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Abstract—With the development of the hardware and software
platforms, we can implement the deep learning model on the
mobile device for mobile augmented reality (AR) applications.
However, not all mobile AR tasks can be finished on mobile
devices. Meanwhile, the limited computation resources on mobile
devices are still the main obstacle to achieve realtime mobile AR
applications. In this paper, we proposed a smart-decision frame-
work which combines the advantages of the on-device mobile
AR system and the edge-based mobile AR system to achieve
real-time object recognition. High computation complexity tasks
will be offloaded to the edge servers. Low complexity tasks will be
executed on mobile devices or the edge server depending on the
network latency. To overcome the dynamic changes of network
condition and the limitations of the on-device deep learning
models, we design a cache and matching algorithm on the mobile
devices to enhance the performance of the recognition tasks. With
our proposed system, the quality of the mobile AR application
is improved. The performance of the smart-decision framework
is validated through experiments with a testbed1.

I. INTRODUCTION

Mobile augmented reality (AR) applications attract more
and more attention in recent years. Companies are develop-
ing AR platforms and devices such as Google ARCore and
Microsoft HoloLens to encourage developers to create mobile
AR applications. We can see an increasing market size of AR
applications. However, one of the most important challenges
is the limited resources on the mobile devices2, such as CPU,
GPU, memory, battery, and storage.

Mobile AR applications need a large amount of computation
resources to support the scene analysis and interactions with
users. For instance, in a smart shopping application [1], the
mobile device needs to recognize the product, including its
shape, color, and brand. Another example is the virtual tourism
application like HoloTour [2]. HoloLens will recognize the
gesture or voice commands so that a user can interact with the
virtual objects. To recognize the objects and human actions,
advanced computer vision algorithms will be deployed. Run-
ning these algorithms requires high complexity computation,
and a large amount of computation resources are required.

Existing mobile AR systems can be mainly classified into
two categories. The first one is the cloud/edge-based mobile
AR system [3]–[6]. They choose to offload recognition tasks to

1This work was supported in part by the US National Science Foundation
(NSF) under Grant No. 1718666, 1731675, 1910667, and 1910891.

2In this paper, mobile devices include smart phones and wearable equip-
ment.
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Fig. 1. The cloud/edge-based mobile AR system.

powerful servers. As shown in Fig. 1, the mobile device is used
to capture the scenes and visualize the results. The captured
data will be uploaded to the servers including both edge and
cloud servers. The servers will provide perform image analysis
using computer vision algorithms. The main advantage of
cloud/edge-based mobile AR systems is that we can apply the
advanced recognition algorithms with high precision on the
servers. However, current cloud/edge-based mobile AR system
cannot achieve fast response which is a vital feature of mobile
AR applications. The reason is that offloading will cause high
network latency.
The second one is the on-device mobile AR system [7]–[9].

Before we are able to implement the deep learning based algo-
rithms, the recognition tasks are achieved with low complexity
methods such as image feature extraction, classification, and
object tracking. The computation complexity of these methods
is lower enough to be supported by mobile devices. However,
with the development of the hardware (GPU on mobile de-
vices) and software (Google MobileNets and Tensorflow Lite),
the simple deep learning based algorithms can be directly
deployed on the mobile devices for some recognition tasks
such as the classification and object detection. The advantage
of the on-device architecture is that we can do the recognition
tasks on the device. There is no network latency involved.
However, there are several challenges to apply the on-device
models. As shown in Fig. 2. The first one is that not all the
deep learning models can be implemented on mobile devices
for mobile AR applications. The low complexity tasks such as
image recognition, object detection, and landmark recognition
can be implemented on mobile devices. The high complexity
algorithms such as the object segmentation, 3D object detec-
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tion, and image semantic analysis can only be supported by the
edge server and cloud. Secondly, the recognition performance
is not robust. For instance, the on-device models produce
wrong classification and detection results very frequently. We
can only get satisfied recognition results in some specific
scenes and applications.
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Fig. 2. The mobile AR applications challenges.

