
IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. X, NO. X, MONTH 2020 1

Estimating Upper-Limb Impairment Level in
Stroke Survivors using Wearable Inertial Sensors

and a Minimally-Burdensome Motor Task
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Abstract—Upper-limb paresis is the most common motor
impairment post stroke. Current solutions to automate the
assessment of upper-limb impairment impose a number of critical
burdens on patients and their caregivers that preclude frequent
assessment. In this work, we propose an approach to estimate
upper-limb impairment in stroke survivors using two wearable
inertial sensors, on the wrist and the sternum, and a minimally-
burdensome motor task. Twenty-three stroke survivors with
no, mild, or moderate upper-limb impairment performed two
repetitions of one-to-two minute-long continuous, random (i.e.,
patternless), voluntary upper-limb movements spanning the
entire range of motion. The three-dimensional time-series of
upper-limb movements were segmented into a series of one-
dimensional submovements by employing a unique movement
decomposition technique. An unsupervised clustering algorithm
and a supervised regression model were used to estimate Fugl-
Meyer Assessment (FMA) scores based on features extracted
from these submovements. Our regression model estimated FMA
scores with a normalized root mean square error of 18.2%
(r2 = 0.70) and needed as little as one minute of movement
data to yield reasonable estimation performance. These results
support the possibility of frequently monitoring stroke survivors’
rehabilitation outcomes, ultimately enabling the development of
individually-tailored rehabilitation programs.

Index Terms—Stroke, Wearable Sensors, Fugl-Meyer Assess-
ment, Upper-Limb Impairment, Remote Monitoring.

I. INTRODUCTION
Stroke is a major cause of long-term disability in the United

States [1] and worldwide [2]. Approximately 60% of stroke
survivors with upper-limb hemiparesis in the acute phase
exhibit significant functional impairments in the chronic phase
[3], [4]. These impairments can lead to difficulties performing
activities of daily living and to a decrease in quality of life
[4]. The most effective, common treatment for post-stroke
impairment is rehabilitation, which aims to facilitate motor
practice in the stroke-affected upper-limb, thereby stimulating
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neuroplasticity and functional recovery [5], [6]. Outpatient
rehabilitation in sub-acute and chronic stroke survivors can
be an enduring process that lasts for several months to years,
during which clinicians need to assess patients’ levels of
impairment or functionality to track recovery progress and the
effectiveness of prescribed regimens [7]–[9]. This assessment
is done using clinically validated tools, such as the Fugl-Meyer
Assessment (FMA) or Wolf Motor Function Test (WMFT),
which are administered by trained clinicians and typically
consist of a series of scored motor tasks [10], [11]. However,
the requirement of trained personnel serves as a major barrier
preventing patients from receiving frequent assessment of
their functional/impairment level [12], [13]. Moreover, each
assessment is burdensome for both patients and clinicians [14],
[15], as these tools require the performance of several motor
tasks that may take as long as 30 minutes to complete [16],
[17]. Unfortunately, this high burden conflicts with the desire
for more frequent assessment to counteract the influence of
external factors (e.g., mood, fatigue, and subjectivity) and to
capture a finer-grained view of patient recovery [9], [18].

To reconcile these needs, several studies investigated tech-
nological solutions for estimating clinically validated assess-
ment scores with the aim of reducing rater subjectivity and en-
abling frequent assessment. The two most widely investigated
technologies include camera-based systems [12], [15], [16],
[26], [27] and wearable sensor-based systems [19]–[25], [28],
both of which are capable of removing access barriers and the
requirement of trained clinicians. However, both approaches
impose some degree of patient burden in two ways: 1) in-
strumentation burden, which arises from the limitations of the
hardware used to monitor patients, and 2) task burden, which
arises from the complexity and number of tasks patients must
perform. Camera-based systems impose a notable instrumenta-
tion burden because of their inherent privacy concerns [29]. On
the other hand, the primary instrumentation burden of wearable
sensor-based systems is the multiple sensors patients must don,
ranging from two to 17 sensors (Table I). Multiple sensors
can be obtrusive and a source of discomfort, particularly for
patients with limited upper-limb functionality [5], [9], [15],
and may increase the setup time, cost, and probability of sensor
misplacement. Therefore, wearable sensor-based systems that
wish to impose low instrumentation burden will ideally require
only one or two sensors in acceptable configurations [30],
[31]. More specifically, a previous study identified the wrist
(e.g., a smart-watch) and trunk as the most preferred body
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TABLE I
RELATED STUDIES WHICH INSTRUCTED SUBJECTS TO PERFORM ONE OR MORE MOTOR TASKS AND ESTIMATED VIA MACHINE LEARNING TECHNIQUES,

