
How is Energy Consumed in Smartphone Deep Learning Apps?
Executing Locally vs. Remotely

Haoxin Wang∗, BaekGyu Kim†, Jiang Xie∗, and Zhu Han‡
∗University of North Carolina at Charlotte, Charlotte, NC 28223, U.S.A.
†Toyota Motor North America (TMNA) R&D InfoTech Labs, U.S.A.

‡University of Houston, Houston, TX 77004, U.S.A.

Abstract—Applying deep learning to object detection provides
the capability to accurately detect and classify complex objects
in the real world. However, currently, few mobile applications
use deep learning because such technology is computation- and
energy-intensive. This paper, to the best of our knowledge,
presents the first detailed experimental study of the smartphone’s
energy consumption and the detection latency of executing deep
Convolutional Neural Networks (CNN) optimized object detec-
tion, either locally on the smartphone or remotely on an edge
server. We experiment with a variety of smartphones, obtaining
different levels of computation capacities, in order to ensure that
we are not profiling a specific device. Our detailed measurements
refine the energy analysis of smartphones and reveal some
interesting perspectives regarding the energy consumption of
executing the deep CNN optimized object detection. We believe
that these findings will guide the design of energy efficient
processing pipeline of the CNN optimized object detection.

I. INTRODUCTION

With the advancement in Deep Learning in the past few

years, we are able to create complex machine learning models

for detecting objects in real-time video frames. This advance-

ment has the potential to make Augmented Reality (AR) de-

vices highly intelligent and enable industries to favor machine

learning models with superior performance. For example,

AR automotive applications (e.g., deep learning-based AR

head-up-displays (HUDs)) are promised to help increase road

safety, bring intuitive activities to driving, and enhance driving

experience in the future. Meanwhile, as people nowadays are

using their smartphones to a larger extent and also expect

increasingly advanced performance from their mobile applica-

tions, the industry needs to adopt more advanced technologies

to meet such expectations. One such adoption could be the use

of deep learning-based AR applications.
However, few mobile AR applications use deep learning to-

day because of inadequate infrastructure support (e.g., limited

computation capacity and battery resource of smartphones).

Deep learning algorithms are computation-intensive, and ex-

ecuted locally in ill-equipped smartphones may not provide

acceptable latency for end users. For instance, in Deepmon

[1], it takes approximately 600 ms for small and medium

convolutional neural network (CNN) models and almost 3
seconds for large CNN models to process one frame, which

is obviously not acceptable for real-time processing.
Two research directions have emerged to address this chal-

lenge. The first direction is to tailor the computation-intensive

This work was supported in part by the US National Science Foundation
(NSF) under Grant No. 1718666, 1731675, 1910667, and 1910891 and funds
from Toyota Motor North America.

deep learning algorithms to be executed on smartphones.

For instance, Tiny-YOLO [2] that has only 9 convolutional

layers (24 convolutional layers in a full YOLO network) is

developed and optimised for the use on embedded and mo-

bile devices. Tensorflow Lite [3] is TensorFlow’s lightweight

solution for embedded and mobile devices. It enables low-

latency inference of on-device machine learning models with

a small binary size and fast performance supporting hardware

acceleration. However, the reduction of the inference latency

is at the cost of the precision degradation of the detection. The

other research direction that is widely used in running deep

learning in smartphones is to transfer all the computation data

to more powerful infrastructures (e.g., the remote cloud and

edge servers) and execute deep learning algorithms there [4]–

[6]. Such offloading-based solutions can reduce the inference

latency and extend smartphones’ battery life only when the

network access is reliable and sufficiently fast.

Our motivation. Although the complexity and capabilities

of smartphones are growing at an amazing pace, smartphones

are expected to continually become lighter and slimmer. When

combined with energy-hungry deep learning-based applica-

tions, the limited battery capacity allowed by these expec-

tations now motivates significant investment into smartphone

power management research. In order to better investigate and

understand the relationship between the energy consumption

and the performance of deep learning-based applications, we

propose the following questions:

1) How is energy consumed when a deep learning-based
application is executed locally?

