2020 IEEE 36th International Conference on Data Engineering (ICDE)

CSQ System: A System to Support Constrained
Skyline Queries on Transportation Networks

Qixu Gong
Computer Science
New Mexico State University
Las Cruces, New Mexico
gixugong @nmsu.edu

Abstract—Skyline queries find the representative data points
from a multi-dimensional dataset, which are better than other
data points on at least one dimension. A multi-cost transportation
network (MCTN) can be modeled as a multi-dimensional dataset.
The MCTN-constrained skyline query (CSQ) is a type of skyline
queries on MCTN where the query point and the skyline answer-
objects are points of interest (POI) that are off the network, and
the answer-points need to be reached from the query point by
utilizing the MCTN. CSQ is useful in many applications such
as trip planning and apartment selection. For example, when a
person wants to find an apartment, he/she may consider not only
the price and the number of rooms of the apartment but also
the cost and travel time of using public transportation from his
apartment to his/her office.

In this paper, we present a system to answer MCTN-
constrained CSQs, namely CSQ system. This system is imple-
mented as a web application, which allows users to input a query
point from a web interface, get the skyline result by using several
algorithms, and display the result on the web interface. We load
the POIs and public transportation networks of three cities (Los
Angeles, San Francisco, and New York) to the system, and explain
how users can interact with the CSQ system.

Index Terms—SKkyline queries, Transportation networks,
Multi-dimensional data

I. INTRODUCTION

The skyline query, first introduced in [2], is an important and
useful operator in finding representative objects from a multi-
dimensional dataset. The answer to a skyline query consists
of objects that are better than other objects on at least one
dimension. The brute-force method to find skyline answer-
objects from a given dataset is very expensive. Many studies
on skyline queries focus on utilizing the characteristics of the
data to speed up the query process. Other studies attempt
to reduce the size of the skyline answer-set by customizing
skyline queries.

Conducting skyline queries on multi-cost networks (MCNs)
has been studied [4]-[7] in recent years. Two examples of
MCNs are road networks and multi-cost transportation net-
works (MCTNs). In an MCN, the weights of the edges are
multi-dimensional. The skyline queries on MCTNs are more
complex than traditional skyline queries because both the non-
spatial and the spatial attribute information of the data points,
and the spatial relationship between data points are considered.
They also provide a more general perspective than queries on

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00160

Jiefei Liu
Computer Science
New Mexico State University
Las Cruces, New Mexico
jiefei@nmsu.edu

1746

Huiping Cao
Computer Science
New Mexico State University
Las Cruces, New Mexico
hcao@nmsu.edu

graphs with single-dimensional weights. In real applications
(e.g., trip planning), the decision is made on multiple factors
(or dimensions) such as the price, travel time, and travel cost.

The MCTN-constrained skyline query, MCTN-CSQ or CSQ
for short, is a new type of skyline queries on an MCTN [3].
Given an MCTN G, where the edge weights have dg dimen-
sions, a set of points of interest (POIs) D, where each POI has
dp non-spatial properties, and a query object ¢, CSQ returns
the set of skyline answer-objects R C D. Note that the object
(or POI) 0 € D can be on or off the MCTN G. The cost of any
skyline answer-object is less than other objects not in R on
at least one dimension. The cost of a skyline answer-object R
consists of the properties of its corresponding POI o € D and
the cost of a graph path when traveling from ¢ to o through
the MCTN G.

For example, to find a good and cheap apartment that can be
reached by taking a bus from a company, we need to consider
not only the apartment’s properties, but also the cost of the
MCTN path. Fig. 1 shows that the properties of an apartment
are its price and ranking, while the costs of the graph path from
q to o are the walking distance, and the travel time and cost
using the MCTN. The overall cost of an apartment o contains
the union of the apartment property and the graph path cost.

_____ g Al N

m\\l‘ Q o
7 -

{ Graph path

Fig. 1. Example of MCTN-CSQ: the cost of a skyline answer-object consists
of the graph path cost (walking distance denoted using dash lines, travel fare,
travel time) and the object’s property (price, the environment)

MCTN-CSQ is very useful for applications such as trip
planning and apartment selection.

No existing system can support CSQ on MCTN yet. We
design a new system (CSQ system) to support CSQs. The
CSQ system is implemented using an interactive map-based
Web interface. It has the following functionality. (i) Answering
CSQ: Our CSQ system provides a web interface to enable a
user to input a customized CSQ. The system processes the
CSQ and returns the skyline answer-objects for query g. (ii)

IEEE
(@ computer
socl

Authorized licensed use limited to: New Mexico State University. Downloaded on August 23,2020 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

ety

Understanding CSQ result: The CSQ result consists of the
skyline POIs and the paths from the query point to these POIs.
The system provides a friendly interface for users to examine
those skyline answer-objects and the paths to reach those
objects using MCTN. (iii) Comparing CSQ query processing
algorithms: The system has implemented several algorithms to
process the CSQ queries. Users can compare the effectiveness
of the algorithms.

