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Abstract—Many smart data services (e.g., smart energy,
smart homes) collect and utilize time series data (e.g., energy
production and consumption, human body movement) to con-
duct data analysis. Among such analysis tasks, classification is
a widely utilized technique to provide data-driven solutions.

Most existing classification methods extract a single set of
features from the data and use this feature set for classification
across multiple classes. This often ignores the reality that
different and class-specific subsets of the initial feature set
may better facilitate classification. In this paper, we propose
two convolutional neural network (CNN) models using class-
specific variables to solve the multi-class classification problem
over multivariate time series (MTS) data. A new loss function
is introduced for training the CNN models. We compare our
proposed methods with 13 baseline approaches using 14 real
datasets. The extensive experimental results show that our
new approaches can not only outperform other methods on
classification accuracy, but also successfully identify important
class-specific variables.

Keywords-Smart data-services; Multivariate Time Series;
Classification

[. INTRODUCTION

Smart data-services provide data-driven solutions to de-
cision makers by utilizing different types of data. Much of
such data is in the form of multivariate time series (MTS)
and collected through smart infrastructures, such as smart
energy, smart homes, and smart healthcare. For example,
multiple current and frequency waveforms (MTS data) col-
lected in smart energy systems can be used to identify system
faults; the movement information of the different parts of a
human (MTS data) collected by sensors can help identify
the type of movement this person is making; the amount
of the many PM2.5 composition particles in a period of
time (MTS data) can help monitor air quality. Analyzing
MTS data has received increasing interest in the past decade
due to the deployment of smart infrastructures. Extracting
features and classifying MTS are applied in various smart
data-services, including human activity recognition [1], [2],
healthcare [3], voice processing [4] and many others. In
MTS classification problems, besides generating accurate
predictions, it is also important to understand the features
or factors that are most critical for prediction interpretation
or decision making. For example, recent research shows
that different PM2.5 (particulate matter with diameter less
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than 2.5 micrometers) composition particles contribute to
different types of diabetes [5]; One PM2.5 particle can be
considered as one variable in some MTS data. Identifying
which PM2.5 particles contribute to specific diabetes (e.g.,
Type-2 diabetes) is a challenging problem in this domain
and revealing this information would be a major benefit to
researchers.

Compared with other data, MTS data contains time-
dependency in each time series. How to model and analyze
this time-dependency is one major challenge in MTS classifi-
cation. Many algorithms can successfully classify MTS data,
but very few of them can directly capture the relationships
between classes and specific features.

Convolutional neural networks (CNN) have shown high
accuracy in time-series classification [2], [6], [7], [8]. The
CNN approach is capable of automatically extracting fea-
tures from the MTS data and utilizing such features to
recognize different classes. In this paper, we propose two
newly designed convolutional neural network (CNN) based
approaches by leveraging class-specific variables. These two
approaches redesign the fully connected layer in a typical
CNN structure to reveal and leverage the class-specific
variables. Identifying these class-specific variables is very
important, especially in neural network-based algorithms [9].

We show that our CNN approaches can not only achieve
better classification performance than state-of-the-art meth-
ods but also successfully identify the class-specific variables,
which gives us a better understanding of the classes in the
data. The main contributions of this paper are the following.

« We propose two novel CNN based approaches with
class-specific variables. The class-specific variables are
identified and leveraged during model training.

o A new loss function is designed to fit the structure of
the proposed CNN models. The new loss function can
better separate similar classes and address the issue with
imbalanced datasets.

o The proposed approaches can identify important class-
specific variables. Compared with other state-of-the-art
methods, our approaches can identify the class-specific
variables more effectively and efficiently.

« We evaluate the classification performance of the pro-
posed approaches with four state-of-the-art methods



and nine other baselines. Our experiments on 14
datasets show that the proposed approaches achieve the
best averaged accuracy.

« We compare the identified class-specific variables from
our approach with the features identified from state-
of-the-art methods. Our approach can identify similar
class-specific variables with much better efficiency.

The paper is organized as follows. Section II formally
defines the problem and related terminology. Section III
presents our proposed approaches. Section IV presents our
experiments and shows the effectiveness and efficiency of
our proposed approaches. Section V discusses the literature.
Finally, Section VI concludes our work.

