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ABSTRACT
Residential load forecasting has been playing an increasingly important role in operation and plan-
ning of power systems. Over the recent years, accurate forecasts of individual loads have become ever
more challenging due to the proliferation of distributed energy resources. This paper identifies and
verifies the opportunity of improving load forecasting performance by incorporating suitable input
modeling and uncertainty quantification, and proposes a two-stage approach that enjoys the following
features. (1) It provides input modeling and quantifies the impact of input errors, rather than neglect
or mitigate the impact—a prevalent practice of existing methods. (2) It propagates the impact of input
errors into the ultimate point and interval predictions for the target customer’s load for improved pre-
dictive performance. (3) A variance-based global sensitivity analysis method is further proposed for
input-space dimensionality reduction in both stages to enhance the computational efficiency. Numer-
ical experiments show that the proposed two-stage approach outperforms competing load forecasting
methods with respect to both point predictive accuracy and coverage ability of the predictive intervals
achieved.

Nomenclature
DER Distributed energy resource
GSA Global sensitivity analysis
NNGP Neural network-Gaussian process
NIGP Noisy input Gaussian process
xt Input vector of the two-stage load forecastingmethod

at hour t
N Number of customers in the system
�ti,j The voltage angle difference between customer i and

customer j at hour t, i ≠ j, i, j = 1, 2,… , N

P ℎi True customer i’s load at hour ℎ, i = 1, 2,… , N

Dℎ
j Input-output pair for training NNGP at hour ℎ, j =

1, 2,… , i − 1, i + 1,… , N

Θℎi,j A vector comprising the values of �ti,j , t = ℎ −
24nin,… , ℎ − 1

Nu Number of hidden units in each layer of NNGP
nt Number of days from which the training points are

sampled for NNGP
N∗ Number of neighboring customers whose informa-

tion is included for the first-stage input prediction
nin Number of days from which the data in the input

layer of NNGP are sampled
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din Dimensionality of the input layer of NNGP
dout Dimensionality of the output layer of NNGP
�1 Predictive mean of the input vector obtained from

NNGP
V1 Predictive variance of the input vector obtained from

NNGP
Ŝ1Ti Total Sobol’ index estimate for the ith input in the

first stage, i = 1, 2,… , 24(N − 1)

Ŝ2Tj Total Sobol’ index estimate for the input �i,j in the
second stage, j = 1, 2,… , i − 1, i + 1,… , N

Hl Summary statistic for quantifying the impact of lth
component of (�i,1,… , �i,i−1, �i,i+1,… , �i,N )⊤ on thefirst-stage input prediction, l = 1, 2,… , N − 1

nc Number of load observations covered by a given pre-
dictive interval on a prediction day

1. Introduction
As operating decisions includingmanagement, planning,

scheduling, and load dispatching rely on load forecasting,
accurate forecasts are critical to achieve reliable, secure and
stable operations of electric power systems. The prolifera-
tion of distributed energy resources (DERs) has been raising
the level of uncertainty in power systems steadily, render-
ing responsive and reliable residential load forecasting more
challenging than ever.

A plethora of methods have been proposed to meet the
challenges in load forecasting, which can be classified into
two categories: one-stage and two-stage methods. A typi-
cal one-stage method adopts a single statistical or machine
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learning model for load forecasting. Various models have
been considered in the literature to this end, including, but
not limited to, multiple linear regression (MLR), auto regres-
sive integrated moving average (ARIMA), support vector re-
gression (SVR), neural network (NN), and Gaussian process
(GP). To give a few examples, an MLR model with polyno-
mial terms built on temperature data was used for load fore-
casting in [1]. In [2], the authors adopted an MLR model
with a high interpretability to investigate the causality of the
consumption of electric energy. In [3], an ARIMA model
withwaveletmulti-resolution analysis was proposed for short-
term load forecasting. In [4], the authors proposed an in-
tegrated non-seasonal and seasonal sliding window-based
ARIMA model combined with the online information net-
work technique for load prediction. In [5], an incremental
learning-based SVR model using batch arriving and large
datasets was proposed for load forecasting. In [6], the au-
thors constructed an SVR model using temperature and so-
lar flux as input variables based on sensor data for predict-
ing energy consumption in residential buildings. In [7], a
hybrid model of convolutional NN for extracting the local
trends and long short-term memory NN for learning the re-
lationship between time steps was proposed for load fore-
casting. In [8], the authors proposed a hybrid model of con-
volutional NN and gated recurrent unit NN for extracting the
feature vector from high-dimensional data and from time se-
quence data for short-term load forecasting. In [9], a GP
model with a task-specific covariance kernel incorporating
seasonal and weather information was proposed for electric-
ity demand forecasting. In [10], the authors adopted a GP
model incorporating physical insights about load data char-
acteristics to improve the load predictive accuracy achieved.

The aforementionedmethods have respective advantages
and disadvantages. MLR models are easy to implement and
enjoy a high interpretability, but are incapable of capturing
complex load patterns if not used in conjunction with other
sophisticated techniques such as SVR andNN.ARIMAmod-
els can fit stationary time series well, but do not perform
adequately when load series exhibit nonstationarity. SVR
and NN models are known for their high predictive accu-
racy when modeling complex nonlinear input-output rela-
tionships, but require a high computational cost for theirmodel
training. GP models stand out from the one-stage methods:
they are highly flexible to capture complex load patterns;
more importantly, they can provide not only accurate point
predictions but also natural interval predictions that cover
the true load observations with a desirable high probabil-
ity. The computational cost of GP models, however, grows
rapidly with the size of the training dataset. The interested
reader is referred to Table 3 in Appendix A for a summary
of representative one-stage methods.

Two-stagemethods perform load forecasting in two stages,
as the name implies. The first stage is typically set up for
processing input variables or model parameters, e.g., to se-
lect important inputs from a large candidate set or to obtain
accurate estimates of input features, while the second stage
carries out load forecasting using a prediction model (such

asMLR, SVR, or GP) based on the processed inputs. For ex-
ample, in [11], the authors proposed to filter the electricity
load signal by some feature selection technique for select-
ing appropriate candidate inputs to the forecast engine in the
second stage for load forecasting. In [12], the first stage of
the proposed approach performed the next-day average load
forecasting and the second stage used the forecasts as inputs
for the next-day hourly load forecasting. Two-stage methods
are known for their enhanced predictive performance thanks
to the first-stage processing. Table 3 in Appendix A provides
a detailed account of representative two-stage load forecast-
ing methods.

