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Abstract

The design and implementation of a new framework for adaptive mesh re nement calculations are described. It is
intended primarily for applications in astrophysical fluid dynamics, but its flexible and modular design enables its
use for a wide variety of physics. The framework works with both uniform and nonuniform grids in Cartesian and
curvilinear coordinate systems. It adopts a dynamic execution model based on a simple design called a “task list”
that improves parallel performance by overlapping communication and computation, simpli es the inclusion of a
diverse range of physics, and even enables multiphysics models involving different physics in different regions of
the calculation. We describe physics modules implemented in this framework for both nonrelativistic and
relativistic magnetohydrodynamics MHD). These modules adopt mature and robust algorithms originally
developed for the Athena MHD code and incorporate new extensions: support for curvilinear coordinates, higher-
order time integrators, more realistic physics such as a general equation of state, and diffusion terms that can be
integrated with super-time-stepping algorithms. The modules show excellent performance and scaling, with well
over 80 parallel ef ciency on over half a million threads. The source code has been made publicly available.
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1 Introduction

Computational methods are now rmly established as essential
tools for studying many problems in astrophysical fluid dynamics.
A number of publicly available codes that implement a range of
algorithms and features are widely used for such problems.
Examples of widely used based on, e.g., citations) grid-based
codes include ZEUS Stone & Norman 1992a, 1992b; Stone et al.
1992; Hayes et al. 2006), ART Kravtsov et al. 1997), FLASH
Fryxell et al. 2000), RAMSES Teyssier 2002), HARM Gammie
et al. 2003), PLUTO Mignone et al. 2007, 2012), Athena Stone
et al. 2008, hereafter SO8), and Enzo Bryan et al. 2014), among
others.

There is a common trend among modern codes for
astrophysical fluid dynamics toward increasingly complexity.
This trend is driven by a number of factors. First, realistic
models of many astrophysical systems require the inclusion of
additional physics, such as radiation transfer, self-gravity,
chemical or nuclear reaction networks, and for relativistic
flows) dynamical spacetimes. Second, in order to resolve
widely disparate length scales and timescales, it is now
common for grid-based methods to adopt one of several
different adaptive mesh re nement AMR) strategies. In
addition, such codes often implement a variety of algorithmic
options, such as different coordinate systems, Riemann solvers
in the case of Godunov schemes), and spatial and temporal
approximations of varying formal orders of accuracy. Support-
ing all possible combinations of physics and algorithmic
options on an AMR mesh is challenging. Finally, modern
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high-performance computing systems are becoming increas-
ingly heterogeneous. Developing portable code that performs
well on the wide range of available architectures presents an
additional challenge.

The Athena code S08), written in C, is a prototypical
illustration of this evolution toward increasing complexity. The
numerical algorithms, based on the extension of unsplit nite-
volume methods to MHD using upwind constrained transport
CT), were initially described in Gardiner & Stone 2005,
2008). Subsequently, the code was augmented with different
time integrators Stone & Gardiner 2009), the shearing-box
approximation Stone & Gardiner 2010), cylindrical coordi-
nates Skinner & Ostriker 2010), special relativity SR;
Beckwith & Stone 2011), particles Bai & Stone 2010), sink
particles Gong & Ostriker 2013), a total energy-conserving
formalism for self-gravity Jiang et al. 2013), and radiation
transport Davis et al. 2012; Jiang et al. 2012, 2014a; Skinner
& Ostriker 2013), among many other features. Maintaining and
updating Athena as progressively more physics and algo-
rithms are implemented has become increasingly untenable.
Moreover, the AMR strategy adopted in the original code,
based on overlapping patches Berger & Oliger 1984; Berger &
Colella 1989), was found not to perform well on modern highly
parallel architectures.

The need to address these issues has led to a complete redesign
and rewrite of the code from scratch. The rst and most important
aspect of this redesign has been the abstraction of the mesh from
the physics modules solved on it. In the new design, the mesh
exists as an independent, abstract framework on which various
discretizations of the dependent variables such as cell-entered
volume averages, face-centered area averages, or vertex- or cell-
centered pointwise values) are constructed and stored. Methods
for AMR, various boundary conditions, and distributed-memory
parallelization using domain decomposition are then implemented
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for these discrete variables, without speci c¢ references to any
particular physics. This greatly simpli es the extension of the
code to both new coordinates and new physics that are
immediately compatible with AMR in any geometry. Moreover,
isolating the mesh infrastructure from the physics allows each to
be developed independently: for example, a performance-portable
version of the AMR infrastructure based on the Kokkos library
Edwards et al. 2014) that can be run on heterogeneous
architectures including GPUs) is now under development.

A second important aspect of this redesign has been the
adoption of a block-based AMR design e.g., Stout et al. 1997), as
opposed to the patch-based AMR in the style of Berger & Oliger

1984) implemented in the original version of Athena and also
used in codes like PLUTO and Enzo. There are a number of
compelling reasons that motivate the adoption of block-based
AMR. In patch-based AMR, re ned regions are covered by
multiple levels of meshes. Quantities derived from the conserved
variables such as temperature) can therefore possess different
values on different levels. In turn, this can lead to different
dynamics on separate levels if, for example, there are source terms
such as cooling or chemical or nuclear reaction networks that
depend on temperature. By carefully designing our block-based
AMR so that each position in the domain is covered with one and
only one mesh level, this complication is eliminated. Moreover,
when patch-based AMR is parallelized using domain decomposi-
tion, the overlap between Message Passing Interface MPI)
domains on different levels can become complex. With our
implementation of block-based AMR, different levels commu-
nicate only through the boundaries. This simpli es the implemen-
tation and greatly improves the performance and scaling on parallel
architectures. Perhaps the best-known code that uses a block-based
AMR strategy is FLASH Fryxell et al. 2000), which is based on
the PARAMESH AMR library MacNeice et al. 2000). However,
rather than using preexisting libraries, we have instead written our
own AMR framework in order to support face-centered variables
as required by our implementation of MHD), reduce library
dependencies, and improve performance by sacri cing generality.

Finally, a third important aspect of this redesign is the use of
dynamic scheduling. Rather than hard-code the order of
execution of steps in the numerical algorithms including
MPI send and receives), these steps are instead assembled into
lists of encapsulated tasks. Individual tasks can be executed in
any order, provided that the tasks upon which they depend are
complete. The ability to dynamically adapt the order of
execution of tasks allows the overlap of parts of the
computation with MPI communication which in turn can
improve parallel scaling on very large number of processors).
Moreover, the design enables a wide range of calculations
containing different subsets of physics, as it is simple to change
the composition of the task list. Even more powerfully,
calculations in which different physics is simulated in disjoint
regions are enabled simply by constructing separate task lists
for each region. For example, this organization facilitates the
straightforward inclusion of a particle-in-cell PIC) code for
modeling the collisionless dynamics of the corona that is
formed in the upper regions of an MHD simulation of an
accretion disk e.g., Miller & Stone 2000). A variety of
sophisticated libraries, such as Legi on® or CHARM++,9 which
implement dynamic execution using task-based parallelism in
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which a master processes schedules data and tasks to available
processors), among many other useful features, are available.
Because we only require the ability to schedule tasks
dynamically, and in order to reduce dependencies on external
libraries, we have implemented our own design, requiring a few
thousand lines of special-purpose code.

To take advantage of language extensions that improve
modularity and organization, we have adopted the C++
language for this framework; therefore, we refer to the resulting
new code as Athena-++. This paper provides an introduction
to the AMR framework in Athena++. We focus on the new
features of this design, especially the implementation of block-
based AMR with both cell- and face-centered variables as
required for MHD), extension of the design to various
coordinate systems, and dynamic execution using task lists.
These features constitute the basic building blocks of the
framework, upon which any physics solver can be
implemented.

In the interest of providing concrete examples of physics
modules within the framework, we also describe the imple-
mentation of algorithms for both nonrelativistic and relativistic
MHD in this framework, based on the methods used in
Athena. Because these algorithms have been described in
detail in previous papers Gardiner & Stone 2005, 2008; SO8;
Beckwith & Stone 2011; White et al. 2016), we con ne the
scope of our description to only novel features related to the
new framework design. There are a variety of other physics
modules in development within the Athena++ framework,
and these will be described in future publications.

This paper is organized as follows. In the following section,
we describe the design, implementation, and major features of
the AMR framework. In Section 3, we describe the
implementation of a solver for nonrelativistic MHD in this
framework, including tests. In Section 4 we describe a
relativistic MHD solver and tests. Throughout Section 5, we
discuss other new physics modules under development, and in
Section 6, we summarize and conclude.

2 Framework Design

As mentioned above, the most important design feature in
Athena++ is the abstraction of the mesh from the physics. In
this section, we describe the code framework that achieves this
design.

2.1. The Mesh

The computational domain in an Athena-++ calculation is
a logically rectangular region whose overall properties are
stored within a C++ class called the Mesh. The domain is
further divided into a regular array of subvolumes whose
properties are stored in another class called the MeshBlock.
The latter stores discrete values for the dependent variables in
cells as N-dimensional arrays, as well as one-dimensional
arrays of coordinate positions along each direction. The
number of cells stored in each MeshBlock, is arbitrary but
it must be identical for all MeshBlocks. Similarly, the
decomposition of the Mesh into MeshBlocks is arbitrary.

In both uniform mesh and AMR calculations, the logical
relationship between MeshBlocks is encoded in a tree data
structure, either a binary tree in one spatial dimension), a
quadtree in two dimensions), or an octree in three dimen-
sions). With AMR, the use of a tree is crucial for encoding the
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Figure 1 Labeling of MeshBlocks top) and their organization into a
quadtree bottom) for an example uniform grid calculation in two dimensions.

relationship between parent and child MeshBlocks, and even
with uniform grids it greatly simpli es nding neighboring
blocks. Moreover, it results in the natural assignment of
MeshBlocks to processors using Z-ordering, which helps
improve locality and speeds up communications.

2.1.1. Uniform Grids

For uniform grid calculations, MeshBlocks are used to
parallelize the calculation using domain decomposition. In this
case, the total number of MeshBlocks used typically equals
the total number of physical processors available although this
is not required). For serial calculations on a uniform grid, only
one MeshBlock is needed.

To construct the tree, the smallest value of n such that 2"
exceeds the largest number of MeshBlocks in any dimension
is determined. Different levels n in the tree are referred to as
logical levels. Thus, the tree is constructed beginning at logical
level 0 and continuing to logical level n, and then each
MeshBlock is assigned to the appropriate leaves at level n.
Only in the case where the number of MeshBlocks in each
dimension is equal and a power of 2 will every leaf in the tree
be assigned a MeshBlock. In general, there will be both
leaves and nodes that are empty.

To illustrate the process, Figure 1 diagrams the organization
of a uniform grid into MeshBlocks and a quadtree for the
speci ¢ example of a two-dimensional calculation consisting of
5 x 4 MeshBlocks. In this case, the MeshBlocks are
stored at logical level 3, and there are empty nodes and leaves
at every logical level except the root, n=0). Note that the
physical level of the grid which corresponds to the re nement
level in AMR) does not equal the logical level, and that the
labels of the MeshBlocks are automatically organized into a
Z-ordering across the domain this can be seen by connecting
the labels shown in the top panel with a line). This ordering
helps improve the locality of communications.

As in the Athena code, boundary conditions for the
dependent variables stored on each MeshBlock are applied
through the use of ghost zones. The ghost region consists of an
extra Ng row of cells added to each array at each boundary.
Any number of ghost cells are allowed; however, for second-
order spatial integration algorithms on a uniform mesh for
MHD, Ng = 2, whereas for spatial orders up to four Ng = 3
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Figure 2 Left panel: example of cell-centered data red dots) that must be
communicated to neighboring MeshBlocks in two dimensions. The shaded
cells are ghost cells that overlap with active cells in the eight neighbors. Right
panel: face-centered magnetic elds red arrows) and edge-centered EMFs
blue dots) that are communicated in this example.

for hydrodynamics and Ng = 4 for MHD. With AMR, Ng
must be an even integer because the restriction step see
Section 2.1.5) reduces the number of cells by a factor of 2.
When a calculation contains multiple MeshBlocks, data in
the ghost zones may overlap with active cells in adjacent
MeshBlocks. In this case, the data must be swapped between
MeshBlocks, either via MPI calls if the MeshBlocks are
on different processors or via calls to memcpy ) otherwise.
Because Athena++ supports cell-, face-, and edge-centered
variables, the communication of data between MeshBlocks
can become complicated.

Figure 2 diagrams what data must be received from neighbor
MeshBlocks for the speci ¢ example of a two-dimensional
calculation with MeshBlocks of size 6 x 6 with two ghost
zones. White cells are “active cells,” which are updated in each
MeshBlock, while light gray cells are “face ghost cells” and
dark gray cells are “edge ghost cells,” which are lled by data
from neighboring MeshBlocks that abut the faces and edges,
respectively. In 3D, the algorithm also considers “corner ghost
cells” corresponding to neighboring MeshBlocks that abut
the corners. Note that the ghost cells overlap with as many as 8
neighbors in 2D 4 edges and 4 corners), and up to 26 neighbors
in 3D 6 faces, 12 edges, and 8 corners). In Athena++,
independent communication requests and message buffers are
posted for each neighbor. This differs from the implementation in
Athena, in which entire edges in each dimension were
communicated sequentially. The sequential approach introduces
dependencies in the third dimension, ghost cells cannot be
communicated until those in the second are nished, which in
turn requires those in the rst to be nished). We have found that
such dependencies can reduce the parallel ef ciency on very
large numbers of processors. On the other hand, the large number
of communications required per MeshBlock with Athena++
can tax some network architectures, thus an additional commu-
nication layer that pools messages between MeshBlocks may
be a useful feature for future development, at least for some
machines.

The left-hand panel in Figure 2 shows the cell-centered data
that must be communicated for N; = 2, while the right-hand
panel shows the same for face-centered and edge-centered
data associated with the CT algorithm for MHD used in
Athena++. This algorithm requires storing area averages of
the magnetic eld on cell faces, and computing line averages of
the electric eld EMF) on cell edges see S08, Figure 1). Note
that adjacent MeshBlocks share the same face-centered
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vectors on their surfaces. In order to enforce the divergence-
free constraint, both MeshBlocks must store and evolve the
magnetic eld components on their surfaces. However, we
have found that in some pathological cases, especially in
curvilinear coordinates, round-off error can cause the values for
the same magnetic eld component stored on different
MeshBlocks to diverge in time. To prevent this, the EMFs
computed at cell corners edges) in two dimensions three
dimensions) are swapped between MeshBlocks, and the
average of the values, computed independently on each
MeshBlock, is used to update the magnetic elds on the
surface. This adds an additional communication, but ensures
consistency within the round-off error) between the eld on
adjacent MeshBlocks.

While this discussion is motivated by the data associated
with the MHD solvers in Athena++, in fact, the implementa-
tion of communication of ghost cells is highly modular and not
specialized to any particular solver. Communication functions
for arbitrary numbers of cell-centered, face-centered, and edge-
centered data are provided in separate classes, derived from an
abstract base class that implements generic MPI communica-
tion patterns. In turn, these functions can be enrolled using the
task list when necessary.

2.1.2. Static and Adaptive Mesh Re nement

In the Athena++ implementation of AMR, in n dimen-
sions, each MeshBlock isre nedinto 2" ner MeshBlocks,
and the resulting MeshBlock structure is stored in a binary
tree n=1), quadtree n=2), or octree n =3). As one cell on
a given level corresponds to 2" cells on the next re ned level,
the number of cells in a MeshBlock in each direction must be
even. In addition, N; must be even, and only re nement by a
factor of 2 in each dimension simultaneously is allowed. A
MeshBlock can contact neighboring MeshBlocks on the
same level, one level coarser, or one level ner. Changes in
resolution by more than one level at a boundary is not allowed,
and this restriction affects which MeshBlocks are flagged for
re nement or dere nement) in addition to the re nement
criteria.

A driving feature for the tree design of the MeshBlock
structure in Athena++ is AMR. Figure 3 shows how the 2D
grid shown as an example in Figure 1 might be re ned with
AMR. In the example, MeshBlocks 4, 7, 10, and 13 shown in
Figure 1 have been re ned by up to two levels. This requires
inserting additional logical levels corresponding to extra physical
levels) at the appropriate leaves in the tree. Moreover, the labeling
of all subsequent MeshBlocks beyond the rst re nement is
modi ed. The 2D quadtree design is crucial for managing the
logical structure of the MeshBlocks, as well as keeping the
Z-ordering of labels. Note that in a parallel calculation, load
balancing would be required see Section 2.1.6 below).

In this octree in 3D) block-based AMR design, the flexibility
of the re nement depends on the size of MeshBlocks. If the
root level is tiled with a large number of small MeshBlocks,
then smaller volumes can be selected for re nement, reducing
the computational work required. However, because each
MeshBlock contains a xed number of ghost zones, the
fraction of ghost cells compared to active cells is larger for
smaller MeshBlocks. This surface-to-volume effect makes
smaller MeshBlocks computationally less ef cient. Thus, the
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Figure 3 Same as Figure 1 with AMR.

best performance requires a careful choice of MeshBlock size
in order to balance re nement flexibility requiring smaller
MeshBlocks) and computational ef ciency requiring larger
MeshBlocks); see Sections 3.6.4 and 3.6.5 for discussion. This
is one possible disadvantage of tree block-based AMR. On the
other hand, because each MeshBlock has the same logical
shape in this design, it is easy to write optimized and flexible
code that achieves high performance on modern parallel systems.
This is one of the biggest advantages of the octree block-based
AMR design.

2.1.3. Communication between Different Levels

The majority of the complexity with block-based AMR is
associated with communications between MeshBlocks at
different re nement levels. With AMR, each MeshBlock
must communicate with up to 12 neighbors in 2D 4 x 2 faces
and 4 edges), and up to 56 neighbors in 3D 6 x 4 faces, 12 x 2
edges, and 8 corners). When neighboring MeshBlocks are
located on the coarser level, the data are rst restricted and then
communicated at the lower resolution. This proceeds through
“coarse buffers” that contain copies of the cell-centered and
face-centered variables restricted to half the resolution, so that
each cell in the coarse buffer including ghost zones)
corresponds to 2> cells in 3D) in the MeshBlock.