OR FOUND A SINGLE-FEATURE CORRELATION TO, A CLINICALLY VALIDATED SCALE OF UPPER LIMB IMPAIRMENT, FUNCTION, OR MOVEMENT QUALITY.

Reference # Sensors Sensor Locations Tasks Reps. # Subj. Result
Type

Target
Variable

Results

[19] 17 body-worn suit ADLa tasks 3 13 Correlation FMAb r = 0.88, r2 = .77
[20] 2 wrist, upper arm Shoulder flexion 80 11 Correlation WMFTc r = 0.72
[21] 6 hand, thumb, index finger, up-

per & lower arm, sternum
8 WMFT tasks 5-20 24 Estimation FASd NRMSEe ≈ 5%,

r2 = 0.96
[22] 6 hand, thumb, index finger, up-

per & lower arm, sternum
8 WMFT tasks 5-20 24 Estimation FMA NRMSE = 10.8%

[23] 2+7 upper & lower arm, and a flex
sensor glovef

4+3 UL exer-
cises (FMA)

10 24 Estimation FMA r2 = 0.92

[24] 2 each wrist FMA subset 3 8 Estimation FMA FDRg = 2.5%±2.5%
[25] 2 upper & lower arm 4 FMA shoulder

-elbow tasks
5 24 Estimation FMA NRMSE = 7.1%

a Activity of Daily Living b Fugl-Meyer Assessment c Wolf Motor Function Test d Functional Ability Score e Normalized Root Mean Square Error
f Reporting the best result that only uses the two inertial measurement units. g False Discovery Rate

locations for wearable sensor instrumentation, although the
application pertained to fall detection [32]. Independently of
the technology used to assess impairment, the need to perform
a set of predefined motor tasks also imparts additional burden
onto patients. Though automating an entire clinical scale (e.g
[15], [26]) can ensure highly accurate results, reduce the
workload of clinicians, and enable remote assessment, these
approaches still impose a high task burden on patients. Given
that rehabilitation can be a long-term, enduring process it is
instead desirable to minimize task burden to ensure patient
compliance to frequent monitoring regimens. Consequently,
several studies investigated the opportunity to reduce this key
source of burden by estimating scores using a reduced task set
[21]–[23], [25]. However, these tasks are constrained in that
they require the performance of a specific sequence of mo-
tions. Tasks constraints and complexity are another source of
burden and increase the likelihood of invalid task performance.
Ideally, systems aiming to minimize task burden would either
require a single, simple task or seamlessly estimate impairment
from patients’ daily activities. Table I provides a summary of
studies that leveraged wearable inertial sensors to estimate the
FMA, WMFT, or Functional Ability Scale (FAS) [11], which
we believe are closely related to our approach.

This study aims to minimize the instrumentation and task
burdens of wearable sensing-based assessment by introducing
a method to estimate upper-limb impairment in stroke sur-
vivors based on a single, minimally-burdensome motor task
and two wearable inertial sensors: one worn on the wrist of
the stroke-affected limb and another on the sternum. Subjects
performed two repetitions of a one-to-two minute-long random
movements task, consisting of any desired combination of
meaningless, voluntary movements spanning the entire range
of motion. We analyzed the three-dimensional (3D) move-
ments of the wrist with respect to subjects’ facing directions,
as determined by the sternum sensor, using a unique time-
series decomposition technique previously developed by our
team [33]. 3D random wrist movements were decomposed
into a series of constituent 1D point-to-point submovements
with zero initial and terminal velocities, which we refer to
as movement elements. Our prior work, though performed