Despite many successful applications reported, existing
one-stage and two-stage methods suffer from one common
drawback: they fail to thoroughly address the impact of in-
put errors when performing load predictions. Input errors
arise from the use of the estimates of relevant input fea-
tures for load forecasting. To achieve a high predictive ac-
curacy, all factors affecting the load behavior can be con-
sidered as inputs for load forecasting models; these include
future weather conditions (e.g., temperature, humidity, dew
point, and cloud coverage) and future power states (e.g., volt-
ages and voltage angles), etc. As the future values of the
relevant inputs are unknown at the time of prediction, they
must be predicted as well. The predicted input values are
inevitably susceptible to errors. Neglecting input errors can
result in a false sense of confidence in the predictive per-
formance achieved by a model that fails to account for the
impact. Fig. 1 provides a simple example to illustrate the im-
portance of accounting for the impact of input errors when
performing point and interval predictions via GP modeling.
The input-output relationship of interest is f (x) = sin(12x)
for x ∈ (0, 1). Suppose that one is interested in making pre-
dictions at x ∈ [0.7, 1] based on a training dataset consisted
of input-output pairs obtained at 140 randomly sampled in-
put values from [0, 0.7]. Specifically, a random output Y (x)
is generated at each equipspaced x on [0, 0.7] according to
Y (x) = f (x + "x) + "y, where the input x is perturbed by
a normally distributed input error "x with mean 0 and stan-
dard deviation 0.05; and the term "y denotes a normally dis-
tributed output error with mean 0 and standard deviation 0.2.
The upper panel of Fig. 1 shows the point and interval predic-
tions obtained by standard GPwhich does not account for the
impact of input errors. The lower panel shows counterpart
results obtained by noisy input GP (to be introduced shortly)
which can effectively tackle the impact of input errors. The
example manifests that noisy input GP outperforms standard
GP by providing more accurate point predictions as well as
interval predictions with a much higher coverage capability.

Although two-stage methods are superior to one-stage
methods in terms of predictive performance; these existing
methods still do not address the impact of input errors ad-
equately. It is worth noting that some existing two-stage
methods indeed aim at obtaining more accurate input esti-
mates in the first stage by filtering out input errors viaKalman
filter (KF). For instance, a two-stage method was proposed
by [13]. The first stage adopted state-space models with ex-
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Figure 1: An illustration of the importance of accounting for
the impact of input errors when performing point and interval
predictions.

tended KF to model the load structure, which was used as
the input to MLR models in the second stage to enhance
the load forecast accuracy achieved. However, the use of
KF requires the knowledge of specific system dynamics (as
noted by [14]), which is typically unavailable when perform-
ing load forecasting. These facts suggest that compared to
mitigating the impact of input errors, a more thorough solu-
tion is to properly quantify and propagate the impact into the
point and interval load predictions via suitable methods.

This work proposes a two-stage load forecasting approach
featuring input modeling and uncertainty quantification for
enhanced predictive performance. The first stage of the ap-
proach performs input modeling and quantifies the input un-
certainty; the second stage performs load forecasting with
the input uncertainty properly propagated into the predic-
tion results. The proposed two-stage approach is evaluated
on various IEEE distribution systems that are simulated us-
ing real datasets and is found to outperform competing one-
stage and two-stage methods in terms of both point and in-
terval predictions. The major contributions of this paper can
be summarized as follows:

• A novel hybrid model of NN and GP (NNGP) in the
first stage to obtain accurate point predictions for fu-
ture input values together with interval predictions that
quantify the input uncertainty.

• A noisy input GP model (NIGP) in the second stage
to produce the ultimate point and interval load pre-
dictions based on the input predictions with the input
uncertainty fully taken into account.

• Amodel-free global sensitivity analysis (GSA)method
for dynamic input feature selection to enhance the com-
putational efficiency.

• Concrete implementation details of the two-stage ap-
proach and the GSA method on specific test cases.

The remainder of the paper is organized as follows. Sec-
tion 2 elaborates on the proposed two-stage approach. Sec-
tion 3 presents the GSA method that aims at enhancing the
computational efficiency. Section 4 presents numerical ex-
periments for comparing the proposed two-stage approach
with competing forecasting methods. Section 5 concludes
the paper.

2. Load Forecasting with Input Modeling and
Uncertainty Quantification
This section elaborates on the proposed two-stage load

forecasting approach and explains how it can thoroughly ad-
dress the issue of input errors by quantifying and propagating
their impact into the ultimate load forecasts. Notice that this
work focuses on hourly load forecasting; nevertheless, other
forecast resolutions can be easily adopted as needed.

For ease of exposition, define the input features to be
used in the second-stage model first. Consider predicting
customer or bus i’s load at hour t in a distribution grid com-
prising N customers by using the following vector of input
features:

xt =
(

�ti,1,… , �ti,i−1, �
t
i,i+1, �

t
i,i+2,… , �ti,N

)⊤
, (1)

where �i,k denotes the difference between the voltage anglesassociated with the node voltages Vi and Vk of customers i
and k, and⊤ is the transpose operator. Such a choicewas first
adopted by the integrated GP framework (IGP) proposed in
[15], which stems from the well-known real power balance
equation for single-phase distribution systems:

0 = −Pi +
N
∑

k=1
|Vi||Vk|(Gik cos �i,k + Bik sin �i,k), (2)

where Pi denotes the net active power injected at bus i; |Vi|denotes the voltage magnitude of bus i; Gik and Bik are re-spectively the real and imaginary parts of the (i, k)th compo-
nent of the bus admittance matrix, i, k = 1, 2,… , N . Equa-
tion (2) implies that a given target bus’ load is strongly re-
lated to the voltage angle differences between other buses
and itself.

For utility practice, distribution grids for buildings and
residential areas are typically unbalanced multi-phase sys-
tems [16]. In this case, more sophisticated power flow anal-
ysis is required. Let a, b, and c denote the three phases of a
distribution grid, respectively. The vectorVi = (V a

i , V
b
i , V

c
i )
⊤

∈ ℂ3 denotes the nodal voltages at bus i, where V �
i denotes

the line-to-ground complex voltage on phase �. Similarly,
Ii = (Iai , I

b
i , I

c
i )
⊤ ∈ ℂ3 denotes the vector of current injec-

tions at bus i; Si = (Sai , Sbi , Sci )⊤ ∈ ℂ3 denotes the vector of
injected complex powers at bus i; Pi = (P ai , P

b
i , P

c
i )
⊤ ∈

ℂ3 denotes the vector of real powers at bus i; and Qi =
(Qai , Q

b
i , Q

c
i )
⊤ ∈ ℂ3 denotes the vector of reactive powers

at bus i. If a bus is only connected with one or two phases,
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the quantities of the missing phase are zeros. For example,
if bus i does not have phase c, then V c

i , Ici , Sci , P ci , and Qciare zeros. If bus i and bus k are connected, the relationship
between their nodal voltages and currents can be given as
follows:
(

Ii
Ik

)

=

(

Yik +
1
2Bi,shunt −Yik

−Yik Yik +
1
2Bi,shunt

)

(

Vi
Vk

)

, (3)

where Yik ∈ ℂ3 denotes the admittance submatrix between
buses i and k andBi,shunt ∈ ℂ3 denotes the shunt capacitance
at bus i. In a multi-phase system, Yik is not diagonal. Thevoltages at different phases are coupled. If buses i and k are
not connected, Yik = 0. The relationship between complex
power, voltage, and current at bus i can be given as

Si = Pi + jQi = Vi◦I∗i , (4)
where j = √

−1 and ◦ denotes the Hadamard product op-
erator which performs entrywise multiplication [17]. Notice
that a strong coupling between real powers and voltage angle
differences is embedded in (3) and (4).