To illustrate how boundary communications between
different levels proceed, consider an example of a two-
dimensional grid in which neighboring MeshBlocks at one
face and one edge are at higher resolution. In the discussion
that follows, MeshBlock A refers to the MeshBlock of
interest, MeshBlocks B and C are neighbors along one face
at higher resolution), and MeshBlock D is the neighbor at
the lower-right edge at higher resolution; see Figure 4). For
simplicity, suppose the MeshBlocks contain 6> cells and 2
ghost zones, i.e., Ng = 2. In the gure, red symbols indicate
data points communicated between MeshBlocks A and B,
while blue symbols indicate data communicated between
MeshBlocks A and D.
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Figure 4 Example of communication of cell-centered data between neighboring MeshBlocks at different re nement levels. The lower-left panel shows the
con guration of the MeshBlocks in a two-dimensional mesh. The upper panels show data communicated between MeshBlocks A and B using red symbols),
while the upper-left and lower-right panels show data communicated between MeshBlocks A and D using blue symbols). See the text for a description of the

symbols.

From the perspective of MeshBlock A, the communication
procedure for cell-centered variables to and from ner
MeshBlocks B and D proceeds as follows:

1. Send active cells overlapping the neighboring Mesh-
Blocks marked by , e and ).

2. Receive ghost cells from neighboring MeshBlocks
marked by x).

On MeshBlocks B and D, the communication of cell-
centered variables to and from the coarser MeshBlock A is
more complicated:

1. Restrict the active cells overlapping MeshBlock A
marked by X) to the coarse buffer and send them.

2. Receive the coarse cells from MeshBlock A marked
by ,e, and ) into the coarse buffer.

Wait until all boundary communications including both
cell-centered and face-centered variables) are completed.
Fill in the cells adjacent to the cells to be prolongated
marked by  next to ¢). If these cells are on the same
level as the MeshBlock, they must be restricted. If they
are on the coarser level i.e., the same level as the coarse
buffer), then they have already been received in the
coarse buffer.

3.

4.

5. Apply physical boundary conditions on the coarse buffer
if necessary).

6. Perform prolongation and store results into ghost zones
overlapping MeshBlock A marked by ).

The restriction and prolongation algorithms are explained in
Section 2.1.5. It is important to note that all the sends, receives,
and restriction operations steps 1 and 2 in the above lists) are
independent of each other, while the prolongation can only be
performed after the arrival of all the boundary data. Because all
of the communications are independent, the implementation of
the algorithm using the task list is straightforward.

For face-centered variables, the communication procedure is
slightly more complicated see Figure 5; note that the eld
component perpendicular to the page in each cell is not shown
—it can be transferred in the same way as cell-centered
variables discussed above). On MeshBlock A, the commu-
nication procedure to and from ner MeshBlocks B and D
proceeds as follows:

1. Send active faces overlapping the neighboring Mesh-
Blocks marked by the ,e, , ,v,and ¥ symbols).

2. Receive ghost faces from neighboring MeshBlocks
marked by x and ).
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Figure 5 Same as Figure 4 but for face-centered variables.

Note that the faces marked with the ~ symbols on MeshBlock
A are active faces shared with the neighboring MeshBlocks,
and they are not modi ed by boundary communications as this
may cause a violation of the solenoidal constraint if the data on
these faces represent the magnetic eld). Instead, these faces are
sent to the ner MeshBlocks for prolongation. In addition, the
faces marked with  in the ghost zones are also shared by two
MeshBlocks. Both MeshBlocks send these faces, and the
values that arrive last are stored because as the restriction
operation is conservative) the values should match even if one of
the MeshBlocks is on the ner level. Any small differences
between the values at the level of the round-off error) are
prevented from growing via the flux and EMF correction steps
see Section 2.1.4), and the error if any) will not lead to a
violation of the solenoidal constraint because these values are only
used during the reconstruction step and EMF calculation.

On MeshBlocks B and D, the exchange of face-centered
variables to and from a coarser MeshBlock A proceeds as
follows:

1. Restrict active faces overlapping MeshBlock A
marked by x and ) to the coarse buffer and send them.
Receive coarse faces from MeshBlock A marked by
the e, , V, and ¥ symbols) into the coarse buffer.
. Wait until all the boundary communications are completed.
. Fill in the faces adjacent to the faces to be prolongated

marked by next to V and V). If these cells are on the

same level as the MeshBlock, they have to be restricted.

If they are on the coarser level i.e., the same level as the

2.

b}

coarse buffer), then they have already been received in
the coarse buffer.

5. Apply physical boundary conditions on the coarse buffer
if necessary).

6. Perform prolongation and store the results into the ghost
zones overlapping MeshBlock A marked by ¢ and V).

Again, all the sends, receives, and restriction operations are
independent of each other. Moreover, the communications for
cell-centered and face-centered variables are mutually inde-
pendent. As in the case of MeshBlock A, the faces marked
with  on MeshBlock B are active and are not modi ed, and
only the faces marked with ¢ are updated by the prolongation
operation. On the other hand, the cells marked with ¥ on
MeshBlock D are in the ghost zone and shared between two
MeshBlocks. When both of the MeshBlocks sharing the
same face are on the same level one level coarser than
MeshBlock D), the prolongated values V¥ on the horizontal
line in this example) are used. If one of them is on the ner
level same as MeshBlock D), the values from the ner
MeshBlock are used because the prolongated values are less
accurate ¥ on the vertical line).

The communication between MeshB1locks on different levels
at the corners in 3D is analogous to the above descriptions.

2.1.4. Flux and EMF Correction

In MHD calculations with static mesh re nement SMR)
and or AMR, the area integral of the fluxes of the conserved
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=

Figure 6 Flux correction on cell faces between neighboring MeshBlocks at
different re nement levels in 3D. The area-integrated flux on the face of a
coarse cell blue) is replaced by the area-integrated fluxes on the corresponding
faces of the ne cells red).

variables on cell faces at the boundaries between Mesh-
Blocks on different levels as well as the line integral of the
EMF along cell edges) must be exactly equal. This requires a
special step to correct the coarse cell fluxes with the generally
more accurate) integral of the ne cell fluxes Berger &
Colella 1989). The implementation of this correction procedure
in Athena-+ is described below.

For the face-centered fluxes of the cell-centered conserved
variables, this flux-correction step is straightforward see
Figure 6). In 3D calculations at the interface between different
levels, one coarse cell abuts four ne cells two cells in 2D, and
one in 1D). The flux used to update the coarse cell on the face
that overlaps with the ne cells is simply replaced with the
area-weighted sum of the fluxes from these four ne cells. The
step makes use of the communication strategy outlined in the
previous section for face-centered data.

For the edge-centered EMFs needed for the CT algorithm for
MHD, this flux-correction step is considerably more compli-
cated. Because the CT schemes preserve the divergence-free
constraint to machine precision, it is crucial that the EMFs used
to update the eld on overlapping cell edges at different levels
be identical; otherwise, the magnetic flux at the faces of the
cells will be inconsistent, and the resulting divergence error can
grow and cause unphysical dynamics.

When MeshBlocks on different levels share the same face,
the EMF on the coarse MeshBlock is replaced with the line-
weighted sum over the corresponding ne edges see Figure 7):

Ecoarse Alcoarse = Zgﬁne Alﬁne- 1)

Note that cell edges on the ne MeshBlock that have no
corresponding edge on the coarse cell marked with in the

gure) are not needed. With this correction, the line integral
over the coarse cell edges will match those over the
corresponding ne faces, which ensures consistent evolution
of the magnetic eld on the shared face.

This procedure becomes more complicated when Mesh-
Blocks on different levels share an edge rather than a face.
Figure 8 shows some representative con gurations in this case.
In order to satisfy the divergence-free constraint, the line
integral of the EMF along the shared edges must match exactly.
However, there is no guarantee this will be the case even for
shared edges at the same re nement level due to different
arrangements of the prolongation operations, nondeterministic
ordering of the MPI communications, and round-off error that
differs in the calculation of the same EMF on different
MeshBlocks. Therefore, both ne and coarse EMFs must be
corrected. First, the EMFs on the ne shared edges marked by
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Figure 7 EMF correction on cell edges between neighboring MeshBlocks at
different re nement levels in 3D. The line-integrated EMFs on the edges of the
coarse cell blue) are replaced by the line-integrated EMFs on the
corresponding edges of the ne cells red). Edges of ne cells that do not
overlap any coarse cell edges marked by ) are not used.

red and orange x) are replaced with their average. Then, the
EMFs on the coarse shared edges blue ) are corrected using
the EMFs on the ne edges so that the line integrals of the
EMFs match as in Equation 1). The same procedure is applied
to edges in the middle of a coarse MeshBlock that overlaps
edges of ne MeshBlocks e.g., the edge shared by
MeshBlocks B and C facing MeshBlock A in Figure 4).

Even without mesh re nement, numerical errors can cause a
slight mismatch between the EMFs on shared edges between
MeshBlocks. With the CT scheme, such errors never
disappear once generated. This problem becomes more
prominent when more complex grids with nonuniform mesh
spacing and or curvilinear coordinates are in use. Moreover,
aggressive compiler non-ANSI-conformant) optimizations can
introduce and exacerbate differences associated with round-off
errors. Therefore, the EMF correction step is applied even
when mesh re nement is not used. In this case, the EMFs on
two shared edges are replaced with the arithmetic average of
their values.

2.1.5. Restriction and Prolongation Operators

For simulations with mesh re nement, data on ner Mesh-
Blocks must be mapped onto overlapping cells on coarse
MeshBlocks restriction) and vice versa prolongation). With
our block-based AMR strategy, these interactions occur only at
the boundaries between MeshBlocks on different levels, or
when MeshBlocks are created or destroyed during re ne-
ment or dere nement.

When cell-centered variables are restricted, the volume-
weighted average is used:

Z U fine A Vfine

2)
A Vcoarse

Ucoarse =
where U denotes the variables being restricted for MHD the
conserved variables are used) and V is the volume of the cells
on the ne and coarse mesh. For face-centered variables, the
area-weighted average is used for quantities de ned on the
faces shared by MeshBlocks on the ne and coarse levels:

Z Ffine ASfine

3
A SCO arse )

Fcoarse =
Faces on the ner MeshBlock that do not coincide with faces
on the coarser MeshBlock are not involved in the restriction
step. With MHD, cell-centered magnetic elds and primitive
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Figure 8 Examples of EMF corrections at the edges of cells between MeshBlocks on different re nement levels in various con gurations.

variables are calculated after both cell-centered conservative
variables and face-centered elds have been restricted.

For prolongation of cell-centered variables, a multidimen-
sional, slope-limited linear reconstruction is used. First, the
gradients between neighboring cells in each direction are
calculated and slope limiters are applied as in the reconstruc-
tion step of the hydrodynamic solver, which is discussed below
in Section 3.2.1. Unlike the limiter used to compute the states at
the faces for the Riemann solver, the less aggressive
minmodslope limiter is used for prolongation. We have
observed that using limiters that are sharper than minmodcan
produce unphysical structures around the level interfaces, as
reconstruction during prolongation involves a multidimen-
sional pro le wunlike the 1D reconstruction during hydro-
dynamic flux calculations). Then, the cell-centered variables
are interpolated to the cell centers on the ner level. For
example, to prolongate a cell at &k j i),

A1Uijk:minmod Uik = U~-1jkc Ugijk— Uji
Ax Axi_12 Axiy1/2
AzUijk:minmod Uijk = Uj1e Uik — Uji
Ay ij—l/Z ij+1/2
ALY/ Uik — Uji-1 Ujig1— Uj
3Vijk — minmod jk Jjk—1 Jk+1 Jjk 4)
Az Azk_1,2 Azt 1,2
Usi2j+17204172 = Uij
AU ; AU AU ;
+ Ay, + 2Ny %Azfi 5)
z

where U de ned at the points with integer indexes are on the
coarser level while those with half-integer indices are on the
ner level, and xp, yp,and zp are the distances between
the volume-weighted cell centers of the coarse cell and right
left ne cells in each direction. For the prolongation at

interfaces between MeshBlocks on different levels, this
prolongation operation is performed using the primitive
variables because use of the conservative variables can produce
negative pressure. This does not violate the conservation law
because the values in the ghost zones are used only through the
flux calculation, and conservation in the active zones is ensured
by the flux-correction procedure. As the communications
between MeshBlocks use the conservative variables, they
are converted into primitive variables, prolongated, and then
converted back to the conservative variables after the
prolongation. On the other hand, the conservative variables
are used when new MeshBlocks are created by mesh
re nement in order to satisfy the conservation law. A pressure
floor is applied if negative pressures appear in the re ned cells.
While the pressure floor violates conservation of the total
energy, this method still satis es conservation of mass and
momentum.

For prolongation of face-centered variables, the method of
Té6th & Roe 2002) is adopted, which preserves the divergence
of the face-centered elds. First, 2D interpolation on each
coarse face is performed with the minmodslope limiter to the
corresponding ne faces. When ne faces already have values
at the nelevel e.g., on MeshBlock B in Figure 5), they
are not overwritten by the prolongated values; the ne face
values are used instead. To determine the eld on internal faces
on the ne mesh, the method adopted by T6th & Roe 2002) is
adopted, which assumes that the divergence of each ne cell
matches the coarse cell which is zero), while the curl
computed at internal edges matches that estimated using the
coarse-level elds. As pointed out in the original paper,
enforcing the curl of the eld currents) to match between
levels is an assumption; nevertheless, it seems to work well.
While this method was originally designed for uniformly
spaced Cartesian grids, it is straightforward to extend it to
nonuniform mesh spacing and curvilinear coordinates in the
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nite area” fashion. For further details, see Toéth &
Roe 2002).

2.1.6. Load Balancing

In parallel simulations, it is important to keep the computa-
tional load balanced among the independent computing elements.
By default, Athena++ distributes MeshBlocks among
computing elements as evenly as possible, assuming each
MeshBlock incurs the same computational expense. While this
works quite satisfactorily for the hydrodynamic and MHD
solvers, calculations involving additional physics can incur
uneven computational cost. For example, chemical reactions
updated using an iterative solver may require different numbers
of iterations on different MeshBlocks. Moreover, when
particles such as passive tracers or sink particles are used, they
may concentrate in a speci ¢ region and increase the load
imbalance.

In order to provide more flexible load balancing, each
MeshBlock is given its own “cost” parameter and Athena++
attempts to redistribute MeshBlocks so that the total cost per
process is as even as possible. This cost can be manually set by
users or automatically determined by the code using measurements
of the compute time on each MeshBlock gathered from system-
timing calls. This load balancing is performed periodically and
whenever MeshBlocks are newly created or destroyed. The
implementation does have several limitations. First, because a
MeshBlock is a unit of both domain decomposition and load
balancing, more than one MeshBlock per process is required to
adjust the load balance. Second, because the ordering of Mesh-
Blocks cannot be shuffled in the current implementation, certain
pathological cases in which the load changes dramatically from one
MeshBlock to another can be hard to distribute evenly. Although
more complex load-balancing strategies are possible, they lack
the simplicity and ease of use of the method implemented in
Athena++.

2.1.7. Time Stepping with AMR

If the maximum signal speed in an MHD calculation
[v] + G, where v is the fluid velocity and C; the fast
magnetosonic speed) on an AMR mesh is the same on all
levels, then the maximum stable time step used to integrate
each level will be proportional to the spatial resolution used at
each level. Thus, standard adaptive time stepPing can be used,
in which each level / uses a time step that is 2" smaller than that
used at the root level [ = 0). Such algorithms require
interpolation in both time and space at ne coarse boundaries
to enforce flux conservation e.g., see Mignone et al. 2012).

In Athena++, we do not use adaptive time stepping, but
instead adopt the same xed time step to integrate all levels.
There are several reasons for this choice. First, in many MHD
applications the maximum signal speed is not constant across
all levels. In fact, it is often the case that the highest speeds and
therefore smallest stable time steps) occur on the root level,
where densities may be small and the Alfvén speed large. In
this case, by requiring smaller time steps than necessary at the
highest re ned levels, adaptive time stepping makes the
calculation more expensive. Second, the temporal interpolation
required by adaptive time stepping introduces additional error
to the solution, especially when self-gravity is included.
Finally, the complexity of adaptive time stepping makes the
overall calculation more dif cult to optimize and load balance;
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moreover, the cost savings in many cases is not substantial. For
example, if an equal number of cells are being updated at each
level which implies in 3D that roughly 10 of the volume of
the domain is re ned at each level), then the reduction in the
number of cell updates required is only about N 2, where N is
the number of levels. Unless N is large, these savings may be
offset by the reduced ef ciency of the method on highly
parallel systems, making the overall reduction in the amount of
CPU time required even smaller. Moreover, the reduction in
work will not decrease the minimum possible wall clock time,
which is bounded by the number of time steps needed to update
the solution on the nest level.

Recently, several authors have explored the use of variable
time stepping both across AMR levels and even within
MeshBlocks at a given level Gnedin et al. 2018; Nordlund
et al. 2018). Tests indicate speed-ups of about an order of
magnitude are possible, as well as an increase in accuracy due
to the ability to run at close to the maximum stable time step
everywhere. Adaptive and or variable time stepping may be
advantageous for very deep AMR hierarchies, or when a very
small fraction of the volume is re ned, or when the time step
varies dramatically within different regions at the same level.
Extending Athena++ to enable such capabilities is a topic for
future investigation.

2.2. Comparison to Other AMR Codes

The discussion in the previous sections has focused on the
speci ¢ implementation of AMR in the Athena++ frame-
work. It is instructive to compare the algorithms we have
adopted with those used in other codes.