2) Does smartphone’s computation capacity impact the en-
ergy consumption when a deep learning-based applica-
tion is executed locally? It is intuitive that the smartphone

with higher computation capacity can achieve a lower

inference latency. However, the energy consumption is

more complicated to analyze. This is because, for exam-

ple, the smartphone with more powerful processors may

drain its battery faster.

3) Does transferring all the computation data to a powerful
infrastructure significantly decrease the energy consump-
tion and latency? When a deep learning-based applica-

tion is executed remotely, communication latency is non-

negligible and unstable, especially in wireless networks.

Previous work [7] shows that smartphone’s radio inter-

faces account for up to 50% of the total power budget.

In addition, improved communication speeds generally

978-1-7281-0962-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on October 28,2020 at 07:55:11 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SMARTPHONES AND THE EDGE SERVER USED IN OUR STUDY.

Manufacturer Samsung Google Asus Nvidia

Model Galaxy S5 Nexus 6 ZenFone AR Jetson AGX Xavier
OS Android 6.0.1 Android 5.1.1 Android 7.0 Ubuntu 18.04 LTS aarch64
SoC Snapdragon 801 (28 nm) Snapdragon 805 (28 nm) Snapdragon 821 (14 nm) Xavier
CPU 32-bit 4-core 2.5GHz Krait 400 32-bit 4-core 2.7GHz Krait 450 64-bit 4-core 2.4GHz Kryo 64-bit 8-core 2.26GHz Carmel

GPU 578MHz Adreno 330 600MHz Adreno 420 653MHz Adreno 530
512-core 1377MHz Volta

with 64-TensorCores
RAM 2GB 3GB 6GB 16GB
WiFi 802.11n/ac, MIMO 2× 2 802.11n/ac, MIMO 2× 2 802.11n/ac/ad, MIMO 2× 2 —

Release date April 2014 November 2014 July 2017 September 2018

come at the cost of higher power consumption [8].

4) Besides the network condition, what impact the energy
consumption and latency when executed remotely, and
how?

Our contributions. In this paper, we conduct the first

detailed experimental study of the energy consumption and

the performance of a deep CNN optimized object detection

application on smartphones. We experiment with a variety

of smartphones, obtaining different levels of computation

capacities, in order to ensure that we are not profiling a

specific device. Our goal is to identify common trends across
different devices that can potentially guide the design of en-
ergy optimizations for future CNN optimized object detection
applications. We make the following contributions:

1) Developing two Android applications that perform real-

time object detection: one is running a small CNN locally

on the smartphone and the other is running a large CNN

remotely on an edge server.

2) Evaluating the energy consumption and the latency of

each phase in the implemented end-to-end deep CNN

optimized object detection processing pipeline. We per-

form these measurements on multiple smartphones with

different levels of computation capacities.

3) Evaluating the impact of smartphone image post pro-

cessing on smartphone’s power consumption and object

detection performance and providing insights on future

energy-efficient design.

II. RELATED WORK

Deep learning. In recent years, applying CNNs to object

detection has been proven to achieve excellent performance

[1], [2], [9]. In [10], the speed and accuracy trade-offs of

various modern CNN models are compared. However, none

of these works considered the performance of running CNNs

on smartphones.

Experimental study on CNNs. Although existing papers

have extensively investigated how to run CNN models on

mobile devices, including model compression of CNNs [11],

GPU acceleration [1], and only processing important frames

[12], none of these works considered the energy consumption

of executing CNNs on smartphones. In [13], a small number

of measurements on the battery drain of running a CNN

on a powerful smartphone are conducted. However, firstly,

its battery drain results are reported by the Android OS

that can only provide coarse-grained results. For example, it

only shows the total battery usage of running a CNN on a

smartphone for 30 minutes. Secondly, it only studies running

CNNs on smartphones with high computation capabilities and

the experimental results are not comparable to smartphones

with poor computation capabilities.