The aforementioned power flow models for single-phase
and multi-phase systems manifest that a strong coupling ex-
ists between load and voltage angle; the literature confirms
this insight and further reveals that the coupling between
load and voltage magnitude, however, is rather weak [18].
Voltage angle data can be conveniently collected by smart
meters and have been successfully used as inputs for load
forecasting [19]. Therefore, this work adopts the input fea-
tures as specified in (1) for load prediction and demonstrates
how to thoroughly address the impact of input errors on load
forecasts via the proposed two-stage approach. Other rele-
vant input variables useful for load forecasting (e.g., tem-
perature and precipitation estimates) can be easily incorpo-
rated into the proposed approach, but the key issue to ad-
dress above all is the impact of errors in the inputs adopted.
For ease of exposition, this work focuses on load forecasting
for single-phase distribution systems; the proposed approach
can be easily generalized to work for multi-phase systems
and achieve satisfactory predictive performance, as will be
shown in Section 4.
2.1. The First Stage: Input Modeling and Error

Quantification
This section first introduces the first-stagemodel adopted

for input modeling, namely, neural network–Gaussian pro-
cess (NNGP), and then details its implementation for input
prediction and error quantification.
2.1.1. Model Choice

Consider predicting target customer i’s hour-ahead load
P t+1i at hour t, the second-stage model in our two-stage ap-
proach requires an input vector xt+1 in the form of (1) for
load prediction. Since the input values in xt+1 are unknownto us at hour t, the first-stage model is adopted to perform
hour-ahead input prediction. To fully quantify the input pre-
diction errors, the first-stage model must provide an inter-
val prediction as well as a point prediction. GP becomes a

natural choice to this end thanks to its inherent predictive
uncertainty measure. However, GP is known for its incom-
petent extrapolation performance [20], hence unsuitable as
the first-stage model for predicting future input values. In
contrast, NNs are known for their ability to capture com-
plex output patterns and their outstanding extrapolation per-
formance. However, NNs do not come with a predictive
uncertainty measure. This work proposes to use the neu-
ral network–Gaussian process (NNGP) model recently pro-
posed in [21] to accomplish both tasks simultaneously. The
underlying idea of NNGP is to place prior distributions on
the weight and bias parameters of a deep neural network
(DNN) with infinite width and derive its equivalent GP for-
mulation. By using the equivalent GP for prediction, NNGP
can combine the strengths of NN and GP, providing a highly
accurate point prediction as well as an informative interval
prediction for future input values.

The rationale behind NNGP is briefly described next.
Consider a fully-connected DNN with L hidden layers (L ≥
2), where the numbers of hidden units in each layer,Nu, areequal. Denote the pointwise nonlinearity function byΦ. Let
x ∈ ℝdin and y ∈ ℝdout denote the input and output vec-
tors of the network, respectively. Consider the ith hidden
unit in the lth layer, and denote the post-nonlinearity and
the post-affine transformation by ali and zli, respectively. It
follows that y =

(

zL1 (x), z
L
2 (x),… , zLdout (x)

)⊤. Denote the
weight and bias parameters in the lth layer byW l

ij and bli; weplace normal prior distributions with zero means and vari-
ances �2w∕Nu and �2b respectively onW l

ij and bli.To derive an equivalent GP for a generic DNN at hand,
we first show how to do so for a one-layer NN with infinite
width. Consider the output of the ith hidden unit of the first
layer in the NN, it follows that

z1i (x) = b1i +
Nu
∑

j=1
W 1
ija

1
j (x),

with a1j (x) = Φ
(

b0j +
din
∑

k=1
W 0
jkxk

)

, (5)

where the superscript “0” denotes the input layer of the NN,
and xk denotes the kth component of the input vector x. As
z1i (x) is the sum of independent and identically distributed
terms, the standard Central Limit Theorem indicates that
z1i (x) becomes normally distributed as Nu approaches in-
finity. Hence, given any input vectors x1, x2,… , xn, z1i =
(z1i (x

1), z1i (x
2),… , z1i (x

n))⊤ follows a multivariate normal
distribution. That is, z1i ∼  (�1, K1), where K1 denotes
the n×n covariance matrix for the first layer, with its (g, ℎ)th
component given byK1(g, ℎ) = Cov(z1i (x

g), z1i (x
ℎ)), g, ℎ =

1, 2,… , n. Since the parameters W 1
ij ’s and b1i ’s have zero

means, �1(x) = E[z1i (x)] = 0 for any x ∈ ℝdin . In particu-
lar, given any two inputs x, x′ ∈ ℝdin , it follows that
K1(x, x′) = E[z1i (x)z

1
i (x

′)] = �2b + �
2
wE[a

1
i (x)a

1
i (x

′)]. (6)
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Therefore, each component of the output vector of a one-
layer NN with infinite width is equivalent to a GP with a
covariance function specified by (6).

The aforementioned result can be generalized to NNs
with more than one layer in a recursive manner by utilizing
the relationship between alj and zl−1j , i.e., alj(x) = Φ(zl−1j (x)).
The resulting covariance function in theLth layer,KL(x, x′),
hence serves as the covariance kernel of the equivalent GP
for a DNN with L hidden layers. The interested reader is
referred to Appendix A of [22] for a detailed derivation.
2.1.2. Input Prediction and Error Quantification via

Neural Network–Gaussian Process
The first stage of the proposed approach predicts the hour-

ahead input vector component by component via NNGP. For
predicting each component, the first stage utilizes not only
their own values observed in the past but also the observed
values of other components.

Consider predicting the input �i,j at hour ℎ∗, for j =
1, 2,… , i − 1, i + 1,… , N (see the definition given in (1)).
One can first construct a training set for NNGP as

{

D
ℎ∗−24nt1
j ,

D
ℎ∗−24nt1+1
j ,… , Dℎ∗−1

j

}

, whereDℎ
j denotes an input-output

pair (Xℎ
j , Y

ℎ
j ) for ℎ = ℎ∗ −24nt1 , ℎ∗ −24nt1 +1,… , ℎ∗ −1,

and nt1 denotes the number of days from which the train-
ing points are sampled. The output layer Y ℎj is in fact �ℎi,j ,namely, the voltage angle difference between customer i and
customer j at hour ℎ. Taking into account the correlations
between different customers (recall (1)-(2) and discussions
therein), set Xℎ

j = (Θℎ⊤i,j ,Θ
ℎ⊤
i,j1
,… ,Θℎ⊤

i,jN∗
)⊤, where Θℎi,j =

(�ℎ−24nini,j ,… , �ℎ−1i,j )
⊤. The indices j1, j2,… , jN∗ are selected

from the set {1, 2,… , N} excluding i and j, and nin denotesthe number of days from which the data in the input layer are
sampled.