The question that we investigate in this paper is: How can
we achieve real-time recognition with high quality for mobile
AR applications? The performances of recognition tasks are
very sensitive to the latency because of the dynamic move-
ments of the objects and users. The round-trip time of mobile
AR applications is defined as the duration between the scene
captured and the recognition results received. For cloud/edge-
based system, the data size of the recognition results is very
small (less than 1KB). The latency of cloud/edge-based mobile
AR system is mainly composed of two parts: the time for
uploading the image to the remote server and time for the
vision analysis. With the help of the edge server, users can
use the basic recognition services which are deployed very
close to them. As a result, the network latency is reduced
by avoiding transmitting images to the remote cloud. With
the help of powerful GPU on the edge server, the speed of
recognition task execution can easily be faster than 24 FPS.
For on device mobile AR applications, the speed of deep
learning based algorithms on the mobile device is about 200ms
per frame.

In this paper, we proposed a smart-decision framework
which combines the advantages of the on-device mobile AR
system and the edge-based system to achieve real-time recog-
nition tasks. The framework will decide where to execute
the recognition tasks. To overcome the dynamic changes of
network condition and the limitations of the on-device deep
learning models, we design a cache and matching algorithm
on the mobile devices. Compared with other related works,
we focus on enhancing the performance of mobile AR ap-
plications. With our proposed system, the quality of the
mobile AR applications is improved. The rest of the article
is organized as follows. Section 2 shows some background
and related work. Section 3 presents the overview of the smart-
decision framework. Section 4 presents the design of the cache
and matching algorithm. Section 5 shows the performance
evaluation. We conclude the paper in Section 6.

II. BACKGROUND AND RELATED WORKS
A. Image features and object tracking

Image Features are numerical descriptors that individually
or collectively form unique signatures to describe the image.
Typically, image recognition techniques rely on discovering
multiple interesting points in the image and extracting descrip-
tors for these points. These interesting points collectively form
a signature for the image. This technique is used by many
feature detection and extraction techniques such as SIFT [10],
SURF [11] and ORB [12]. Object tracking is widely used in
Mobile AR/VR systems [3], [4], [6] before the invention of
deep learning algorithms. The advantage of adapting object
tracking is that once you recognize the objects, you don’t
need to recognize again if you can keep tracking the objects
based on their unique features. In this case, a lot of redundant
computations are void and using the tracking algorithm is fast
enough to achieve real-time processing.

B. Recognition tasks

The recognition is vital for mobile AR applications. Image
recognition is used for identifying the objects in the image
and analyzing the semantic information(like human actions)
in the image. It can help the device to understand what you
see and what you want to do, which is the first step to
allow the interaction with the environments. Recognition can
be divided into several small tasks, such as object detection,
object segmentation, semantic analysis and so on. State-of-the-
art recognition algorithms [13]–[15] can achieve high-quality
results, and they all use the deep convolutional neural networks
(CNN). Unfortunately, these deep and complicated networks
have significant computation and memory needs. In this case,
deploying them on mobile devices is very challenging. For
instance, SSD300 and Faster-RCNN300 need 34.9 and 64.3
billions of Multi-Add calculations; 33.1 and 138.5 millions of
parameters need to be calculated and maintained, respectively.
In computer vision field, there are some works which try

to build light deep neural networks to balance the latency and
accuracy of the detection and recognition models. For instance,
Howard et al. [16] presents an efficient model-MobileNets for
mobile and embedded vision applications. Although it reduces
about 80% computation complexity of current object detection
models, it still needs process millions of parameters, which
cause billions of Muti-Adds calculations. Apte et al. [17]
deploys the tiny-YOLO model on iPhone 7 to achieve the
real-time object detection. It can achieve 8-11 FPS, but the
accuracy is low. With the invention of Tensorflow Lite, some
recognition algorithms can be deployed on the mobile device
with high accuracy. The speed of running the object detection
task on the android mobiles phones is about 5-6 FPS.

C. Mobile AR systems

There are a lot of works related to the mobile AR systems.
Chen et al. [4] proposed a system called Glimpse which
combines tracking and caching to achieve object detection on
mobile devices. However, it can only detect the pre-trained
objects such as road signs and human faces. Drolia et al. [5]
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developed an edge caching solution for image recognition.
It will predict the objects which user might meet in a short
time and fetch the classification model from the edge server.
However, this solution can not get the locations of the objects,
which is an essential function for mobile AR applications.
Zhang et al. [6] proposed a cloud-based framework, CloudAR,
to achieve real-time image detection based on object tracking.
They segment and track the objects on the client side and
do the detection on the server. Ran et al. [18] proposed
DeepDecision to determine an optimal offloading strategy for
AR tasks.