III. EXPERIMENTAL METHODOLOGY

A. Hardware setup

Our study was performed using three different smartphones.

We summarize their characteristics in Table I. We classify

them into two classes, low-end and high-end smartphones,

according to their general hardware performance tested by

using an Antutu benchmark [14]. The testing results are shown

in Table II. In addition, we emulate an edge server with an

Nvidia Jetson AGX Xavier, which connects to a WiFi access

point (AP) through a 1Gbps Ethernet cable. Details of our

equipped edge server are shown in Table I.

TABLE II
CLASSIFICATIONS OF THE TESTED SMARTPHONES.

Smartphone S5 Nexus 6 ZenFone AR
CPU score 36871 37521 58531
GPU score 6678 18063 67286

Image processing score 3103 6862 11321
Total score 66414 80047 173472

Class Low-end Low-end High-end

B. Software implementation

Edge server side. The edge server is developed to process

the video frames and send the detection results back to smart-

phones. We implement two major modules on the edge server.

The first one is the communication service handler module

which performs authentication and establishes a socket con-

nection with smartphones. This module is also responsible

for dispatching the detection results to corresponding smart-

phones. The second one is the object detection module which

is designed based on a custom framework called Darknet [15]

with GPU acceleration and runs YOLOv3 [2], a large neural

network model with 24 convolutional layers. The YOLOv3

model used in our experiments is trained on COCO dataset

[16] and can detect 80 classes.

Smartphone side. We implement two scenarios for our

experimental study. The first one is executing deep learning

on smartphones, defined as local execution. In this scenario,

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on October 28,2020 at 07:55:11 UTC from IEEE Xplore. Restrictions apply.

Image buffer

TCP/UDP

socket

Light

Camera

Lens

Image

sensor

Bayer

filter

Image signal

processor (ISP)

Raw Bayer image

Scale & crop

YUV_420_888

Surface

Texture

Image

Reader

Preview

surface

Preview resolution �� � ��

3A algorithms

Sensor parameters control

Noise

reduction

Color

correction

Edge

enhancement
…

Convert YUV

to RGB & crop

Frame resolution � � �
Draw

results
Local Remote

Deep

learning

CNN
Tensorflow Lite

(MobileNetv1)

Darknet
(YOLOv3)

Display on screen

Fig. 1. Processing pipeline of the deep CNN optimized object detection application implemented in this paper.

the Android implementation is based on a light framework

called Tensorflow Lite [3] which is TensorFlow’s lightweight

solution for embedded and mobile devices. It runs a small neu-

ral network model, called MobileNetv1 [11]. In order to run

MobileNetv1 with different frame resolutions in Tensorflow

Lite on smartphones, we convert a pre-trained MobileNetv1

SSD model to the FlatBuffers format. The second one is

executing deep learning on our equipped edge server, defined

as remote execution. In this scenario, a smartphone transfers

the converted RGB frames to the edge server through a socket

connection in real time. To avoid having the server process

stale frames, the smartphone sends the latest captured frame

to the server and waits to receive the detection result before

sending the next frame for processing. The detailed processing

pipeline is shown in Fig. 1.

C. Power measurement setup

To measure the power consumption, we use an external

power monitor, a Monsoon Power Monitor, to provide power

supply for the smartphone. Different from old smartphone

models, modern smartphones like Nexus 6 have very tiny

battery connectors, making it very challenging to connect the

power monitor to them. To solve this problem, we modify

the battery connection of Nexus 6 by designing a customized

circuit and soldering it to the smartphone’s power input

interface. In addition, the power measurements are taken

with the screen on, with the Bluetooth/LTE radios disabled,

and with minimal background application activity, ensuring

that the smartphone’s base power is low and does not vary

unpredictably over time. For the measurements of the power

consumption in local execution, base power is defined as the

power consumed by the smartphone when its WiFi interface

is turned off. For the measurements of the power consumption

in remote execution, base power is defined as the power

consumed when the smartphone is connected to the AP

without any data transmission activity [7], [17].