There are three commonly used algorithms for AMR. The

st is cell-by-cell re nement, as adopted in codes such as
RAMSES Teyssier 2002) and ART Kravtsov et al. 1997), in
which each individual cell can be re ned independently. The
second is patch-based AMR in which re ned regions of
arbitrary size and shape can be created to cover areas of
interest, following the original algorithm of Berger & Oliger
1984) and Berger & Colella 1989). This method is perhaps
the most popular and is implemented in a variety of codes
including Enzo Bryan et al. 2014), PLUTO Mignone et al.
2012), and AMRVAC Keppens et al. 2003). Moreover,
sophisticated libraries that implement patch-based AMR for
general systems of equations, including Chombo'® and
AMReX Zhang et al. 2019), are available. Finally, the third
algorithm is block-based AMR in which re nement can occur
only in xed locations using blocks of xed size. This is the
algorithm adopted in Athena++ and described in detail
above. Other codes that adopt this approach include FLASH
Fryxell et al. 2000; which uses an AMR framework
implemented in the PARAMESH library MacNeice et al.
2000)), the most recent version of NIRVANA Ziegler 2008),
and DISPATCH Nordlund et al. 2018). Another important
ingredient to the algorithm is the time-stepping strategy. Many
implementations of AMR use adaptive time stepping, in which
different levels are integrated at different time steps. As
discussed in Section 2.1.7, in Athena++ we use a single
global time step, which is the same for all levels. This makes
our approach less ef cient when the grid contains a large
number of levels more than 10) that cover a small fraction of
the volume 1 or less).

1o Astrophysics Source Code Library, record ascl:1202.008.
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Several authors have explored the parallel ef ciency of the
particular implementation of AMR algorithms in speci ¢ codes
e.g., Keppens et al. 2003; Ziegler 2008). In Sections 3 and 4,
we present similar tests of the ef ciency of the AMR
algorithms in Athena++.

In fact, the determination of which of the above three
approaches for AMR is most ef cient is highly application
dependent. The cell-by-cell and patch-based strategies can
adapt the mesh to features in the flow more ef ciently than the
block-based AMR adopted here, mostly because in the latter
case re nement can only occur in the prede ned locations of
MeshBlocks e.g., see Figure 3). On the other hand, block-
based AMR is easier to implement, and therefore easier to
optimize on modern highly parallel computing architectures.
For example, Nordlund et al. 2018, Figure 4) show more than
an order of magnitude improvement in ef ciency using the
block-based approach in the DISPATCH code compared to
cell by cell as in RAMSES on one test. A comprehensive
investigation of the relative merits of each AMR strategy for
various applications of interest, including performance and
scaling on highly parallel systems, would be extremely
instructive, but it is beyond the scope of this paper.

2.3. Coordinate Systems

Up to this point, the AMR framework in Athena++ has
been described without reference to any particular geometry or
coordinate system. Instead, all of the functionality is imple-
mented for logically rectangular arrays of cells. In principle,
this enables the code to be used in any coordinate system.

In practice, grid cells stored on the MeshBlocks may have
nonuniform spacing, that is, the spatial size of the cells may be
a smooth function of position in each dimension independently.
Options to create both uniform and logarithmically spaced cells
are provided as built-in features, and there is a simple
mechanism to create custom cell spacing from a user-de ned
input function. The physical size, areas, and volumes of cells
are constructed and stored in the Coordinates class. These
values are then used whenever needed to construct vector
and tensor operators in the speci c¢ coordinates. Currently,
Athena++ has built-in support for Cartesian, cylindrical, and
spherical-polar coordinates for nonrelativistic calculations, as
well as those using SR. General relativity GR) capabilities
support optimized Minkowksi, Schwarzschild, and spherical
Kerr—Schild coordinates, as well as any stationary coordinates
speci ed via metric coef cients by the user. It is straightfor-
ward to add new coordinate systems to the code.

Some coordinates systems for example, spherical-polar)
introduce coordinate singularities that require special care. We
have implemented “polar” boundary conditions on the pole in
spherical-polar and spherical-like coordinates. For this bound-
ary condition, the cell-centered and face-centered variables in
the ghost cells are copied from the other side of the pole
considering physical symmetry across the pole. The flux on
a face contacting the pole does not have any influence on the
active zone because the surface area of the face is zero. On
the other hand, the EMFs on the radial edges contacting the
pole are replaced with their average because they must have the
same value. The robustness of this boundary condition is
demonstrated in Section 3.5.2.
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2.4. Hybrid Parallelization Strategy

Distributed-memory parallelism through domain decomposi-
tion is an integral part of the design of the AMR framework in
Athena++ and has been discussed extensively in the
preceding sections. On some architectures, it is also advanta-
geous to employ shared-memory parallelism based on, e.g., the
OpenMP standard. Because of the signi cant overhead of
launching and terminating threads, we have found that a ne-
grained approach to shared-memory parallelism in which
parallel regions are forked and joined at the for-loop level is
not very ef cient. In addition, this approach requires signi cant
effort to identify and parallelize every region in the code.
Instead, we have found that a coarse-grained approach, in
which each MPI rank possesses multiple MeshBlocks that
are updated by individual OpenMP threads, is more ef cient.
This design does require a thread-safe implementation of the
MPI library with support for MPI_THREAD_MULTIPLE,
which is the fourth and highest level of thread safety de ned
in MPI. MPI implementations are not required to support this
functionality although most major distributions offer at least
partial support), and occasionally, users have discovered that
the compiled MPI library on their shared cluster was con gured
with this thread safety disabled.

2.5. Dynamic Scheduling via the Task List

One of the most important capabilities of the Athena+-+
AMR framework is the dynamic execution of tasks. Similar
ideas have been implemented in other codes such as
DISPATCH Nordlund et al. 2018), and libraries such as
CHARM++ and Legion enable task-based parallelism along
with many other features). We have implemented our own
design for task-based dynamic execution in Athena-++,
which we describe in detail in this section.

Dynamic execution is implemented in a class called the
TaskList. Rather than hard-coding the order of execution of
functions associated with a physics module, all of the steps in
the algorithm are assembled into an array of Task structures.
Each Task structure contains a unique task_id, a depen-
dency encoding of other tasks that must be nished before the
current task can be executed, and a pointer to a function that
implements the actual work associated with the task. The
task_id and dependency are implemented as bit elds of
arbitrary length, and each task_id has a different) single bit
set to 1. Each MeshBlock owns a task_state to store
which tasks are completed, which is also implemented as a
bit eld.

The key to this implementation is controlling dependencies
between Tasks. There are two types of dependencies: the rst
is an internal dependency between Tasks within a single
MeshBlock, and the second is an external dependency
between different MeshBlocks. The internal dependency
controls the ordering of Tasks, and it is implemented using
the dependency flag in the Task structure. The external
dependency controls coherency between MeshBlocks asso-
ciated with boundary communications, and the return value of a
Task function implements this control flow.

A flow chart demonstrating how the TaskList is
processed is shown in Figure 9. Execution begins with
selection of the rst available Task from the TaskList
and a check of its internal dependency implemented with
bitwise operations for ef ciency). If the dependency is not
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Execute Task
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Task failed?

success or next

Set task_state
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or next?
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*:select the first available Task
if it is the first time in this loop.

Figure 9 A flow chart of dynamic execution using the TaskList. For details,
see the discussion in the text.

cleared, the Task is skipped. If there is no dependency, the
Task function is executed. A Task function returns one of
three possible results: success, next, or fail. When either
success or next is returned, the Task is marked as
completed, and its task_id is stored in the task_state by
a bitwise OR operation. When the return value is success, the
code begins processing another MeshBlock if any), whereas
when next is returned, the subsequent Task on the same
MeshBlock is processed. This is used when the ensuing
Task should be executed immediately, for example if it
involves sending boundary communications. When a Task
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MeshBlock A MeshBlock B
task_id: 00001 (task_id: 00001
dependency: 00000 dependency: 00000
*(function): Work1) k(function):  Work1)
| |
task _id: 00010) (task_id: 00010)
dependency: 00001 | dependency: 00001
*(function): Send ) ™. * | *(function): Send )
| Y |
task_id: 00100) " ™. (task.id: 00100)
dependency: 00001 e A dependency: 00001
*(function): Recv ) (k(function): Recv )
[ [
task_id: 01000) (task_id: 01000)
dependency: 00001 dependency: 00001
*(function): Work2) k(function):  Work2)
| |
task_id: 10000) (task_id: 10000)
dependency: 01100 dependency: 01100
*(function): Work3) \*(function): Work3)

Figure 10 Example of a ve-step TaskList executed on two Mesh-
Blocks. The dotted arrows indicate communications between MeshBlocks.
For details, see the discussion in the text.

function returns fail, which typically happens when the
function is waiting for MPI communications but one or more
messages have not arrived, the task_state is not updated
and the next Task on the same MeshBlock is processed.
This procedure is repeated until all the Tasks in all the
TaskLists are completed.

To illustrate these concepts further, Figure 10 illustrates an
example of two MeshBlocks with very simple ve-step
TaskLists. These MeshBlocks can be either on the same
process or on different processes. Before starting the Task-
List, nonblocking MPI receive operations are initiated. When
TaskList execution begins, the Workl function referenced
in the rst Task structure would be called, and provided it
completes successfully, it will be marked as complete and its
task_id is stored in the task_state of the MeshBlock.
Next, the second Task consisting of boundary communica-
tions would be executed, as its dependency on the rst Task is
already cleared. These communications are performed by a
standard library memcpy ) function call if the neighbor
MeshBlock is on the same process and by nonblocking MPI
send operations if it is on a different process. Control will then
pass to the third Task in the list. This Task does not depend
on the second Task but only on the rst Task, which is
already cleared. However, this Task also has external
dependency on boundary communications from the other
MeshBlock. This Task checks completion of the boundary
communications using the MPI_Test functions if the
neighbor is owned by another process, and returns fail if
the messages have not been delivered yet. In this case, the
Task is not flagged to be completed, and the next Task in the
TaskList is processed. As the fourth Task depends only on
the rst, this Task is executed even if the third Task is not
completed. The fth Task is then processed, but because it
depends on both the third and fourth Tasks, it cannot be
executed until those dependencies are cleared. As the execution
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has now reached the end of the TaskList, control returns to
the top of the list and repeats this loop until all of the Tasks
are completed.

There are three important reasons why we have found the
TaskList to be such a useful design. The st is that it
enables communication to be hidden behind computation. In
the example given in Figure 10, this is possible because the
algorithm contains work the fourth Task) that does not
depend on the completion of some prior communication. Even
if this is not the case, by having multiple MeshBlocks on a
processor, the communication required by the rst and
subsequent MeshBlocks can be hidden by the work required
at the start of other MeshBlocks. We have found that this
feature improves the scaling ef ciency of Athena-++ on very
large numbers millions) of cores.

A second important advantage is that the TaskList
provides tremendous flexibility and modularity in incorporating
different combinations of physics modules. In the previous
version of the code, different physics algorithms were hard-
coded into the main loop and conditionally executed based on a
set of nested preprocessor flags. Coding every possible
combination of modules in this manner became burdensome.
With the TaskList in Athena-++, physics modules are
included at runtime by adding the appropriate steps to the list.
Calculations do not even have to include the MHD modules in
order to run. It is possible to build task lists that simply execute
chemistry or radiation transfer modules in a test or postproces-
sing mode. This makes the code extremely flexible. Even
different numerical algorithms such as higher-order time
integrators see Section 3.2.3 below) can be constructed simply
by encoding them into the task list, rather than hard-coding
special purpose functions.

The third advantage of the TaskList is that different
MeshBlocks can operate with independent TaskLists and
are therefore able to model different physics. This enables
heterogeneous computation in which, for example, some
processes solve MHD equations while others solve self-gravity.
Heterogeneous parallelization can improve the overall scal-
ability of the code by allocating fewer distributed computing
processes for algorithms e.g., self-gravity) that scale less well.
It is even possible to solve different physical models on
different MeshBlocks. For example, chemistry or nuclear
reaction networks might only be included in certain regions of
the flow where they are important, or the general-relativistic
MHD equations might be solved only on MeshBlocks near a
compact object, while the much less complex) nonrelativistic
MHD equations are solved everywhere else. A nal example is
that MeshBlocks in regions of very low density may use
hybrid PIC methods to properly capture kinetic physics, while
MeshBlocks in denser regions solve the kinetic MHD
equations Garcia et al. 1999). We will report the usage of
the TaskList in such multiphysics applications in the future.

2.6. Software Design Principles

Athena++ is free-and-open-source software. Stable, public
releases of the code are hosted on a public GitHub repository'";
however, development primarily occurs on a private GitHub
repository. Thus, the engineering of Athena++ is not based
on a true open development model, although bug reporting,
issue tracking, and contributions from the user community are

" https:  github.com PrincetonUniversity athena-public-version
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welcomed. Documentation and tutorials are provided on the
public GitHub Wiki. The software is licensed under the
permissive three-clause Berkeley Software Distribution BSD-
3) license, chosen because it has more relaxed rules for
redistribution of derivative works than, e.g., a copyleft license
such as GNU General Public License Version 3 GPLv3). This
can be an important consideration when integrating Athena+
+ with closed-source software, for example, frameworks
developed at national laboratories.

In order to reduce the barriers to entry for using the code, and
to maximize the portability of the software from personal
laptops to leadership-class supercomputers and cloud-based
containers), Athena-++ was designed with the smallest
number of dependencies possible. Only a C++ compiler and
a Python distribution versions 2.7+ and 3.4+ both supported)
are required in the default con guration. Strict adherence to the
C+-+11 standard is enforced in the source code to ensure
compatibility with most modern compilers. More recent
standards are not adopted until all major compilers support
new features; to this end, migration to the C++14 standard is
underway. To deploy Athena-++ in parallel, an OpenMP-
enabled compiler and or an MPI library is required. Additional
optional functionalities may require linking the solver with
compatible FFTw3 and or HDF5 libraries, although we are
working hard to eliminate the latter dependency in the future.
The code has been developed by a core team consisting of the
coauthors, with substantial commits from more than a dozen
other contributors. The rst Athena++ Developers Meeting
and Users Workshop was held in 2019, with 63 attendees and
speakers. '

The decision to not follow an open development model is
driven by several factors. Managing an open development
project including quality control) is more time consuming and
burdensome; the primary focus of the core developers is
science applications rather than supporting software develop-
ment. Moreover, some algorithmic features take years of
development and testing before they are generally useful, and
granting open access too early seems counterproductive.
Athena++ s current development model strikes a balance
between centralizing control over the code s development
while also encouraging the dozens of unique clones of the
public version that occur per week. However, there are bene ts
to the open development model Turk 2013), both for
accelerating development of new features and for cultivating
a more productive relationship with a self-sustaining commu-
nity of user-developers who provide valuable contributions.
For this reason, we are actively exploring the reorganization of
the Athena++ AMR framework and physics modules into
separate development repositories. Because almost all of the
factors that drive a private development repository are related
to the physics solvers, this would allow the AMR framework to
become truly open development. Moreover, this would enable
others to build their own physics solvers on top of the AMR
capabilities developed for Athena-++.

An important argument in favor of open development
models is reproducibility; science applications that use a private
development version cannot be easily rerun by the community.
However, the ability to reproduce results simply by running the
same calculations using the same code does not guarantee those
results are correct. True reproducibility requires results to be

12 http:  www.physics.unlv.edu astro athena2019 index.html
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checked by an independent implementation of the same
algorithms or, even more importantly, by running different
algorithms as implemented in different codes to solve the same
mathematical model. Open-source software and open develop-
ment are useful instruments for supporting reproducibility, but
they are not suf cient to guarantee it on their own Stodden &
Miguez 2014). Nevertheless, we support such efforts by
bundling input les and validation test scripts with the source
code distribution. The analysis and plotting scripts used to
produce many of the published results from Athena-++ are
also included; this is an increasingly popular best practice that
many other projects have adopted for example Oishi et al.
2018).

Perhaps the most important ingredient for reproducibility is
validation and veri cation. In this paper, and in SO8, we
provide a comprehensive series of test problems based on
known analytic solutions and comparison of results computed
by Athena-++ with those from other codes see especially
Section 3.3.6). Another crucial component for promoting
computational reproducibility and manageability in a codebase
the size of Athena++ is automated testing. A regression test
suite written in Python is distributed with the source code. It
consists of more than 60 separate tests ranging from simple
compilation checks to multiphysics benchmark problems.
Whenever possible, such tests involve comparison to analytic
solutions such as linear wave convergence, or planar shock-
tube problems) to avoid issues related to numerical precision.
In addition, style checks and code linting of C++ and Python
source are provided by Google s open-source cpplint.py
static code checker and the Flake8 tool, respectively. Every
pull request and change to the repository s main branch are
automatically tested using continuous integration CI). A local
Jenkins'? server and the cloud-based Travis CI'* service
independently execute every available test. We have found that
it is valuable to repeat the tests with multiple combinations of
compilers, target architectures, and dependency library versions
in order to catch subtle bugs that may only emerge in certain
programming environments. Code coverage analysis is pro-
vided by GCC s gcov utility combined with the Linux Testing
Project s graphical front-end lcov.'” The testing regime
currently achieves approximately 65 of C++ line coverage.
The important role that CI and regression testing have played in
the development of Athena++ cannot be overemphasized.

3 A Nonrelativistic MHD Solver

As we have previously highlighted, the AMR framework
described in the preceding section can be used with any grid-
based physics solver. In order to provide a concrete example of
the most popular) use of the Athena++ AMR framework, in
this section we describe the implementation of a module to solve
the equations of nonrelativistic hydrodynamics and MHD.

The underlying algorithms implemented in this module are
nearly identical to those used in the original C version of
Athena, and are described in detail in SO8. Therefore, we only
provide an overview of the method in this section with
particular focus on any changes we have made in reimplement-
ing the methods in Athena++.

