2 to 18.4% poverty). Counties in these 
groups have a mean of 18% of people living in poverty.

The three underserved groups of counties include a small percentage 
of the overall U.S. population but larger percentages of Indigenous 
populations (Fig. 3D and table S1). Counties without ILIs include just 
0.10% of the U.S. population but 0.95% of the American Indian or 
Alaskan Native populations (c2 = 7.02, P < 0.01). Only 0.43% of the 
U.S. population lives in counties with ILI residuals in the lowest 0.5%, yet 
1.0% of the American Indian or Alaskan Native population (c2 = 0.762, 
P = 0.383) and 0.79% of the Native Hawaiian and Other Pacific Islander 
population (c2 = 0.316, P = 0.574) reside in these counties. Similarly, 
although 1.6% of the U.S. population lives in RUCC5 counties, 5.3% 
of the American Indian or Alaskan Native population (c2 = 8.72, 
P < 0.01) and 6.5% of the Native Hawaiian and Other Pacific Islander 
population (c2 = 15.6, P < 0.01) live in RUCC5 counties.

DISCUSSION

Many of the counties underserved by ILIs are, as expected, in regions 
of low ILI density, and the largest counties by area also occur in areas 
of lowest ILI density (Fig. 4). This increases the challenge of provid-
ing informal STEM learning opportunities in these areas. Some of 
the underserved counties, particularly in the eastern part of the 
United States, are in regions with neighboring counties with high 
ILI density; residents of these underserved counties may take ad-
vantage of informal learning resources in nearby counties depend-
ing on their access to transportation. Conversely, ILI practitioners 
may be able to use these learning resources to target nearby counties 
with fewer ILIs and increase opportunities for participation closer 
to home for neighboring county residents.

Fig. 2. Distribution of ILIs among the U.S. population summarized at the county level. (A) SD of ILI residuals with the darkest purple indicating the fewest number of 

ILIs (s < −2.5) and the darkest green indicating the most ILIs (s > 1.5) relative to the number expected. Orange counties have no ILIs. (B) ILI residuals grouped by RUCCs 

with SE bars. (C) ILI residuals grouped by poverty categories with SE bars. ILI residuals are from a spatially corrected regression between log ILI density and the interaction 

of log population density and poverty percentage. Residual values associated with each SD unit are in table S6, and county data are in data file S2.

Table 1. Summary of the generalized linear model that included log 

population density, poverty percentage, and their interaction as 

factors with a rational quadratic correlation structure to account for 

spatial autocorrelation (R
2

McFadden = 0.322).  

Factor Coefficient t value P value

Intercept −7.63 −74.9 <0.01

Log population 

density
0.468 26.9 <0.01

Poverty 

percentage
−0.014 −4.35 <0.01

Log population 

density × 

poverty 

percentage

0.006 6.46 <0.01
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Although establishment of new ILIs within the identified gaps 
would be ideal to increase learning opportunities, we appreciate 
that new infrastructure is likely to require time and substantive 
resources that may not be readily available. Partnerships between 
educational and community organizations can broaden participa-
tion of underserved populations (26), and ILIs are well situated to 
play a role in these partnerships because of their geographically 
widespread distributions. Many of the ILIs that occur within these 
underserved counties are libraries; in particular, libraries are 75% of 
the ILIs found in RUCC5 counties. Of the ILIs included in this 
study, libraries are a large portion (82%), and our results highlight 
the presence of libraries more so than the other ILI types. Their pre-
dominance and ability to provide access to in-person programming 
and digital resources position libraries as critical contributors to the 
ILI community and landscape (27, 28). When other ILIs, such as 
museums and botanical gardens, are further away, libraries can facili-
tate STEM learning in these underserved communities (27–29).