II. PROBLEM FORMULATION AND TERMINOLOGY

Multivariate time series (MTS) data records values for
multiple variables in a period of time. (e.g., daily tempera-
ture and humidity over one month). Each MTS consists of
multiple time series in the form of (vy,va, -, v;) where
v; 1s a numerical value recorded for one variable at the ¢-th
time point and m is the length of the time series.

When conducting classifications, it is important to extract
useful features from MTS data. Choosing an optimal selec-
tion of features can impact both accuracy and performance
of the classification, and may reveal underlying associations
between features and classes. For example, an association
between certain medical readings and the classification of a
patient’s disease could improve understanding of how that
disease develops. However, determining optimal features in
MTS data can be very challenging. This paper works on
MTS classification and class-specific variable (CV) identifi-
cation simultaneously.

Definition 1 (Research Problem): Given an MTS with
multiple class labels, the problem is to accurately classify
instances of the MTS by extracting and utilizing class-
specific variables.

[ Symbol [ Meaning |

# of distinct classes in a dataset

# of variables in an MTS dataset

# of instances in an MTS dataset

length of one time series in an MTS dataset
the actual class labels of the instances

NEIENS

Table I: Symbols used in this paper

III. METHODOLOGY

This section presents our CNN based approaches to
conduct the multi-class classification of MTS data. Table
1 summarizes the meaning of major parameters. We use a
toy dataset throughout this paper to explain the concepts and
the computations of our algorithms.

Example 1 (MTS data): Table II shows a small dataset
with three classes: Standing in Elevator (SE), Moving around
in Elevator (ME), and Playing Basketball (PB). This dataset

contains two variables representing the height of the sensors
on someone’s left arm (LA) and left leg (LL). Fig. 1 draws
the LA sequences of the three instances.

Class 'Variables{Time sequences

LA [10, 20, 29, 39, 40, 40, 40
LL |5, 15, 25, 33, 35, 35, 35
LA |12, 18, 31, 37, 42, 38, 41
LL |7, 14, 27, 30, 37, 34, 37
LA |10, 14, 18, 13,9, 7, 10
LL [4,6,9,8,7,3,5

Standing in Elevator (SE)

Moving around in Elevator (ME)

Playing Basketball (PB)

*LA/LL: the y-coordinate of the left arm/leg sensor
Table II: Example dataset

—o—SE

LA values

ME
PB

A\

Time

Figure 1: The LA sequences for the example dataset

A. Motivation of Proposed Approaches

In classification problems, when an instance is wrongly
classified to a class label (say c¢), a common reason is that
this instance’s features are similar to the features of class
c. We observe that while some instances in a dataset can
be easily classified with the correct class labels (no matter
which classifiers are used), other instances may be mis-
classified to classes with similar features. Let us use fuzzy
class to denote the classes that can be easily confused with
(and be classified as) other classes and use non-fuzzy class
to denote the other classes.

Given the example, a CNN can benefit from class-specific
variables that can differentiate the “SE” class and the “ME”
class. One (or multiple) fully-connected layer(s) for all the
classes cannot differentiate instances belonging to fuzzy
classes. With such fuzzy-class instances, many iterations
used to train a neural network model may not improve
accuracy much. Instead, accuracy may become worse in
later iterations. For example, in one iteration, many instances
belonging to fuzzy classes are wrongly classified into a
class with similar features. In the next iteration, the adapta-
tions adjusted by the learning algorithm may help correctly
classify instances in one fuzzy class, but may wrongly
classify instances in another fuzzy class. A desirable model
needs to identify features that help differentiate instances in
the fuzzy classes. We design class-specific fully-connected
components to alleviate this issue.

B. CNN with Class-Specific Fully-Connected Components

A CNN,.+s [2], [9] model for MTS consists of several
convolutional layers, pooling layers, and fully-connected
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Figure 2: CNN structure for MTS using in [9] (LCP: last convolutional or pooling layer)
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J,ndmo
J sse|d 4o Aujiqeqoud

layers.