on a small number of subjects, has shown that at least
one attribute of these movement elements correlates to the
FAS, a clinical measure of movement quality [28]. In this
work, we extend this result by investigating whether multi-
dimensional attributes of movement elements can be used to
estimate the FMA, a more broadly-accepted measure of upper-
limb impairment. More specifically, we apply an unsupervised
density-based clustering algorithm to identify similarities and
differences among movement elements, extract data features
representing the morphological characteristics of and their
consistency across movement elements, and use supervised
machine learning to estimate subjects’ FMA scores.

II. METHODS
A. Subjects

We recruited 23 stroke survivors (7 males, 66.5±12.1 years
old, 13.8 ± 10.1 months post stroke; mean ± standard devi-
ation) from a nursing home associated with Heeyeon Reha-
bilitation Hospital (HRH), South Korea. Eight subjects exhib-
ited right-hemiparesis and the rest exhibited left-hemiparesis.
Four subjects were in the sub-acute phase and the remaining
subjects were in the chronic phase (i.e., six or more months
post stroke). All subjects were right-handed, except for one
ambidextrous subject. Inclusion criteria were that subjects 1)
had previously suffered from a stroke, 2) were 18–85 years old
at the time of recruitment, and 3) had no, mild, or moderate
upper-limb impairment at the time of recruitment (i.e., an
upper-limb FMA score of 29–66 out of 66 possible points
[34]). Subjects were excluded from the study if they 1) had ad-
ditional motor or cognitive impairments from conditions other
than stroke or 2) were unable to perform the random movement
task described in Section II-B. Ultimately, no subjects were
excluded because of an inability to perform the required task.
The protocol was approved by the Internal Review Board of
the University of Massachusetts Amherst (#2018-4722) and
HRH. All subjects provided informed consent that explained
the potential risks and benefits of the study.

B. Experimental Protocol
Stroke survivors were instrumented with one nine-axis in-

ertial measurement unit (IMU) (MTw Awinda, Xsens, Nether-
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lands) on the stroke-affected wrist and a second IMU on the
sternum. Subjects performed continuous, random (meaningless
and patternless), voluntary (planned and controlled) upper-
limb movements spanning the entire range of active motion
for between one minute and two minutes (115 ± 17 sec-
onds) depending on their functional conditions. Subjects sat
comfortably in a chair to begin the task and were allowed
to rotate their torso during the task. Fig. 1a illustrates an
example of random movements. To help subjects understand
the task, research staff showed a short prerecorded video of a
person performing example random movements. For example,
drawing in midair or conducting non-existent music at a self-
selected tempo were both valid random movements. Subjects
completed two repetitions of the task, resting for up to five
minutes between each repetition. Some subjects performed at
most 20 extra seconds of movement as a result of minor errors
during data collection. Because the task was performed at
a self-selected speed, subjects were able to avoid excessive
fatigue during the execution of each repetition. However, two
subjects elected to not perform the second repetition. Pearson
correlation showed no relationship between subjects’ levels of
impairment and the overall task duration (p > 0.1).

C. Inertial Time-Series Decomposition

Our team has recently shown that 3D voluntary upper-
limb movements can be decomposed into 1D point-to-point
movement elements. [33]. More specifically, we represent 3D
upper-limb movements using the velocity time-series of the
wrist—the most distal component of the upper-limb that the
Central Nervous System (CNS) aims to control to interact with
the environment [35], [36]—in a Cartesian coordinate system
aligned to the body’s anatomical axes (i.e., the anteroposterior
(AP), mediolateral (ML), and rostrocaudal (RC) axes, as
shown in Fig. 1b). When the velocity time-series in each
anatomical axis is segmented using the zero crossings, the 1D
movement elements with zero initial and terminal velocities—
when considered as a whole independently of the axes—share
a similar, approximately bell-shaped morphology among neu-
rologically intact individuals [33]. Because of this homogene-
ity among neurologically intact individuals, we hypothesized
that features of movement elements in stroke survivors, such
as the level of homogeneity in the morphology and associated
morphological characteristics of movement elements, contain
information relevant to motor impairment severity.