Upon constructing the training set, an NNGP model can
be constructed using the covariance kernel obtained follow-
ing the steps as given in Section 2.1.1. The predictive mean
and variance of each component in the hour-ahead input vec-
tor can be obtained via NNGP in the same manner as using a
standard GP. Hence, the predictive mean of the input vector,

�1 = (E[�i,1],… ,E[�i,i−1],E[�i,i+1],… ,E[�i,N ])⊤, (7)
and predictive variance of the input vector,

V1 = (V [�i,1],… ,V [�i,i−1],V [�i,i+1],… ,V [�i,N ])⊤, (8)
are readily available, which can then be used in the second-
stage model for making ultimate load forecasts. The pre-
dictive mean �1 provides a point prediction for the input
vector, which in conjunction with the predictive variance V1can be used to construct an interval prediction for each com-
ponent of the input vector. Consider obtaining an interval
prediction for the component �i,j (j ≠ i, j = 1, 2,… , N)
for an example. The upper and lower bounds of the com-
monly adopted 95% predictive interval for �i,j can be given
by E[�i,j] ± 1.96

√

V [�i,j].

The choice of the parameters for NNGP (i.e., nt1 , nin, �b,
�w, and the number of hidden layers L) greatly impacts the
predictive accuracy achieved. Appropriate parameter values
can be obtained by a cross-validation procedure; the inter-
ested reader is referred to [21] for details.
2.2. The Second Stage: Load Forecasting with

Input Error Propagation and Uncertainty
Quantification

This section first introduces the second-stagemodel adopted
for load forecasting, noisy input Gaussian process (NIGP),
which can fully address the impact of input errors, and then
proceeds to describe the implementation of NIGP.
2.2.1. Model Choice

The second stage of the proposed approach aims at ap-
propriately propagating the impact of input errors assessed
in the first stage into the ultimate load forecasting results,
reflecting it in both point and interval load predictions. The
noisy input Gaussian process (NIGP)model proposed in [23]
is arguably an adequate choice as the second-stage model.
Compared to standard GP models, NIGP can propagate the
impact of input errors into both point and interval predic-
tions, providing a thorough solution to the issue of input er-
rors in load forecasting.

The rationale behind NIGP is briefly described next. As-
sume that the observed output y ∈ ℝ is a noisy measurement
of an actual output ỹ, that is,

y = ỹ + "y, (9)
where the output noise is assumed to be normally distributed,
i.e., "y ∼  (0, �2y ), with �2y denoting the output noise vari-
ance. Assume that the observed input vector x ∈ ℝd can
be modeled as the actual input vector x̃ corrupted by some
input noise:

x = x̃ + "x, (10)
where the input noise vector is assumed to be normally dis-
tributed, i.e., "x ∼  (0,Σx), with Σx denoting the d × d
input noise covariance matrix. The relationship between the
observed input and output follows immediately from (9) and
(10):

y = f (x − "x) + "y, (11)
where f ∶ ℝd → ℝ denotes the target input-output rela-
tionship to estimate. Suppose that f (⋅) can be modeled as
a GP with some covariance kernel. The first-order Taylor
expansion of f (x − "x) yields

f (x − "x) = f (x) − "⊤x
)f (x)
)x

+… , (12)
where )f (⋅)∕)x denotes the partial derivative process off (⋅),
which is also a GP [24]. Given that the distribution of the
product of two normal random vectors "⊤x and )f (x)∕)x is
analytically intractable, one can approximate )f (x)∕)x by
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the gradient of the posterior mean of f (x); denote it by )f̄ .
It then follows from (11) and (12) that

y ≈ f (x) − "⊤x)f̄ + "y, (13)
which implies that the observed output y is approximately
normally distributed, i.e., P (y|f ) = (f (x), �2y+)f̄

⊤Σx)f̄ ).Now suppose that the training set for NIGP comprisesN
observed input-output pairs, {(xi, yi)}Ni=1. Denote theN ×d
input matrix by X and the N-dimensional output vector by
Y . Let C denote the N ×N covariance matrix obtained by
evaluating the covariance kernel at X, and denote the gradi-
ent of the posterior means at the N training inputs by �f̄ ,
which is an N × d matrix. When the popular squared ex-
ponential covariance kernel is used, the covariance between
any two inputs xi and xj is given by

C(xi, xj) = �2f exp
(

− 1
2
(xi − xj)⊤Λ−1(xi − xj)

)

, (14)
where �2f represents the process variance, and Λ denotes the
d×d diagonal matrix with its main diagonal elements being
the length-scale hyper-parameters.

The expressions for the predictive mean and variance of
NIGP can be derived when the test input is either determin-
istic or stochastic. Denote the observed test input by x∗ andthe actual test input by x̃∗. In the deterministic case, x∗ = x̃∗.It follows that
E[f (x∗)|X, Y ] = C(x̃∗,X)[C(X,X) + �2yIN

+diag(�f̄Σx�f̄
⊤)]−1Y , (15)

V [f (x∗)|X, Y ] = C(x̃∗, x̃∗) − C(x̃∗,X)[C(X,X) + �2yIN
+diag(�f̄Σx�f̄

⊤)]−1C(X, x̃∗), (16)
where diag(�f̄Σx�f̄⊤) denotes the diagonal of the matrix
�f̄Σx�f̄

⊤, and IN denotes theN×N identity matrix. Notice
that �f̄Σx�f̄⊤ is a correction term added to the covariance
matrix of a standard GP model to reflect the uncertainty as-
sociated with the inputs in X.

In the stochastic case, assume that the observed test input
x∗ is multivariate normally distributed, i.e., x∗ ∼ (x̃∗,Σx).It follows that the predictive mean of f (x∗) can be given as

E[f (x∗)] =
(

[

C + �2yIN + diag(�f̄Σx�f̄
⊤)
]−1

Y
)⊤
q. (17)

Compared to the predictivemean given in (15), q is the coun-
terpart of C(x̃∗,X) in the stochastic case, which is given by

q = ∫ C(x∗,X)p(x∗|x̃∗,Σx)dx∗, (18)
where p(x∗|x̃∗,Σx) is the posterior of x∗. When the squared
exponential covariance kernel in (14) is adopted, q is anN×
1 vector whose ith component is given by
qi = �2f |ΣxΛ

−1 + Id|
− 12 exp

(

− 1
2
(xi − x̃∗)⊤(Σx + Λ)−1

(xi − x̃∗)
)

, i = 1, 2,… , N, (19)

where Id denotes the d×d identity matrix. Utilizing the law
of total variance, the predictive variance of f (x∗) follows as

V [f (x∗)] = �2f + �
⊤Q� − (E[f (x∗)])2 (20)

− tr([C + �2yIN + diag(�f̄Σx�f̄
⊤)]−1Q)

where tr(M) denotes the trace of matrix M , and Q is an
N ×N matrix whose (i, j)th component is given by

Qij =
C(xi, x̃∗)C(xj , x̃∗)

|2ΣxΛ−1 + Id|
1
2

exp
(

(z − x̃∗)⊤(Λ +
1
2
ΛΣ−1x

Λ)−1(z − x̃∗)
)

, with z = (xi + xj)∕2, (21)

and � = (C + �2yIN + diag(�f̄Σx�f̄
⊤))−1Y . The interested

reader is referred to [23] for more details on the derivation
of the predictive mean and variance functions of NIGP. A
MATLAB package is available for implementing NIGP [25].