This CSQ system is built upon our work [3], which is
the first work on solving the MCTN-CSQ problem. In [3],
we propose an exact search algorithm (based on best-first
search), two heuristic approximate approaches, and an index
structure to process CSQs. The CSQ system has added two
new features to make the system more friendly and to execute
the algorithms more efficiently (Section II-C).

The paper is organized as follows. Section II presents
the architecture of the CSQ system. Section III explains the
usage of the system using a real-life example and compares
the results returned by the exact search algorithm and the
approximate methods. Section IV concludes this work.

II. OVERVIEW OF THE CSQ SYSTEM

A. System Architecture

Fig. 2 shows the architecture of the CSQ system. The
CSQ system consists of three major components. (i) The data
storage and indexing component stores the POIs and the public
transportation networks. (ii) The query processing component
implements the exact and approximate search algorithms to
answer CSQs. (iii) The web interface provides an interactive
user interface (UI) to allow users to input queries and other
related parameters, and also to visualize the CSQ answers.

&= &
) 1

[Web in'terface] *

(Restful APls)
Web Interface

Parameters: City name, Distance threshold, Number of bus stops,
POl type, etc.

—

Algorithms: Exact, Approx Range, and Approx Mixed]}

Query Processing Component

1
LSO ! .
H [e 1 : (Ne°4] J
1

Storage and Index of POls and MCTN

veiod B R O

Fig. 2. Architecture of the CSQ system

sy’

B. Data Storage and Indexing Component

The CSQ system manages two types of data, the POIs D
and MCTN G. Examples of POIs are restaurants and hotels
that can be found from Yelp and Foursquare. Examples of
MCTN are bus and metro lines downloaded from Google
Maps, OpenStreetMap, and Rideschedules.

We utilize the R* tree [1] and a Neo4j' graph database to
store D and G respectively. R* tree is a well-known spatial
index which can be used to support different types of spatial
queries. The set D contains all the POI objects. For each
POI object, we keep its non-spatial attributes (e.g., price and
review level of a hotel) and its location. The objects 0o € D
with their non-spatial attribute values are indexed using an R*
tree. This is used to support comparisons over the non-spatial
attributes, which are needed in finding skyline answer-objects.
The spatial information of objects in D are not indexed.

Public transportation networks (e.g., bus line information)
are stored using Neodj. Neo4;j is a widely used graph database
management system. It can store graph nodes, edges, and
properties efficiently. Neo4j provides APIs in different pro-
gramming languages. These APIs enable users to implement
many different customized graph algorithms. In the graph
database, each vertex v € G represents a bus stop or a
metro station in MCTN. Its spatial information (latitude and
longitude) is stored as vertex properties in the graph database.
An edge e = (v;, v;) represents that there exists a bus line (or
a metro line) segment that can go from a bus stop (or station)
v; to another bus stop (or station) v;. Each edge has multi-cost
weights (e.g., the fare and the travel time) which are stored as
edge properties in the graph database.

The search algorithms in the query processing component
(details see Section II-C) need to expand graph paths to get
the final skyline answer-objects. The expansion of a graph
path happens at the ending node of this path. The graph path
expansion is prohibitively expensive. To accelerate this step,
the search algorithm is designed to prune POIs that are not
possible to be a skyline answer-object. To improve the pruning
efficiency, the CSQ system builds an index, Local Skyline
Objects (LSO) index, to organize the candidate skyline answer-
objects for the ending nodes of the graph paths that need to be
expanded. The detailed structure and design of the LSO index
can be found from [3].

C. Query Processing Component

The query processing component implements the optimized
exact search algorithm and two approximate algorithms pro-
posed in [3].

The exact search algorithm can find all the skyline answers.
This algorithm first identifies all the possible graph nodes that
can be the starting node of a graph path. Then, it expands the
graph nodes to graph paths (paths over MCTN) that are not
dominated by any other paths. From the ending nodes of the
graph paths, skyline objects can be reached. The number of
the graph paths is exponential to the length of the paths. Thus,

Uhttps://neodj.com/

1747

Authorized licensed use limited to: New Mexico State University. Downloaded on August 23,2020 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

this approach is very inefficient and not practical to be utilized
in real situation.