D. Pre-processing of Inertial Data

Fig. 1b shows our preprocessing and movement decom-
position pipeline. During offline processing, the IMU data,
sampled at 100 Hz, were processed to generate a gravity-
free acceleration time-series in a global coordinate frame
using a proprietary sensor fusion-based algorithm provided
by the manufacturer that combined gyroscopic and magnetic
readings [37]. The resulting coordinate frame had its z-axis in
the direction against gravity and its y-axis pointed towards
the North Pole. To apply movement decomposition to the
IMU data, as described in Section II-C, we needed to know
the alignment of the body’s anatomical axes with respect

to the wrist sensor’s coordinate frame. Hence, the sternum
sensor’s orientation, calculated by the manufacturer’s fusion
algorithm, was used to dynamically rotate the transverse plane
of the wrist sensor’s coordinate system such that the y-axis
corresponded to the facing direction (i.e., the AP-axis) of the
subject. This facing-direction-oriented wrist acceleration was
used in subsequent processing and feature extraction.

The acceleration time-series of the facing-direction-oriented
wrist sensor was low-pass filtered using a 6th order Butterworth
filter with a cut-off frequency of 8 Hz to attenuate the high-
frequency, non-human-generated noise components [21], [28].
The filtered acceleration was trapezoid-integrated to yield
the velocity time-series, which was then band-pass filtered
using a 6th order Butterworth filter between 0.1 Hz and
8 Hz to attenuate the low-frequency integration drift and
high-frequency noise, respectively [28]. Our prior work has
shown that the filtered velocity time-series generated by this
approach yields an acceptable error rate of an approximately
2% Normalized Root Mean Square Error (NRMSE) [28].

Movement elements were extracted by segmenting each
axis of the filtered velocity time-series at its zero crossings
as described in Section II-C. Each movement element was
spatially normalized by dividing the velocity amplitude by
its mean and temporally normalized by resampling it to 50
samples, as proposed in our previous work [33]. We chose 50
samples because the mean duration of all movement elements
was about 500 ms. Each normalized movement element can
therefore be represented as a 50D vector. We excluded from
further analysis any movement elements that could have been
significantly affected by sensor noise. We determined distance-
and time-based noise thresholds of our sensor by placing it
on a stationary surface. Using these thresholds, we discarded
movement elements with a duration less than or equal to 50ms
or a travelled distance of less than 1 mm.

E. An Unsupervised Approach to Identify Homogeneous
Movement Elements

Our prior work suggested that most movement elements
generated by neurologically healthy individuals during vol-
untary, random movements have a similar shape [33]. Based
on this finding, we hypothesized (and later validated) that
stroke survivors also generate a large subset of movement
elements that share a similar shape. This subset, which we
refer to as the homogeneous set in this work, corresponds
to a dense region in the 50D vector space of normalized
movement elements. We further hypothesized that analyzing
the morphology of movement elements within and outside
of this dense region could reveal information relevant to the
damaged motor function caused by stroke.

Homogeneous movement elements were identified using a
density-based clustering algorithm, DBSCAN [38]. Euclidean
distance was used as the distance metric because it is pro-
portional to the RMSE between two normalized movement
element vectors. DBSCAN has two parameters that define
density: k and ε. A movement element p is considered to be
in a cluster if there are at least k other movement elements
within a hypersphere of radius ε centered around p. We kept
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Fig. 1. (a) A research staff member demonstrating the random movement motor task. (b) The pre-processing pipeline for extracting one-dimensional movement
elements from the three-dimensional acceleration time series captured by the wrist-worn inertial measurement unit. (c) The machine learning pipeline for
estimating subject upper-limb impairment (i.e., the Fugl-Meyer Assessment).

