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Abstract—It is common in online markets for agents to learn
from other’s actions. Such observational learning can lead to
herding or information cascades in which agents eventually
“follow the crowd”. Models for such cascades have been well
studied for Bayes-rational agents that choose pay-off optimal
actions. In this paper, we additionally consider the presence of
fake agents that seek to influence other agents into taking one
particular action. To that end, these agents take a fixed action in
order to influence the subsequent agents towards their preferred
action. We characterize how the fraction of such fake agents
impacts behavior of the remaining agents and show that in certain
scenarios, an increase in the fraction of fake agents in fact reduces
the chances of their preferred outcome.

I. INTRODUCTION

Consider a new item that is up for sale in a recommendation-
based market where agents arrive sequentially and decide
whether to buy the item, with their choice serving as a
recommendation for later agents. Every agent makes a pay-
off optimal decision based on his own prior knowledge of
the item’s quality/utility and by observing the choices of his
predecessors. An informational cascade or herding occurs
when it is optimal for an agent to ignore his own private
signal and follow the actions of the past agents. Subsequent
agents follow suit and from the onset of a cascade, the agents’
actions do not reveal any information conveyed to them by
their private signals. Thus the phenomenon of cascading could
prevent the agents from learning the socially optimal (right)
choice, i.e. the agents could herd to a wrong cascade.

Cascades were first studied in [1]-[3] as a Bayesian learning
model in which a homogeneous sequence of rational agents
take pay-off optimal actions. In this paper, in addition to
rational agents, we introduce randomly arriving fake agents
that always take (or fake) a fixed action, regardless of their
pay-off, in order to influence the outcome of a cascade. For
example, this could model a setting where a poor quality item
is posted for sale on a website that records buyers’ decisions,
and fake agents intentionally buy (or appear to buy) this item to
make it seem worth buying to future buyers. The model could
also represent a setting where rational actions are manipulated
or where fake actions are inserted into a recommendation
system. The objective is to study the impact of varying
the amount of these fake agents on the probability of their
preferred cascade. Our main result shows a counter-intuitive
phenomenon: the probability with which this preferred cascade
occurs is not monotonically increasing in the fraction of fake
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agents, €. In fact, in some cases the presence of fake agents
can reduce the chance of their preferred cascade.

As in [1]-[3], we consider a setting in which all agents can
observe all prior actions (although in our case, each action
could be either rational or fake). Many other variations of this
basic model have been studied such as [4], where observations
depend on an underlying network structure and [5], where
agents are allowed to select their observations at a cost.

Closer to our work is the model in [6], which assumes that
the recording of actions for subsequent agents is subject to an
error that is unbiased towards each of the possible actions. In
our setting, an action being either fake or rational depending
on the agent-type could equivalently be perceived as an error
while recording a rational action (as in [6]); except that in our
case, the error is biased only towards a preferred action!.

There is also a body of work that considers agents similar
to our fake agents, who only take a single action regardless
of the true state. This includes the crazy agents considered
in [7], stubborn agents in [8] and zealots in [9]. While [7]
relaxes the assumption of binary signals, it does not consider
how changing the fraction of crazy agents affects the cascade
probability, which is the main focus of our work. In [8] a
non-Bayesian model for learning was considered instead of
the Bayesian model considered here. Other related cascade
models are investigated in [10]-[17].

The paper is organized as follows. We describe our model
in Section II. We analyze this model and identify the resulting
cascade properties in Section III. In Section IV, we present our
Markov process formulation and in Section V, we consider
the limiting scenario where the proportion of fake agents
approaches unity. We conclude in Section VI.

