
CSQ System: A System to Support Constrained
Skyline Queries on Transportation Networks

Qixu Gong
Computer Science

New Mexico State University
Las Cruces, New Mexico

qixugong@nmsu.edu

Jiefei Liu
Computer Science

New Mexico State University
Las Cruces, New Mexico

jiefei@nmsu.edu

Huiping Cao
Computer Science

New Mexico State University
Las Cruces, New Mexico

hcao@nmsu.edu

Abstract—Skyline queries find the representative data points
from a multi-dimensional dataset, which are better than other
data points on at least one dimension. A multi-cost transportation
network (MCTN) can be modeled as a multi-dimensional dataset.
The MCTN-constrained skyline query (CSQ) is a type of skyline
queries on MCTN where the query point and the skyline answer-
objects are points of interest (POI) that are off the network, and
the answer-points need to be reached from the query point by
utilizing the MCTN. CSQ is useful in many applications such
as trip planning and apartment selection. For example, when a
person wants to find an apartment, he/she may consider not only
the price and the number of rooms of the apartment but also
the cost and travel time of using public transportation from his
apartment to his/her office.

In this paper, we present a system to answer MCTN-
constrained CSQs, namely CSQ system. This system is imple-
mented as a web application, which allows users to input a query
point from a web interface, get the skyline result by using several
algorithms, and display the result on the web interface. We load
the POIs and public transportation networks of three cities (Los
Angeles, San Francisco, and New York) to the system, and explain
how users can interact with the CSQ system.

Index Terms—Skyline queries, Transportation networks,
Multi-dimensional data

I. INTRODUCTION

The skyline query, first introduced in [2], is an important and

useful operator in finding representative objects from a multi-

dimensional dataset. The answer to a skyline query consists

of objects that are better than other objects on at least one

dimension. The brute-force method to find skyline answer-

objects from a given dataset is very expensive. Many studies

on skyline queries focus on utilizing the characteristics of the

data to speed up the query process. Other studies attempt

to reduce the size of the skyline answer-set by customizing

skyline queries.

Conducting skyline queries on multi-cost networks (MCNs)

has been studied [4]–[7] in recent years. Two examples of

MCNs are road networks and multi-cost transportation net-

works (MCTNs). In an MCN, the weights of the edges are

multi-dimensional. The skyline queries on MCTNs are more

complex than traditional skyline queries because both the non-

spatial and the spatial attribute information of the data points,

and the spatial relationship between data points are considered.

They also provide a more general perspective than queries on

graphs with single-dimensional weights. In real applications

(e.g., trip planning), the decision is made on multiple factors

(or dimensions) such as the price, travel time, and travel cost.

The MCTN-constrained skyline query, MCTN-CSQ or CSQ

for short, is a new type of skyline queries on an MCTN [3].

Given an MCTN G, where the edge weights have dG dimen-

sions, a set of points of interest (POIs) D, where each POI has

dD non-spatial properties, and a query object q, CSQ returns

the set of skyline answer-objects R ⊂ D. Note that the object

(or POI) o ∈ D can be on or off the MCTN G. The cost of any

skyline answer-object is less than other objects not in R on

at least one dimension. The cost of a skyline answer-object R
consists of the properties of its corresponding POI o ∈ D and

the cost of a graph path when traveling from q to o through

the MCTN G.

For example, to find a good and cheap apartment that can be

reached by taking a bus from a company, we need to consider

not only the apartment’s properties, but also the cost of the

MCTN path. Fig. 1 shows that the properties of an apartment

are its price and ranking, while the costs of the graph path from

q to o are the walking distance, and the travel time and cost

using the MCTN. The overall cost of an apartment o contains

the union of the apartment property and the graph path cost.

Fig. 1. Example of MCTN-CSQ: the cost of a skyline answer-object consists
of the graph path cost (walking distance denoted using dash lines, travel fare,
travel time) and the object’s property (price, the environment)

MCTN-CSQ is very useful for applications such as trip

planning and apartment selection.

No existing system can support CSQ on MCTN yet. We

design a new system (CSQ system) to support CSQs. The

CSQ system is implemented using an interactive map-based

Web interface. It has the following functionality. (i) Answering

CSQ: Our CSQ system provides a web interface to enable a

user to input a customized CSQ. The system processes the

CSQ and returns the skyline answer-objects for query q. (ii)

1746

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00160

Authorized licensed use limited to: New Mexico State University. Downloaded on August 23,2020 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

Understanding CSQ result: The CSQ result consists of the

skyline POIs and the paths from the query point to these POIs.