IV. EXPERIMENTAL RESULTS

In this section, we describe our efforts towards measuring

and understanding the energy consumption and the perfor-

mance of running deep CNNs on both high-end and low-end

smartphones.

A. Key metrics

Currently, object detection applications focus on the follow-

ing two critical metrics:

1) Latency/frames per second (FPS): Latency is the total

time needed to obtain the detection results on one video frame

(i.e., usually shown as one or multiple bounding boxes that

identify the location and classification of the objects in a

frame). In this paper, it is defined as the time period from

the moment the Image Reader acquiring one camera captured

image frame to the moment the bounding boxes are drawn

on the smartphone’s screen, as depicted in Fig. 1. In local

execution, the per frame total latency includes the time used

for converting the YUV frame to the RGB frame, cropping

the frame to the fitted resolution k × k, and executing deep

learning, defined as inference latency, on the smartphone. In

remote execution, the per frame total latency includes, besides

the convert and crop latencies that are both executed locally on

the smartphone, the communication latency (i.e., transmitting

the frame and receiving the results) and the inference latency

on the edge server.

2) Accuracy: The mean average precision (mAP) is a

commonly used performance metric in object detection. Better

performance is indicated by a higher mAP value. Specifically,

the average precision [18] is computed as the area under the

precision/recall curve through numerical integration. The mAP

is the mean of the average precision across all classes.

B. Local execution vs. remote execution

We first evaluate the object detection performance of both

local execution and remote execution in terms of latency, FPS,

accuracy, and energy consumption, as shown in Fig. 2 and 3.

The preview resolution is set to k1 × k2 = 640× 480 pixels.

In remote execution, we use a WiFi 5 GHz channel and TCP

socket connection to transfer data between smartphones and

the edge server.

Local execution. First, we examine the total latency of

executing object detection with different frame resolutions,

from 100×100 to 600×600 pixels, in our three smartphones.

The experimental results are shown in Fig. 2(a). We find that

(1) a higher frame resolution always results in a higher per
frame total latency. For example, for Nexus 6, the per frame

total latency surges from 569.8 ms to 2378.7 ms when the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on October 28,2020 at 07:55:11 UTC from IEEE Xplore. Restrictions apply.

500

1000

1500

2000

2500

00

2

4

6

8

10
Galaxy S5, Total latency per frame

Nexus 6, Total latency per frame

ZenFone AR, Total latency per frame

Galaxy S5, FPS
Nexus 6, FPS
ZenFone AR, FPS

100
Frame resolution (pixels x pixels)

200 300 400 500 600

500

1000

1500

2000

2500

00

2

4

6

8

10
Galaxy S5, Total latency per frame

Nexus 6, Total latency per frame

ZenFone AR, Total latency per frame

Galaxy S5, FPS
Nexus 6, FPS
ZenFone AR, FPS

100
Frame resolution (pixels x pixels)

200 300 400 500 600

mAP = 19.3

(a) Total latency per frame and FPS.

Galaxy S5, Inference latency

Nexus 6, Inference latency

Galaxy S5, Convert latency
Nexus 6, Convert latency

ZenFone AR, Convert latency

2000

100
Frame resolution (pixels x pixels)

200 300 400 500 600

1600

1200

800

400

0

 ZenFone AR, Inference latency

Galaxy S5, Inference latency

Nexus 6, Inference latency

Galaxy S5, Convert latency
Nexus 6, Convert latency

ZenFone AR, Convert latency

2000

100
Frame resolution (pixels x pixels)

200 300 400 500 600

1600

1200

800

400

0

 ZenFone AR, Inference latency

(b) Convert and inference latency per
frame.