II. MODEL

We consider a model similar to [1] in which there is a
countable sequence of agents, indexed 7 = 1,2, ... where the
index represents both the time and the order of actions. Each
agent ¢ takes an action A; of either buying (Y') or not buying
(N) a new item that has a true value (V) which could either
be good (G) or bad (B). For simplicity, both possibilities of
V' are assumed to be equally likely. To incorporate agents’
private beliefs about the new item, every agent 7 receives a
private signal .S; € {H (high), L (low)}. This signal, as shown
in Figure 1(a), partially reveals the information about the true

IThis change requires a different analysis approach than that in [6] as the
underlying Markov process now typically has an uncountable state-space.



value of the item through a binary symmetric channel (BSC)
with crossover probability 1 — p, where 1/2 < p < 1. Each
agent i takes a rational action A; that depends on his private
signal S; and the past observations {O1,0s,...,0;_1} of
actions {A1, Aa, ..., A;—1}. Next, we modify the information
structure in [1] by assuming that at each time instant, an
agent could either be fake with probability (w.p.) € € [0,1)
or ordinary w.p. 1 — e. An ordinary agent ¢ honestly reports
his action, ie. O; = A;. On the contrary, a fake agent
always reports a Y, reflecting his intention of influencing the
successors into buying the new item, regardless of its true
value. This implies that at any time ¢, with probability 1 — e,
the reported action O; satisfies O; = A; and with probability
¢, O; =Y. Refer to Figure 1(b).

An equivalent model is where a fake agent always takes an
action Y, while O; = A; for all agents. This yields the same
information structure as the model above. However we chose
the former model mainly to simplify our notation.

G H Y Y
1% Si A; 4 O;
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Fig. 1: (a) The BSC through which agents receive private signals.
(b) The channel through which agents’ actions are corrupted.

III. OPTIMAL DECISION AND CASCADES

For the n'" agent, let the history of past observations be
denoted by H,,—1 = {01,042,...,0,,_1}. As the first agent
does not have any observation history, he always follows his
private signal i.e., he buys if and only if the signal is H.
For the second agent onwards, the Bayes’ optimal action for
every agent n, A, is chosen according to the hypothesis
(V = G or B) that has the higher posterior probability given
the information set I,, = {S,,, Hn_1}. Let v,(Sn, Hn_1) =
P(G|Sy, Hn—1) denote the posterior probability for the item
being good, V' = G. Then the Bayes’ optimal decision rule is:

Y, if v, >1/2,
An =4 N, if v, <1/2, (D
follows S, if v, =1/2.

Note that when ~y,, = 1/2, an agent is indifferent between the
actions. Similar to [6], our decision rule in this case follows
the private signal S, unlike [1] where they employ random
tie-breaking.

Definition 1: An information cascade is said to occur when
an agent’s decision becomes independent of his private signal

It follows from (1) that, agent n cascades to a Y (V) if and
only if v, > 1/2 (< 1/2) for all S,, € {H, L}. The other case
being ~y, > 1/2 for S,, = H and less than 1/2 for S,, = L;
in which case, agent n follows S,,. A more intuitive way to
express this condition is by using the information contained

in the history H,_; observed by agent n in the form of the
likelihood ratio 1,—1(Hn—1) = P(Hpn_1|B)/P(H,-1|G) as
follows [7].

Lemma 1: Agent n cascades to a Y (N) if and only if
ln1 < lp%p (ln,1 > %p) and otherwise follows its private
signal S,,.

This lemma follows by expressing -,, in terms of /,,_; using
Bayes’ law, and then using the condition on =, for a Y (N)
cascade. If agent n cascades, then the observation O,, does
not provide any additional information about the true value V'
to the successors than what is contained in H,,_1. As a result,
lpti = lp—q forall : = 0,1,2,... and hence they remain in
the cascade, which leads us to the following property, also
exhibited by prior models [1]-[3], [6].

Property 1: Once a cascade occurs, it lasts forever.

On the other hand, if agent n does not cascade, then
Property 1 and Lemma 1 imply that all the agents until
and including n follow their own private signals ignoring
the observations of their predecessors. Mutual independence
between the private signals results in the likelihood ratio
l, depending only on the number of Y’s (denoted by ny)
and N’s (denoted by ny) in the observation history H,,.