It is worth noting that there exist other machine learning
methods that can produce reliable point predictions based on
uncertain inputs. For instance, in [26], a feed-forward infer-
ence method was proposed to propagate input uncertainty
through all layers of an NN; in [27], the authors adopted a
Bayesian NN framework to account for the input noise given
the knowledge of the noise process model. However, to the
best of our knowledge, NIGP is the only approach that can
provide an adequate uncertainty measure for the ultimate
prediction delivered. Moreover, by using different covari-
ance kernels, NIGP enjoys the flexibility of capturing a wide
range of customers’ load patterns, which is highly valuable
in real-life applications.
2.2.2. Load Forecasting via Noisy Input Gaussian

Process with Input Error Propagation and
Uncertainty Quantification

In the second stage, NIGP can be conveniently imple-
mented for making ultimate load forecasts. As NIGP is es-
sentially a variant of GP, its training and prediction can be
performed in the same manner as using a standard GP. Con-
sider predicting the target customer i’s hour-ahead load P ℎ∗iat hour ℎ∗ − 1. One can first estimate the hyper-parameters
�2f , Λ and �2y via maximum likelihood estimation based on
a set of training input-output pairs {(xℎ, P ℎi )}

nt2
ℎ=1, where nt2denotes the number of days from which the training points

are sampled, and xℎ is in the form of (1). With the estimates
of the hyper-parameters, load forecasting can be made based
on the predictive mean and variance of the input vector, �1and V1, respectively given by (7) and (8). Specifically, set
Σ1 = diag(V1), a diagonal matrix whose main diagonal en-
tries are given by the components of V1. Then the predictivemean and variance for the target customer’s hour-ahead load
P ℎ∗i can be obtained by replacing x̃∗ and Σx in (17) and (20)respectively by �1 and Σ1. The predictive mean E[f (x∗)]given in (17) can be used as a point prediction for P ℎ∗i , which
in conjunction with the predictive variance V [f (x∗)] givenin (20) can be utilized to construct an interval prediction for
P ℎ∗i . Specifically, the upper and lower bounds of the com-
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monly adopted 95% predictive interval for P ℎ∗i are given by
E[f (x∗)] ± 1.96

√

V [f (x∗)].

3. Improving Computational Efficiency via
Global Sensitivity Analysis
This section aims at enhancing the computational effi-

ciency of the proposed two-stage load forecasting approach
via global sensitivity analysis (GSA). Due to the use of spa-
tial information (i.e. voltage angle difference) for load fore-
casting, the input-space dimensionality can increase dramat-
ically with the number of customers in the power grid, re-
sulting in a high computational cost. To reduce the input-
space dimensionality, one can consider retaining only a few
most important input dimensions for load forecasting. Al-
though many feature selection techniques are available, e.g.,
filter methods, wrapper methods, and embedded methods
(for a review, see [28, 29]), most of them are parametric ap-
proaches and hence pose restrictive assumptions on the un-
derlying input-output relationship. This work proposes to
use the variance-based GSA method, which is model-free
and hence works well without assuming any particular input-
output relationship [30]. GSA can be applied to both stages
of the proposed approach to improve the computational effi-
ciency achieved.
3.1. Variance-Based Global Sensitivity Analysis

for Systems with Functional Inputs
GSA focuses on quantifying how sensitive the output is

to each individual input feature and their interactions, and is
useful for identifying those inputs that contribute the most to
the output variability. GSAmethods fall into two categories:
regression-based and variance-based. The main idea of the
variance-based GSA methods is to decompose the variance
of the output as a sum of contributions of each input feature.
One of the most widely used variance-based GSA methods
is the Sobol’ index method, on which a brief overview is
provided next.

Consider the following model: X ↦ Y = f (X), where
f (⋅) denotes the underlying input-output function,X = (X1,
X2… , Xm)⊤ denotes the m× 1 vector of input features, and
Y represents the output. The first-order Sobol’ index of Xiis defined as

Si =
VXi (EX∼i [Y |Xi])

V (Y )
, i = 1, 2,… , m, (22)

which quantifies the impact of Xi on Y only, excluding any
interactions with other inputs. The total Sobol’ index of Xiis defined as

STi =
EX∼i [VXi (Y |X∼i)]

V (Y )
= 1 −

VX∼i (EXi [Y |X∼i])
V (Y )

, (23)
whereX∼i denotes the collection of all inputs exceptXi. Thetotal Sobol’ index measures the total impact of Xi on Y , in-cluding higher-order impacts through interactions with other
inputs. By definition, a Sobol’ index takes a value in [0, 1].

The larger an index value is, the greater impact the associ-
ated input has on the output.

A majority of existing methods proposed for Sobol’ in-
dex estimation focus on tackling spatial inputs. To give a few
examples, different approaches for calculating total Sobol’
indices for spatial inputs were compared in [31]. In [32], the
authors proposed an innovative method based on the func-
tional decomposition of the output to obtain a spatial map
of the Sobol’ indices. In [33], a novel copula-based ap-
proach for estimating Sobol’ indices for models with depen-
dent spatial input variables was presented. In the context
of load forecasting, however, methods capable of handling
functional inputs (i.e., inputs that vary with time) are re-
quired. GSA methods that tackle systems with functional
inputs are relatively scarce. In [34], the authors proposed
an effective Sobol’ index estimation method for GSA of dy-
namic systems, which is suitable to be applied to the first-
and second-stage analyses to improve the computational ef-
ficiency achieved.

To estimate Sobol’ indices, one can first decompose the
functional inputs through a simultaneous principle compo-
nent analysis as follows:

X =
p
∑

i=1
�i
i, (24)

where 
 = {
1, 
2,… , 
p} denotes the collection of basis
functions such as B-splines andwavelets, and� = {�1, �2… ,
�p} denotes the set of corresponding coefficients, with p de-
noting the number of basis functions used. Then the joint
distribution of the coefficients in � can be approximated us-
ing a Gaussian mixture model. Subsequently, one can gener-
ateMonte Carlo (MC) samples of the functional inputs based
on (24) by sampling from the approximated distribution of
�. Given a sample of input features, the corresponding out-
puts Y can be obtained using an approximated input-output
function f̂ . The first-order and total Sobol’ indices can then
be estimated via MC sampling. Taking into account the po-
tential interactions between the components of the input vec-
tor, one can adopt the total Sobol’ index as the importance
measure and use the following estimator proposed in [35]:

ŜTi =

(2n)−1
n
∑

j=1

(

f̂ (A)j − f̂ (A
(i)
B )j

)2

V (f̂ (C))
, (25)

where A, B, and C respectively denote three independently
generated n×mmatrices of input samples, each row of which
gives a randomly sampled input vector. In (25), f̂ (A) evalu-
ates the approximated function f̂ at the input vector given by
each row of matrix A, and the subscript j of f̂ (A)j denotes
the jth element of f̂ (A). A(i)B denotes the matrix whose ith
column is taken frommatrixBwhile the otherm−1 columns
remain from matrix A.
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3.2. Speeding Up Input Prediction via Global
Sensitivity Analysis