13 https:  jenkins.io
14 https:  travis-ci.org
15 http:  Itp.sourceforge.net coverage lcov.php
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3.1. Equations and Discretization

The module solves the equations of nonideal MHD:

@—i—v-pv)zo 6a)
ot
Opv "
a—JrV-pvv—BBJrP +II)=0 6b)
t
g—E+V-[E+P*)vBB~v)
t
+II-v+nJ xB
+|7;L|‘§{B>< J><B)}><B+Q]=O 6¢)
a—BV><[v><B)77J
ot
"IAD
——=B x JxB)|=0 6d
B )] )
where P* is a diagonal tensor with components

P* = P 4+ B?/2 with P being the gas pressure), IT is the
viscous stress tensor,

8Vj

2
Y v A 7
37 ) )

and is the coef cient of kinematic viscosity. E is the total
energy density

I; = pu(%

BZ

E=c+ %pv2 + > 8)

with e as the internal energy density; Q is the heat flux,
0 =kVT 9)
with thermal conductivity « and temperature 7; and =V X

B is the current density. These equations are written in units
such that the magnetic permeability p = 1.

These equations include terms for isotropic viscosity and
thermal conduction, as well as ohmic resistivity and ambipolar
diffusion in the strong coupling limit. The coef cients of
kinematic viscosity , thermal conductivity x, and ohmic
resistivity 7 are constants by default; however, it is straightfor-
ward to extend them to be functions of position and the
dynamical variables. There is no single form for the
conductivity nap needed with ambipolar diffusion as this
depends on the ionization, recombination, and collision rates in
the plasma. Therefore, no default form is provided. Instead, a
function to compute nap must be implemented as part of the
calculation, and a simple mechanism is provided to users in
order to do this.

An equation of state EOS) is needed to compute the
pressure P and temperature 7 from the total energy and other
conserved quantities. In Athena++-, any general EOS can be
used. This includes both an ideal gas law in which case
P = ~ 1)e)orabarotropic EOS for example, isothermal, in
which case P = ¢2p, where c is the isothermal sound speed).
Any general EOS that provides P = P p, ¢) and a® = a° p, p)

where a is the sound speed), either as an analytic function or
through interpolation of tabular data, can be used. A complete
description of the implementation of the general EOS
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functionality in Athena++ is provided in Coleman 2020).
This functionality is validated using tests from Chen et al.
2019).

Equations 6 a) through 6 c) are discretized using a nite-
volume approach, with the cell-averaged conserved variables
stored at the volume centers of cells. Note that in curvilinear
coordinates, it is important to distinguish volume centers from
geometric centers, especially for algorithms with formal spatial
accuracy higher than second order Blondin & Lufkin 1993).
The induction Equation 6 d) is discretized using the upwind CT
algorithm developed in Gardiner & Stone 2005, 2008), and
therefore, the components of the magnetic eld are area
averages stored at cell faces. See SO8 Section 3) for details.

3.2. Numerical Algorithm

To provide robust and accurate shock capturing, the MHD
module in Athena++ is based on a Godunov-type method.
The major components of such algorithms for ideal hydro-
dynamics are 1) a method for the nonoscillatory spatial
reconstruction of the fluid variables to compute interface states,

2) a Riemann solver to compute upwind fluxes and electric
elds at cell faces, and 3) a time-integration algorithm to
advance the solution. Each of these steps is described in
subsections below.

In order to preserve the divergence-free constraint on the
magnetic eld at every substep, a dimensionally unsplit algorithm
is required. The most accurate unsplit algorithm used in Athena,
the corner transport upwind CTU) method Colella 1990,
described in detail in S08), requires a characteristic projection of
the interface states during the reconstruction phase. For
relativistic MHD, such projections are very complex, and for
that reason, in Athena++ the CTU integrator is not used but
instead simpler unsplit integration algorithms are adopted see
Section 3.2.3). Of course, it would still be possible to implement
the CTU algorithm in Athena++ provided its use is restricted
to nonrelativistic MHD.

3.2.1. Spatial Reconstruction Methods

As in Athena, three different spatial reconstruction
methods are implemented in the Athena++ MHD mod-
ule: 1)a rst-order donor cell DC) method, 2) a second-order
piecewise linear method PLM), and 3) a fourth-order
piecewise parabolic method PPM).

Variable reconstruction is performed on either the primitive
variables W = p v P B) or for nonrelativistic, ideal EOS
problems) on the characteristic variables C = L - W, wherelL is
the matrix of left-eigenvectors of the system of equations

see SO8, Appendix A). The latter approach can help reduce
oscillations in the solutions, especially for MHD problems, as
we demonstrate in Section 3.3 below. However, the projection
procedure is different from the approach used in Athena and
described in SO8 Section 4.2.2). The reader is referred to
Felker & Stone 2018, Section 2.2.2) for a detailed description
of the characteristic reconstruction steps used in Athena-++.

There are several other important changes to the reconstruc-
tion algorithms implemented in Athena+-+ compared to
those in the original version of Athena and described in
Section 4.2 in S08. First, the characteristic tracing performed in
step 7 of Section 4.2.2 and step 10 in Section 4.2.3 of S08 is no
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longer required because the CTU integrator is not implemented.
Second, the reconstruction stencils and slope limiters are
modi ed to ensure the reconstruction remains total variation
diminishing TVD) with both nonuniform and curvilinear
meshes. For PLM reconstruction, Athena++ uses the
original van Leer limiter van Leer 1974) when the grid is
uniformly spaced and there is no geometric factor e.g.,
uniform Cartesian grids and uniformly spaced  direction in
cylindrical spherical coordinates), and the modi ed van Leer
limiter described in Mignone 2014) for nonuniform and or
curvilinear meshes. The weights for the smooth reconstruction
stencil are automatically modi ed for nonuniform and or
curvilinear grids if the backwards and forwards difference
approximations to the derivative are divided by the distance to
the centroid of volume.

The PPM reconstruction algorithm in Athena++ has also
been signi cantly modi ed to improve accuracy on curvilinear
and nonuniform meshes. We again refer the reader to Felker &
Stone 2018, Section 2.2.2) for a complete description of the

ve PPM limiter formulations that were considered during
the development of Athena++ and a summary of the errata in
the original references for each limiter.

The primary PPM limiter is a smooth extrema-preserving
limiter described in McCorquodale et al. 2015), which extends
the work of Colella & Sekora 2008); it is used for all problems
on Cartesian meshes in Athena-++. For curvilinear grids, the
steps of the original PPM limiter of Colella & Woodward

1984) are modi ed in Section 3.3 of Mignone 2014) to
account for the difference between the geometric and
volumetric centers of the cells.

For nonuniform, Cartesian-like grid directions, Equation
1.6) of the original PPM publication Colella & Woodward
1984) provides the reconstruction stencil for the initialization of
the variable face averages at fourth-order spatial accuracy. For
uniform grids, it reduces to the well-known weights of Colella
& Woodward 1984, Equation 1.9)):

7 1
Q171/2 12 Ql*l + Qz) 12 Q172 + Ql+l)~ 10)
The procedure outlined in Mignone 2014, Section 2.2) is
followed for computing the curvilinear counterparts to the
weights in Equation 10) along the radial direction in spherical-
polar and cylindrical coordinates, and along the meridional
direction in spherical-polar coordinates.

By default, Athena++ uses a second-order accurate CT
solver for MHD problems. With this con guration, the overall
accuracy of the MHD solver remains formally O Ax?) even
when a higher-order reconstruction method is employed.
However, the use of higher-order algorithmic components
often still signi cantly improves the accuracy of solutions see
Section 3.3.1 for a demonstration). Extension to a fully fourth-
order accurate scheme has already been implemented in
Athena++ and published in Felker & Stone 2018).

3.2.2. Riemann Solvers

As in Athena, the HLLE, HLLC, and HLLD approximate
Riemann solvers are implemented in Athena++, as well as
Roe s linearized solver. We nd exact solvers do not provide
any signi cant increase in accuracy for most problems
although they may make the algorithms more robust on
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problems involving strong rarefactions), so currently none are
implemented.

The HLLE, HLLC, and HLLD solvers have been extended
to be compatible with a general EOS. This requires the sound
speed a be provided either as an analytic function, or through
interpolation of tabular data. A complete description of the
changes to these solvers for a general EOS is provided in
Coleman 2020).

3.2.3. Time Integrators

The nal major component of the main MHD algorithm
concerns the temporal evolution of the fluid variables. A
method of lines formulation is adopted, in which the spatial
discretization steps in Sections 3.2.1 and 3.2.2 provide an
estimate of the flux divergence of the system of conservation
equations at a single time t. When combined with a suitable
method for integrating the time-dependent system of ordinary
differential equations ODEs), a complete scheme with formal
O Ax" At™) accuracy is constructed. It is important that
dimensionally unsplit integrators are used for MHD so that the
divergence-free constraint applies at every substep. In
Athena, both the O Ar?) accurate van Leer VL2) predic-
tor—corrector integrator described in Stone & Gardiner 2009)
and the CTU method of Colella 1990) are implemented.
However, as discussed earlier, the characteristic projection
method required by the CTU integrator makes it dif cult to use
for relativistic flows. Thus, in Athena++, the VL2 integrator
is implemented along with several strong-stability preserving

SSP) and or low-storage Runge—Kutta RK) methods.

In Athena++, the 2S class of low-storage RK methods
discussed in Ketcheson 2010) is adopted. Let u O), u V refer to
the two registers in memory for storing the conserved fluid
variables de ned across the mesh at different time abscissae
within a single time step. We now describe our implementation
of Algorithm 3 of Ketcheson 2010). The notation is modi ed
to use zero-based indexing for the variable registers and the
integrator stages, and the relative index of §; = §;_; increased
by 1 from the original §;.

At every cycle, u® = u", u" = 0 is assigned before the

rst stage of the integrator. While u® = u" is already
implicitly guaranteed from the output of the 2S algorithm in
the previous time step, these two-register integrators typically
require explicit assignment operations in order to clear the
cached data in u V. Then, for s = 0 Ngages 1t

uDe—ub 4+ su®

u® — Yol 04+ Vsl D+ Bss—1ALF u 0)) 1)
where u"t! = u O after the nal stage in the cycle. In all cases,
0o = 1 and «p; = 1 as the rst stage is always a forward Euler
step using data from the previous cycle.

A wide range of integrators of varying orders of accuracy,
number of stages, and stability properties can be represented
within this framework. For completeness, the coef cients of the
most commonly used and simplest) selections available in
Athena++ are documented below. All of the following
integrators are de ned with 6; = 0 for i > 0; however, the
generality of Equation 11) enables the trivial implementation
of more advanced limiters such as the non-SSP RK4 )4 2S]
see Ketcheson 2010, Table 2). Furthermore, it is straightfor-
ward to extend the framework to three-register 3S methods
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which are useful for high-order schemes Felker &
Stone 2018).

The integrators available in Athena-++ are:
RK1: forward Euler method:
Y=1{0 1} Bo1=1 12)

VL2: default) predictor—corrector midpoint method. The
predictor step must always compute and apply diffusive rst-
order accurate fluxes that are produced by DC reconstruction:

Y%=1{0 1} Bo-1=1/2
Y% =1{0 1} Bio=1.

RK2: Gottlieb et al. 2009, Equation 3.1)), also known as
SSPRK 2,2) and Heun s second-order method. Optimal in
error bounds) explicit two-stage, second-order SSPRK method:

13)

Y%=1{0 1} Bo_1=1
v ={1/2 1/2} Bio=1/2.
RK3: Gottlieb et al. 2009, Equation 3.2)), also known as

SSPRK 3,3). Optimal explicit three-stage, third-order SSPRK
method:

14)

Y%=1{0 1} Bo1=1
m={1/4 3/4} Bio=1/4
v =1{2/3 1/3} [1=12/3. 15)
Note that the RK2 and RK3 methods each have an SSP
coef cient of ¢ = 1, which implies that their CFL constraint
Cy = 1, the same as the stability limit for RK1. In practice, the
RK1 integrator is only stable with rst-order DC) fluxes. The
stability of RK2 and RK3 is hard to prove with high-order
fluxes, but in practice, the limit Cy = 1 seems to work for both
PLM and PPM reconstruction for most problems. In 1D, VL2
is stable up to Cy = 1, while in 2D and 3D, VL2 Cy =1 2.
Moreover, the method is positive-de nite for Cp < 1 3 when

rst-order fluxes are used in both the predictor and corrector
steps Stone & Gardiner 2009). In our experience, the most
useful combinations of integrators and reconstruction algo-
rithms are RK14+DC for testing), VL2 or RK2 with either
PLM or PPM, and RK3+PPM.

3.2.4. Discretization of the Momentum Equation in Curvilinear
Coordinates

Equations 6) are written in conservative form, enabling
numerical algorithms that exactly preserve the integrals of the
dependent variables over the domain. However, in general
curvilinear coordinates, the tensor operators associated with the
flux divergence lead to geometrical factors that usually are
written as source terms. For example, in cylindrical coordinates

R, ,Z),the component of the momentum equation can be
written as
8pv@ i 8 RMR(;;) l aMOO 8MZ<§ _ MR¢) 16)
ot R OR R 0¢ /4 R
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while in spherical-polar coordinates r, 6, ), it can be written as

Opvy 1 0 r2M,¢) n 1 OsinfMjy, 1 OMyy
Ot r2  or rsinf 00 rsind 9¢
My, + cotOMyy
-l
17)

where the M;; are components of the total stress tensor.
However, when these equations are written using the angular
momentum for example, RpV in cylindrical coordinates),
they again can be expressed in conservation form, with the
geometrical factors embedded in the divergence of the fluxes of
angular momentum.

It is possible to express the source terms that appear in the
component of the momentum equation in cylindrical and
spherical-polar coordinates in a discrete form that also
guarantees conservation of the angular momentum to machine
precision. In particular, the term on the right-hand side of
Equation 16) must be written as

Mgy Riyi2 — Rio1p2)
R Ri_1/2 + Riv1/2)Vr
X Riy1/2Mpgit1/2 + Ric1/o2MRgi-1/2)

18)

where the half-integer indices denote quantities at radial cell
faces, Vg = R,%rl /2~ R, /2) /2, and the components of the
stress tensor at radial cell faces are the fluxes of momentum
given by the solution to the Riemann problem that are used to
update the cell. When the source term in Equation 16) is
written in this form, it can be shown that the discrete form of
the full equation including the flux-divergence terms) is
algebraically identical to the conservative difference formula
for the angular momentum equation in cylindrical coordinates.
Thus, by using this form for the “geometric source term,” it is
possible to conserve angular momentum to machine precision.
This discretization of the momentum equation is adopted in
Athena++ in cylindrical coordinates.

Similarly, in spherical-polar coordinates, the angular momen-
tum can be conserved to machine precision if the source terms on
the right-hand side of Equation 17) are discretized appropriately.
The rst term can be written in a form similar to Equation 18),
but using Vx = rf,_l = P /2) / 3. The second term must be
approximated as

cotOMyg  Spr12 — Sj-172)
r 1 Sic12 4+ Siv172) Ve
X Siv12Mpgir172 + Sj—1/2Mgpp-1,2)

19)

where § = sin6, Vy = cosf;, i, — cos0;_i,,)/2, and once
again the components of the stress tensor at cell faces in the
direction are the momentum fluxes returned by the Riemann
solver and used to update the cell.

Of course, there are also similar terms that appear in the
other components of the momentum equation. For these terms,
the appropriate volume average can be used. In addition, a
variety of coordinate source terms appear in the momentum
equation in general-relativistic calculations, depending on the
choice of variables. A discrete form that conserves the z-angular
momentum is possible; refer to Section 4.1 for additional details.

16

Stone et al.

3.2.5. Diffusion Terms

The MHD module includes terms for modeling many
different diffusion processes, for example, isotropic viscosity,
resistivity, thermal conduction, and ambipolar diffusion. These
terms can be included as an explicit update in each step of the
time integrator in a fully unsplit fashion. This is the most
accurate formulation for the terms, as it ensures they are
evolved at the same temporal order of accuracy as the main,
nondiffusive integration algorithm.

To guarantee conservation of momentum, energy, and
magnetic flux, the diffusion terms are added as the divergence
of the respective fluxes see Equation 6)). Second-order nite
differencing is used to compute the components of the viscous
stress tensor, heat flux, or EMF as appropriate. For higher-order
algorithms, higher-order difference approximations for these
fluxes may be required.

Explicit integration of diffusive physics requires a very
restrictive time-step stability limit that is inversely proportional
to the square of the spatial resolution. When the diffusive terms
are relatively large for example, at low Reynolds number) or at
very high resolution, this time-step limit can severely restrict
the calculation. Therefore, a Runge—Kutta—Legendre RKL)
super-time-stepping STS) module Meyer et al. 2012, 2014)
has been implemented P. Mullen 2020, private communica-
tion), which includes both the RKL1 temporally rst-order
accurate) and RKL2 temporally second-order accurate)
schemes. When STS is enabled, diffusive physics is advanced
forward in time by a separate super time step in an operator-
split update. Each super time step comprises s stages and is
equivalent to O s%) times the explicit diffusive time step. The
super-time-step size is set to be equal to the full M)HD time
step for the RKL1 algorithm, or half the M)HD time step for
the RKL2 algorithm. Two operator-split super time steps are
required in a single M)HD update for the second-order
accurate RKL2 scheme. All schemes have been shown to 1)
produce errors that converge at the appropriate rate for smooth
flows and 2) yield the expected speed-up roughly os). The
algorithm has been parallelized and employs the same task-
based execution strategy discussed in the previous sections.

3.2.6. Additional Physics

There are a number of extensions to the basic algorithms for
nonrelativistic MHD that have been implemented in Athena++,
in addition to the general EOS and diffusion terms for nonideal
MHD described above. We describe three such extensions below.

Passive Scalars. An arbitrary number of passive scalars that
are advected with the fluid flow can be added to the MHD
solver. These quantities independently obey a simple con-
servative transport equation

apC,

Vv C,' =0
o + V:[pv(Ci]

20)

where C; primitive variable) is the speci c density of each
scalar and pC; is the mass of each scalar species conserved
variable). These quantities provide useful flow diagnostics for
following transport and mixing, and they are also necessary for
coupling chemical or nuclear reactions to the MHD. In the
latter case, source terms representing the net reaction rates are
added to the right-hand side of each transport equation,
typically via an operator-split method. A complete description
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of the implementation of chemical networks in Athena++
will be given in a future publication.