However, these works mainly focus on making the decision
of when to offload the tasks to the edge server, they do not take
the performance of the on-device models into consideration.
We focus on enhancing the performance of the mobile AR
applications. A cache and matching algorithm will be used
when the performance of on-device deep learning models is
poor.

III. SYSTEM ARCHITECTURE

In this section, we present our proposed system in detail. As
shown in Fig. 3, our system is composed of two parts: mobile
device and edge server. We divide all the recognition tasks
into two categories. A task which can be executed on mobile
devices are defined as the light task TL, e.g., classification and
detection. A task that has to be offloaded to edge servers are
defined as the heavy task TH , such as the semantic analysis.
The smart decision algorithm is shown in Algorithm. 1.
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Fig. 3. The system framework.

A. Mobile device

For each mobile AR application, the mobile device will keep
capturing the video frames using the camera. For each video
frame, there will be different recognition tasks needed to be
executed. The heavy task will be directly offloaded to the edge
servers because the mobile devices cannot provide enough
computation resources. The light tasks will be executed locally
with the on-device deep learning models. However, since the
performance of the on-device deep learning models is not
robust as compared with the deep learning models on the
servers. In this case, we design a performance evaluation
module. If users are not satisfied with the performance of
current recognition tasks, the next task will not be executed

Algorithm 1: The smart decision algorithm
Input : A set of tasks {T1, T2, ..., Tn}, real-time network throughput B,

network bandwidth threshold Nσ ;
Output: The decision of where to execute the tasks;

1 Initialize the task index i = 1;
2 while i <= n do
3 if Ti ∈ TH then
4 Offload the task Ti to edge server;

else
5 Execute the task Ti with the on-device deep learning model;
6 Receive performance feedback P ;
7 if P = Poor then
8 if B > Nσ then
9 Offload the task Ti to edge server;

else
10 Execute the task Ti with the cache system;

11 i=i+1

with the on-device deep learning models. First, the network
bandwidth will be estimated. If the network bandwidth is
higher than a threshold Tb, the light task will be sent to
the edge server. However, if the network bandwidth is lower
than Tb, it means that the user is under the poor network
condition. In this case, if we still do the task offloading, the
performance will be even worse. The reason is that the mobile
AR application is very sensitive to the latency. The scene will
change a lot when you get the results from the edge server.
To overcome this issue. We design a cache and matching
algorithm on the mobile device, which can help to improve
the performance of light tasks on the device with a lower
latency.
In the cache and matching module, we extract the image

features using the feature extraction methods such as SIFT.
These features are used to match with the objects stored in the
cache on mobile devices. After a successful matching object
is found, the matching process is ended, and the detection
result is presented to the user. There are many different image
feature extraction algorithms, the time cost and result quality
of applying these algorithms are different. In addition, the
size of the cache on the mobile is also vital for the matching
system. If the number of objects in the cache is very large,
it will take a long time to find the successful matching, and
it will neutralize the advantages of the cache system. In this
case, we build a hierarchical cache system. For each video
frame, we matching the frame with high ranked objects for
each class. And once the users offload the tasks to the edge
server, the cache system will be updated. There are several
trade-offs between the time and the performance in cache and
matching algorithms. We show more details in Section IV.

B. Edge server

On the edge server, we will receive the data and tasks from
the users. For different tasks, we have different algorithms
and models implemented on the edge server. Edge server can
provide the service for both heavy and light tasks. For the
heavy tasks, the edge server will execute the tasks and send
back the results. At the same time, the edge server will backup
all the recognition results and extract the image features of
the objects. These results and image features will be used to
update the cache database. For the light tasks, if we get poor
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performance with the on-device deep learning model, or we
cannot get a successful match with the cache and matching
module, the image frame will be sent to the edge server.
Besides sending back the results of light tasks to the mobile
device, we will also synchronize the cache on the mobile
device with the database on the edge server. In this case, we
can still achieve good performance by using the cache and
matching module when the network bandwidth is low. Another
reason for building the database on the edge server is that we
can share this database with multiple users.