The system provides a friendly interface for users to examine

those skyline answer-objects and the paths to reach those

objects using MCTN. (iii) Comparing CSQ query processing

algorithms: The system has implemented several algorithms to

process the CSQ queries. Users can compare the effectiveness

of the algorithms.

This CSQ system is built upon our work [3], which is

the first work on solving the MCTN-CSQ problem. In [3],

we propose an exact search algorithm (based on best-first

search), two heuristic approximate approaches, and an index

structure to process CSQs. The CSQ system has added two
new features to make the system more friendly and to execute

the algorithms more efficiently (Section II-C).

The paper is organized as follows. Section II presents

the architecture of the CSQ system. Section III explains the

usage of the system using a real-life example and compares

the results returned by the exact search algorithm and the

approximate methods. Section IV concludes this work.

II. OVERVIEW OF THE CSQ SYSTEM

A. System Architecture

Fig. 2 shows the architecture of the CSQ system. The

CSQ system consists of three major components. (i) The data

storage and indexing component stores the POIs and the public

transportation networks. (ii) The query processing component

implements the exact and approximate search algorithms to

answer CSQs. (iii) The web interface provides an interactive

user interface (UI) to allow users to input queries and other

related parameters, and also to visualize the CSQ answers.

Fig. 2. Architecture of the CSQ system

B. Data Storage and Indexing Component

The CSQ system manages two types of data, the POIs D
and MCTN G. Examples of POIs are restaurants and hotels

that can be found from Yelp and Foursquare. Examples of

MCTN are bus and metro lines downloaded from Google

Maps, OpenStreetMap, and Rideschedules.

We utilize the R∗ tree [1] and a Neo4j1 graph database to

store D and G respectively. R∗ tree is a well-known spatial

index which can be used to support different types of spatial

queries. The set D contains all the POI objects. For each

POI object, we keep its non-spatial attributes (e.g., price and

review level of a hotel) and its location. The objects o ∈ D
with their non-spatial attribute values are indexed using an R∗

tree. This is used to support comparisons over the non-spatial

attributes, which are needed in finding skyline answer-objects.

The spatial information of objects in D are not indexed.

Public transportation networks (e.g., bus line information)

are stored using Neo4j. Neo4j is a widely used graph database

management system. It can store graph nodes, edges, and

properties efficiently. Neo4j provides APIs in different pro-

gramming languages. These APIs enable users to implement

many different customized graph algorithms. In the graph

database, each vertex v ∈ G represents a bus stop or a

metro station in MCTN. Its spatial information (latitude and

longitude) is stored as vertex properties in the graph database.

An edge e = (vi, vj) represents that there exists a bus line (or

a metro line) segment that can go from a bus stop (or station)

vi to another bus stop (or station) vj . Each edge has multi-cost

weights (e.g., the fare and the travel time) which are stored as

edge properties in the graph database.

The search algorithms in the query processing component

(details see Section II-C) need to expand graph paths to get

the final skyline answer-objects. The expansion of a graph

path happens at the ending node of this path. The graph path

expansion is prohibitively expensive. To accelerate this step,

the search algorithm is designed to prune POIs that are not

possible to be a skyline answer-object. To improve the pruning

efficiency, the CSQ system builds an index, Local Skyline

Objects (LSO) index, to organize the candidate skyline answer-

objects for the ending nodes of the graph paths that need to be

expanded. The detailed structure and design of the LSO index

can be found from [3].

C. Query Processing Component

The query processing component implements the optimized

exact search algorithm and two approximate algorithms pro-

posed in [3].

The exact search algorithm can find all the skyline answers.

This algorithm first identifies all the possible graph nodes that

can be the starting node of a graph path. Then, it expands the

graph nodes to graph paths (paths over MCTN) that are not

dominated by any other paths. From the ending nodes of the

graph paths, skyline objects can be reached. The number of

the graph paths is exponential to the length of the paths. Thus,

1https://neo4j.com/

1747

Authorized licensed use limited to: New Mexico State University. Downloaded on August 23,2020 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

this approach is very inefficient and not practical to be utilized

in real situation.

The two heuristic algorithms that return approximate solu-

tions improve the performance of the exact search method.

The first heuristic method is called Range Approximate
Method. It finds approximate skyline answers by constraining

the distance from the query point to the starting graph node

and the distance from the ending graph node to the candidate

skyline answer-object. The second heuristic method is called

Mixed Approximate Method. It builds upon the ranged

approximate method and further reduces the skyline answers

by constraining the graph paths that need to be expanded.