Specifically, ,, = &%)h
difference between the number of Y’s weighted by 7 and the
number of N’s. Here, the weight n £ log(1%5)/ log(1%5).
where for all : =1,2,...,n—1,

a=PO;=Y|V=G) and b=PO; =N|V =B)

where h, = nny — ny is the

give the probabilities that the observations follow the true
value V, given that these agents follow their own private
signals. It can be shown from Figures 1(a) and 1(b) that in
the above case, i.e., when A; follows S;,

a=p+ (1 —p)e and b=p(l —e¢).

Thus, agents that have not yet entered a cascade satisfy the
following property.

Property 2: Until a cascade occurs, each agent follows its
private signal. Moreover, h, is a sufficient statistic of the
information contained in the past observations.

Note that if € = 0 (no fake agents) then a = b =pand n =
1, in which case h,, is the same as in [6]. The expression for h,,
shows that, due to the presence of fake agents, the dependence
of an agent’s decision on a Y in his observation history reduces
by a factor of 1, whereas the dependence on a N remains
unaffected. This is to be expected because, unlike a N which
surely comes from an honest agent, a Y incurs the possibility
that the agent could be fake. Further, this reduced dependence
on Y is exacerbated with an increase in the possibility of fake
agents, as 1 reduces with an increase in e.

Using the expression for /,, in Lemma 1, it follows that until
a cascade occurs, —1 < h,, < 1 for all such times n, and the
update rule for h,, is given by

.
B = 4
Ty — 1

it 0, =Y,

2
if O, =N. )



Whereas, once hy, > 1 (< 1), aY (N) cascade begins and h,,
stops updating (Property 1).

IV. MARKOVIAN ANALYSIS OF CASCADES

Let us, for the sake of discussion, consider the realization
V = B. Similar arguments hold when V' = G. It follows from
the previous section that the process {h,} is a discrete-
time Markov process taking values in [—1,1] before getting
absorbed into the left wall (< —1) causing a NV cascade or the
right wall (> 1) causing a Y cascade. More specifically, equa-
tion (2) shows that, until a cascade occurs, {h, } is a random
walk that shifts to the right by n wp. P(O, =Y|B)=1-1b
or to the left by 1 w.p. P(O,, = N|B) = b. Note that the walk
starts at state O since the first agent has no observation history.

The random walk is depicted in Figure 2 where py =
P(O,, = Y|V) denotes the probability of a Y being observed.
Depending on the item’s true value, pf = a for V = G
whereas py =1 — b for V = B. Note that in the special case
where 7 satisfies 1/n = r for some r = 1,2, ..., the process
{hn} is equivalent to a Markov Chain with finite state-space
A={-r—1,-r...,—-1,0,1,...,r, 7 + 1}, and with —r—1 and
r + 1 being absorption states corresponding to N and Y
cascades respectively. In this case, absorption probabilities
can be obtained by solving a system of linear equations. In
this paper, our main focus is on the more common case of
non-integer values of 1/n resulting in {h,} taking possibly
uncountable values in [—1,1]%.

by by
| YT N

1 7pf

Fig. 2: Transition diagram of the random walk.

Y

A. Error thresholds

In the absence of fake agents (¢ = 0) asin [1], » = 1 and so
cascading to a Y (V) cascade requires at least two consecutive
Y’s (IN’s). However, in the presence of fake agents, even a
single N after a Y could trigger a N cascade. On the other
hand, as € increases, a greater number of consecutive Y’s (>
2) are required to cause a Y cascade. This is characterized in
the following lemma.

Lemma 2: Let « = p/(1 — p). For r = 1,2,... define
the increasing sequence of thresholds {e,}22;, where the r®
threshold ¢, is given as:

1
6 = % 3)
ar™ —1
Define Z, £ [e,, ¢,41) as the 7' e—interval. Then for ¢ € Z,,
at least 4+ 1 consecutive Y’s are necessary for a Y cascade
to begin.
The proof follows by noting that, given that if a cascade has
not begun, when an NN is observed, then the rightmost position

that the random walk can be in, is in state 0. From here, at

2For example, if 77 was chosen uniformly at random, then with probability
1 it would fall into this case.
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Fig. 3: Thresholds e, for the indicated values of T versus p.

least r + 1 consecutive Y’s would be needed only if n < 1/r,
thereby giving the 7" threshold ¢,. It follows that ¢ € Z,
implies ﬁ <n< i

Remark 1: For € € Z,, staring from state 0, r+1 consecutive
Y’s start a Y cascade.