The two heuristic algorithms that return approximate solu-
tions improve the performance of the exact search method.
The first heuristic method is called Range Approximate
Method. It finds approximate skyline answers by constraining
the distance from the query point to the starting graph node
and the distance from the ending graph node to the candidate
skyline answer-object. The second heuristic method is called
Mixed Approximate Method. It builds upon the ranged
approximate method and further reduces the skyline answers
by constraining the graph paths that need to be expanded.
In particular, a graph path is expanded only when one of its
weight values is minimal.

Besides implementing the presented algorithms in [3]. The
CSQ system implements two new features to make it more
friendly. First, the CSQ system allows the query point ¢ to be
any point that a user can specify on a map (e.g., by clicking
a map location or by inputting an address). This generalizes
the setting of [3], in which a query point needs to be an
object in D. This generalization makes it more challenging
to answer CSQs. When ¢ € D, we can use the properties of
q to prune POIs that are dominated by g, which reduces the
search space. However, when ¢ is generalized, its properties
are not in the database. Thus, it cannot be used to prune any
POI. We address this issue by assuming that all POIs to be
candidates for skyline answer-objects.

Second, the CSQ system adds one more constraint to the
search algorithms by constraining the length of graph paths.
This constraint is introduced to increase the system’s usability
in real life. In big cities, the above two heuristic methods
still generate many (e.g., several hundreds) skyline answer-
objects for a given query. The large answer set may confuse
users. Also, displaying all these objects together messes up the
interface. Introducing this constraint not only speeds up the
query process, but also generates more decent skyline answer-
set. This constraint can be incorporated with the exact search
and two approximate search methods.

D. Web Interface

The user interface accepts queries with parameters and
visualizes the skyline answers. A query point ¢ and the query
processing methods are two mandatory parameters. The query
point can be entered in four different ways. (i) ¢ can be
selected from the list of D. (ii) ¢ can be the user’s current
location (when it is available) represented with coordinates.
(iii) ¢ can be chosen by directly clicking the map (the
coordinates of ¢ are captured). (iv) ¢ can be entered as an
address, which is converted to the corresponding coordinates
by the Google maps geocoding APIs. When the coordinates
of ¢ are provided and the distance between g and an object
o € D is less than 30 meters, the CSQ system assumes that
the query is equivalent to 0. The query method is chosen from
the Mixed Approximate, the Range Approximate, and the Exact
improved Index. These methods all utilize the LSO index.

TABLE I
ACCEPTED PARAMETERS
‘ Parameter | Description |
City name The city where the query happens

POI Type
Distance threshold

The type of the desired skyline answer-objects
The maximum distance that a user is willing
to walk from the query point to the starting
bus stop/metro station and from the ending bus
stop/metro station to a target object

The maximum length of a graph path

Number of stops

Besides the two mandatory parameters, a user can input four
optional parameters, which are listed in Table I. The parameter
City name is used to narrow the search space in a reasonable
manner. The parameter POI type captures the type of the user’s
target object. The parameters, distance threshold and number
of stops, are used in the two approximate search methods.
When the number of stops is not provided, the new constraint
of limiting the length of graph paths is not applied.

The skyline answer is a set of objects of the given POI type.
For each skyline answer-object, there may be multiple paths
to reach it. To display these two parts of information, the CSQ
system adds a result review panel to the left of a Google Map
interface. When the query processing component returns an
answer set, The skyline answer-objects are listed at the result
view panel and are marked on the map. When a user clicks
one skyline answer-object, the paths following which a user
can reach this object from the query point are highlighted. The
paths comprise three parts: (i) the walking path from the query
point to the starting node vs of the graph path, (ii) the graph
path from v to its ending node v, (iii) and the walking path
from v, to the skyline answer-object.

When a skyline answer-object is clicked, a pop-up window
shows its information, which includes its non-spatial proper-
ties, the total walking distance, the estimated travel fare, the
total travel distance and travel time.

Besides the web interface, restful web service APIs are also
provided. A user can directly use the restful URL to get the
results in JavaScript Object Notation (JSON) format.

III. DEMONSTRATION

This section demonstrates the usage of the CSQ system
by utilizing a real-life scenario, and compares the results
generated by two different methods. For this demo, we pre-
load the POIs and the public transportation networks in three
cities, New York (NY), Los Angeles (LA), and San Francisco
(SF), to the system. The dataset D contains 25,854 POlIs
(14,155 for LA, 2,110 for SF, and 9,589 for NY respec-
tively). For each POI, we extract its location information and
three non-spatial attributes (rating, price, and interestingness).
For the transportation networks, we extract 5,127 nodes and
11,152 edges for NY, 9,041 nodes and 13,615 edges for
SF, and 12,433 nodes and 22,752 edges for LA, from the
https://rideschedules.com site.