Shearing-box Approximation. For the purposes of studying
the dynamics of an accretion disk in a locally rotating frame,
the shearing-box approximation is a valuable tool in astro-
physical fluid dynamics. A complete description of the
implementation of the local shearing-box approximation in
the Athena code was presented in Stone & Gardiner 2010).
This feature has also been implemented in Athena-++ using
the same algorithm.

Orbital Advection. In order to speed up and improve the
accuracy of calculations in the local shearing box, an orbital
advection algorithm has been implemented in Athena++,
following the methods described in Stone & Gardiner 2010).
The method was developed for hydrodynamics by Masset

2000), implemented in the FARGO code, and later extended to

MHD Johnson et al. 2008; Benitez-Llambay & Masset 2016).
Orbital advection algorithms have also been implemented in
the PLUTO code Mignone et al. 2012). The algorithm in
Athena++ also can be employed in global calculations of
accretion disk dynamics in cylindrical and spherical-polar
coordinates.

3.3. Tests of Nonrelativistic MHD Algorithms

A comprehensive test suite of the MHD algorithms in
Athena++ is presented in SO8 and will not be repeated here.
In this section, we present test results only to demonstrate the
properties of new algorithmic features in the code, such as the
new reconstruction algorithms and time integrators. We empha-
size that whenever values for the magnetic eld are listed, they
are given in code units with magnetic permeability p = 1.

3.3.1. Linear Wave Convergence Test

Measuring the convergence of linear waves provides a
quantitative test of errors in the algorithm. For this test,
parameters similar to those used in the original Athena paper

Gardiner & Stone 2008; SO8) are adopted. The box size is L,,
Ly, L))= 3.0, 1.5, 1.5), and a grid of 2N x N x N cells is
used with periodic boundary conditions. A plane wave with a
perturbation wavelength A = 1 and amplitude A = 10 © is
initialized propagating along the diagonal of the mesh. Uniform
grid resolutions ranging from N = 16 to N = 256 are adopted,
and the error at each resolution is measured by the rms of the
volume-weighted L1 norms of each variable as

<E> = Z(ZlUn - Un exactlAV)2 2
B SAV

21)

where U,, and U, ¢xac are the numerical and exact solutions of
the nth variable and V is the volume of a cell.

Figure 11 displays the results for each different wave family
slow and fast magnetosonic, Alfvén, and entropy waves)
computed using different time integrators both VL2 and RK3)
and different spatial reconstruction algorithms both PLM and
PPM). In all cases, the HLLD approximate Riemann solver is
used. As expected, strict second-order overall convergence is
observed when either the VL2 time integrator or the PLM
reconstruction method is used. The error amplitudes are
somewhat lower for each wave when the more accurate PPM
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reconstruction is used with the VL2 time integrator, although
the convergence rate is still exactly second order. The most
accurate combination of algorithms is clearly RK3+PPM.
Errors in the solution computed with this choice can be an
order of magnitude or more lower than those produced by VL2
and PLM. Moreover, for some wave families, the convergence
rate of the error is higher across a signi cant range of
resolutions close to third order). Because the method does not
possess formal third-order spatial accuracy in multidimensional
problems, this likely indicates that temporal errors dominate in
these cases.

3.3.2. Linear Waves in Nonideal MHD

The MHD module in Athena++ includes terms to model
diffusive processes such as isotropic viscosity, resistivity, and
thermal conduction. To test these terms, a 2D variant of the
linear wave problem described in the previous subsection is
considered. The domain size is 2/ J5 )yx 1/ J5 ), and a
linearized fast-mode wave is initialized with A = 1, at an angle
0 = tan—! 2) ~ 63°43 inclined with respect to the x; axis and
with a perturbation amplitude A = 10 . The CFL number is
set to 0.4, and the fast wave with wave speed ¢, = 2) is
evolved to t = 0.75. The explicit, unsplit algorithm for the
diffusion terms is used. Because an exact eigenmode of the
nonideal MHD wave equation is not initialized, at very high
resolutions, the error is limited by errors in the initial data. We
discuss this further below.

Kinematic viscosities ranging from = 10 % to 10 * are
considered. The standard and magnetic Prandtl numbers are

xed to be Pr = Pr,, = 1 2 for all tests; thatis, k =n = 2.
The decay rate of the wave in each simulation is measured by
applying weighted least-squares WLS) tting to the time series
of In max |v,|)) in the solution.

Following Ryu et al. 1995, see Equation 3.13)), the decay
rate of the fast wave including thermal conduction) is

19v

rf analytic = (T + 3n +

12 2
3k vy —1) )& 2)

4 15°

As the authors note, this expression is applicable only up to
rst order in the diffusion coef cients, and in the limits

vk andnk < ¢ ¢ ¢ ora 23)

where k = 27 here. For these parameters, the Reynolds number
is de ned as Ryu et al. 1995, Equation 3.15))

4ric; 872

Rf = _—
AL I

24)

Figure 12 shows the convergence of the numerically
measured decay rates to these analytic values over a wide
range of Reynolds numbers as the spatial resolution of the
mesh is increased. The analytic rates given by the above
equation are juxtaposed as dashed black lines in all four cases.
Excellent agreement is observed.

Figure 13 demonstrates second-order convergence with
mesh resolution of the decay rate at a single xed Reynolds
number the largest value considered in the previous plot). As
is evident in the previous gure, the RK3+PPM con guration
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Figure 11 MHD linear wave convergence plots produced using a variety of temporal integrators and variable reconstruction methods without mesh re nement.
Clockwise from top left: fast magnetosonic, Alfvén, entropy, and slow magnetosonic wave modes of the linearized system.
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Figure 12 Convergence to the analytic fast-mode decay rates dashed black
lines) for a range of Reynolds numbers spanning two orders of magnitude. The
more accurate RK3+PPM solver produces linear wave decay rates signi cantly
closer to the predicted values than VL2+PLM solutions at higher resolutions.

initially converges to the analytic decay rate much more
quickly than the formally second-order accurate VL2+PLM
solver. Below values of about 10 4, the error is dominated by
the initial conditions as a wave solution for the ideal rather
than nonideal) MHD equations is used. Thus, the errors stop
converging beyond the values shown in the plot.
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Figure 13 Convergence of the L; error of the fast-mode decay rate for the
largest Reynolds number case shown in Figure 12.

3.3.3. Riemann Problems

In order to test the MHD algorithms with nonlinear
solutions, we present the results from multiple shock-tube
Riemann) problems. In all cases, the problems are calculated
in one dimension along the x;-axis we have tested that the
code generates identical solutions when the tests are run along
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Figure 14 Density in the Shu—Osher hydrodynamic shock-tube test at r = 0.47
for N = 200 cells. The reference solution was computed using RK3-+PPM
with N = 8192 cells.

the x,- or xz-axis, and in SO8, we have shown the results for
shock tubes run along a grid diagonal in multidimensions).
While a huge range of such Riemann problems are available for
testing, we focus on two that demonstrate key features of the
algorithms: the Shu—Osher problem in hydrodynamics and the
Brio—Wu problem in MHD.

Figure 14 shows the density at # = 0.47 for the Shu—Osher
shock-tube problem Shu & Osher 1989), which involves the
interaction of a shock with a smoothly varying background
medium. The ability to resolve the sharp features formed by
shock compression is a measure of the numerical diffusion in
the scheme. Results for both the VL24+-PPM and RK3+PPM
solver con gurations using the HLLC Riemann solver and
N =200 cells are shown along with a reference solution
computed using N = 8192 cells and the RK3+4-PPM algorithm.
It is clear that the RK3+-PPM method is able to capture the
short-wavelength oscillations present in the density pro le
using only a few cells, and it signi cantly outperforms the VL2
+PLM method on this test.

Figure 15 compares the results of the Brio—-Wu MHD shock-
tube test Brio & Wu 1988) at time r = 0.1 for the same two
algorithms but with the HLLD Riemann solver. In this test,
reconstruction is performed using the characteristic rather than
the primitive variables. If the latter approach is used, the solver
produces signi cant oscillations behind the right-moving fast
rarefaction. For this reason, this test is an important
demonstration of the need for characteristic reconstruction for
certain problems. The results show little difference between the
two algorithms: RK3+PPM captures the head and foot of
rarefactions slightly more accurately. However, both methods
perform well for solutions involving MHD shocks and
rarefactions in each wave family.

3.3.4. Oblique C Shock with Ambipolar Diffusion

In addition to ohmic resistivity, the core MHD module in
Athena++ includes terms to model ambipolar diffusion. To test
this term, results for an oblique C-shock test are presented. The test
is identical to the problem described in Masson et al. 2012; see
also Wardle & Ng 1999). An adiabatic EOS is used in order to test
the heating and energy flux associated with ambipolar diffusion as
well. Like the shock-tube test, the left state is p, vy, vy, By, By, P)
=05 50 2 V2 0.125) and the right state is p v v

19

Stone et al.

B, B, P)= 09880 2.5303 1.1415 V2 3.4327 1.4075).
A density-dependent ambipolar diffusion coef cient nap = 1
75p) is used. In order to reduce the symmetry in the problem,
a two-dimensional domain of 0.5, 0.5] x 0.0078125,
0.0078125] with resolution of 1 128 is used, with the initial
interface rotated by an angle 6 = tan~' 3/4) using shifted-
periodic boundary condition in the y direction see Tomida et al.
2015, Appendix A.6). The boundary conditions in the x direction
are both outflow. Starting from the initial discontinuity, the
problem is run until # = 10 so that the shock pro le reaches a
steady state. The pro le along the shock propagation direction is
shown in Figure 16. Even at this relatively low resolution,
Athena++ successfully reproduces the analytic solution.

3.3.5. Liska Wendroff Implosion

The implosion test discussed in Section 4.7 of Liska &
Wendroff 2003, hereafter LW) and rst introduced in Hui
etal. 1999) is an extraordinarily sensitive test of the directional
symmetry-preserving abilities of a hydrodynamics code. The
initial condition consists of two uniform states separated by a
diagonal discontinuity near the bottom-left corner of the
domain, with the jumps in the variables identical to those in
the familiar Sod shock-tube test Sod 1978); see Table 1 in SO8
for the precise values. Reflecting boundary conditions are used
on all four sides. A shock wave launched by the high-pressure
region is reflected by the bottom and left boundaries,
generating narrow jets of gas characteristic of double Mach
reflections Woodward & Colella 1984). Refer to Section 3.4.2
for the full double Mach reflection test. The resulting two jets
collide at the lower-left corner and launch two vortices and a
single, narrow jet of low-density gas along the grid diagonal.
As the evolution progresses, reflected shocks interact with the
contact discontinuity and seed the growth of ngers via the
Richtmeyer—Meshkov instability. The key ingredient of the test
is that the jet will not propagate exactly along the domain
diagonal unless the solver maintains reflective symmetry to
machine precision across this plane.

Figure 17 shows the density at t = 2.5 for a 512 x 512
mesh. PPM reconstruction of the characteristic variables was
used in conjunction with the HLLC Riemann solver and the
RK3 time stepper. The results are perfectly symmetric to
double-precision machine epsilon for all output variables.
Symmetry is maintained for all resolutions and solver
permutations that we applied to this problem.

Achieving exact symmetry on this problem is in fact extremely
challenging. The PPM reconstruction algorithm is particularly
sensitive; the nonassociativity of floating-point arithmetic neces-
sitates that the stencils are written in the C++ source code such
that they are calculated without a directional bias. The use of MPI
or compiler options that do not guarantee a value-safe floating-
point arithmetic mode break Athena++ s ability to preserve
directional symmetry in this test. In order to produce the results
shown in Figure 17 with the Intel C++ compiler, options to
disable reassociation of operands and contractions of expressions
into fused multiply add operations were both required.

Finally, we have also con rmed that when run with AMR,
exact symmetry is preserved for this problem, although the
details of the solution for example, the strength of the vortices
that produce the jet) depend on the re nement condition
adopted. This is similar to the behavior on a uniform grid;
lower resolution produces weaker vortices and a shorter jet.
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Figure 15 Longitudinal and transverse velocity solutions in the Brio-Wu MHD shock-tube test at t = 0.1 for N = 256 cells. The reference solution was computed
using RK3+PPM reconstruction on characteristic variables with N = 8192 cells.

3.3.6. Kelvin Helmholtz Accuracy Benchmark

Finally, to benchmark these algorithms for hydrodynamics
against known reference solutions, we consider the Kelvin—
Helmholtz instability KHI) test described in Lecoanet et al.
2015). This paper described a well-posed benchmark problem,
presented resolved reference solutions computed using the
pseudo-spectral code Dedalus Burns et al. 2020), and
compared these results to those produced by the original C
version of Athena. In this section, we reproduce the
analysis of Lecoanet et al. 2015) and compare the results
from Athena++ to Dedalus and therefore to Athena,
as well).

The strati ed variant of the problem considers an initial
condition with a smooth transition of p py = 1 between the
two shearing layers and results in behavior that is challenging
for a numerical method to resolve with respect to instabilities
and small-scale structure. The authors found that Athena C)
required a resolution of 16,384 x 32,768 cells in order to
converge to the same solution that Dedalus achieved with
2048 x 4096 Fourier modes.

When repeating the tests and comparing the results from
Athena C) with those from Athena-++, it is worth keeping
in mind several key algorithmic differences between the two
codes. The results presented in Lecoanet et al. 2015) were
generated by the Athena C) code using the CTU integrator
combined with PPM reconstruction of the -characteristic
variables although the authors found that other algorithmic
options produced similar results), and the diffusion terms were
applied at rst-order accuracy in time using operator splitting.
In contrast, Athena++ computes the diffusion processes in
an unsplit fashion and does not implement the CTU integrator.
All of the Athena++ results shown in this section were
produced with reconstruction on primitive hydrodynamic
variables and the HLLC Riemann solver.

Explicit diffusion is added via isotropic fluid viscosity |,
thermal conduction x, and a separate passive dye diffusion
process gye. For the test shown in this section, =k =
aye =2 x 10 >, corresponding to a Reynolds number Re =
10°. The CFL number used for the Athena-++ tests is Co =04,

Figure 18 plots the dye eld of the lower half of the domain
at t =2, 4, 6, and 8 for Athena++ VL2+PLM and RK3
+PPM at various resolutions. As in Lecoanet et al. 2015), the
columns are labeled with “A” for Athena++ or “D” for
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Dedalus and the N degrees of freedom in the horizontal
direction. The Dedalus results shown were produced from
the same data as the original study, which was furnished by the
authors of Lecoanet et al. 2015).

The results in Figure 18 compare very favorably to the
original Athena C) results. Note that only 8192 x 16,384
cells are required to converge to the Dedalus reference
solution when RK3+PPM is used with Athena++, which is
half the resolution required in the original study. An important
contribution to this improvement is the use of an unsplit
algorithm for the diffusion terms. The 4096 x 8192 second-
order VL2+PLM solution suffers from the onset of the inner
vortex instability IVI) at t = 4, albeit at a much smaller
amplitude than the A4096 CTU+PPM results from Lecoanet
et al. s 2015) Figure 8. Both A4096 RK3+PPM and A8192
VL2+4PLM avoid the onset of the IV, although these solutions
still exhibit visible differences from D4096 in the lament
structure at r = 6. However, the A4096 RK3+PPM solution
qualitatively appears very close to the converged solution. A
detailed comparison of the results, along with quantitative
study of the errors between solutions, is provided in Felker
2019). A further notable result is that due to the much higher
computational performance of the nite volume compared to
spectral methods, the A8192 solution took only one-half of
the time required to compute the D4096 solution. Thus,
Athena++ achieves spectral accuracy for this problem at
less cost.

3.4. Tests of AMR with MHD

Next, we present the results for a series of test problems that
demonstrate the accuracy of our AMR methods.

3.4.1. Linear Wave Convergence with AMR

Locally re ned grids should produce more accurate solutions
than a uniform resolution root grid, and the global convergence
rate on AMR grids should be second order. To test these
expectations, the MHD linear convergence test can be used to
provide quantitative measures of the errors and convergence
rate of solutions on an AMR grid in Athena++.

The test is identical to that already presented in Section 3.3.2
for a uniform grid. Results with the same range of resolutions
from N = 16 to N = 256 are presented; however, with AMR,
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Figure 16 Steady-state solution in the adiabatic oblique C-shock test.

one additional ner level at twice higher resolution per
dimension) is introduced in regions where the density is within
90 of the peak value. Note that this re nement condition was
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Figure 17 Density in the LW implosion test at t = 2.5 using RK3+-PPM.
Exact symmetry is maintained along the diagonal, and a low-density jet is
produced there as a consequence.

chosen solely to demonstrate the behavior of the AMR, and it
was not motivated by any physical requirements. Each
MeshBlock consists of 4> cells for the lowest resolution run
and 64° cells for the highest, so that the re ned regions occupy
the same volume. As before, errors are measured using the rms
of the volume-weighted L1 norms of each variable
Equation 21)). The VL2 time integrator and both the PLM
and PPM reconstruction algorithms are used for comparison.

The results for the fast wave are shown in Figure 19; the
other waves behave similarly. As expected, both unre ned and
AMR simulations achieve global second-order accuracy, and
the AMR simulations exhibit slightly better error than the
unre ned grid simulations with the same root grid resolution.
As in Figure 11, using PPM with the van Leer integrator yields
a lower spatial error for most of the resolutions. However, at
the largest resolution, the second-order accurate truncation
errors of the AMR prolongation and restriction operators
dominate the higher-order terms associated with the PPM
reconstruction. This plot is extremely informative and clearly
demonstrates that second-order convergence of global errors is
achieved with the AMR algorithm in Athena++.