Moreover, given e, the integer r such that € € Z,. can be readily
obtained from Lemma 2 as r = |1/n]|. Here, recall that 7 is
a function of e.

Figure 3 shows the thresholds ¢, varying with p, for
different values of r. For a fixed €, we see that as the signal
quality (p) improves, more consecutive Y’s are required for
a Y cascade to begin. This is because, an increase in p
increases the information contained in a Y, but not as much
as the corresponding increase in the information contained in
a N. Further, note that as e — 1, »r — oo which implies
that infinitely many consecutive Y’s are required for a Y
cascade to begin. Equivalently, the information contained in
a Y observation becomes negligible. We further investigate
learning in this asymptotic scenario in Section V.

B. Y cascade probability

In this subsection, we will compute the probability of
absorption of {h,} to a Y cascade (right wall). The following
iterative process depicted in Figure 4 describes all possible
sequences that can lead to a Y cascade. For the rest of the
paper, we assume ¢ € Z, \ {¢.} for some r = 1,2,.... We
initialize Stage 1 with 7; = r + 1. Now, starting from state
0, consider the sequences shown in Stage 1 in Figure 4. The
first sequence of ; consecutive Y’s, denoted by Y"1, clearly
hits the right wall (Remark 1). The rest of the sequences,
each of length m + 1, are simply permutations of each other
that contain only a single N. Two N’s or more are not
possible without hitting the left wall. So each of these 7,
distinct sequences results in the same net right shift, which
ends somewhere in the region [0, 7]. From here, it would take
either 7 or r + 1 consecutive Y’s to hit the right wall. Let this
value be denoted by ry. The sequences that would then be
possible from this point onwards could again be enumerated



exactly as in the first stage, except that ro now replaces 7.
This forms Stage 2. Now, unless there are 72 consecutive Y’s,
the second stage would again end in the region [0, 7], and then
the process continues to the next stage. Here, r,, denotes the
number of consecutive Y’s required to hit the right wall in the
n' stage. Note that by considering € € Z, \ {e,}, we avoid
the case of integer values of 1/7 which could result in certain
pathological sequences with non-zero probability, that are not
enumerated in Figure 4.

Let .S,, denote the probability of hitting the right wall given
that the sequence has not terminated before the n' stage. Thus,
the following recursion holds:

Sn:p;" [1+7’n(1—pf)5’n+1], forn=1,2,... (4)
and the probability of a Y cascade, denoted by Py s is:
Py cas(€) = S1, for € € T, \ {e.}. 5)

Here, while 71 = r+ 1 for € € Z,., successive values of r; for
1 =2,3,... can be obtained from r; using the updates:

7.’
Th =
r+1,

Since (4) is an infinite recursion, to compute Py, in prac-
tice, we truncate the process to a finite number of iterations M.
To this end, we first assume that Sy;11 = 1. Next, we use (4)
to successively compute S, while k£ counts down from M to
1, performing a total of M iterations. We denote the obtained
value as P} . We now state in the following theorem that
P} is in fact a tight upper bound to Py ¢, as M — oo.
Moreover, the difference P — Py s decays to zero at least
as fast as {0.5*}, in the number of iterations M.

Theorem 1: Let ¢ € I, for some r = 1,2,..., with py
denoting the probability of a Y. Then, for any M =1,2,...,

0 < P)A/{cas(e) _]P)Y—cas(e) < kM,

if Z;:ll(ri'r] —1)+rm>1,
0o.W.

(6)

where k £ (r 4+ 1)(1 — ps)p} and for any p € (0.5,1) and
e €10,1), k satisfies 0 < k < 1/2.