A. Real-life Scenario

Let us consider a real-life application scenario. Alice attends
a conference in San Francisco and wants to find a hotel with

1748

Authorized licensed use limited to: New Mexico State University. Downloaded on August 23,2020 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

a reasonable price and good service. The conference venue
is treated as a query point, and the hotel that she wants to
find is one skyline answer-object. Alive has more constraints
about the desired hotel: it can be reached by taking public
transportation, and the transportation fare and the travel time
should be reasonable. Also, Alice does not want to take a bus
for too long (e.g., at most ten stops), and she does not want
to walk too much from the conference venue to the starting
bus stop and from the ending bus stop to the desired hotel.

Fig. 3. The Query Process

Fig. 3 shows how Alice utilizes the CSQ system to complete
the query and find her desired hotel. First, Alice identifies the
query point as the conference venue by clicking the location
of the conference venue or finding the conference venue from
the list of D, chooses the search method, inputs the other
parameters (e.g., city name is San Francisco, POI type is
hotel, number of bus stops is 10), and click show results (Fig.
3(a)). Then, the skyline answer-objects (the possible hotels) are
returned, listed at the left panel (Fig. 3(b)), and pined as green
markers on the map. Next, Alice can click one hotel from the
left panel, the map interface shows the public transportation
routes to reach this hotel from the conference venue 3(c). The
dashed lines represent the walking route from the conference
venue to the starting bus stop and from the ending bus stop to
the target hotel. The solid lines display the bus/metro route.
The blue markers connected by the solid lines are the bus stops
or metro stations. The different paths from the query point to
the same object are shown in different colors. The information
of a hotel is shown in a pop-up window (Fig. 3(d)). It tells
Alice the properties of the hotel and the cost (including travel
time and expense) of each path.

B. Comparison of Exact and Approximate Search Algorithms

The running time of the different algorithms is compared
and reported in [3]. This demo focuses on examining the
meaningfulness of the skyline results. In particular, we show
how scattered the skyline answer-points are. Fig. 4(a) shows
the results from the exact search algorithm. The skyline
answer-points are scattered in almost the whole map of SF.
We notice that some results are not reasonable. For example,
the skyline answer-objects Q and J are too far away from the
query point, which can be seen from the figure. Furthermore,

(a) Exact Method on SF (b) Approx Range Method on
SF

Fig. 4. The comparison of the exact method and heuristic approaches

the user needs to walk a very long distance to Q and J (6380
meters and 7203 meters respectively), which is not shown in
the figure due to space limitation.

Fig. 4(b) shows the results returned by the Range approx-
imate method with same query setting. The results are more
meaningful: the skyline objects are scattered in an area closer
to the query point. The properties of each skyline answer-
object are reasonable. When the maximum number of bus
stops/metro stations is given, the system responds much faster
and the skyline answer-set is more concise.

IV. CONCLUSIONS & PROPOSAL

We implement the CSQ system to answer the MCTN-
constrained CSQs, which was first proposed by us in [3]. This
work demonstrates the CSQ system. The CSQ system pre-
loads data (POIs and public transportation networks) of three
cities (LA, NY, and SF) and can support query processing
using one exact and two approximate search algorithms. Using
this CSQ system, attendees can test answering CSQs in the
above three cities. The demonstration can help participants
understand the skyline answers shown on the list panel (skyline
answer-objects) and the map panel (graph paths). Based on the
understanding of the results, users can choose the desired POI.

REFERENCES

[1] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-tree: an efficient and robust access method for points
and rectangles. In Proceedings of the 1990 ACM SIGMOD international
conference on Management of data, volume 19, pages 322-331, 1990.
Stephan Borzsony, Donald Kossmann, and Konrad Stocker. The skyline
operator. In ICDE, pages 421-430. IEEE, 2001.

Qixu Gong, Huiping Cao, and Parth Nagarkar. Skyline queries con-

strained by multi-cost transportation networks. In /ICDE, pages 926-937.

IEEE, 2019.

[4] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. Route skyline
queries: A multi-preference path planning approach. In ICDE, pages 261—
272. IEEE, 2010.

[5] Kyriakos Mouratidis, Yimin Lin, and Man Lung Yiu. Preference queries
in large multi-cost transportation networks. In ICDE, pages 533-544.
IEEE, 2010.

[6] Michael Shekelyan, Gregor Jossé, and Matthias Schubert. Linear path
skylines in multicriteria networks. In /ICDE, pages 459-470. IEEE, 2015.

[7]1 Bin Yang, Chenjuan Guo, Christian S Jensen, Manohar Kaul, and Shuo
Shang. Multi-cost optimal route planning under time-varying uncertainty.
In ICDE, 2014.

[2

[3

1749

Authorized licensed use limited to: New Mexico State University. Downloaded on August 23,2020 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