The purpose of performing GSA in the first stage is to se-
lect a set of customer indices {j1, j2,… , jN∗} from {1, 2,… ,
N} (see Section 2.1.2) to help with input prediction. Con-
sider predicting the value of input �i,j at each hour on a par-
ticular day, namely, �ℎ∗i,j ,… , �ℎ

∗+23
i,j . Prior to prediction, one

can first construct a training set with full-dimensional inputs
for the GSA purpose. Specifically, set N∗ = N − 2 and
nin = 1 in Section 2.1.2. Hence, each input dimension corre-
sponds to the voltage angle difference of the target customer
and another customer at one of the previous 24 hours and
the input-space dimensionality is 24(N − 1). Recall that in
the first stage, the input-output relationship is approximated
by NNGP, hence the first-stage GSA is carried out based on
the NNGP model to obtain the total index estimates, Ŝ1Ti ,
i = 1, 2,… , 24(N − 1). Since each index i corresponds
to a particular hour and a particular customer, one can then
quantify the impact of the lth component of the input vector
(�i,1,… , �i,i−1, �i,i+1,… , �i,N )⊤ by the following summary
statistic:

Hl =
24l
∑

i=24(l−1)+1
Ŝ1Ti , l = 1, 2,… , N − 1. (26)

The larger the value ofHl , the greater the impact of the lth
component. One can sort theHl’s in a non-increasing orderand select the first N∗ corresponding components (exclud-
ing Θℎi,j) to be included in Xℎ

j for input prediction as de-
tailed in Section 2.1.2. The value of N∗ can be determined
together with other parameters of NNGP by running a cross-
validation procedure.
3.3. Speeding Up Load Forecasting via Global

Sensitivity Analysis
The aim of performing GSA in the second stage is to

identify and select a few important components in the in-
put vector (�i,1,… , �i,i−1, �i,i+1,… , �i,N )⊤ to be used in the
NIGPmodel for predicting the target customer i’s hour-ahead
load. One can carry out GSA based on the NIGP model
trained in the second stage following the steps detailed in
Section 3.1, and obtain the total Sobol’ index estimate, Ŝ2Tj ,
for each input �i,j . The higher Ŝ2Tj is, the more important
�i,j is considered for load prediction of the target customer i.
Upon identifying the most important components in the in-
put vector, only those components will be retained as inputs
for future load prediction. Hence, a higher computational
efficiency can be achieved.

4. Numerical Experiments
This section provides a comprehensive evaluation of the

proposed two-stage load forecasting approach (referred to as
NNGP-NIGP hereinafter) in comparison with representative
one-stage and two-stage methods.

Figure 2: The topology of the 8-bus test cases. A node rep-
resents a bus, which can be single-phase or multi-phase. An
edge represents a branch between two buses. Bus 0 is the
substation (root).

4.1. Experimental Setup
Data preparation. Experiments are conducted extensively
on single-phase and multiple-phase test systems, including
the IEEE 8-bus, 24-bus, 123-bus test cases. In a single-
phase test system, each bus has a single-phase load, while in
a multi-phase test system, each bus has a three-phase load.
As the results are similar, for the sake of brevity, this section
only presents the results that cover different aspects of the
proposed two-stage forecasting approach in comparisonwith
the benchmarking methods. Fig. 2 illustrates the topology of
the single-phase and three-phase 8-bus systems. To simulate
highly uncertain load behaviors caused by DERs in real-life
power systems, historical load profiles from Pennsylvania-
New Jersey-Maryland system operator [36] in year 2014 and
New York Independent System Operator [37] in year 2015
are used for simulations. Notice that in all test cases loads are
given in per-unit values, with a base load of 100 kW. Fig. 3
illustrates the load observed for an arbitrarily selected cus-
tomer in the single-phase 8-bus system throughout a year and
the corresponding moving coefficient of variation (MCV).
The data are drawn from PJM [36] and sampled hourly, and
MCV = s∕�, with s and � respectively denoting the mov-
ing standard deviation and moving average of the load ob-
served over five hours. Fig. 3 manifests that the load pattern
is highly volatile as theMCV can be as high as greater than 2.
Hence, load forecasting in the test cases is considerably chal-
lenging to perform. Taking into account the uncertain re-
newable generation behaviors of DERs, we first pre-process
the hourly PV generation data over a year drawn from Re-
newable.ninja [38], and then subtract the pre-processed data
from the load data of each bus. To obtain voltage angle val-
ues, we perform power flow analysis to generate the states
of the power system hourly over a one-year time frame us-
ing theMATLABPower System Simulation Package (MAT-
POWER) [39, 40], based on the processed load data.
Benchmarking methods. NNGP-NIGP is compared with
three benchmarking prediction methods. The first method
considered is one of the most commonly used one-stage load
forecasting models, the SVR model proposed in [6]. For
fairness of comparison, the same input features as given by
(1) are adopted by the SVR model. The comparison be-
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Figure 3: Hourly load of a customer in the single-phase 8-bus
test case and the corresponding moving coe�cient of variation
(MCV) observed throughout one year. The load is given in
per-unit value.

tween NNGP-NIGP and SVR helps assess if NNGP-NIGP
outperforms a popular one-stage method in load forecasting.
The second benchmarking method is a representative two-
stage model developed recently in [15]—IGP. Recall that
IGP adopts the same input features as NNGP-NIGP as spec-
ified in (1). Nonetheless, the first stage of IGP provides a
point prediction for the hour-ahead input vector via k-means
clustering, failing to quantify and propagate the impact of
input errors into ultimate load forecasts. Without a mecha-
nism to properly tackle the uncertain inputs, IGP constructs
interval load predictions for a target customer via a heuris-
tic approach. The comparison between NNGP-NIGP and
IGP helps reveal if substantial improvements in the predic-
tive performance can be achieved through proper input er-
ror propagation and quantification. The third benchmarking
method is a two-stage model which combines Kalman fil-
ter with GP (referred to as KF-GP hereinafter). KF-GP ap-
plies Kalman filter in the first stage to filter out the input pre-
diction errors and feeds the input prediction to a GP model
for load forecasting in the second stage. The comparison
between NNGP-NIGP and KF-GP helps investigate if input
error propagation and quantification works more effectively
than input error filtering.
Measures of predictive performance. The predictive perfor-
mance of each method is evaluated by both point predictive
accuracy and coverage ability of pointwise predictive inter-
vals obtained. To evaluate point predictive accuracy, we use
the mean absolute percentage error (MAPE), which is de-
fined as

MAPE = 1
T

T
∑

ℎ=1

|

|

|

|

|

|

Pℎ − P̂ℎ
Pℎ

|

|

|

|

|

|

, (27)

where Pℎ and P̂ℎ respectively denote the load actually ob-
served at hour ℎ and the predicted value, and T denotes the

number of hourly predictions made. The coverage ability
is assessed by the coverage probability (CP) of individual
pointwise 95% predictive intervals, which is defined as