In particular, a graph path is expanded only when one of its

weight values is minimal.

Besides implementing the presented algorithms in [3]. The

CSQ system implements two new features to make it more

friendly. First, the CSQ system allows the query point q to be

any point that a user can specify on a map (e.g., by clicking

a map location or by inputting an address). This generalizes

the setting of [3], in which a query point needs to be an

object in D. This generalization makes it more challenging

to answer CSQs. When q ∈ D, we can use the properties of

q to prune POIs that are dominated by q, which reduces the

search space. However, when q is generalized, its properties

are not in the database. Thus, it cannot be used to prune any

POI. We address this issue by assuming that all POIs to be

candidates for skyline answer-objects.

Second, the CSQ system adds one more constraint to the

search algorithms by constraining the length of graph paths.

This constraint is introduced to increase the system’s usability

in real life. In big cities, the above two heuristic methods

still generate many (e.g., several hundreds) skyline answer-

objects for a given query. The large answer set may confuse

users. Also, displaying all these objects together messes up the

interface. Introducing this constraint not only speeds up the

query process, but also generates more decent skyline answer-

set. This constraint can be incorporated with the exact search

and two approximate search methods.

D. Web Interface

The user interface accepts queries with parameters and

visualizes the skyline answers. A query point q and the query

processing methods are two mandatory parameters. The query

point can be entered in four different ways. (i) q can be

selected from the list of D. (ii) q can be the user’s current

location (when it is available) represented with coordinates.

(iii) q can be chosen by directly clicking the map (the

coordinates of q are captured). (iv) q can be entered as an

address, which is converted to the corresponding coordinates

by the Google maps geocoding APIs. When the coordinates

of q are provided and the distance between q and an object

o ∈ D is less than 30 meters, the CSQ system assumes that

the query is equivalent to o. The query method is chosen from

the Mixed Approximate, the Range Approximate, and the Exact
improved Index. These methods all utilize the LSO index.

TABLE I
ACCEPTED PARAMETERS

Parameter Description

City name The city where the query happens

POI Type The type of the desired skyline answer-objects
Distance threshold The maximum distance that a user is willing

to walk from the query point to the starting
bus stop/metro station and from the ending bus
stop/metro station to a target object

Number of stops The maximum length of a graph path

Besides the two mandatory parameters, a user can input four

optional parameters, which are listed in Table I. The parameter

City name is used to narrow the search space in a reasonable

manner. The parameter POI type captures the type of the user’s

target object. The parameters, distance threshold and number
of stops, are used in the two approximate search methods.

When the number of stops is not provided, the new constraint

of limiting the length of graph paths is not applied.

The skyline answer is a set of objects of the given POI type.

For each skyline answer-object, there may be multiple paths

to reach it. To display these two parts of information, the CSQ

system adds a result review panel to the left of a Google Map

interface. When the query processing component returns an

answer set, The skyline answer-objects are listed at the result

view panel and are marked on the map. When a user clicks

one skyline answer-object, the paths following which a user

can reach this object from the query point are highlighted. The

paths comprise three parts: (i) the walking path from the query

point to the starting node vs of the graph path, (ii) the graph

path from vs to its ending node vt, (iii) and the walking path

from vt to the skyline answer-object.

When a skyline answer-object is clicked, a pop-up window

shows its information, which includes its non-spatial proper-

ties, the total walking distance, the estimated travel fare, the

total travel distance and travel time.

Besides the web interface, restful web service APIs are also

provided. A user can directly use the restful URL to get the

results in JavaScript Object Notation (JSON) format.

III. DEMONSTRATION

This section demonstrates the usage of the CSQ system

by utilizing a real-life scenario, and compares the results

generated by two different methods. For this demo, we pre-

load the POIs and the public transportation networks in three

cities, New York (NY), Los Angeles (LA), and San Francisco

(SF), to the system. The dataset D contains 25,854 POIs

(14,155 for LA, 2,110 for SF, and 9,589 for NY respec-

tively). For each POI, we extract its location information and

three non-spatial attributes (rating, price, and interestingness).

For the transportation networks, we extract 5,127 nodes and

11,152 edges for NY, 9,041 nodes and 13,615 edges for

SF, and 12,433 nodes and 22,752 edges for LA, from the

https://rideschedules.com site.