k constant (i.e., k = 5) as suggested in prior work [38]; thus
our notion of density relied on ε. In practice, DBSCAN found
several small clusters containing ten or fewer elements and a
single, cohesive, large cluster. The largest cluster identified
by the algorithm was considered to be the homogeneous
set, whereas all other movement elements we considered to
be the mutually exclusive outlier set. As ε increases, both
the number of movement elements and the variance (i.e.,
discrepancies in the shapes of the movement elements) of the
identified homogeneous set increase at different rates, yielding
a trade-off between inclusiveness and homogeneity. Because
most cluster validity indices assume that an algorithm will
produce multiple clusters [39], we designed a fitness measure
to identify a single, dense region and separate it from less
dense surrounding outliers. Let M be the set of all movement
element vectors, C(ε) ⊂ M be the homogeneous set defined
by ε, and σC be a vector such that its ith element represents
the standard deviation of the ith element of every vector in C,
where 1 ≤ i ≤ 50 in this study due to temporal normalization
(i.e., σC is the one-sided width of the shaded region in Fig. 2b).
Our fitness measure, φ : P(M)→ R where P(M) is the power
set of movement element vectors, is defined as

φ(C) =
σC

|C|
,

where σC represents the mean of σC (i.e., the comprehensive
variance of C) and |C| represents the cardinality of C. Thus,
φ compares the growth rates of the variance and size of the
homogeneous set with lower values representing better fitness.
The optimal homogeneous set C∗ = C(ε∗) was determined by

ε∗ = argmin
ε

(
φ
(
C(ε)

))
. (1)

A linear heuristic search was performed on possible values of
ε, i.e., 0 ≤ ε ≤ max

(
d(p, q)

)
, where d(·) is the Euclidean

distance and p, q ∈ M. It is also possible to determine if an
unseen movement element, u, is in the homogeneous set using
DBSCAN’s notion of density. If v ∈ M is the k-th nearest
neighbor of u and d(u, v) ≤ ε∗, then u ∈ C(ε∗).

F. Feature Extraction
We leveraged our clustering results by extracting features

from three subsets of movement elements: 1) the homogeneous

set, 2) the outlier set, and 3) the set of all movement elements.
Within these subsets, we extracted data features relating to
the morphology of each movement element including the
number of peaks, the position of the maximum speed, and
the skewness of each normalized movement element vector.
We also extracted data features our prior work [33] identified
as relevant to how the CNS generates movement elements
including the mean velocity, the time duration, and the 1D
travelled distance (calculated by applying the integration and
filtering technique in Section II-D to the filtered velocity
time-series). All features extracted from individual movement
elements were aggregated for each subject across both repeti-
tions of the random movements task by calculating the mean,
standard deviation, interquartile range, and 10th, 50th, and
90th percentiles of the movement element-level features. In
addition to these aggregate features, we calculated the average
number of movement elements performed per second, the
percent of movement elements in the homogeneous set, and
statistics about σC for each subject. In total, 109 features were
extracted for each subject.

G. Estimation of Movement Impairment

To estimate the subject impairment levels measured by
the FMA, we trained and evaluated regression models using
the Leave-One-Subject-Out Cross Validation (LOSOCV) tech-
nique. This technique withholds one subject’s data as a testing
set, while the remaining data are designated as the training set
and used for feature selection, parameter tuning, and training
of the regression model. The accuracy of the constructed
model is then evaluated using the testing set by comparing the
estimated FMA score to the actual FMA score of the withheld
subject. The above-mentioned process is iterated for each and
every subject in the data set. LOSOCV provides a fair, as
opposed to optimistic, evaluation of estimation performance,
because it evaluates the model on new, unseen subjects.

Within each cross validation iteration, features were normal-
ized such that the training set had a median of zero and the
same interquartile range [40]. A subset of data features that
were particularly relevant to the FMA was identified using
the Correlation Feature Selection (CFS) algorithm with the
absolute Spearman correlation coefficient as the evaluation
metric [41]. CFS attempts to maximize the correlation between



IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. X, NO. X, MONTH 2020 5

the selected features and target variable while minimizing
the correlation between selected features (i.e., redundancy).
To construct the feature space, we employed the backward
elimination strategy [42]. Because features were selected based
on the training data, a different feature set was selected for
every iteration of LOSOCV.