Proof: Recall that Sp;41 =1 while computing P
which implies that P is the net probability of: (a) se-
quences that terminate in a Y cascade by the M™ stage and (b)
sequences that do not terminate by the M™ stage. Thus, the

Y cascade
A

Y cascade
A

Stage (1) Stage (2)

Fig. 4: An enumeration of all possible sequences that would lead to
a 'Y cascade.
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Fig. 5: Probability of Y cascade as a function of € for V = B and
p=0.7.

difference: P}, — Py ., is upper-bounded by the probability
of (b). Accounting for all possible sequence combinations
that persist through stages 1,2,..., M yields the probability
k. Next, for a fixed p and for € € Z,., k is maximized only if €
is such that py = 1, which may not be satisfied for any € in
Z,. Assuming k is maximized, the maximal value of £ would
be ( 1ir)r. As this maximal value decreases in r, evaluating
it at r =1 yields k¥ < 1/2 for any 7. [ |

Figure 5 shows a plot of Py, with respect to €, for the
case V = B with p = 0.7. The plot uses M = 10 which
gives an error of less than 1073, It can be seen that in the
r® e—interval Z,, Py, increases with €, but with infinitely
many discontinuities (where Py ,(¢) decreases). Despite the
discontinuities, Py _.,s achieves the minimum and maximum
values at the edge points of Z,., i.e., € and €, ;, respectively.
Further, note that the relatively larger drops in Py c(€)
observed in Figure 5 (marked by x and o) occur exactly at
the threshold points {e,}22 . Here, counter to expectation, a
slight increase in € beyond €, causes a significant decrease
in the probability of a Y cascade. We now quantify Py ¢y
as e tends to each threshold point €,. For this, we state the
following lemma:

Lemma 3: For all t > 2, r; — r as € — €,.

Proof: We consider two cases: € — ¢;7 and € — ¢, . The
proof outline for the first case is as follows: assume r; = r
forall 2 < j <i—1 and note that y = r+ 1 as € € Z,.
Then it follows from (6) that r; = r only if n > (r + %)_1.
Now as ¢ — €, n — 1/r and hence the condition for r; = r
is satisfied. Using this argument inductively shows that r; = r
for all ¢ > 2. The second case is proved similarly. [ ]

It follows from Lemma 3 that as ¢ — ¢,., the recursion in
(4) results in the same infinite computation to obtain .S; as for
Sit1, for all ¢ > 2. Thus, all S; for ¢ > 2 have the same value
which satisfies: S; = p} [1+ (1 — ps)S;]. Solving this equation
for i = 2 gives the value for Se which when used in equation
(4) for n =1 yields 51, i.e., Py 5. However, note that while
solving equation (4), 1 = r + 1 for € = ¢, whereas r; = r
for € = €, . This corresponds to the following two different




values of Py _cas as € — €,
14+ (1 —pp)p}
Py~ +y — o+l f
ven(e) =P T

1
P €)= Ti'
chs(er) pfl —r(1 *pf)p:‘

(N
®)

Hence, the fractional decrease in Py, that occurs abruptly
at €, defined as 6, = [Pycas(6;) — Py-cas(6)] /Py-cas(€;) is:

&= (1—pg) (1 =p}*). ©)

It can be verified that as r — oo, 6, — 0. This is depicted
in Figure 5 where the sequences {Py c.s(e; )} and {Py cas(e)},
marked by x and o respectively, converge to a limiting value
as r — oo.

Property 3: If the possibility of fake agents in the history
equals the rt" e-threshold, » = 2, 3, .. ., then a further increase
in fake agents reduces the chances of a Y cascade by a factor
of §,, rather than increasing it.

Next, we consider the cascade behaviour for low values of
€ and state the following theorem.