100
Frame resolution (pixels x pixels)

0

2

4

6

8

10

12

14

16

18

200 300 400 500 600

Image generation, preview
Inference
Convert
Base
Others

(c) Average energy consumption
per frame breakdown (Nexus 6).

generation,
Image

preview

Base
Convert

Inference

Others

(d) Average percentage breakdown of
energy consumed in executing 300×
300 MobileNetv1 SSD model (Nexus
6).Fig. 2. Local execution results.

0

200

400

600

800

1000

1200

1400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100
Frame resolution (pixels x pixels)

200 300 400 500 600 700

mAP = 51.5

(a) Total latency per frame and FPS.

Galaxy S5, Inference latency
Nexus 6, Inference latency
ZenFone AR, Inference latency
Galaxy S5, Communication latency
Nexus 6, Communication latency
ZenFone AR, Communication latency

0

100

200

300

400

500

600

100
Frame resolution (pixels x pixels)

200 300 400 500 600 700

Galaxy S5, Inference latency
Nexus 6, Inference latency
ZenFone AR, Inference latency
Galaxy S5, Communication latency
Nexus 6, Communication latency
ZenFone AR, Communication latency

0

100

200

300

400

500

600

100
Frame resolution (pixels x pixels)

200 300 400 500 600 700

(b) Inference and communication la-
tency per frame.

128
Frame resolution (pixels x pixels)

224 320 416 512 608
0

2

4

1

3

5 Communication
Convert
Base
Others

Image generation, preview

128
Frame resolution (pixels x pixels)

224 320 416 512 608
0

2

4

1

3

5 Communication
Convert
Base
Others

Image generation, preview

(c) Average energy consumption
per frame breakdown (Nexus 6).

Convert

Base

Communication

Others

generation,
Image

preview

(d) Average percentage breakdown of
energy consumed in executing 320×
320 YOLOv3 model (Nexus 6).Fig. 3. Remote execution results.

frame resolution increases from 100×100 to 600×600 pixels.

(2) The high-end smartphone achieves a significantly lower
per frame total latency compared to the low-end smartphones.
For example, when the frame resolution is 300× 300 pixels,

the per frame total latency of ZenFone AR is only 20.7% and

22.9% of that of Nexus 6 and Galaxy S5, respectively.

Second, we measure the latency of each phase in the

processing pipeline. We show the latency of the two highest

time-consuming phases, convert and inference latency, in Fig.

2(b), which comes up to 95% of the per frame total latency.

We find that (1) for both high-end and low-end smartphones,
the convert latency does not vary much when the frame
resolution increases. This is because no matter what the frame

resolution k×k is configured, every YUV frame is converted

to an RGB frame with the preview resolution k1 × k2 first.

After the convert is completed, the RGB frame will be resized

to k × k pixels. (2) For low-end smartphones, the largest
time-consuming phase is converting a YUV frame to an RGB
frame when the frame resolution is smaller than 300 × 300
pixels. In contrast, when the frame resolution is larger than
300×300 pixels, inference becomes the largest latency source.
For example, for Nexus 6, the convert latency is 85.6% of

the per frame total latency when the frame resolution is

100 × 100 pixels; whereas the inference latency is 80.2%

of the per frame total latency when the frame resolution is

600 × 600 pixels. This is rather significant because most of

the previous work that evaluates the per frame latency of

object detection executed in smartphones only consider the

inference latency. However, our experimental results indicate

that the convert latency is non-negligible and sometimes larger

than the inference latency. (3) Interestingly, when the frame
resolution is small, the inference latency of the high-end and
low-end smartphones are comparable. However, the convert

latency of the high-end smartphone is always considerably
smaller than that of the low-end smartphones. For example,

when the frame resolution is 100× 100 pixels, the inference

latencies of ZenFone AR and Nexus 6 are 62.5 ms and 81.3
ms, respectively, whereas the convert latency of ZenFone AR

is 41.2 ms which is only 8.4% of the convert latency of

Nexus 6. This result indicates that when the frame resolution

is low, converting a YUV frame to an RGB frame is more

computation-intensive than running a small CNN in smart-

phones and low-end smartphones are unable to generate the

same convert performance as high-end smartphones in terms

of the convert latency.