1) Overall Design of CNN-CF: The design of our
CNN model with Class-specific Fully-connected compo-
nents (CNN-CF) is built upon the CNN,,;s model [9] , as
shown in Fig. 2. Given the MTS input with size N xm x V'
(IV instances where each instance keeps V' sequences with
length m), different from the regular CNN model for image
classification, whose convolutional (pooling) filter size is
k x k (r x r), the convolutional (pooling) filter in CNN,,+¢
has size k x 1 (r x 1). The convolutional and pooling
filters are applied to each time series variable. The last
convolutional/pool (LCP) layer of CNN,,;; aggregates the
time series output sequences from the previous convolutional
layer. The output from the LCP is N x 1 x V x FEF (FE
is the number of filters in the LCP layer). When using
a CNN,,,;s model to conduct multi-class classification, the
fully-connected layer (or the last fully-connected layer if
there are multiple such layers) is utilized to calculate C'
probabilities for all C classes. The class with the highest
probability is selected as the predicted class.

CNN-CF decomposes a large task (learning C' probabil-
ities for C classes) to smaller tasks with binary classifi-

cations. It creates C fully-connected components (FCCs)
after the LCP layer. Each component conducts one binary
classification task: differentiating one class from all the other
classes. The FCC layer contains C' fully-connected compo-
nents. The c-th component is responsible for calculating the
probability that one instance belongs to class c. Fig. 3 shows
the structure of the FCC layer in our CNN-CF.

Algorithm: CNN-CF-Construction (X, Y)

Input: (1) X: the training multivariate time series data
(2) Y': the class labels for X

Output: a CNN-CF model

1) Set up the convolutional and pooling layers in the CNN,,,+s model

2) Let £ be the matrices of LCP, which are vectorized to
[(h11,- shvi),-- s (hypL, - s hy o)l
3) Make C copies of L: Ly, -+, Lo

4) Initialize an array M.y to keep the weights for C' fully-connected compo-
nents
5) For each class label ¢ (c =1 - -

a) For the j-th instance in Y
i) if (Y[j] == ¢) Ye[j] = 1 else Yo[j] =0
b) Use the weights in M. ¢[c] to connect £ and Y.
6) Train a constructed CNN model

- C), construct a Y, vector

Figure 4: Algorithm to construct a CNN-CF model

The pseudo-code of constructing a CNN-CF model is
shown in Algorithm CNN-CF-Construction (Fig. 4). The
convolutional and pooling layers are set as in CNN,,¢s
(Line 1). It flattens the matrices in LCP to vectors and makes
C copies of the vectorized hidden units, £, -- , L. The
c-th fully connected component links the L. to the output
layer of predicting an instance to be class ¢ or not c.

2) Loss Function of CNN-CF: To train any neural net-
work model, a loss function is needed to optimize the
parameters (weights) of the neural network. The gradient
descent optimization method trains the parameters (weights)
of the neural network such that the loss function is mini-
mized. Cross-Entropy (CE) is the most commonly used loss
function. In MC problems, CE is formally defined as

N C
=D " weli] x log(peli])

i=1 c=1
Here, y.[i] is 1 if the i-th instance’s actual class is ¢ and
is 0 otherwise, p.[i] is the probability of the i-th instance



belonging to class c. Directly applying CE as a loss function
in CNN-CF generally produces high CE values because the
CE calculation depends on the prediction of all the instances
and the predictions of instances belonging to the fuzzy
classes are generally poor.

Example 2: In the dataset shown in Example 1, instances
from “SE” and “WE” are easily predicted to be one of the
fuzzy classes in one iteration. The poor performance of “SE”
and “WE” increases the overall CE value. A high CE value
may cause a bad optimization of the parameters for “PB” in
the next iteration.

The fully connected components that calculate C' binary
classifications need to address another issue where the
instances belonging to a class ¢ or —¢ are imbalanced.
The loss function needs to consider the imbalanced nature
of the dataset. When a dataset has unbalanced instances,
Weighted Cross-Entropy (WCE) is generally used. However,
WCE can only alleviate the issue to some degree. This
paper introduces a new measurement, Binary-class Cross-
Entropy (BCE), to alleviate the effect of unbalanced data in
binary classification problems. For each binary classification
problem (the prediction is either ¢ or —c), we obtain a set
S. with all the instances which either have ¢ as the real
label or are predicted to belong to c. BCE, calculates the
cross-entropy using only the instances from S, as shown in
Eq. (1). N, in Eq. (1) is the total number of instances in S,
and L, is the flattened vector £. The design of BCE, can
force the algorithm to learn better weights to separate class
c from other classes which have similar features to class c.