CP = nc∕T , (28)
where nc denotes the number of load observations covered
by a given predictive interval on a prediction day. Given each
load forecasting method under comparison, the MAPE and
CP for each prediction day are obtained using T = 24 for
all customers throughout a year in each test case considered.
Notice that separate MAPE and CP values are obtained for
each phase in the three-phase test cases.
Model configuration. Appropriate parameter values for the
first-stage NNGP model and GSA are found via cross vali-
dation, which give the lowest average MAPE throughout a
year. For the 8-bus and 24-bus test cases, the parameter set-
ting used is nt = 60, nin = 3, �b = 1, �w = 1, and N∗ = 1
(the number of neighboring customers whose information is
included for the first-stage input prediction; see Section 3.2
for details). For the 123-bus test cases, the parameter setting
used is nt = 90, nin = 3, �b = 1, �w = 1, and N∗ = 2. Re-
garding the second-stage NIGP model, the only parameters
that require estimation are those in the covariance kernel,
which are learned via maximum likelihood estimation.
4.2. Comparison of Point and Interval Predictions

This section provides a comprehensive comparison of
the proposed two-stage approach (NNGP-NIGP) with the
benchmarking methods in terms of point and interval load
predictions.
Implementation of the proposed two-stage approach. Con-
sider the single-phase 8-bus test case to illustrate the pro-
posed two-stage approach for load forecasting. Fig. 4 shows
a schematic diagram of the proposed two-stage approach.
Assume that one is at hour ℎ∗ − 1 and aims to predict cus-
tomer i’s load at hour ℎ∗. In Step 1, one can first collect
historical voltage angle and load data generated by MAT-
POWER to construct a training dataset for NNGP as detailed
in Section 2.1.2. In Step 2, one can obtain the predictive
mean and variance of the input vector �1 and V1 at hour
ℎ∗ as given in (7) and (8) based on the NNGP model con-
structed. The point prediction of inputs is given by (7), and
the interval prediction of inputs can be constructed as de-
tailed in Section 2.1.2. In Step 3, �1 and V1 are used by the
second-stage NIGP model for ultimate load forecasting with
proper input uncertainty propagation. Specifically, the point
load prediction is given by the predictive mean in (17), and
the load interval prediction can be constructed subsequently
based on the predictive variance in (20) as detailed in Sec-
tion 2.2.2. The aforementioned process can be carried out
sequentially to obtain point and interval load forecasts for
all customers (and for each phase in case of a multi-phase
system). For the sake of brevity, the implementation details
of the proposed two-stage approach for other test cases are
omitted.
Summary of results. The MAPEs for the single-phase test
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Figure 4: A schematic diagram of the proposed two-stage load
forecasting approach.

cases and the three-phase 8-bus test case obtained by NNGP-
NIGP and the three benchmarking methods, KF-GP, IGP,
and SVR, are summarized in Fig. 5. For clarity of the fig-
ure, the results corresponding to the other three-phase test
cases are omitted. It can be observed that across all test
cases, NNGP-NIGP performs the best for point prediction
by producing the lowest MAPEs, followed by KF-GP, IGP,
and SVR. This is not surprising asNNGP-NIGP can properly
propagate the impact of input errors into the ultimate point
prediction for the target customer’s load while the other three
methods can not. Although KF-GP can mitigate the im-
pact of input errors to some extent by filtering, which leads
to better point predictive performance than IGP and SVR,
KF-GP underperforms NNGP-NIGP in terms of capturing
the highly nonlinear patterns of voltage angles, and subse-
quently the predictive performance of KF-GP is inferior to
that of NNGP-NIGP. It is worth noting that the point predic-
tive accuracy achieved by NNGP-NIGP is quite satisfactory
when applied for all test cases, taking into account the highly
volatile load behaviors observed in the test cases as shown
in Fig. 3.

The CPs for the single-phase test cases and the three-
phase 8-bus test case obtained byNNGP-NIGP,KF-GP, IGP,
and SVR are summarized in Fig. 6. For clarity of the fig-
ure, the results corresponding to the other three-phase test
cases are omitted. It can be seen that NNGP-NIGP produces
a higher coverage probability than the other three methods
across all test cases considered. To closely examine the abil-
ity of NNGP-NIGP in appropriately propagating the impact
of input errors into the predictive uncertainty associatedwith
the target customer’s load forecasts, we show in Fig. 7 through
Fig. 9 the 95% predictive intervals produced respectively by
NNGP-NIGP and the three benchmarking models for an ar-
bitrarily selected customer on a typical prediction day in all
single-phase test cases. It is observed that the predictive in-
tervals given by NNGP-NIGP can cover more load obser-
vations as compared to the other methods. Moreover, the
curves of the predictive mean and interval bounds provided
by NNGP-NIGP are smoother than those produced by the
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Figure 5: Boxplots of MAPEs obtained by NNGP-NIGP, KF-
GP, IGP, and SVR in various test cases.

other methods; this will facilitate power systems planning
and operations, as utilities can avoid making abrupt changes
in their resource allocation.
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Figure 6: Boxplots of coverage probabilities obtained by
NNGP-NIGP, KF-GP, IGP, and SVR in various test cases.

4.3. Applying Global Sensitivity Analysis to
Improve Computational Efficiency

This section demonstrates the capability of the proposed
GSA method in enhancing the computational efficiency of
the proposed two-stage approach (NNGP-NIGP) for load fore-
casting.
Implementation. Consider the single-phase 8-bus test case
to illustrate the proposed GSA method for enhancing the
computational efficiency of load forecasting for customer i at
a given hour ℎ∗. To perform GSA in the first stage for reduc-
ing the computational cost associated with input modeling
via NNGP, one can first calculateHl’s for l = 1, 2,… , N−
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Figure 7: The point and 95% interval predictions obtained by
NNGP-NIGP and the benchmarking methods for a customer
on an arbitrarily chosen prediction day in the single-phase 8-bus
test case.

Table 1

Estimated total Sobol' indices Ŝ2Tj 's for the inputs

�1,2, �1,3,… , �1,8 in the second stage of NNGP-NIGP. Pre-
dictions are performed for customer 1 on 3 days in the
single-phase 8-bus test case.

Ŝ2Tj � Day 1 Day 2 Day 3

Ŝ2T2 �1,2 0.834 0.800 0.897
Ŝ2T3 �1,3 0.015 0.021 0.002
Ŝ2T4 �1,4 2.568 × 10−10 0.084 1.415 × 10−9

Ŝ2T5 �1,5 3.435 × 10−11 1.348 × 10−9 1.558 × 10−10

Ŝ2T6 �1,6 2.316 × 10−16 9.519 × 10−4 9.984 × 10−5

Ŝ2T7 �1,7 7.247 × 10−11 1.460 × 10−4 0.004

Ŝ2T8 �1,8 5.692 × 10−11 2.690 × 10−6 3.468 × 10−10

1 via (26), then sort the Hl’s in a non-increasing order and
only retain the firstN∗ (recall from Section 3.2) correspond-
ing components in (�i,1,… , �i,i−1, �i,i+1,… , �i,N )⊤ for input
prediction via NNGP. Regarding applying GSA in the sec-
ond stage to reduce the computational cost of training the
NIGP model, one can calculate Ŝ2Tj ’s as detailed in Section
3.3 and select the top ranked components of the input vec-
tor for load forecasting via NIGP; the number of inputs re-
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Figure 8: The point and 95% interval predictions obtained by
NNGP-NIGP and the benchmarking methods for a customer
on an arbitrarily chosen prediction day in the single-phase 24-
bus test case.