Note that visitor experiences vary across ILI types and even 
across institutions within the same ILI type. For instance, libraries 
may not provide the same STEM learning opportunities as other 
institutions, such as museums and national parks. NPS lands and 
FSMLs play a unique role in the ILI landscape by using their re-
sources to provide place-based informal STEM education to the 
public (30–34), and these institutions reach geographic areas with 

fewer ILIs of other types (Fig. 1B). FSMLs are also unique, because 
they can easily incorporate scientists in their outreach program-
ming (30, 31). Interacting with a scientist or STEM professional can 
result in positive learning outcomes for participants, such as in-
creased interest in science, learning, and awareness of STEM 
careers (35, 36). Even at National Parks, scientists are more able to 
interact with visitors at field stations located within the parks than 
at visitor centers (37). Unlike marine laboratories, primarily located 
along the coast, biological field stations occur across the country’s 
interior and can reach more geographically widespread and isolated 
populations (31).

Our analysis of ILIs in the United States did not include city, 
regional, or state parks, forests, and preserves because of inconsistent 
availability of data and disparate data formats across local, regional, 
and state governmental systems. The inclusion of these regional and 
local ILIs would increase the overall density of the ILI landscape as 
well as the density of parks. However, we do not expect that these 
additions would substantially change the underserved counties identi-
fied here. It will be interesting for local and regional studies to con-
sider the differences in park systems across levels of government.

By identifying spatial inequalities in the informal STEM learning 
landscape, our analysis is an important step in addressing informal 
STEM learning inequity. Gaps in the ILI landscape represent oppor-
tunities for resource investment and capacity building in informal 

Fig. 3. Counties that are the most underserved by ILIs. (A) Counties that do not have ILIs. (B) Counties with ILI residuals in the lowest 0.5% (s < −2.5). (C) Non-metro, 

non-adjacent counties with urban populations over 20,000 (RUCC 5) with colors indicating standard deviations of log ILI residuals and the interaction of log population 

density and poverty percentage as in Fig. 2A. (D) Racial and ethnic percentages in underserved counties. U.S. population is the percentage of the general population in 

each underserved group of counties for comparison with the racial and ethnic groups. Bar plot values are in table S1.
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STEM education (15). Because those counties without ILIs, those 
with too few ILI opportunities, and those outside of metro areas 
have a distance-based obstacle to informal STEM learning, we 
recommend targeted efforts to reach these three groups of under-
served counties (Fig. 3). Yet, presence of ILIs in a geographic loca-
tion does not indicate that the location is equitably accessible to all 
potential visitors. Where there are ILIs, additional access barriers 
include financial costs, language and cultural difficulties, and degree 
of interest (17, 21, 24).

The counties identified as underserved have fewer than expected 
ILIs and also larger percentages of Indigenous groups (Fig. 3). 
Indigenous peoples are underrepresented in STEM careers (38) and 
are often disinterested in Western science because it conflicts with 
their cultural identity (39). Community-based and place-based learn-
ing are two methods that can promote Western science and Indigenous 
knowledge as distinct and complementary (38, 39). Underserved 
counties would benefit from increased investment in informal 
STEM learning opportunities that meaningfully integrate Indigenous 
knowledge into science education programs (40). By providing en-
gaging learning experiences for surrounding communities, ILIs can 
foster an increase in underrepresented groups in STEM careers and, 
more broadly, a more scientifically literate population that can rely 
on scientific findings to inform decision-making and influence policies 
in areas such as health, technology, and the environment (1, 4, 5).

MATERIALS AND METHODS

Experimental design
To map U.S. ILIs, we extracted locality data from the Institute of 
Museum and Library Services’ Museum Universe Data File (41). 
Records were cleaned to remove duplicates and were maintained 
for different institutions at the same geographic location, e.g., 
Southwest Minnesota State University (SMSU) Museum of Natural 
History and SMSU Planetarium. From this, geographic locations of 
2962 STEM-related ILIs were compiled, including 1010 arboretums, 
botanical gardens, and nature centers (BOT); 1490 children’s museums, 

natural history museums, natural science museums, science and 
technology museums, and planetariums (MUS); and 462 zoos, 
aquariums, and wildlife conservation centers (ZOO). Geographic 
locations of additional ILIs in our analysis included 16,720 public 
central and branch libraries (LIB) extracted from the Public Library 
Survey’s Outlet Data File (42). Libraries were removed if they were 
listed as bookmobiles or books-by-mail only, reported as temporary 
or permanent closure, or located in outlying territories of the United 
States. Geographic locations of NPS lands included 167 national 
parks, national monuments, national preserves, and national sea-
shores (43). Centroid points were used to represent NPS lands 
because informal learning activities are often available throughout 
the park. Last, geographic locations of 435 FSMLs were compiled 
from the Organization of Biological Field Stations (44) and National 
Association of Marine Laboratories (45). In all, geographic locations 
of 20,284 ILIs were included in this study and are available in data 
file S1. We recognize that our dataset does not include all ILIs 
available to the public in the United States. For instance, while we 
have included NPS lands, we do not have data on city, regional, or 
state parks. These locations often provide educational program-
ming and increase the availability of informal learning opportu-
nities in many areas.