Z yelillog(pelil) + (1 = ye[i]) (1 — log(pcli])
ZES
1

BCE, =

where p.[i] = &, X L.

Example 3: For the dataset in Example 1, BCE for class
“SE” very likely considers the instances from “SE” and
“ME”. The BCE for “SE” class focuses on separating “SE”
and “ME” instances.

We further define a Class-combined Cross-Entropy (CCE)
as the loss function in the training of the FCC layer with C
fully-connected components. CCE adds up the C' BCE val-
ues from all the binary classification problems (Equation 2).

c
CCE =) BCE; 2)

c=1
The derivative of CCE is the sum of the derivatives of the C'
BCEs based on the sum rule of differentiation operation [10].

0(CCE) _0BCE, ,  0BCEc _ 9BCE.

Ow.  Owe Ow, - Ow, )

In the binary classification problem (c vs. —c), the weight
and bias are trained using BCE.. The weight and bias for
class ¢ are only depended on whether ¢ can be separated
over —c. Equation 3 shows the derivation calculation for w,.

C. CNN-CF with Class-Specific Features

Features from LCP do not equally contribute to classifying
various classes. Furthermore, features that can help classify
instances belonging to one class may not be helpful in
classifying instances belonging to other classes [9]. It is
critical that we utilize different features that are important
in differentiating separate classes.
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We design a new CNN approach to incorporate class-
specific variables in the model. This new approach is denoted
as CNN-CF? (Fig. 5).

Building upon the CNN-CF model, it extracts important
features from the LCP layer (L1, --,L¢) and feeds only
the important features for class ¢ to the corresponding c-
th fully-connected component for prediction. The features
are chosen from the LCP layer for two reasons. First, it
is the last convolutional/pooling layer, thus its features are
at higher-level and have more valuable information than the
features in the previous layers. Second, the LCP hidden units
absorb the time dimension through the previous layers, thus
the time dependency does not need to be considered when
choosing features in the LCP layer.

The top features are related to two factors, the variables,
which are represented in the data, and the filters (or kernels),
which are set in the CNN-CF? model. Selecting the top
features involves identifying (i) the top important variables
for each filter without considering the specific classes (using
Algorithm CNN-CF2-TVI in Fig. 6) , (ii) the top filters for
each class (using Algorithm CNN-CF2-TFI in Fig. 7) , and
(iii). the important variables for each class (Section III-D)

The first step is to identify the important variables for
each filter (kernel) because one filter in the CNN model can
capture significant features for some variables, but not for
all the variables. For each filter f and each instance n, the
algorithm (Fig. 6) retrieves the variables with high feature
values because a high feature value indicates that the filter
matches the shape of the sequence for that variable.



Algorithm: CNN-CF2-TVI (L, ov)
Input: (1) £: NxV x FLX array from the last convolutional layer,
(3) oy the percentage of requested variables for each filter
Output: £': N xV x FL with the non-top-rated variables are zeros
1) Initialize an N x V x F'X array £/ with value zero
2) For each filter feature f (f=1-- .Fh
a) For each instance n (n=1---N)
i £l =Ln,1---V, f
ii) top-fL = the variable indies of the (o, X V') highest values from
L},
iii) For each variable v in topfb
A) L'[n,v, f] = Lln, v, f]
3) Return £’

Figure 6: The top-variable identification algorithm

Algorithm: CNN-CF?-TFI (L', Y, o, C)
Input: (1) £": N xV x FX output array from CNN-CF2-TVI,
(2) Y': the class-label vector for N instances,
(3) o the percentage of requested features for each class,
(4) C the total number of classes
Output: TFey ={TFy,TF3,---,TFc} where TF, consists of \_JF<FLJ
top important filters for the class label ¢
1) Initialize an C x F'¥ array w with score zero
2) Foreachclassc(c=1,---,0C)
a) n. = indexes of instances belonging to class ¢
b) n-. = indexes of instances not belonging to class ¢
¢) For each filter f (f=1---FL)
DL =L 1V, f]
iy £ = e 1V 1]
iii) meanL., meanL— . = mean vector of L'/ﬁ and £'£C by averaging
on the first dimension respectively
iv) wle, f] = dist(meanL., meanL—))