Theorem 2: Given the private signal quality p € (0.5,1),
and the item’s true value V' € {G, B}, there exists some € =
f(V,p) > 0 such that

PY»cas (E) < ]P)Y-cas(o)a Ve S (072)- (10)

From the point of view of the fake agents, the above theorem
implies that if they occur with a probability of less than g,
then the effect that their presence has on the honest buyers is
opposite to what they had intended. That is, they reduce the
chances of a Y cascade instead of increasing it. On the other
hand, for honest buyers, if V = B, then they benefit from the
presence of fake agents. Otherwise if V' = G, then they are
harmed by the presence of fake agents.

The proof for Theorem 2 follows by noting that as e — 0,
the limiting value of Py, can be obtained from (7) with
r =1and pf -+ 1 —p for V = B, whereas py — p for
V = G, which gives

1—ppifrd=p) oy B
. L—p(1-p)
III%PY—CHS(E) = 1+4p(1 ) (11)
e 2 pll—p
, for V =G.
1—p(1-p)
However, in the absence of fake agents (¢ = 0) as in [1],

h, = ny —ny and Y cascade starts when h,, = 2. In this case,
Py .as(0) = p7/[p} + (1 — ps)?], with py = 1 —p for V = B,
whereas py = p for V. = G. By comparing this expression
with the one in (11) for the corresponding values of V,

I%Py_cas(e) < Py.s(0), Vpe(0.5,1),Ve{G,B}.
Thus, there exists some ¢ > 0 such that (10) holds true.

V. LEARNING IN THE LIMIT AS ¢ — 1

As the probability of an agent being fake tends to 1, the
information contained in a Y observation becomes negligible.
As a result, an agent would need to observe infinitely many
consecutive Y’s in his history for him to be convinced of

starting a Y cascade. Hence, one would expect that if V = G,
learning would never occur, whereas if V' = B, then learning
would always occur. However, recall that as ¢ — 1, the
occurrence of Y’s becomes increasingly frequent, i.e. py — 1;
for both V. = B and G. This motivates studying Py _cas
in this limiting scenario. First, recall that in the process of
enumerating all sequences leading to a Y cascade, for € € Z,,
in each stage 7 > 2, r; is either r or » 4+ 1. However, € — 1
implies » — oo, in which case » =~ r + 1. As a result, the
expressions obtained in (7) and (8) yield the same limiting
value for Py .5 as €, = 1, i.e., r — o0. In particular,

(@)

lim ]P)y_cas(e) = hm PY—cas(E:_) = hm PY—cas(Er_)a
e—1 r—00

T—00

where Step (a) can be proved by recalling that §, — 0 as
r — oo. Further, the limiting probability of a Y cascade, in
terms of & = p/(1 — p), is given by (refer to [18] for proof):
1 1

= ; 12
L—pppy et —t (12)

1. P —cas = 1. T
i Py-cas(e) = Hm vy

where t = - loga for V =G, and t = -2 loga for V = B.

06 1
e ———e—1
™ €=09 09
;?0'4 N % 0.8
P~ S 0.7
o2 = e ———€e—1
0.6 c— 09
0
05 06 07 08 09 1 05 06 07 08 09 1
P p
(a) V=B (b)) V=G

Fig. 6: Probability of Y cascade versus private signal quality for
the indicated values of e.

Figure 6 illustrates (12) and the corresponding probability
when € = 0.9 as a function of the signal quality. For both
V = B and V = G, a better signal quality leads to
improved learning even when fake agents have overwhelmed
the ordinary agents. Also note that for V = B, for a weak
signal quality, the incorrect cascade is more likely than the
correct one (while for V' = @G this is never true).

VI. CONCLUSIONS AND FUTURE WORK

We studied the effect of randomly arriving fake agents that
seek to influence the outcome of an information cascade. We
focussed on the impact of varying the amount of fake agents
on the probability of their preferred cascade and identified
scenarios where the presence of fake agents reduces the
chances of their preferred cascade. In particular, the chances
of the preferred cascade decrease abruptly as the fraction
of agents increase beyond specific thresholds. We quantified
the correct cascade probability as a function of the private
signal quality in the asymptotic regime where the fraction of
fake agents approaches unity. Studying the effects of multiple
types of fake agents and non-Bayesian rationality are possible
directions for future work.
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