A. Real-life Scenario

Let us consider a real-life application scenario. Alice attends

a conference in San Francisco and wants to find a hotel with

1748

Authorized licensed use limited to: New Mexico State University. Downloaded on August 23,2020 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

a reasonable price and good service. The conference venue

is treated as a query point, and the hotel that she wants to

find is one skyline answer-object. Alive has more constraints

about the desired hotel: it can be reached by taking public

transportation, and the transportation fare and the travel time

should be reasonable. Also, Alice does not want to take a bus

for too long (e.g., at most ten stops), and she does not want

to walk too much from the conference venue to the starting

bus stop and from the ending bus stop to the desired hotel.

Fig. 3. The Query Process

Fig. 3 shows how Alice utilizes the CSQ system to complete

the query and find her desired hotel. First, Alice identifies the

query point as the conference venue by clicking the location

of the conference venue or finding the conference venue from

the list of D, chooses the search method, inputs the other

parameters (e.g., city name is San Francisco, POI type is

hotel, number of bus stops is 10), and click show results (Fig.

3(a)). Then, the skyline answer-objects (the possible hotels) are

returned, listed at the left panel (Fig. 3(b)), and pined as green

markers on the map. Next, Alice can click one hotel from the

left panel, the map interface shows the public transportation

routes to reach this hotel from the conference venue 3(c). The

dashed lines represent the walking route from the conference

venue to the starting bus stop and from the ending bus stop to

the target hotel. The solid lines display the bus/metro route.

The blue markers connected by the solid lines are the bus stops

or metro stations. The different paths from the query point to

the same object are shown in different colors. The information

of a hotel is shown in a pop-up window (Fig. 3(d)). It tells

Alice the properties of the hotel and the cost (including travel

time and expense) of each path.

B. Comparison of Exact and Approximate Search Algorithms

The running time of the different algorithms is compared

and reported in [3]. This demo focuses on examining the

meaningfulness of the skyline results. In particular, we show

how scattered the skyline answer-points are. Fig. 4(a) shows

the results from the exact search algorithm. The skyline

answer-points are scattered in almost the whole map of SF.

We notice that some results are not reasonable. For example,

the skyline answer-objects Q and J are too far away from the

query point, which can be seen from the figure. Furthermore,

(a) Exact Method on SF (b) Approx Range Method on
SF

Fig. 4. The comparison of the exact method and heuristic approaches

the user needs to walk a very long distance to Q and J (6380

meters and 7203 meters respectively), which is not shown in

the figure due to space limitation.
Fig. 4(b) shows the results returned by the Range approx-

imate method with same query setting. The results are more

meaningful: the skyline objects are scattered in an area closer

to the query point. The properties of each skyline answer-

object are reasonable. When the maximum number of bus

stops/metro stations is given, the system responds much faster

and the skyline answer-set is more concise.

IV. CONCLUSIONS & PROPOSAL

We implement the CSQ system to answer the MCTN-

constrained CSQs, which was first proposed by us in [3]. This

work demonstrates the CSQ system. The CSQ system pre-

loads data (POIs and public transportation networks) of three

cities (LA, NY, and SF) and can support query processing

using one exact and two approximate search algorithms. Using

this CSQ system, attendees can test answering CSQs in the

above three cities. The demonstration can help participants

understand the skyline answers shown on the list panel (skyline

answer-objects) and the map panel (graph paths). Based on the

understanding of the results, users can choose the desired POI.

REFERENCES

[1] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-tree: an efficient and robust access method for points
and rectangles. In Proceedings of the 1990 ACM SIGMOD international
conference on Management of data, volume 19, pages 322–331, 1990.

[2] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. The skyline
operator. In ICDE, pages 421–430. IEEE, 2001.

[3] Qixu Gong, Huiping Cao, and Parth Nagarkar. Skyline queries con-
strained by multi-cost transportation networks. In ICDE, pages 926–937.
IEEE, 2019.

[4] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. Route skyline
queries: A multi-preference path planning approach. In ICDE, pages 261–
272. IEEE, 2010.

[5] Kyriakos Mouratidis, Yimin Lin, and Man Lung Yiu. Preference queries
in large multi-cost transportation networks. In ICDE, pages 533–544.
IEEE, 2010.

[6] Michael Shekelyan, Gregor Jossé, and Matthias Schubert. Linear path
skylines in multicriteria networks. In ICDE, pages 459–470. IEEE, 2015.

[7] Bin Yang, Chenjuan Guo, Christian S Jensen, Manohar Kaul, and Shuo
Shang. Multi-cost optimal route planning under time-varying uncertainty.
In ICDE, 2014.

1749

Authorized licensed use limited to: New Mexico State University. Downloaded on August 23,2020 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