Additional computational expense is incurred when enabling
AMR due to the addition of re nement, dere nement,
prolongation, and restriction operations. Although more cells
are added when the grid is re ned, the overall ef ciency of
calculating the solution for a single cell remains high. At the
highest tested root grid resolution of 512 x 256 x 256 cells, the
second-order solver advances the unre ned mesh at 132.5 million
zone-cycless ' when deployed with MPI on four dual-socket
nodes of an Intel Skylake system. When AMR capabilities are
enabled, the solver slows to 106.0 million zone-cycless ',
representing a performance overhead of about 20 . This relative
performance cost is larger at lower resolutions, but it is quickly
amortized by increasing the size of the blocks. Furthermore, the
ef ciency does not decline as more levels are added or as the
re ned region grows. However, we emphasize that the overhead
of AMR depends on many factors such as the volume of the
re ned region, frequency of re nement operations, and the size of
MeshBlocks, and therefore, it is highly problem dependent
see discussion of results from other tests below).
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Figure 18 Snapshots of the solution to the KHI problem with Athena++ and Dedalus at various resolutions and times. Compare to Figure 8 of Lecoanet
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Figure 19 Errors in a linear wave convergence test with and without AMR.
Results are shown for the fast wave, but other modes show similar trends.
Second-order convergence is achieved in all cases.

Note that the linear wave convergence test is not only simple
but also highly sensitive to most subtle defects in the code. For
example, if boundary communication between levels is
implemented incorrectly, the AMR calculation will have a
larger error than a uniform grid at the resolution of the root
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level. Moreover, even if only one boundary cell is commu-
nicated incorrectly for example, at the edge or the corner of the
MeshBlock; see Section 2.1.3), this will be evident through
the lack of convergence of the L, error.

3.4.2. Double Mach Reflection Test

The double Mach reflection problem Woodward &
Colella 1984) is a standard test for hydrodynamics codes. It
involves a Mach 10 shock that reflects from an inclined plane.
This interaction produces complex structures such as disconti-
nuities, a triple point, and a jet. Therefore, this is a good
problem for evaluating the correctness of the AMR imple-
mentation and the robustness of the code with shocks.

For this test, characteristic reconstruction is used in order to
suppress numerical oscillations produced at the strong shock,
and the HLLE approximate Riemann solver is chosen in order
to suppress the Carbuncle-like instability at the head of the jet
Gittings et al. 2008). The H-correction scheme in the Athena
code S08) suppresses these instabilities; however, it has not
yet been implemented in Athena-++. The initial and
boundary conditions are given in Woodward & Colella

1984). For the uniform grid simulation, the resolution is

x =1 120. For the AMR simulation, the root grid is set to be
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middle) using the same effective resolution. The density at t = 0.2 is shown
with 30 levels of contours. The bottom panel shows the distribution of
MeshBlocks.

four times coarser x = 1 30) and up to two ner levels are
used so that the nest structures are captured with the same
resolution as the uniform grid. Each MeshBlock has 6 x 6
cells. A re nement condition based on the second spatial
derivatives i.e., curvature) is used, as in Matsumoto 2007):

2 2 2
€= max['a"qll + 9yq;,1Ax ] 25)
g;
where g; ; is a quantity such as density or pressure. A
MeshBlock is flagged to be re ned when e exceeds 0.01 and
dere ned when ¢ falls below 0.005.

The results are shown in Figure 20. The AMR grid produces
results that are essentially indistinguishable from those on a
uniform mesh. The lower panel shows the distribution of
MeshBlocks in the AMR calculation. A relatively small
volume of the domain requires the nest resolution, so our
block-based AMR algorithm remains fairly ef cient for this
problem. In particular, a uniform grid tiled with 6° Mesh-
Blocks requires 279 CPU seconds on a single core of a
Skylake 6148 processor, whereas the AMR run using the same-
size MeshBlocks required only 63.2 CPU seconds, for a
speed-up of 4.4. It must be noted, however, that performance
depends strongly on MeshBlock size see Sections 3.6.4 and
3.6.5). For example, doubling the size of the MeshBlocks to
12? decreases the run times to 127 and 31.8 CPU seconds for
the uniform mesh and AMR runs respectively, and on a
uniform grid with a single MeshBlock, the runtime is only
42.8 CPU seconds. Even though using larger MeshBlocks
with AMR results in the nest level covering a larger fraction
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of the domain making the calculation less ef cient by this
measure), nevertheless, the time to solution is decreased.

3.4.3. KHI Tests

To further compare the accuracy and costs of solutions
computed with an AMR grid with those using a uniform mesh,
results from a series of KHI tests in both hydrodynamics and
MHD are presented. The computational domain is chosen to
span 0.5 <x< 0.5 and 0.5 <y<0.5 with periodic
boundary conditions in both x and y directions. A shear flow
with a density contrast of two and a velocity jump of one is
initialized, using a smooth resolved) interface so that the
pro les of density and velocity follow

p=15-05 tanh(ly_Lﬂ) 26a)
Ve = 0.5 tanh(w) 26b)
L
y — 0.25)?
vy = cos 4mx)exp | 26¢)

Here, L = 0.01 is the thickness of the shearing layer, A = 0.01
is the amplitude of the initial perturbation with a wavelength of
0.5, and ¢ = 0.2 is the thickness of the perturbed layer. The
total pressure is constant everywhere and equal to p = 2.5,
with adiabatic index v = 1.4. This gives a sound speed
C? = 3.5 in the lowest density region. The use of a smooth
initial pro le for the interface rather than a discontinuity is
crucial for obtaining a well-posed problem that converges with
resolution e.g., McNally et al. 2012).

For the MHD test, a uniform horizontal eld of B, = 0.1 is
added. The HLLD flux for MHD, HLLC flux for hydro-
dynamics, PLM reconstruction, and VL2 integrator are all
used. The problem is run rst with a uniform grid of
2048 x 2048, and then the calculation is repeated with AMR
using four levels so that the same maximum resolution is
achieved as the uniform mesh when the root §rid resolution is
256 x 256. MeshBlocks of size 8% and 167 are used with a
re nement condition based on the velocity shear:

g =h X max Oyv, OyW). 27)

A MeshBlockisre ned if g is larger than 0.01 or dere ned if
g is smaller than 0.005.

The results for the hydrodynamic test are shown in
Figure 21. The density shown in the top panels) in the AMR
and uniform grid runs is indistinguishable. The fractional
difference in the density between the two calculations, shown
in the lower-left panel, is more illustrative. It is dominated by
short-wavelength sound waves that are damped in the low-
resolution coarse mesh) regions of the AMR calculation. Very
narrow features that follow the cat s eye rolls produced by the
KHI are barely discernible. They are associated with slight less
than one grid cell) differences in the positions of the interfaces
in the two calculations. It is likely that such differences are
unavoidable, as the interaction of the sound waves that cannot
be represented in the AMR calculation but are present on
the uniform grid) with the interfaces can produce differences of
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Figure 21 Hydrodynamic Kelvin—Helmholtz instability test with AMR. The top-left panel shows the density at # = 1.2 using a 2048 x 2048 uniform grid, while the
top-right panel is the result with the same effective resolution using 4 levels of AMR with MeshBlocks of 82. The two are indistinguishable. The bottom-left panel
shows the fractional difference in density between the uniform grid and AMR runs. The bottom-right panel shows the distribution of MeshBlocks in the AMR run.

the observed magnitude. This is an interesting lesson on the

limitations of AMR. If the dynamics of these waves are

important for example, body modes of the KHI in astro-

physical jets; e.g., Hardee 1979), then AMR cannot be used for

the problem in this way. The lower-left panel in Figure 21

shows that the volume- lling factor of MeshBlocks at the
nest level in the AMR solution is relatively small.

The results for the MHD test are shown in Figure 22. The
results and conclusions are nearly identical to those for the
hydrodynamic version of this problem. The fractional density
difference shown in the lower-left panel reveals a more intricate
pattern in the MHD calculation because it consists of both fast
and slow modes that are both damped. Taken together,
Figures 21 and 22 show that AMR is able to capture the
dynamics of the KHI on isolated interfaces very successfully.

The fractional difference in the density between uniform grid
and AMR calculations, computational time, performance, and
number of cells per calculation are summarized in Table 1.
These performance measurements include le outputs every

t = 0.01. The largest differences emerge mainly at the
discontinuities, because even a tiny phase error can produce
large pointwise differences. The computational time and
performance are measured using 32 cores 16 cores per socket)
of an Intel Skylake Xeon 6148 node. While the computational
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throughput considerably degrades when AMR is in use ~40
with 16° and ~18  with 82), it still reduces the overall
computational cost and data size. For this speci c test,
MeshBlocks of 16% are optimal, but in other problems, this
size should be chosen carefully based on the required accuracy
and ef ciency.

3.4.4. 3D Blast-wave Tests

The Sedov-Taylor solution Sedov 1946; Taylor 1950)
provides the basis for useful quantitative tests involving the
propagation of blast waves. In order to demonstrate the AMR
capabilities of Athena++ in 3D, we have performed 3D
blast-wave tests with and without magnetic elds.

For both nonmagnetized and magnetized models, the same
initial condition apart from the magnetic eld) is used. The
computational domain spans a cubic region with edge length
L =1 and periodic boundary conditions on all faces. The
initial density is set to 1, while the pressure is 0.001
everywhere. To initialize the blast wave, the total internal
energy in a region of radius 0.01 at the center of the domain
Ey = deP/ v — 1) = 1with y =5 3, giving a pressure of
1.6 x 10° in this region. For the MHD version of the problem,
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Figure 22 Same as Figure 21 but for the MHD Kelvin—Helmholtz instability at ¢ = 1.5.

the magnetic eld is uniform and inclined to the grid: B, = /3
and B, = 1.

The VL2+PLM algorithm is used for both models, along with
the HLLE solver for hydrodynamics to suppress the Carbuncle
instability) and the HLLD solver for the MHD simulation. A
re nement condition based on the pressure jump is used:

g=hx max(M). 28)
p

A MeshBlock isre ned when g exceeds a threshold value 0.1 in
hydrodynamics and 0.2 for MHD) and is flagged for dere nement
if g is smaller than 1 4 of this value. The root grid consists of 128°
cells with two additional levels of re nement, resulting in an
effective resolution of 512°. For comparison, the result from a
uniform grid calculation using 512 cells is also shown.

Figure 23 shows the distributions of the pressure and
MeshBlocks at the end of the hydrodynamic calculation.
Comparison of the solutions on the uniform and AMR grids
shows essentially no difference. Excellent spherical symmetry
is maintained. MeshBlocks at the nest level 1l only a small
fraction of the domain. Figure 24 shows the same plots for the
MHD calculation. Again, the solutions on the uniform and
AMR mesh are visually identical. Although the magnetic eld
breaks the spherical symmetry of the problem, reflection
symmetry perpendicular to the eld direction is maintained.
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A more quantitative comparison of the hydrodynamic
solution is shown in Figure 25. The pressure in each grid
point in the AMR solution is plotted as a function of radial
distance from the center, and this is compared to the analytic
Sedov-Taylor blast solution obtained using sedov3.f
developed by F. X. Timmes.'® Note the excellent agreement.
The nite width of the points from the numerical solution is in
part an unavoidable consequence of the representation of a
sphere on a Cartesian mesh. These gures demonstrate that
AMR can reproduce both the uniform grid and analytic
solutions very well.

3.5. Tests of Curvilinear Coordinates and AMR

Finally, we show results for test problems in curvilinear
coordinates a new capability in Athena++), both with and
without AMR.

3.5.1. Advection Tests in Curvilinear Coordinates

Figure 26 plots the pro les of the Athena++ solutions to
the radial 1D advection problem of Mignone 2014, Section
5.1.1) in cylindrical and spherical-polar coordinates for both
PLM and PPM. For these tests, a passive scalar is initialized
with a Gaussian pro le and advected with a linear velocity

16 http:  cococubed.asu.edu research_pages sedov.shtml
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Table 1
Summary of AMR KHI Test Accuracy and Ef ciency

Maximum Density Differ-

Mean Density Differ-

Number of Cells

Grid ence ) ence Time s) Performance MZone-cycless ') 10%)
Hydro  Uniform 319 270.0 4.19
AMR 8> 0.70 0.046 319 46.7 1.09
AMR 167 0.80 0.044 152 108.5 1.25
MHD  Uniform 883 118.7 4.19
AMR 8> 1.59 0.060 688 214 0.90
AMR 167 1.27 0.056 387 49.1 1.16

eld. The parameters a and b in the plot labels control the
width of the Gaussian and location of the curve s center,
respectively.

Because a variant of the original PPM limiter is used with
curvilinear coordinates in Athena-+, the smooth extrema in
the right column solutions are clipped; this does not occur with
the more advanced limiter used in Cartesian coordinates. Future
work will consider extending the curvilinear corrections to the
smooth extrema-preserving PPM limiter.

Figures 27 and 28 show the convergence of the L, error in
the radial and a 2D counterpart of the meridional see
Mignone 2014, Section 5.1.2) scalar advection problems,
respectively. They demonstrate the formal second- and fourth-
order convergence of PLM and PPM reconstruction in
Athena++. There are slight differences between the PLM
results shown here and those shown in the original reference
Mignone 2014); their choice of a modi ed monotonized
central MC) limiter for PLM results in lower errors than the
van Leer limiter for the nonmonotonic tests and higher errors in
the monotonic tests. Overall, these plots demonstrate the

delity of the solvers in curvilinear grids.

3.5.2. Field Loop Advection through the Pole

Near coordinate singularities such as the poles in a 3D
spherical-polar mesh), numerical discretizations generally have
nonuniform truncation error which can imprint visible features
in solutions. Moreover, flow through the pole requires special
boundary conditions that load the ghost cells of MeshBlocks
that overlap regions across the pole with data from the
appropriate azimuthal angle. To test the implementation of
curvilinear coordinates at the poles, the results for an advection
of flow through the pole is presented.

The problem consists of a uniform parallel velocity eld
v, = 1 that is represented on a spherical-polar mesh, with the
poles perpendicular to the flow velocity. A passive magnetic

eld loop is then initialized and advected through the poles.

Following Gardiner & Stone 2005), the magnetic elds are
initialized with a vector potential of the form
L2
.= BO exp [%]
o
xmaxR—\/x—x0)2+ y— ) 0) 29)
where xo y, 20) = -2 / 2042 / 2) is the initial center of

the loop, By the magnetic eld strength, R = 0.5 the radius of
the loop, and o = 0.2 the thickness of the loop. The eld
strength By is set so that 3 = 2p/ B}) = 10° at the midplane of
the loop. PLM reconstruction, the HLLD approximate Riemann
solver, and an adiabatic EOS with v =35 3are used. The
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computational domain is 0.1 <r <20, 0< 60 <7 2, and
0 < < 2m and the resolution is 160 x 80 x 160 using
logarithmic spacing in the r direction.

Figure 29 shows the magnetic eld strength on slices
through the computational mesh at the center of the eld loop
in the initial and nal states. The loop shows evidence for
numerical diffusion, especially at the center where oppositely
directed eld lines are closely spaced. However, the structure is
well preserved even after advection through highly anisotropic
coordinates and the coordinate singularity. While this test is
perhaps arti cial spherical-polar grids are not a good
representation of the initial flow geometry), it nevertheless
demonstrates the robustness of our nite-volume scheme in
curvilinear coordinates.

3.5.3. Blast-wave Test in Spherical-polar Coordinates

To demonstrate AMR in curvilinear coordinates, the same
blast-wave tests detailed in Section 3.4.4 were run using
spherical-polar  coordinates. The problem domain is
05<r<l15 n6<f<m2 and 75< <7 5. The
grid is nonuniformly spaced along the r direction so that the
aspect ratio of the cells remains close to unity everywhere. The
other parameters are the same as the problem in Cartesian
coordinates. For the MHD model, the magnetic eld is initially
uniform along the pole.

The results for the hydrodynamic test are shown in
Figure 30. Note that the blast remains spherically symmetric
even on the curvilinear mesh. The plot shows excellent
agreement with Figure 23. The results for the MHD test are
shown in Figure 31. Again, there is excellent agreement with
the previous results found for a Cartesian grid and shown in
Figure 24.

Finally, Figure 32 plots the pressure as a function of radial
position from the center of the blast for the hydrodynamic
problem shown in Figure 30, along with the analytic solution
for the Sedov—Taylor blast wave. The results can be compared
to Figure 25, which used a Cartesian grid. The peak of the
pressure curve at the location of the blast wave is slightly
smeared in the spherical-polar grid solution. However, this
phenomenon is explained by the use of a nonuniform radial
grid that has larger cells at larger radii. Otherwise, excellent
agreement is obtained.

3.6. Performance and Scaling of the MHD Solver

Most of the scienti ¢ applications of Athena-++ require
multidimensional calculations at high resolution. Performance
of the solver is often a rate-limiting step for progress, and
therefore, we have spent considerable effort trying to maximize
the performance and scaling of the MHD solver. For example,
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Figure 23 Two-dimensional slice of the pressure in a hydrodynamic blast-wave test at t = 0.1 with a uniform grid left) and AMR middle) using the same effective

resolution. The right panel shows the distribution of MeshBlocks.
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Figure 24 The same as Figure 23 but for the MHD blast-wave test at ¢ = 0.08.

the initial design of the C++ classes used in Athena-++
resulted from extensive performance benchmarking of the core
computational kernel of the algorithm. The design was
continually compared against the highest performance achieved
for raw C code that implemented the same steps. Only once the
design of the C+4 mocked classes met or exceeded the
performance of the raw C code was this design used to
implement the full code. In this way, we ensure that none of the
abstractions of the object-oriented design inhibit performance
optimization by the compiler. In this section, we report the
performance and scaling we have achieved for the MHD solver
in the Athena++ AMR framework.

3.6.1. Single-core Performance

Table 2 summarizes the performance averaged across 20
independent trials) using only a single physical core on a single
node of three target Intel architectures. The test is based on a
three-dimensional benchmark problem the blast-wave test in
Section 3.4.4) for adiabatic hydrodynamics and MHD, and it
considers multiple Riemann solvers and primitive variable
reconstruction techniques. The default second-order accurate
VL2 time integrator is used in all cases, and the problem size is

xed to a single 64° MeshB1lock. Performance is measured in
the number of cells updated per second the inverse of which is
the CPU time required to update a single cell).