IV. CACHE AND MATCHING MODULE

As shown in Fig. 4, we propose a feature matching method
for the classification and object detection tasks. One of the
main challenges of mobile AR is the limited computing ca-
pacity of mobile devices. A high network latency will occur if
we offload all the computation to the cloud, or the edge server.
We propose a feature matching method which only needs
low complexity computation on the mobile device to achieve
classification and object detection tasks. Mobile devices can
support enough computing resource for feature extraction and
matching algorithms. The main process is as following: First,
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ObjB Feature SetB

ObjC Feature SetC… …
ObjA Feature SetA
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Object MatchObject Match
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Fig. 4. The cache matching system.

we build a cache data store to store objects and corresponding
feature vector sets on mobile devices. This cache store will
be updated by the edge server. Then, we extract the features
of the target image. After that, we match objects in the cache
data store with the target image feature set one by one. For
each feature vector in the vector sets, we measure the closest
distance between it and the features of the target image. If the
closet distance is less than a threshold, we call it a successful
match feature vector; if the number of the total successful
match feature vector is large than a threshold K, it means the
object is in the target image. Then, we project the successfully
matched feature vectors on the target image, and a projection
box is obtained. In this paper, if the project box cover over
80% of the object, we treat it as a successful projection. In
this case, we can achieve low complexity object detection.

A. Features extraction and matching algorithms

The image feature is like a signature of the image. For dif-
ferent feature extraction algorithms, the feature vector dimen-
sions and the matching algorithms are both different. In this

paper, we use three feature extraction algorithms, SIFT [10],
SURF [11] and ORB [12]. As shown in Table. I, we compare
the differences of feature extraction and matching algorithms.
For different feature extraction methods, the feature extraction
and matching time costs are different. For instance, ORB
uses the binary number to construct the feature vector and
uses the Hamming method to measure the distance of the
feature vectors for matching. So it is the fastest among these
three methods. However, when we use the same number
of feature vectors for matching, SIFT can achieve higher
matching accuracy.

TABLE I
FEATURE EXTRACTION AND MATCHING ALGORITHMS

Algorithm Dimension Data type Time(s) Matching method
SIFT 128 uint 0.05 FLANN
SURF 64/128 uint 0.01 FLANN
ORB 256 Binary 0.003 Hamming

Except the time cost, the number of image features extracted
from each image is another important factor that we need to
take into consideration. Extracting more image features means
a better presentation of the image, and we can get better
performance in the matching process. Meanwhile, it will take
more computing time and matching time. So the number of
features should be properly selected.

B. Cache and Object Database

On the edge server, we create a large object database.
In the object database, we store about 10000 objects and
the corresponding feature vector sets of each object. These
objects are obtained from 20 classes of images in ImageNet
dataset [19]. When we offload the tasks to the edge server, all
the objects detected by the recognition models will be added
into the database with a high rank value. On the mobile device
side, we design a cache system, which will fetch the high
ranked list of objects from the database on the edge server.
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Rank1
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ClassID Object UniqueID Object Feature

Feature Set1
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Fig. 5. The hierarchical cache data base.

As shown in Fig. 5, there are three layers in the cache
database, and the first layer is the class label. The objects
belong to the same class are collected together. The second
layer is the unique ID of each object. In this paper, the unique
ID is the rank value from the edge server. High ranked objects
will have a high priority to be matched. When the number of
objects in the cache data store is larger than a threshold, the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on October 21,2020 at 07:58:08 UTC from IEEE Xplore.  Restrictions apply. 



objects with the lowest rank will be removed from the cache
data store. The last layer is the feature set of each object. This
feature set composes the fingerprint of the object. We use these
object fingerprints to match the feature set of the video frame.

As mentioned early, we match each object in the cache with
the target image until we get a successful match. If we put the
total database into the cache on the mobile device, the total
time for matching is much higher than offloading tasks to the
edge server. If there are only a few objects in the cache mobile
device, the successful matching rate will be reduced.

C. Trade-offs

The speed and accuracy of cache and matching system are
influenced by three key parameters, the methods of feature
extraction, the number of features to be extracted for each
image, and the cache data store size. Considering the robust
of the system and the time cost, we choose SURF as the main
image feature extraction method. As shown in Fig. 6, with the
increasing of the cache size, the time to finish the matching
keep increasing. In the same time, the matching time cost
will be much higher if we set the image features size to 800
compared with other settings. To fit the real time processing
requirements for the mobile AR applications. We set the cache
size to 100 and the image feature size to 500.
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Fig. 6. The trade-offs in the cache system.

V. EVALUATION

A. Testbed set up

To evaluate the performance of our proposed system. We
build a testbed to implement all the modules proposed in our
framework. We simulated a network with MiniNet combined
with the SDN controller ONOS. MiniNet is used to generate
the network nodes and links, while the ONOS is used to
control the routing and data flows. The Mininet and the ONOS
are implemented on an HP EliteDesk 800 G2 workstation.