3) For each class ¢

a) TF. =the top |or-F¥ | highest values in wlec, 1- - -F%]
Return TFsey ={TF1, TF,, ---, TFc}

=

4

-z

Figure 7: The top-filter identification algorithm

After selecting the important variables for all the filters,
the second step is to choose important filters because not
all the filters can generate significant features (Algorithm
CNN-CF?-TFI in Fig. 7). The importance of a filter is
evaluated using the top variables chosen for that filter by
the CNN-CF2-TVI algorithm. CNN-CF?2-TFI first separates
the training data into two groups, where the instances in
one group belong to class ¢ while the instances in the other
group do not belong to ¢ (Lines 2a-2b). Then, it calculates
the distances of features from the c-class instances and the
—c-class instances (Line 2c). The filters with larger feature
distances between the c-class instances and the —c-class
instances are considered more important because they can
better differentiate class ¢ and —¢ (Line 3). Different from
CNN-CF, CNN-CF? only feeds the important feature iden-
tified by CNN-CF2-TFI to each fully connected component
in model training.

D. Class-Specific Variable Identification

Besides improving the classification accuracy of MC
problems on MTS data, we are also interested in reporting
the features that are important to differentiate a specific class
c from the other classes. We call this step Class-specific
variable identification (CVI). The class-specific feature (CF)

selection is conducted after CNN-CF2-TFI. Please note that
the significant variables selected at this step are class specific
while the important variables selected through CNN-CF?-
TVI are for each filter, not class specific.

For each class ¢, we get n. and n_.. They denote the
indexes of the instances belonging to ¢ and not belonging
to c respectively. For each class ¢ and each variable v, we
extract the features for all the variables from the top filters
Llne, v, TF,] and Ln_.,v, TF,], and calculate their mean
vectors, meanL. and meanL -, (whose length is |T'F.|) by
averaging on the first dimension. The score of a variable v is
the euclidean distance between meanL. and meanL_.. The
higher this score is, the higher the differentiation function
that v can play. The variables with the high score values can
better differentiate class ¢ from other classes.

[ Dataset [ N JCT V] m |

Action 560 20 | 570 100
Activity 320 16 | 570 337
Ara Voice 8800 88 39 91
Auslan 2565 95 22 96
Daliy Sport 9120 19 45 125
Ges 396 5 18 214

Har 10299 6 9 128

Ht Sensor 100 3 11 5396
JapaneseVowels 640 9 12 26
OHC 2858 20 30 173

Net 1337 2 4 994

Eeg 128 2 13 117

Eeg2 1200 2 64 256
Ozone 346 2 72 291

Table III: Datasets

IV. EXPERIMENTS

All the methods are implemented using Python 3.4,
and tested on a server with Intel(R) Xeon(R) CPU ES5-
2695 v2 @ 240GHz and 256 GB RAM. TensorFlow
(www.tensorflow.org [11]) is used to build the CNN model
and Adamoptimizer is used in the training process.

A. Methods for Comparison

The performance of the proposed approaches are com-
pared with existing state-of-art methods: (i) Long Short Term
Memory Fully Convolutional Networks (LSTM-FCN) [6]
and (ii)) an Attention LSTM-FCN (ALSTM-FCN) [6],
which are defined for classifying univariate time series
and have been adapted for MTS, (iii) Multivariate LSTM-
FCN (MLSTM-FCN) [7], and (iv) Multivariate Attention
LSTM-FCN (AMLSTM-FCN) [7]. Other than the previous
four approaches, more Other Baseline (OB), WMUSE [12],
ARKernel [13], LPS [14], mv-ARF [13], SMTS [15],
HULM [16], DTW [1], SVM [17], and RF [18] are used
in the comparison. Only the best results from the baseline
approaches are presented in this section.