Third, to dissect the energy drain through different process-

ing pipeline phases, we first break down the per frame total

energy consumption as follows: image generation, preview,

inference, convert, base, and others. We make the following

observations from Fig. 2(c) and 2(d). (1) The image gener-
ation and the preview always contribute the highest energy
consumption in the smartphone and grows significantly as the
frame resolution increases. Specifically, in Nexus 6, when the

frame resolution is 300× 300 pixels, on average a whopping

45.5% of the per frame total energy consumption is from

the image generation and preview. The reason why the image

generation process consumes considerably high energy is exe-

cuting the 3A (i.e., auto-focus (AF), auto-exposure (AE), and

auto-white-balance (AWB)) and multiple fine-grained image

post processing algorithms (e.g., noise reduction (NR), color

correction (CC), and edge enhancement (EE)) on image signal

processor (ISP). These sophisticated algorithms are designed

to make an image that is captured by the smartphone camera

look perfect. However, is it always necessary for the camera
captured frame to be processed by all of those energy-hungry
image processing algorithms in order to achieve a successful

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on October 28,2020 at 07:55:11 UTC from IEEE Xplore. Restrictions apply.

3000

3500

4000

4500

5000

5500

Power consumption of image

generation and preview phases

Preview resolution (pixels x pixels)

(a) Preview resolution vs. power con-
sumption.

0

500

1000

1500

2000

2500

3000

3500

(b) 3A and image post processing
algorithms vs. power consumption.

800

1200

1600

2000

2400

2800

3024151052

Power consumption of image

generation and preview phases

Camera capture frame rate (frames/second)

(c) Camera capture frame rate vs.
power consumption.

0

1

2

3

4

All on,

30 frame rate

All off,

30 frame rate

All off,

5 frame rate

(d) Comparison of the energy con-
sumption per frame (remote execu-
tion).

Fig. 4. Power consumption analyses of the image generation and preview phases.

object detection result? In addition, the number of frames

captured by the camera per second is a fixed value (e.g., 24 or

30 frames/second) or in a range (e.g., [7, 30] frames/second),

which is controlled by the AE algorithm. However, for low-

end smartphones, even if the frame resolution is small, the

detection FPS is still less than 2, as shown in Fig. 2(a),

which is far slower than the camera capture frame rate.

Furthermore, the CNN always extracts the latest captured

frame, which indicates that, from the perspective of the energy
efficiency of the object detection pipeline, capturing frames
with a fast rate is unnecessary and energy-inefficient. (2)

The inference energy consumption grows dramatically as the
frame resolution increases. For example, it accounts for 4.1%

and 33.9% of the per frame total energy consumption when

the frame resolution is 100 × 100 and 600 × 600 pixels,

respectively.

Remote execution. We next compare against the remote

execution scenario where the CNN is run on the implemented

edge server with a 5GHz WiFi link to the smartphone.

Note that we conduct our measurements in different network

conditions (e.g., the Received Signal Strength Indicator (RSSI)

at the tested smartphones or the network bandwidth gradually

drops down). However, due to the page limitation, we only

present our experimental results obtained in an excellent net-

work condition (i.e., the RSSI is in the range of −15 and −20
dBm). First, we compare the latency and FPS, as shown in Fig.