For 3D MHD with the HLLD Riemann solver and PLM
reconstruction a typical combination of algorithmic options), we

27

achieve nearly 3 million zone updates per second per core on the
Intel Skylake processor. With PPM reconstruction, the perfor-
mance drops by about a factor of 2. For comparison, we have run
the same benchmark problem using the same algorithmic choices
and the same compiler optimizations for the latest public versions
of the FLASH, PLUTO, and Enzo codes, and we nd that the
per-core performance of Athena++- is the highest of all four, in
some cases by as much as a factor of 10. Good performance on
modern processors is achieved only through the use a high
percentage of vectorized instructions. Using Intel diagnostic
tools, we nd about 85  based on the CPU time) of the MHD
code is vectorized using the AVX AVX2 AVXS512 vector
instruction sets.

3.6.2. Multicore Performance

Table 3 summarizes the code s performance when using all
of the cores available on a single node. For this test, both
Broadwell 14 cores per socket) and Skylake 20 cores per
socket) CPUs con gured as dual-socket nodes were used, for a
total of 28 and 40 cores, respectively. The KNL node possesses
a total of 68 physical cores, but we use only 64 cores in order to
minimize jitter from the operating system. A single MPI rank is
pinned to each core in these tests. In addition, the KNL tests
bene t from using 4 OpenMP threads per MPI rank in order to
utilize the 4 way hyperthreading of the 64 physical 256
logical) cores on these nodes. In this case, each thread owns a
MeshBlock of size 64 x 32 x 32.
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Figure 25 Radial pro le of the gas pressure in the hydrodynamic blast-wave
test with AMR. The pressure in each cell as a function of distance from the
center is shown with a blue dot, and the orange line indicates the analytic
solution.

Note that in all cases, the performance per core is
signi cantly less than that reported in Table 2, typically by a
factor of 2 regardless of the choice of algorithm. Modern Intel
processors decrease the overall clock speed when all cores are
active and are executing AVX2 AVXS512 instructions, which
contributes in part to the decrease. However, most of the
decrease is due to memory bandwidth limits and less-than-
optimal use of cache. Generally, algorithms with higher
arithmetic intensity ratio of flops to memory accesses) are
less affected by memory bandwidth limits. However, we
observe the same decrease in performance when all cores are
used independent of which algorithm we adopt. For example,
PPM reconstruction with the HLLD Riemann solver for MHD
requires nearly three times the number of floating-point
operations per cell than PLM reconstruction and the HLLE
solver for hydrodynamics, yet both display the same factor of 2
decrease in performance when all cores are used. We have
observed the same trend even for the complex fourth-order
algorithm implemented in Felker & Stone 2018). This
indicates the overall design and implementation of the MHD
solver in Athena-++ is cache-limited.

It is important to note that different algorithmic choices can
greatly improve cache performance. For example, Woodward
et al. 2019) describe an approach for organizing data into
small “mini briquettes” that t entirely into cache and which
enables excellent performance for the dimensionally split PPM
algorithm for hydrodynamics. However, this approach requires
special-purpose coding, and it is not clear if it is extensible to
the dimensionally unsplit integrators required for MHD that are
implemented in Athena++4. Nevertheless, exploring such
approaches in the future could be important for achieving
further performance increases.

Recently, Grete et al. 2019) reported the port of the public
version of Athena++ to GPUs based on the Kokkos library
Edwards et al. 2014). Figure 3 in their paper explores the
ef ciency of the implementation on various architectures. Gen-
erally, excellent results are obtained, with between 75 -90
architectural ef ciency on most processors including both CPUs
and GPUs. Figure 4 in their paper compares the performance of the
resulting code, called K-ATHENA, on both Intel CPUs and
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NVIDIA GPUs. The performance per CPU shown in the right
panel of their gure is somewhat lower than the value reported in
Table 3 for the same test MHD using PLM reconstruction and the
Roe Riemann solver), due to recent optimizations that were not
available in the public version they used. Using our values, the
ratio of the performance of K-ATHENA on the latest NVIDIA
Volta GPU to a single Intel Skylake 20 core) CPU performance is
about a factor of 5, which is about the same as the ratio of the peak
performance for these two architectures. This indicates that despite
the limitations of cache performance in Athena-+-+ inherent in
Table 3, overall the code performs extremely well.

3.6.3. Weak Scaling on Uniform Grids

On modern architectures, good parallel scaling is essential to
make large calculations feasible. Figure 33 shows the results of
weak scaling tests on a Cray XC50 machine containing dual
Intel Skylake 6148 processors with 40 cores per node. The test
uses a uniform grid with 64° cells per MeshBlock and one
MeshBlock per process. The test uses up to 250 nodes 10*
cores). For the hydrodynamic tests, the HLLC Riemann solver
is used. For the MHD tests, the HLLD solver is used, and both
use the VL2+PLM integration algorithm. Performance is again
measured in zone updates per CPU second per core.

Note the rapid decrease in performance when scaling from 1

to 40 processes, as all cores on a node are used and memory
bandwidth limits performance. This behavior reflects the trends
already noted in Tables 2 and 3 and discussed above. While
improving the cache utilization would likely reduce the
memory bandwidth per node limitations evident in Figure 33
as has been achieved in a few other codes; e.g., Woodward
et al. 2019), this will require substantial changes to the
implementation. Once all cores on a node are utilized, the weak
scaling of Athena-++ is essentially perfect. The parallel
ef ciencies of the hydrodynamic and MHD simulations
between 8 and 250 nodes are about 97 and 95 , respectively.
Thus, only a small fraction of the time for the calculation is
used for communication costs.

To test the weak scaling and parallel ef ciency on even
larger core counts, we have performed another set of weak
scaling tests on the Oakforest-PACS supercomputer equipped
with Intel Xeon Phi 7250 Knights Landing) multicore
processors. We use 64 cores per node 4 cores are left unused
to accommodate the operating system and other tasks), and 4
OpenMP threads per process using the COMPACT af nity. Each
thread owns one MeshBlock consisting of 64 x 32 x 32
cells. The results are shown in Figure 34.

Note that even when using 2048 nodes equivalent to
524,288 threads), the parallel ef ciency compared to 8 nodes is
86 for hydrodynamics and 84 for MHD. This excellent
scaling is due in part to the ability of the TaskList to
interleave communications and calculations. The test demon-
strates that nite-volume algorithms show excellent scaling up
to millions of cores and are highly capable of exploiting
emerging resources in the exascale era.

3.6.4. Strong Scaling with AMR

Quantifying the performance of the AMR framework when
used with the MHD solver is dif cult, because the amount of
work per calculation is highly variable and depends on the
re nement criteria, the size of the MeshBlocks, and the
ef ciency of the implementation. In Section 3.4.3, we discussed
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Figure 26 Pro les of the 1D radial advection problems in curvilinear coordinates at t = 1 and N = 64. The top row plots show cylindrical coordinate solutions, and
the bottom row plots show the results in spherical-polar coordinates. The left column is the advection of monotonic initial data, while the right column is advection of a

nonmonotonic pro le. Compare to Mignone 2014, Figure 2).

the performance of AMR in terms of reducing the time to
solution of some given accuracy compared to a uniform grid for
the particular problem of the KHI test. To further quantify the
performance of our AMR framework, we measure strong scaling
in this section using a different problem.

We use the blast-wave test discussed in Section 3.4.4. Our
timing measurements include outputs at every ¢ = 0.01. The
result is presented in Figure 35. The computational throughput
of AMR with 16> MeshBlocks in terms of cell updates per
second is about half of the uniform grid s ef ciency, but its
time to solution is about ve times shorter than that of uniform
grid. AMR, when used with relatively small 8* MeshBlocks,
has even higher overhead, but its time to solution is as fast as
AMR with 16° MeshBlocks. The short computing time with
AMR is not only due to the reduced number of cells in AMR,
but also the larger time step by a factor of ~2 because the hot
region near the center of the explosion is dere ned.

The optimal choice for the re nement parameters depends on
many factors such as the volume of the re ned regions, the size
of the root grid, the number of re nement levels, the number of
processes, etc., and thus is highly problem dependent. While
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smaller MeshBlocks give more flexibility to adapt to
solutions, they are computationally less ef cient. It is reason-
able to start with MeshBlocks of size 8 or 16, but
ultimately the best choice for each problem must be found
through experimentation.

3.6.5. Size of Mesh locks and Performance

In order to quantify how the size of MeshBlocks affects
performance, we have run a series of tests using the 3D blast-
wave problem described earlier but with le outputs disabled.
In each case, the computational domain is resolved with 1283
cells, and the CPU time required for solution is measured with
MeshBlocks ranging in size from 4°> 32,768 MeshBlocks)
to 128° 1 MeshBlock). All tests were run on a single core of
a Skylake 6148 processor. The results are shown in Figure 36,
with each point normalized to the CPU time required for the run
with a single 128° MeshBlock. Similar trends are observed in
both hydrodynamic and MHD runs, with the CPU time
increasing by nearly an order of magnitude as the MeshBlock
size decreases from 1287 to 4°,
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Figure 27 Convergence of the L; errors of the 1D radial advection problems: cylindrical

Compare to Mignone 2014, Figure 3).

This behavior can be explained by a simple model that
assumes there are three contributions to the cost of runs with
different-size MeshBlocks. The rst part A represents the
actual cost to update all of the active cells. Because the total
number of cells is xed for all runs, this term does not depend
on MeshBlock size. The second part B represents the cost of
communications and therefore is proportional to the total
surface area of MeshBlocks. Let x be the number of cells in
each dimension per MeshBlock. The total number of
MeshBlocks is 128 x)3, while the surface area per Mesh-
Block scales as x2; therefore, the cost of this second part B x)
o x '. Finally, the last part of the model C accounts for the
overhead incurred in generating and managing MeshBlocks
and therefore is proportional to the total number of Mesh-
Blocks C x)ocx . The total cost W can be expressed as the
sum of these three parts:

W x) = +b/x+c/x3 30)

where b and ¢ are constant coef cients. We plot this model,
along with each of the three contributing terms A through C, to
the measured normalized CPU time shown in Figure 36. We

+B+C=
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and spherical-polar coordinates, monotonic and nonmonotonic data.

use a least-squares method to t the coef cients in each term,
because they cannot be predicted analytically. This simple
model can explain the observed performance trends very well.
As expected, with large MeshBlocks, the cost is dominated
by the actual computation A). However, as the MeshBlock
size decreases, the communication cost B) becomes more
important, exceeding A around 16° in both hydrodynamics and
MHD. For MeshBlocks as small as 43, the overhead term C)
becomes dominant and makes the simulation inef cient.

Although the actual balance between these cost components
depends on many factors including the size of the simulation,
physics modules in use, CPU and memory performance,
parallelization, use of AMR, etc.), this result clearly demon-
strates that small MeshBlocks are computationally inef -
cient. Therefore, users must choose the optimum MeshBlock
size speci ¢ to their problem. For uniform grid simulations,
larger MeshBlocks are obviously better. For AMR, it is not
trivial to balance performance and flexibility, but somewhere
between 8> and 16 should be reasonable as discussed in the
previous section.
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Figure 28 Convergence of the L, errors of the polar advection problems in spherical-polar coordinates. Compare to Mignone 2014, Figure 4).

4 A Relativistic MHD Solver

The details of the SR and GR methods have already been
presented in White et al. 2016). Here we summarize the
important equations and highlight salient differences from
Newtonian MHD. In this section, we use units with ¢ = 1.

4.1. Equations and Discretization

The differential equations of relativistic MHD can be written
in a form similar to those of Newtonian MHD. In SR, the
primitive variables are fluid-frame density p, fluid-frame gas
pressure p,, spatial part of lab-frame fluid four-velocity u, and
lab-frame magnetic eld B. The Lorentz factor is
vy= 1+u*" 2 and the three-velocity is v =u ~. The
magnetic pressure is

1{1
pm = 5(—232 + v- B)2) 31)
v
and the total enthalpy is
r
wzp—&-ﬁpg +2pm. 32)

Here, I' is the adiabatic index, taken to be constant. The
analogs of Equation 6) are then

b y. Dv) =0 33a)
ot
M .50 33b)
ot
8—E+V M=0 33¢)
ot

a—B—Vx v x B) =0. 33d)

ot

31

Here the conserved variables include the lab-frame density,
energy, and momentum given by

D=np 34a)
E=~w—7*v By — p, +py) 34b)
M= E+p, +p,)v— v BB 34c¢)
and the stress tensor is
S = v2wyy — %BB— v - B) vB + By)
— 72 v -BPw + p, +p)l 35)

Given that the forms of Equation 33) are the same as those for
Newtonian MHD, the same discretization scheme applies, with
cell-centered volume averages and face-centered fluxes of
hydrodynamical quantities and with face-centered area
averages and edge-centered fluxes of magnetic elds.

With GR, all of our equations acquire a dependence on the
metric g. The primitive variables in the GRMHD module of
Athena++ are fluid-frame density p, fluid- frame gas pressure
P, normal-frame spatial velocity components u'', and coordi-
nate frame magnetic eld B'. The primitive velocities are
related to the coordinate-frame velocity components via u® = ~
aand i’ = u' — By/a, where a = —g%)~1/2 is the lapse,

200 is the shift, and

B =a’

v= 1+ gu'ul)/? 36)

is the Lorentz factor in the normal frame the frame with time
direction orthogonal to surfaces of constant time). The
contravariant magnetic eld b* = u,, *F)"* has components

b0 = ;B! 37a)

bl = Lo B! + bou) 37b)
u
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1
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Table 2
Athena-++ Single-node Performance: Single Core

MZone-cycles s '

Xeon Phi Broadwell ES5- Skylake-SP
KNL 7250 2680 v4 Gold 6148
Hydro PLM HLLC 1.472 3.136 5.227
HLLE 1.617 3.346 5.814
Roe 1.520 3.367 5.471
PPM  HLLC 0.665 1.316 2.527
HLLE 0.689 1.353 2.643
Roe 0.674 1.352 2.593
MHD PLM HLLD 0.754 1.519 2.924
HLLE 0.875 1.626 2.757
Roe 0.689 1.294 2.191
PPM  HLLD 0.381 0.775 1.559
HLLE 0.437 0.799 1.512
Roe 0.347 0.708 1.323
Table 3
Athena++ Single-node Performance: Multicore
MZone-cycles s !
Xeon Phi 2x) Broadwell 2x) Skylake-
KNL 7250 E5-2680 v4 SP Gold 6148
Hydro PLM HLLC 81.992 49.744 84.769
HLLE 83.110 51.278 87.877
Roe 79.129 51.425 87.754
PPM  HLLC 42.554 24.834 49.759
HLLE 42.804 25.183 50.012
Roe 42.002 25.242 49.875
MHD PLM HLLD 37.953 24.624 44.361
HLLE 43.139 25.480 43.345
Roe 35.287 22.045 39.853
PPM  HLLD 21.024 14.624 28.826
HLLE 24.090 14.954 28.457
Roe 19.683 13.657 26.612
where the stress-energy tensor has components
TH, = wu'u, — b'b, + py + py)oy 41)
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100000

and the electromagnetic eld tensor can be written *F)* =
b*u” — b"ut. Put into a more useful form, the equations solved
by Athena++ are

0 J—gpu®) + 9; J=gpu) =0 42a)

. 1 )
O JTRTO) + 0 V78T = V=% Ougap) 7™ 42b)

0, J—gB)+ 0, J—g *F)))=0 42c)
where g = detg. The conserved variables are pu®, T° u» and B'.
Again, the equations have the same form and can be discretized
as before, as long as the volumes, areas, and lengths used
account for the appropriate factors of \/—g.

Note the source term on the right-hand side of
Equation 42 b) also appears in Equation 6 b) when expressing
the divergence operator in terms of partial derivatives in non-
Cartesian coordinate systems. By choosing the free index in
Equation 42 b) to be lowered, the source term vanishes for
ignorable coordinates, as noted in Gammie et al. 2003). In
practice, this often means the global energy and z-angular
momentum are easily conserved to machine precision.
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4.2. Numerical Algorithms
4.2.1. Reconstruction in Relativistic MHD

In SR and GR, reconstruction is only allowed on the
primitive variables. This avoids the numerical expense and
potential variable inversion failures associated with character-
istic reconstruction. Note also that the choice of primitive
velocities ensures there is a unique, physically admissible i.e.,
subluminal) state of the fluid for any nite real numbers u’ SR)
oru’ GR). This would not be true in general were v’ SR) or u'
GR) to be used. Athena++ as described in White et al.
2016) originally used three-velocities for SR, but we have
found the change to spatial four-velocity components makes
the code more robust.

4.2.2. Relativistic Riemann Solvers

Athena++ includes relativistic versions of the HLLE
Riemann solver for both pure hydrodynamics and MHD. It also
includes the relativistic HLLC solver for hydrodynamics
Mignone & Bodo 2005) and HLLD solver for MHD Mignone
et al. 2009). The latter two solvers are designed for SR only,
but can be used in GR via the local frame transformations
described in White et al. 2016).

4.2.3. Variable Inversion

The highly nonlinear, tightly coupled nature of the primitive-
conserved variable relations in relativity make nding
primitives both expensive requiring iterative solvers that are
dif cult to vectorize) and prone to failure, such as when a
conserved state has no corresponding subluminal primitives.
Noble et al. 2006) catalog six root- nding procedures used for
variable inversion—four one-dimensional, one two-dimen-
sional, and one ve-dimensional, with the lower-dimensional
versions solving for an enthalpy-like variable and or a
velocity-like variable, and with some of them only working
for select equations of state. In practice, different methods nd
use in modern relativistic codes. For example, GENESIS Aloy
et al. 1999) and Enzo Wang et al. 2008; Bryan et al. 2014)
perform a 1D iteration on pressure, the initial implementation
of HARM uses the 5D method Gammie et al. 2003), ECHO del
Zanna et al. 2007) uses a velocity-based 1D method, RAMSES
Teyssier 2002; Lamberts et al. 2012) uses a modi ed enthalpy-
based method from Mignone & McKinney 2007), PLUTO
Mignone et al. 2007; Mignone 2014) uses the enthalpy-based
1D method of Mignone & Bodo 2006), and BHAC uses both
an enthalpy-based 1D method and a 2D method Porth et al.
2017).