B. Experimental settings

(1) Datasets: We use 14 real datasets, which have at
least 100 instances, to test the proposed approaches. The



Methods |

’ Dataset ‘[LSTM-FCN[MLSTM»FCN[ALSTM-FCN[MALSTM—FCN[Best—of—OB[CNNmtS[CNN-CF[CNN-CF]

Action 0.717 0.754 0.727 0747 0.707 | 0.747_[0.798 [1]] 0.795 [2]
Activity 0531 0.619 0556 0.588 0.663 | 0.581 |0.606 [4][ 0.613 [3]
Ara Voice 0.980 0.980 0.986 0.983 0946 | 0961 |0.972 [5][ 0.973 [4]
Auslan 0970 0970 0.960 0.960 0980 | 0.947 |0.970 [3][ 0.972 [2]
Daily Sport 0.997 0997 0997 0997 0984 | 0993 |0.995 [3]] 0.996 [2]

Ges 0505 0535 0525 0531 0409 | 0535 |0.545 [2]] 0.556 [1]

Har 0.960 0967 0955 0.967 0.816_| 0.946_|0.960 [3]] 0.961 [2]

HT Sensor 0.680 0.780 0.720 0.800 0720 | 0.760 |0.860 [1][ 0.860 [1]
JapaneseVowels|| 0990 1.000 0990 0990 0980 | 0.980 0.990 [2][ 1.000 [1]
OHC 1.000 1.000 1.000 1.000 0990 | 0.990 |0.999 [2][ 1.000 [1]

[ Averaged || 0.833[7] | 0.860 3] | 0.842 [6] 0.856 [4] | 0.794 [8] ]0.843 [5]]0.870 [2]] 0.872 [1] |

* Values 1n [] denote the ranks in each row )
* To better display the results, we only show the ranks of the results from CNN-CF and CNN-CF? for each individual dataset.

Table IV: Multi-class classification (Best-of-OB: the best results from all the other baseline approaches)

Methods
’ Dataset_|[LSTM-FCN|MLSTM-FCN]ALSTM-FCN[MALSTM-FCN[Best-of-OB]CNN,,+ s [ CNN-CF[CNN-CF~|
Ecg 0.609 0.656 0.641 0.641 0.625 0.578 10.584 [71] 0.615 [5]
Ecg2 0.907 0.910 0.907 0.913 0.775 0.941_[0.972 [1]] 0.967 [2]
Net 0.940 0.950 0.930 0.950 0.980 0.947_[0.963 [3]] 0.968 2]
Ozone 0.676 0.815 0.792 0.798 0.751 0.791_[0.815 [1]] 0.815 [1]
Averaged|| 0.783 [7] | 0.833 [3] 0.818 [3] 0.826 [4] | 0.783 [7] | 0.814 [6]|0.834 [2]] 0.841 [1]

* Values 1n [] denote the ranks in each row
* To better display the results, we only show the ranks of the results from CNN-CF and CNN-CF? for each individual dataset.

Table V: Binary-class classification comparison

detailed statistics for the datasets are shown in Table III. (2)
Evaluation measurements: The most commonly utilized
classification metric, accuracy, is reported as there are no im-
balanced datasets. (3) Parameter setting: The convolutional
layers of the CNN model contain three layers with filter sizes
8x1, 5x1, and 3% 1, the corresponding numbers of filters for
the three layers are 128, 256, and 128. The pooling filter in
the global pooling layer is set to be the same as the length of
the time series output from the previous convolutional layer.
These settings in the convolutional and pooling layers are
the same as those in [7]. Both the percentage for variables
(oyv) and features (o) are set to be 50%.

C. Effectiveness Analysis

In this section, we evaluate the performance of the pro-
posed approaches in two aspects: classification performance
and the meaningfulness of the selected features.

1) Comparison on Multi-Class Classification: This sec-
tion compares the classification accuracy on 10 multi-
class MTS datasets of our proposed methods, CNN-CF and
CNN-CF?, with other state-of-the-art approaches. Table IV
presents the accuracy values on classifying those multi-class
datasets.