3(a) and 3(b), and make the following observations. (1) For
the high-end smartphone, the per frame total latency (FPS) is
larger (lower) than that of the local execution scenario when
the frame resolution is smaller than 512×512 pixels (note that

this observation may differ depending on how powerful the

server’s GPU is). This observation supports the fact that lots

of recently released smartphones with high computation power

possess the capability to run a small CNN model. However,

the mAP of the large CNN model on the server is better than

that of the small CNN model on the smartphone (e.g., mAP =
51.5 on the server and mAP = 19.3 on the smartphone when

the frame resolution is around 300 × 300 pixels). Generally,

different implementation cases have variant latency/accuracy

requirements. For example, the AR cognitive assistance case

where a high-end wearable device helps visually impaired

people to navigate on a street may need a low latency but can

tolerate a relatively high number of false positives (i.e., false

alarms are fine but missing any potential threats on the street

is costly) [13]. In contrast, an AR used for recommending

products in shopping malls or supermarkets may tolerate a

long latency but require high detection accuracy. Therefore,

choosing the appropriate execution approach (i.e., local or

remote) in different implementation cases is critical.

Furthermore, (2) for the low-end smartphones, the per
frame total latency (FPS) is slightly lower (higher) than that of
the local execution scenario. The reason why the latency does

not decrease significantly is the high convert latency which is

executed by the smartphone in both local and remote execution

cases. This observation is rather significant for deciding what

computation tasks should be transferred to the server. Most of

the existing works simply consider transferring the converted

RGB frames to the server. However, for low-end smartphones,
only executing the CNN in the server is inadequate to achieve
an acceptable FPS. Converting YUV to RGB frames remotely
is also desirable. (3) Interestingly, as shown in Fig. 3(b),

the frames transmitted by ZenFone AR obtain less inference
latency than the frames transmitted by Galaxy S5 under the
same conditions (i.e., the same frame resolution and camera
view). We repeated these measurements several times and got

the same results although, until now, we do not have a definite

explanation for this result.

In addition, Fig. 3(c) and 3(d) analyze the energy drain of

the smartphone by different processing pipeline phases in the

remote execution case, including image generation, preview,

communication, convert, base, and others. Compared to the

local execution scenario, we have the following observations.

(1) Similar to the local execution, image generation and pre-
view are the biggest energy consuming phases. For example, it

comes up to 56.0% of the per frame total energy consumption

when the frame resolution is 320×320 pixels. (2) Transmitting
one frame and receiving the result consume less energy
than our expectation, when the wireless network condition is
excellent. For example, on average it only accounts for 2.4%

of the per frame total energy consumption when the frame

resolution is 320×320 pixels. (3) The remote execution saves
approximately 53% energy per frame on average when the
frame resolution is larger than 128 × 128 pixels. However,

it consumes 12.9% more energy per frame than the local

execution when the frame resolution is 128 × 128 pixels.

This observation is rather significant, which demonstrates that

running deep learning remotely does not always consume less
energy than the local execution, even when the network quality

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on October 28,2020 at 07:55:11 UTC from IEEE Xplore. Restrictions apply.

(a) All enabled. (b) All disabled.

Fig. 5. Comparison of the object detection results (remote execution).

is excellent.

C. Power consumption of the image generation and preview

As we observed in Section IV-B, the image generation and

the preview are the most energy-consuming phases in both

local and remote execution cases. Thus, to reduce the energy

consumption of the object detection processing pipeline, we

must improve the energy efficiency of these two phases.

We seek to understand the interactions between the power

consumption and various factors (e.g., the preview resolution,

3A, and several image post processing algorithms) as follows.

Preview resolution vs. power consumption. We first

examine how the preview resolution influences the power

consumption of the image generation and preview phases,

as shown in Fig. 4(a). We find that as the preview resolu-
tion grows, the power consumption increases dramatically.
Therefore, a preview with a higher frame resolution on the

smartphone provides a better quality preview for users, but

at the expense of battery drain, which is applicable for both

local and remote execution cases.