Table 2

The average computational times (in seconds) of NNGP-
NIGP with and without GSA being applied for one day's
prediction in all single-phase test cases. The numerical
experiments are performed on a laptop with 6th gen-
eration Intel® CoreTM i7 processor and 8.0GB DDR4
memory.

Scale NNGP-NIGP w/t GSA NNGP-NIGP with GSA

8-bus 53.694s 2.469s ∼ 4.228s
24-bus 136.736s 3.104s ∼ 43.583s
123-bus 241.381s 3.617s ∼ 176.736s

tained can be specified based on the user’s preference. The
aforementioned process can be carried out sequentially for
all customers (and for each phase in case of a multi-phase
system). For the sake of brevity, the implementation details
of the proposed GSAmethod for other test cases are omitted.
Summary of results. Table 1 shows the estimated total Sobol’
indices obtained in the second stage of NNGP-NIGP for load
prediction of customer 1 on three different days in the single-
phase 8-bus test case. Since the estimated Sobol’ index value
corresponding to the input �1,2 is significantly higher than
those for the other inputs, �1,2 is identified as the most im-
portant input for load prediction of customer 1. This con-
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Figure 9: The point and 95% interval predictions obtained by
NNGP-NIGP and the benchmarking methods for a customer
on an arbitrarily chosen prediction day in the single-phase 123-
bus test case.

clusion is consistent with that of IGP given in [15], where a
heuristic feature selection method relying on the automatic
relevance determination kernel is used. As presenting the
GSA results for the other test cases would require consid-
erable space, we mention without showing details that the
GSA results are highly consistent with those obtained by IGP
in other test cases as well. Table 2 shows the average compu-
tational times consumed by NNGP-NIGP with and without
GSA being applied in all single-phase test cases. It can be
seen that the computational time of NNGP-NIGP is signifi-
cantly reduced when only those important input features are
used for load forecasting.

5. Conclusions
This work represents one of the first efforts to thoroughly

address the impact of input errors on both point and inter-
val load predictions for target customers via state-of-the-art
machine learning methods. In particular, this work identi-
fies and verifies the opportunity of improving load forecast-
ing performance by incorporating suitable input modeling
and uncertainty quantification in a two-stage approach. The
first stage delivers point and interval estimates for future in-
put feature values, which are to be used in the second-stage
model. The second stage propagates the impact of input er-

rors into the ultimate point and interval load predictions for
the target customer. A model-free functional GSA method
is proposed to reduce the input-space dimensionality for an
enhanced computational efficiency. The numerical experi-
ments demonstrate the superiority of the proposed two-stage
approach to three competing methods in terms of point and
interval load predictions as well as the significant computa-
tional gain achieved by applying the proposed GSA method.

Inaccurate forecasting can result in enormous economic
losses to electric power companies, leading to increased op-
erating costs. It has been reported that there is a growth
of 10 million operating costs annually associated with 1%
raise in forecasting error [41]. This work demonstrates that
incorporating appropriate input modeling and uncertainty
quantification components into the load forecasting process
can significantly enhance the predictive performance. The
proposed two-stage approach in conjunction with the GSA
method is expected to provide strong support for achieving
timely and reliable power systems planning with consider-
able economic benefits.
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Table 3

Summary of representative one-stage and two-stage load forecasting methods.

Methods Reference/Year Highlights Remark

One-stage

Multiple
Linear Re-
gression
(MLR)

[1]/2007 MLR model with polynomial terms built on tem-
perature data

MLR models are easy to implement
with a high interpretability. How-
ever, they must be combined with
other sophisticated models such as
SVR and NN to perform well.

[2]/2010 MLR model with a good interpretability to inves-
tigate the causality of the consumption of electric
energy

[42]/2020 MLR model incorporating temperature, due
point, load of prior day, hours, and load of prior
week as input variables

Autoregressive
Integrated
Moving
Average
(ARIMA)

[3]/2011 ARIMA model with wavelet multi-resolution
analysis

ARIMA models can �t stationary
time series well, but do not perform
adequately when load series exhibit
nonstationarity.

[4]/2018 Integrated non-seasonal and seasonal sliding
window-based ARIMA model using the online in-
formation network technique

[43]/2020 ARIMA model with k-means clustering for peak
load forecasting

Support
Vector
Regression
(SVR)

[5]/2016 An incremental learning-based SVR model using
batch arriving and large datasets

SVR and NN models are known for
their high predictive accuracy when
modeling complex nonlinear input-
output relationships, but their major
drawback is the high computational
cost required for model training.

[6]/2014 SVR model built on sensor data using tempera-
ture and solar �ux as input variables

[44]/2013 SVR model with a �re�y-based memetic algo-
rithm for parameter tuning

Neural Net-
work (NN)

[7]/2018 Hybrid of convolutional NN for extracting the lo-
cal trends and long short-term memory NN for
learning the relationship between time steps

[8]/2020 Hybrid of convolutional NN and gated recurrent
unit NN for extracting the feature vector from
high-dimensional data and from time sequence
data, respectively

Gaussian
process
(GP)

[9]/2013 GP model with a task-speci�c covariance kernel
that incorporates seasonal and weather informa-
tion

GP models provide accurate point
predictions and interval predictions
that cover the true loads observed
with a desirable high probability.
But they are computationally costly
when tackling large datasets.

[10]/2018 GP model incorporating physical insights about
load data characteristics to improve predictive
accuracy

Two-stage

[11]/2017 In the �rst stage, electricity load signal is �ltered
by some feature selection technique to select ap-
propriate candidates, which are used as the in-
puts to the forecast engine in the second stage.

Two-stage methods typically pro-
duce a higher predictive accuracy
due to the �rst-stage input process-
ing. Existing one-stage and two-
stage methods do not address the
impact of input errors on load fore-
casts adequately, however.

[12]/2013 The �rst stage performs the next-day average
load forecasting, which is used as the input for
the next-day hourly load forecasting in the sec-
ond stage.

[45]/2018 Regression parameters and residual series are ob-
tained in the �rst stage, and a SARIMA model is
constructed on the residual process in the second
stage.

[15]/2018 The �rst stage forecasts next-hour voltage an-
gle di�erences via k-means clustering, which are
used as the inputs to perform the next-hour load
forecasting via standard GP in the second stage.

[46]/2013 The �rst stage employs an SVR model with dual
extended Kalman �lter to determine the optimal
parameters of a radial basis function NN; the sec-
ond stage adopts the optimal radial basis func-
tion NN for short-term load forecasting.

[13]/2016 The �rst stage adopts state-space models with
extended Kalman �lter to model the load struc-
ture, which is used as the input to MLR models
to further enhance the forecast accuracy in the
second stage.

A. Literature Review
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