The ranks for the two proposed approaches and the aver-
age accuracy for all methods are provided. For all 10 MC
datasets, CNN-CF? achieves the highest average accuracy
(the last row in Table IV) and the best ranking. CNN-CF?
gets the highest accuracy on four datasets and receives the
second highest on another four datasets. CNN-CF? has the
lowest rank on the “Ara Voice” dataset. However, compared
with the highest accuracy from MLSTM-FCN (0.986), the
accuracy result from CNN-CF? (0.973) is still comparable.

The results in the last two columns show that the CNN-
CF? achieves better or the same performance as CNN-CF
on most datasets (nine out of ten datasets). Both CNN-CF
and CNN-CF? have better performance than the CNN,,,
with the same configuration. The results are consistent with
our expectations and intuition.

2) Comparison on Binary-Class Classification: The pro-
posed approaches are designed for the multi-class classifi-
cation problem (MC). However, they can also be applied to
conduct Binary classification (BC). We evaluate the perfor-
mance of the proposed approaches on four datasets with two
class labels. Table V shows the comparison results using all
methods. On those four datasets, the CNN-CF and CNN-CF?
still outperformed in terms of averaged accuracy although
the improvement is less than that in MC classification.

3) Effect of the Loss Function: This section compares
the performance of using the newly designed loss function,
class-combined cross-entropy (CCE), with the commonly
used weighted cross-entropy (WCE) for multi-class classi-
fications. Due to space limitation, we report results only
on three datasets, “Ht sensor” with the minimum number
of classes (3 classes), “Auslan” with the maximum number
of classes (95 classes), and “Daily Sport” with the median
number of classes (19 classes).

[ Datasets
Loss function | Ht Sensor | Daily Sport | Auslan |
[ _WCE | 0800 [ 0091 | 0948 |
[ CCE__ | 0860 | 0995 | 0970 |

Table VI: CNN-CF accuracy (different loss functions)

Table VI shows that the classification accuracy of CNN-
CF using WCE and CCE as the loss function respectively.



CNN-CF is used as the classifier because the performance of
CNN-CF? is closely related to the performance of CNN-CF.
The results indicate that CNN-CF using CCE outperforms
the CNN-CF using WCE on all three datasets.

4) Case Studies of the Extracted Features: In this section,
we verify the usefulness of the extracted class-specific
variables (CV) that are identified using the CVI algorithm
(Section III-D). We compare the identified CV with the ones
discovered using the state-of-the-art approach [19].

(7B | Vs 1
Top 1| y gyroscopes (left arm)
Top 2| x gyroscopes (left arm)

CVewi |
x gyroscopes (left arm)
y gyroscopes (right arm)

Top 3

y gyroscopes (right arm)

y gyroscopes (left arm)

Top 4

X gyroscopes (right arm)

X accelerometers (left arm)

Top 5

y accelerometers (left arm)

x accelerometers (right arm)

Top 6

y accelerometers (right arm)

x accelerometers (left leg)

(a) Playing Basketball

[(RM |

CVyey

[ CVewi |

Top 1

x magnetometers (left leg)

x accelerometers (left arm)

Top 2

X magnetometers (right leg)

x accelerometers (right arm)

Top 3

X magnetometers (torso)

x magnetometers (left leg)

Top 4

x accelerometers (left arm)

x accelerometers (right leg)

Top 5

x accelerometers (right arm)

x accelerometers (left leg)

Top 6

x accelerometers (left leg)

X magnetometers (right leg)

(b) Using rowing machine
Table VII: Top 6 CV comparison

In the “playing basketball” activity, both arms are used.
The second column in Table VII(a) (CV,.s) shows the
identified CV from [19] and the last column (CV,,;) shows
the selected CV using CVI, from this work. Similar to
CV,¢y, the top-5 CV from CV,,,; are arm-related, although
the order of the CV is sightly different from CV,.;.

Table VII (b) shows the results for the activity “using
rowing machine”, which is an activity using movements of
both arms and legs. Both CV of CV,..; and CV,,; are from
accelerometers and magnetometers recording arm and leg
movements. The results show that the algorithm CVI in this
paper can identify similar CV as those identified in [19].

[ Method | Ht Sensor | Daily Sport | Auslan |
[ CNNmes | 63982 | 631044 | 595878 |
[ CNN-CF” | 24160 [ 52877 | 8235 |

Table VIII: CV identification time (sec.)