As shown in Fig. 7, there are are total 30 switch-nodesN =
{n1, n2, ..., n30}, and 69 links in the network. The link data
rate is 50 Mbps, and the delay of the links follow the normal
distribution with µ = 6ms, σ = 1. The blue node represents
the edge server. It is bridged with the Jetson AGX Xavier to
support the recognition tasks for the users. We have two users
in our testbed system. Each user is an ASUS Zenfone-AR

Mobile user

Switchnode

Edge sever② 

①

Fig. 7. The network topology of the simulated network.

mobile phone. We use the Tensorflow Lite to develop an image
classification and an object detection android applications on
the mobile phones. Since the mobile phones cannot be directly
bridged to the simulated network, we use two Jestons-Tx2 as
the mobile device access node, which is represented by the 2
purple nodes in the simulated network. The mobile phones and
Jetson-Tx2s are connected through a router. The mobile phone
application will send the data to the Jetson-Tx2 at first. Then,
the Jetson-Tx2 will send the received data to the edge server.
Once Jetson-Tx2 receives the results from the edge server,
it will send back the results to the mobile phone. The time
cost between the mobile phone and the Jetson-Tx2 will not
be included in the end-to-end latency. We send totally 1500
frames from the two mobile phones to the edge server.

B. Experiment Results Analysis

In this section, we evaluate the performance of the proposed
smart decision framework through the experiments on our
testbed. Since the heavy tasks will be only executed on the
edge server, we do not put the performance of heavy tasks in
this part.
1) End-to-end Latency: We implement an image classifica-

tion and an object detection algorithms on the edge server, and
we develop an image classification and an object detection an-
droid applications on two Android phones. As shown in Fig. 8
and Fig. 9, the end-to-end delay for running the classification
and detection applications on androids phones are 155ms and
224ms, respectively. The inference times are 115ms and 184ms
respectively. If we choose to offload the tasks to the server, the
network latency is involved. Since the distances between the
users and the edge server are different, the network latency
for two users is different. The network latency is 850ms
and 1380ms for user1 and user2, respectively. On the edge
server, the inference times for classification and detection
are 64ms and 111ms, respectively. For user1, the end-to-end
delays for classification and detection are 924ms and 961ms
respectively. For user2, the end-to-end delays for classification
and detection are 1452ms and 1501ms, respectively.
Miss classification happens a lot for the on-device classi-

fication and detection applications. For example, an apple is
mistakenly recognized as a ball. When this error happens, we
can choose to do the classification detection with our proposed
cache and matching system. The end-to-end delay for the on-
device cache and matching system is 1039ms. If we do not
need to know the location of the project, the delay is 980ms.
We can find that if the network condition is good, using the
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Fig. 8. The end-to-end delay of classification application.

cache and matching system is not necessary. The reason is
that offloading the task to edge server is faster. However,
when users are under the poor network condition, like user2,
the cache and matching system can help users to get better
accuracy with less time cost compared to offloading the tasks
to the edge server.

2) Inference Accuracy: The inference accuracy is decided
by the deep learning models. High complexity models can
achieve a higher precision. On the mobile object detec-
tion applications, we use the ssd+MobileNet model. On the
edge server, we use the SSD300. The mean Average Preci-
sion(mAP) of these model are list in Table. II. The mAP of
the cache and matching system is lower than the model on the
edge server. The reason is that the cache size is limited, not
all the objects will be successfully matched.

TABLE II
THE MAP OF DIFFERENT MODELS

Model mAP
SSD300(server) 81.2%

SSD +MobileNet(on− device) 72.7%
Cache+matching(on− device) 76.3%

VI. CONCLUSION

In this paper, we proposed a smart-decision framework
which combines the advantages of the on-device mobile AR
system and the edge-based mobile AR system to achieve real-
time recognition tasks. High computation complexity tasks
will be offloaded to the edge servers. Low complexity tasks
will be executed on the mobile devices or the edge server
depending on the network latency. We design a cache and
matching system to enhance the performance of mobile AR
applications when the on-device deep learning models have
poor performance. With our proposed system, the quality of
the mobile AR applications is improved. The performance of
the smart-decision framework is validated through experiments
with a testbed.
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