We sourced population data at the county level from the American 
Community Survey (ACS) 2017 5-year estimate (46) and extracted 
population density, measures of poverty, and percentage of popula-
tions from each racial and ethnic group. Population density was 
calculated as the census number divided by the land area for each 
county (individuals per square kilometer) and was transformed to 
natural log for analysis. For each county, we extracted an RUCC from 
the U.S. Department of Agriculture Economic Research Service (47). 
Nine RUCC categories were based on county population density and 
metropolitan influence (48). The first three categories (RUCC 1 to 3) 
were metro counties, and the remaining six (RUCC 4 to 9) were 
non-metro counties that were either adjacent or not adjacent to a 
metro area (table S2) (48). Adjacency was defined as a shared border 
with a metro area and at least 2% of workers commuting into the 
central counties of the larger metro area (48). Poverty was deter-
mined at the family level by comparing income over the previous 
12 months to set thresholds that vary depending on the size of the 
family (49). Percentage of poverty was binned into six categories from 
lowest (1) to highest (6) using Jenks natural breaks (table S3) (50). 
Racial and ethnic data from the ACS 2017 5-year estimate dataset 
(46) were used to calculate population percentages. These county-level 
data are available in data file S2.

Statistical analysis
To determine the density of ILIs, we calculated a kernel density 
surface of ILIs per square kilometer with a cell size of 1000 within a 
World Geodetic System 1984 spatial reference system. At each ILI 
location, the ILI kernel density was extracted from the kernel density 
surface to calculate the mean density, SD, and SE for all ILIs and for 
each ILI type (BOT, FSML, LIB, MUS, NPS, and ZOO). The ILI 
densities for each type were compared using a one-way analysis of 
variance (ANOVA) test to determine statistical differences between 
the types. ILI type and kernel densities associated with each ILI are 
available in data file S1.

Next, we calculated a simple density surface of ILIs per county 
area (km2) that we could compare to county population density and 
percentage of poverty. We modeled the influence of log population 

Fig. 4. ILI density from Fig. 1A with underserved counties from Fig. 3 (A to C) 

highlighted in white. 
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density and poverty percentage on ILI density with a generalized 
linear model that included log population density, poverty percentage, 
and their interaction as factors, along with a rational quadratic cor-
relation structure to account for spatial autocorrelation of the variables. 
McFadden’s pseudo-R2 was used to evaluate the models. This statistic 
indicates a good fit when 0.2 ≤ R2 (51). We compared the residuals 
of this model across RUCCs to determine the geographic element of 
equality of access relative to population density. We also compared 
the residuals across poverty categories. A positive residual value in-
dicates more than expected opportunities based on the generalized 
linear model, and a negative residual value indicates fewer than 
expected opportunities based on the same generalized linear model. 
Residuals were evaluated across RUCC categories and poverty cat-
egories using analyses of variance.

Three strategies were then used to identify groups of counties 
most underserved in the ILI landscape: (i) counties with no ILIs, (ii) 
0.5% of counties with the greatest negative residuals defined as more 
than 2.5 SDs below the mean (i.e., they had the fewest ILIs relative 
to their expected number), and (iii) counties in the RUCC or poverty 
category with the greatest mean negative residual. The greatest mean 
negative residual indicated the group with the fewest opportunities 
relative to the expected. We calculated the percentages of the U.S. 
population and racial and ethnic groups in each of the three groups 
of underserved counties [(group population of underserved counties/
total group population of the United States) × 100]. All analyses were 
performed in ArcMap and R (52, 53).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/6/41/eabb3819/DC1
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