Image post processing and 3A algorithms vs. power
consumption. We next examine the effect of multiple image

post processing and 3A algorithms on the power consumption

of the image generation and preview phases, as shown in

Figs. 4(b) and 4(c). Note that when the AE is disabled, we

manually set the camera ISO and exposure time to 400 and

20 ms, respectively. We observe that (1) disabling the 3A,
NR, CC, and EE algorithms decreases the power consumption
by 14.8%. We conduct another experiment to understand if

disabling these algorithms would impact the object detection

performance. As shown in Fig. 5, the detection performance

does not degrade. (2) Accelerating the camera capture frame
rate significantly increases the power consumption. As we

discussed in Section IV-B, the maximum detection FPS that

the low-end smartphones can obtain is around 2; a capture

rate larger than 2 frames/second is unnecessary and energy-

inefficient from the perspective of energy efficiency. Further-

more, we compare the per frame energy consumption among

three cases, as depicted in Fig. 4(d): all enabled with camera

capture frame rate 30, all disabled with camera capture frame

rate 30, and all disabled with camera capture frame rate 5. We

find that (3) the per frame energy consumption of the second
and the third cases decreases by approximately 10% and 27%,
respectively, compared to the first case.

V. CONCLUSION

In this paper, we presented the first detailed experimental

study of the energy consumption and the performance of a

deep CNN optimized object detection application on a variety

of smartphones. We examined both local and remote execution

cases. We found that the performance of the object detection

is heavily affected by different generations of smartphones.

Although executing deep learning on remote edge servers is

one of the most commonly used approaches to assist low-

end smartphones in improving their energy efficiency and

performance, contrary to our expectation, remote execution

does not always consume less energy and obtain lower latency,

as compared to local execution, even when the network quality

is excellent. Overall, we believe that our findings give great

insights and guidelines to the future design of energy-efficient

processing pipeline of CNN optimized object detection.

REFERENCES

[1] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile GPU-based
deep learning framework for continuous vision applications,” in Proc.
ACM Mobisys, 2017, pp. 82–95.

[2] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[3] “Tensorflow lite,” https://www.tensorflow.org/lite/.
[4] H. Wang, J. Xie, and T. Han, “A smart service rebuilding scheme across

cloudlets via mobile AR frame feature mapping,” in Proc. IEEE ICC,
2018, pp. 1–6.

[5] P. Jain, J. Manweiler, and R. R. Choudhury, “Low bandwidth offload
for mobile AR,” in Proc. ACM CoNEXT, 2016, pp. 237–251.

[6] H. Wang, B. Kim, J. Xie, and Z. Han, “E-auto: A communication
scheme for connected vehicles with edge-assisted autonomous driving,”
in Proc. IEEE ICC, 2019, pp. 1–6.

[7] H. Wang, J. Xie, and X. Liu, “Rethinking mobile devices’ energy
efficiency in WLAN management services,” in Proc. IEEE SECON,
2018, pp. 1–9.

[8] S. K. Saha, P. Deshpande, P. P. Inamdar, R. K. Sheshadri, and D. Kout-
sonikolas, “Power-throughput tradeoffs of 802.11 n/ac in smartphones,”
in Proc. IEEE INFOCOM, 2015, pp. 100–108.

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Proc. Advances in
Neural Information Processing Systems, 2015, pp. 91–99.

[10] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy trade-offs for
modern convolutional object detectors,” in Proc. IEEE CVPR, 2017.

[11] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[12] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proc. ACM Sensys, 2015, pp. 155–168.

[13] X. Ran, H. Chen, Z. Liu, and J. Chen, “Delivering deep learning to
mobile devices via offloading,” in Proc. ACM Workshop on Virtual
Reality and Augmented Reality Network, 2017, pp. 42–47.

[14] “Antutu benchmark,” https://www.antutu.com/en/.
[15] J. Redmon, “Darknet: Open source neural networks in C,” http://

pjreddie.com/darknet/, 2013–2016.
[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Proc. European Conference on Computer Vision, 2014.

[17] A. M. Srivatsa and J. Xie, “A performance study of mobile handoff
delay in IEEE 802.11-based wireless mesh networks,” in Proc. IEEE
ICC, 2008, pp. 2485–2489.

[18] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on October 28,2020 at 07:55:11 UTC from IEEE Xplore. Restrictions apply.