Early versions of Athena++ employed an enthalpy-based
1D method White et al. 2016). However, we have found
inversion to be more robust by adapting the algorithm
presented in Newman & Hamlin 2014), which involves a
one-dimensional root- nd operation and guarantees that a
solution will be found if it exists.

Additionally, robustness relies on the ability to impose
appropriate floors and ceilings depending on the problem being
solved. The relativistic modules not only put floors on p and p,
in a position-dependent way, if desired), but also employ
ceilings on v, 37! = p,, /pg, and o = 2p, /p. In the latter two
cases, the eld components B’ are never altered by ceilings, but
rather these constraints are interpreted as additional eld- and
velocity-dependent floors on p and p,. We are also exploring
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the use of a rst-order flux-correction step, as implemented by
Lemaster & Stone 2009, see the Appendix).

4.3. Tests of the Relativistic MHD Module

In the following subsections, we present several tests of the
relativistic MHD module in Athena++, focusing especially
on the use of mesh re nement with both SR and GR.

4.3.1. Relativistic Shock Tube

Relativistic Riemann problems can be challenging because
very thin features can be formed Zhang & MacFadyen 2006,
Section 6.1), which are hard to resolve with a uniform mesh.
To demonstrate the use of AMR with relativistic MHD, we
present results for a strong shock-tube problem using the initial
conditions from Mignone et al. 2012, Section 6.1):

1 1000 7 7) x<05

1010707 x>05 43)

p py B BY) :{
with B* = 10 and v/ = 0 everywhere and with I' = 5 3. The
root grid consists of 400 cells divided into MeshBlocks of 16
cells each. The VL2 integrator with PLM reconstruction and
the HLLD Riemann solver are used. The CFL number is set to
0.6. The re nement criterion is the maximum value of the
curvature on the MeshBlock,

.. —2g + g
g = max(lqzl 4q; qt+1|) 44)
4q;
where
V)2 z\2
_ B+ B 4)
P

The re nement and dere nement thresholds are set to 10 * and
10 *, and up to 6 levels of re nement beyond the root grid are
allowed.

Figure 37 shows the results for this test at time ¢ = 0.4.
AMR naturally re nes the very thin shell propagating to the
right, as well as the steep parts of the rarefaction fans. The
results compare favorably to those presented in Mignone et al.
2012, Figure 23). When run on 4 cores of a Skylake Xeon
8160) node, this simulation takes 22.8 core-seconds. The same
simulation done at a uniform resolution of 25,600 cells takes
520 core-seconds, so the use of AMR results in a speed-up of a
factor of 23 for this test. While this speed-up from mesh
re nement is slightly lower than that reported for the PLUTO
code Mignone et al. 2012, Table 3), this is in part because the
runtime on a uniform mesh is signi cantly lower using
Athena++.

4.3.2. Relativistic KHI

The ability to simulate relativistic MHD problems with
AMR is illustrated in two dimensions with a magnetized KHI
problem. The same primitive state as in Mignone et al. 2012)
is initialized: the domain has constant values p = 1, p, = 20,

v =0, B*=,/2/5, B” =0, and B* = 10,/2/5, and the in-
plane velocity has the perturbed shear pro le

v = itanh 100y) 46a)
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Figure 37 Density, single component of the transverse magnetic eld, and
re nement level for the relativistic shock tube. Each cell is represented by a
single point on the right. The thin shell consisting of multiple shocks is
captured by high levels of re nement, as are the steepest parts of the rarefaction
zones.

y — 1 1 2
v 200 sin 2mx)exp —100y?). 46b)
Here, I' = 4 3 is used in the EOS. Note, Mignone et al. use the
Taub—Mathews EOS instead, though the differences are
small: the initial enthalpy is w =81 in our case, and
w ~ 80.02 in theirs.

The domain spans 0 < x < 1 and 0.25 <y < 0.25, with
periodic boundary conditions in x and outflowing conditions in
y. The root grid consists of 64 x 32 cells in MeshBlocks of
size 16>. Up to  ve levels of re nement beyond the root grid
are allowed. Re nement is based on the curvature of the
conserved energy in each dimension:

g=max g +g) 47a)
Ei,,' P — 2E, i E,' ;
gx — | J J + +1]| 47b)
E;
Eij1— 2E; + E:;
gy _ | j—1 = Jj j+1|. 47C)

The re nement and dere nement thresholds are set to be 10 2
and 10 2, respectively.

The VL2 integrator, PPM reconstruction, and, separately, the
HLLE and HLLD Riemann solvers are used. The simulation is
run to a time of t = 5, using a CFL number of 0.4. The density
and ratio of in-plane to perpendicular magnetic eld strength at
the end of the simulation are shown in Figure 38, where the
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through 5 present, while the right panels zoom in to the region with a black border, with re nement levels 4 and 5.

re ned regions can be seen to track the locations of small-scale
structures.

There are some differences between Figure 38 and Figure 31
of Mignone et al. 2012). While some of these may be
attributable to the different EOSs, we also note that the result at
the end of the simulation depends strongly on details of the
numerical algorithms employed. For example, when the same
test is performed with two different Riemann solvers but all
else being equal, the locations and shapes of even the largest
KHI rolls shift e.g., compare the top and middle panels in
Figure 38). In fact, many of the short-wavelength features in
the solution are introduced by changes in resolution at ne
coarse boundaries. For example, Figure 39 shows the ratio of
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the parallel and perpendicular components of the magnetic eld
in the same problem run on a uniform grid with a resolution of
4096 x 2048 twice the effective resolution at the highest
re nement level in the AMR calculation). In this case, the
vortex produced by the instability is smooth. Therefore, we
conclude that most of the complex features visible in Figure 38
are due to the AMR boundaries, and this in part contributes to
the difference between these solutions and those shown in
Mignone et al. 2012).

In the AMR runs, the re nement criterion partially re nes
the root grid before time evolution begins, and so the run
begins with 176 MeshBlocks. Over the course of the HLLD
simulation, 1174 MeshBlocks are re ned and 177 coarser
blocks are created from ner ones. The AMR simulation takes
32.2 core-hours to run on 2 KNL nodes Xeon Phi 7250, 68
cores each), while the same problem run on a uniform
2048 x 1024 grid takes 251 core-hours. Thus, using AMR
gives a speed-up of 7.8.

4.3.3. Relativistic Magnetized Blast Wave

A further test of the relativistic MHD module in the code is
provided by the evolution of a magnetized blast wave.
Variations on this test are commonly used to test the
propagation of strong shocks in relativistic MHD codes, for
example, in Komissarov 1999), Leismann et al. 2005), del
Zanna et al. 2007), Beckwith & Stone 2011), and Mignone
et al. 2012).

We rst run a strongly magnetized blast in two dimensions
on a Cartesian grid, with the magnetic eld not aligned with the
grid. On a domain 6, 6]2, we have initial values v' = 0,
B* = 1/20, B' = 1/4/20, and B* = 0. The density p is
10 2 within a distance r = 0.8 of the origin, 10 * outside
r = 1, and it varies linearly with radius between these circles.
p, varies from 1 to 5 x 10 3.T' =4 3 for this test.

The simulation is evolved to a time of #+ = 4 using a CFL
number of 0.25, PLM reconstruction, and the HLLD Riemann
solver. We use both a uniform grid with 1536 cells and an
AMR grid with 48> cells at root level. In both cases,
MeshBlocks with 16 cells are used. The AMR grid can
have up to ve additional levels of re nement. Re nement is
triggered with the same curvature condition in Equation 47) as
in the previous test, except using conserved density D instead
of energy. The thresholds are set to be 0.025 and 0.005.

The upper panel of Figure 40 shows the gas pressure at the
end of the AMR simulation. Re nement tracks the shock fronts
that are directed by the magnetic eld. The lower panel shows
the relative difference in conserved energy between the
simulations. In most of the volume, the agreement is better
than 1

The uniform simulation takes 24.7 core-hours on 2 KNL
nodes Xeon Phi 7250, 68 cores each), while the AMR
simulation takes 6.18 core-hours. Thus AMR gives us a factor
of 4.0 speed-up.

We next run a similar but spherical test in three dimensions,
using the same physical parameters as in Mignone et al. 2012).
The domain is 6, 6]°, with initial values v’ =0,
B* =1/4200, B’ =1/+4200, and B*= 0. Density and
pressure are the same as in the 2D case, and again we have
I'=4 3.

The simulation is evolved to a time of + = 4 using a CFL
number of 0.25, PLM reconstruction, and the HLLD Riemann
solver, using both a uniform grid with 768> cells and an AMR
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Figure 40 Top: gas pressure in the 2D strongly magnetized relativistic blast
test using AMR. The grid lines denote MeshBlocks consisting of 16> cells,
and re nement levels 2 through 5 are present. Bottom: relative difference in
conserved energy between the AMR grid and a uniform grid.

grid with 48> cells at root level. In both cases, MeshBlocks
with 16° cells are used. The AMR grid can have up to four
additional levels of re nement. The curvature condition for
re nement is extended naturally to 3D, with thresholds set to be
0.15 and 0.03.

Figure 41 shows the gas pressure in the z = 0 slice at the end
of the simulation. As in the 2D case, we see re nement tracking
the shock fronts. Again, the agreement is better than 1  over
most of the volume, with most of the relative error in the
interior, which has been evacuated to near the density and
pressure floors.

The uniform simulation takes 2720 core-hours on 16 KNL
nodes, while the AMR simulation takes 316 core-hours. Thus
AMR gives us a factor of 8.6 speed-up.

4.3.4. Black Hole Accretion

As a demonstration of the general-relativistic capabilities of
Athena++, we show the evolution of a weakly magnetized,
hydrostatic equilibrium torus around a spinning black hole. The
initial conditions are those of Fishbone & Moncrief 1976) with
dimensionless spin a = 0.9, inner edge at r = 151, and
pressure maximum at r = 257,, where 1, = GM /C2 is the
characteristic length scale of a black hole of mass M. The
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Figure 41 Top: midplane z = 0 slice of gas pressure in the 3D relativistic
magnetized blast test using AMR. The grid lines denote MeshBlocks
consisting of 16> cells. Re nement levels 2 through 4 are present.
Bottom: relative difference in conserved energy between the simulations.

magnetorotational instability Balbus & Hawley 1991) is
seeded with a single magnetic eld loop in the poloidal plane,
normalized such that the mass-weighted average of 5 ' is 0.01.

We evolve the torus in horizon-penetrating, spherical Kerr—
Schild coordinates. Our root grid has 56 x 32 x 44 cells in
r, 0, and . Cells are spaced logarithmically in radius, from
r = 1.3297, to r = 1007, and they are uniform in both angles.
SMR adds three successive re nement levels away from the polar
axis, achieving an effective resolution of 448 x 256 x 352
everywhere within 507625 of the midplane while still keeping
cells from being unnecessarily small near the axis.

The density after a time of 10 0007, /c is shown in Figure 42.
By this point, the turbulence has saturated, and inflow
equilibrium has been achieved in the inner parts of the thick
disk that has formed. The evolution of accretion flows such as
this, at similar resolutions, is ubiquitous in the black hole
modeling community, and it is used as a test of codes
GRMHD capabilities see Porth et al. 2019, including a
comparison of Athena-+ with other codes).

5 Additional Physics

In this paper, we have described in detail modules for
nonrelativistic and relativistic MHD that have already been
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Figure 42 Poloidal slice of density in the GR torus demonstration. Turbulence
is fully developed after 10,000 gravitational times 7, /c.

implemented in the AMR framework. These modules include
additional physics for MHD, including nonideal MHD, a
general EOS, the shearing-box approximation, and orbital
advection. Below we describe some of the additional physics
that will be available in new modules in the future.

Self-gravity. Two different methods are implemented for
self-gravity. The rst solves the Poisson equation using fast
Fourier transforms FFTs), following the method implemented
in Athena. This module is included in the public version.
There is also a new implementation of self-gravity based on the
solution of the Poisson equation using the full multigrid FMG)
method, which is more ef cient and scalable than FFTs FMG
is O N) while FFTs are O N log N)). The new FMG solver is
being extended to work with AMR K. Tomida et al. 2020, in
preparation). In addition, the FMG solver is designed to be
flexible so that it can be used for a variety of applications, for
example, solving implicit discretizations of the radiation
transfer moment equations as in Jiang et al. 2012).

Radiation transfer. A variety of modules for incorporating
radiation transfer into MHD calculations are being developed.
The time-dependent radiation transport algorithm described in
Jiang et al. 2014a) has already been implemented and has been
used to study a variety of problems in radiation-dominated
accretion disks Jiang et al. 2014b) and massive stars Jiang
et al. 2018). This module is being extended to full GR.
Moment-based methods such as flux-limited diffusion and the
variable Eddington tensor VET) method Davis et al. 2012;
Jiang et al. 2012) will also be implemented. For postprocessing
calculations that compute synthetic images and spectra, a
Monte Carlo-based radiation transfer solver is also under
development S. Davis et al. 2020, in preparation). A method
for following radiation from point sources using adaptive ray
tracing has been implemented in Athena Kim et al. 2017)
and will be reimplemented in Athena-++.

Reaction networks. A module to solve chemical reaction
networks is implemented using a publicly available sparse
matrix solver M. Gong et al. 2020, in preparation). Nuclear
reaction networks are also being implemented using the same
algorithmic infrastructure G. Halevi et al. 2020, in prep-
aration). When coupled with the passive scalar capabilities
described in Section 3.2.6, Athena++ becomes capable of
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solving chemohydrodynamics. When these solvers are coupled
with the radiation transfer module and the general EOS
capabilities, they enable new studies of a diverse set of
problems from the dynamics of the multiphase interstellar
medium ISM) to the merger of compact objects.

Dust Particle Dynamics: To simulate particle motions
coupled with hydrodynamics, a general particle module is
under development C.-C. Yang et al. 2020, in preparation),
based on the methods implemented in Athena and described
in Bai & Stone 2010). The module will enable calculations of
the dynamics of dust particles in planet formation, the
kinematics of tracer particles to diagnose flow, and the use of
sink particles to represent stars and compact objects.

6 Summary and Conclusion

In this paper, we have described a new framework for AMR
as implemented in the Athena++ code. This framework
adopts a block-based AMR design, with blocks organized into
a tree data structure, for improved performance, scalability, and
ease of implementation. It can be used with any logically
rectangular coordinates and with nonuniform mesh spacing.
We also describe a dynamic execution model based on a simple
design we call a task list. This model is capable of overlapping
communication with computation on distributed-memory
parallel systems, which helps improve the parallel ef ciency
and scalability of the algorithms on very large numbers of
processors. Moreover, different combinations of physics can be
included in calculations by simply adding new steps to the task
list. Finally, because different regions of the calculation can
have different task lists, it is even straightforward to implement
multiphysics calculations that include different physics in
different locations such as kinetic MHD in dense regions of a
plasma that are weakly collisional, and PIC methods in diffuse
regions that are collisionless). The task list could also be used
to solve different physics on different physical cores in a
parallel calculation; for example, the Poisson equation for self-
gravity could be solved on different cores from those dedicated
to hydrodynamics or MHD.

We have also described two physics modules that have been
implemented in this framework, for nonrelativistic and
relativistic MHD. These modules are based on the numerical
algorithms for MHD developed in the Athena code SO08)
using a nite-volume discretization combined with the CT
algorithm to enforce the divergence-free constraint on the
magnetic eld. They have been updated with new algorithmic
extensions, such as higher-order reconstruction in curvilinear
and or nonuniform meshes, new higher-order time integrators
based on a method of lines approach, and diffusive terms that
can be updated using new Runge—Kutta—Legendre super-time-
stepping methods. Most importantly, these modules for MHD
work effectively with AMR. A variety of test problems were
presented to show the accuracy and delity of the MHD
algorithms with AMR; see SO8 and White et al. 2016) for a
more comprehensive list of tests we have used to validate the
algorithms.

A signi cant aspect of this new framework is excellent
performance and parallel scaling. The MHD solvers have been
highly optimized to exploit vector instructions on modern
processors. Based on tests run with the public versions of
several MHD codes built using the same compilers and
optimizations, the performance of the Athena++ MHD
module is among the highest of any publicly available
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astrophysical MHD code of which we are aware, with only
the DISPATCH code being similar Nordlund et al. 2018).
Using all cores on a single Intel Skylake CPU, the performance
is only about 5x slower than the same algorithm implemented
on the latest NVIDIA Volta GPU Grete et al. 2019; as
expected given the ratio of peak performance for these two
devices). On up to 500,000 threads, the MHD module shows
excellent weak scaling, with 84  parallel ef ciency. Thus, the

nite-volume algorithms implemented in Athena++ are
clearly capable of exploiting the new hardware emerging in
the exascale era.

A variety of new physics modules are under development,
including self-gravity, radiation transfer, chemical and nuclear
reaction networks, and particles coupled to the fluid. In
addition, improvements to the algorithms in existing modules
is planned. For example, a fully fourth-order accurate algorithm
for MHD has been implemented in the Athena++ framework

Felker & Stone 2018) and is currently being tested and
compared with existing algorithms in the code on astrophysical
applications to determine the relative advantages and dis-
advantages of each. Finally, a performance-portable version of
the entire Athena++ AMR framework is being built using
the Kokkos library J. Dolence et al. 2020, private commu-
nication) and will be released as open source in the near future.

Athena++ is publicly available through a GitHub
repository and is distributed under the BSD open-source
license. Once new modules are thoroughly tested and deemed
reliable, they will also be made publicly available. While the
code has been developed primarily to enable scienti ¢
applications by the core members of the development team, it
is hoped that others will nd the code useful.
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