Data
Method Ht Sensor [ Daily Sport [ Auslan
Train | Test | Train [ Test | Train [ Test
CNN,,es|| 23917.2 6.5 97040.7 59.1 11577.2 6.1
CNN-CF|| 24145.2 6.5 105174.7 59.2 15890.3 9.7
ICNN-CF?|| 24162.4 6.6 112254.9 62.6 21707.2 14.9

Table IX: Classification time (sec.)

D. Efficiency Analysis

For class-specific variable identification, we compared
CNN,,.;s [9] and our CNN-CF? because other approaches

cannot detect class-specific variables. Table VIII presents
the identification time, which shows that CNN-CF? is much
more efficient than CNN,,;s. This is because CNN,,;s
requires training C' models in order to identify the CV for all
C classes, while CNN-CF? only needs to train one model for
all C classes. The class-specific variable identification time
of CNN-CF? is about p (2 < p < C) times faster than that
of CNN,,,;s. Here, p is smaller than C. It is because there
are C' models (0 < C’ < (C) in [9] which can converge
earlier instead of reaching the epoch limitation.

Table IX shows the classification time results. CNN-CF
needs more training time than CNN,,;s. This is because
there are more parameters in the FCC layer than a regular
fully-connected layer in CNN,,,;s. CNN-CF takes more time
on a dataset with more classes. The time to train and test
a CNN-CF? model are the longest among all the three
approaches. CNN-CF? contains post-processing (CNN-CF2-
TVI and CNN-CF?-TFI). However, compared with the over-
all training and testing time of a CNN model, the increment
of the training and testing time is not significant, especially
when the number of classes of one dataset is small. For the
Ht Sensor dataset, the training time of CNN-CF? is 101% of
the training time of CNN,,,;. For “Auslan” with 94 classes,
the CNN-CF? training time is about 187% of the training
time of CNN,,:s, which is also acceptable.

V. RELATED WORKS

We briefly introduce the existing algorithms for MTS
classification. These algorithms can be separated as either
similarity-based methods, feature-based methods, or neural
network-based methods.

Similarity-based methods calculate similarity scores be-
tween time series and use these scores for classification.
Previous work has shown Dynamic Time Warping (DTW)
along with K-Nearest Neighbors (KNN) to be successful
in MTS classification problems [1]. Feature-based methods
typically use features extracted from the MTS data for com-
parisons and classifications. Examples of such methods are
many (e.g., [15], [14], [16], [20], [12], [13], [21]). However,
none of these methods use class-specific features in the
classification. Many recent success stories of MTS classifi-
cation comes from neural network-based approaches [2], [8].
However, these methods suffer from the vanishing gradient
problem. Long Short-Term Memory (LSTM) RNNs help
counter this problem by using gating functions in their state
dynamics [22]. LSTM RNN:s is able to learn the temporal
dependencies in MTS unless such dependencies are long-
term. Attention mechanisms and Squeeze-and-Excitation
Blocks [23] have recently been adapted for Neural Net-
work classification on MTS and generate multiple models
including LSTM-FC, ALSTM-FCN [6] and MLSTM-FCN
and MALSTM-FCN [7].

Two recent methods use class-specific features when
classifying MTS data. MASK [24] identifies shapelets from



MTS and uses the shapelets to evaluate the variables. Similar
to this paper, [9] identify the class-specific variables based
on the CNN features. This paper compares our new methods
with [9], which was compared with [24].

VI. CONCLUSIONS

This paper presents two CNN models, CNN-CF and
CNN-CF?, to classify multi-class multivariate time series by
utilizing class-specific variables. These two models present
two new designs to replace the typical fully connected layers
in CNN. To train these two models, a new loss function is
introduced to classify instances in similar classes and to alle-
viate the effect of imbalanced datasets. The experiments on
14 real datasets show that the proposed approaches not only
improve the overall accuracy of multi-class classification but
also efficiently identify class-specific variables. The design
of the new loss function helps maintain reasonable training
time of the proposed models. The proposed methodology can
be directly utilized in any smart data-services that make use
of MTS data to make classifications and to extract features.
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