Once a feature set was selected, a model was trained
using the Support Vector Regression (SVR) algorithm with
the Radial Basis Function kernel. SVR has two important
hyperparameters: C that acts as a smoothing factor and γ that
determines the radius of influence of a data point. We fixed
γ to 1

F , where F was the number of the selected features. C
was determined via a grid search of values between 5 and 100
with a spacing of 5. The value of C that minimized the training
error was selected. Results are reported in NRMSE, normal-
ized by the range of the observed FMA scores, and Mean
Absolute Error (MAE). Test-retest reliability was evaluated by
estimating scores for each repetition and calculating the Intra-
Class Correlation (ICC) using a single measures, consistency,
two-way mixed-effects model (ICC(3, 1)). ICC(3, 1) was also
calculated after removing data with Cook’s distance greater
than three standard deviations above the mean.

H. Statistical Analysis of Features

To identify important features that related to impairment
level, we calculated the number of LOSOCV iterations that
selected each feature. This approach of identifying important
features has been previously applied in studies that used data-
driven analysis [43], [44]. We used Spearman correlation
analysis to capture the overall, significant trends of important
features with respect to the clinician-provided FMA. For
further statistical tests, we divided our subject population into
three groups of near-equal size (i.e., a cardinality difference
of at most one) based on subjects’ FMA scores. These groups
represented subjects with relatively low-to-none, mid, and high
motor impairment. Because the distributions of each feature
with respect to these groups were not necessarily normal, as
determined by Shapiro tests, we used a Kruskal-Wallis H-
test to determine if the median values of at least two groups
were significantly different for each feature. A Levene test
was used to verify the homoscedasticity (i.e., equal variances)
assumption of the Kruskal-Wallis test. If the Kruskal-Wallis
test showed a significant difference, post-hoc Dunn tests were
performed to determine the significance of the differences
between any two groups.

I. Comparative Analysis

To evaluate the utility of the proposed approach—specif-
ically movement element-based time-series decomposition—
we compared our estimation performance to two benchmark
approaches previously used in the literature. These benchmark
approaches were considered based on how they segmented the
inertial time-series from which data features were extracted.
One benchmark approach segmented the time-series using a
non-overlapping sliding window with a fixed length of five sec-
onds. Though this approach was not used in wearable sensor-
based studies that assessed motor impairment level in stroke

survivors because motor tasks pertaining to most clinically
established assessment tools are relatively short (i.e., less than
five seconds) [21]–[25], it has been leveraged to assess motor
impairments or symptoms in other conditions [45] and has
been considered for use in the continuous monitoring of stroke
impairment [46]. The other benchmark approach involved no
time-series segmentation and thus extracted data features from
the entire time-series [19], [20].

For each benchmark approach, we extracted features de-
scribed in related works and a subset of features from our
approach that did not specifically rely on movement element-
based decomposition. A notable difference between the fea-
tures extracted in our work vs. prior work was that we
predominantly computed features related to the morphology
and distribution of movement elements from the velocity time-
series. Our analysis was also performed on relatively small
segments with a mean duration of approximately 500 ms,
which precluded the use of some techniques, such as fre-
quency-domain analysis. Related studies, however, not only
used these types of features but also extracted these features
from higher derivatives of inertial time-series (i.e., acceleration
and jerk). For the sliding window approach, we extracted
statistical aggregations (i.e., mean, standard deviation, in-
terquartile range, and the 10th, 50th, and 90th percentiles)
of features of each window, including the change in travelled
distance; the mean and maximum of the speed, acceleration,
absolute acceleration, jerk, and absolute jerk [21]–[25]; the
root mean square of the velocity, acceleration, and jerk [21]–
[25]; the signal entropy of the velocity, acceleration, and jerk
[21]–[25]; the speed metric (i.e., the mean speed over the peak
speed) [47] and jerk metric (i.e., the mean jerk over the peak
speed) [21], [22]; the number of peaks; and the skewness of
the velocity time-series. For the no-segmentation approach,
we extracted the range of displacement of each axis [19];
the volume of the workspace (i.e., the product of the ranges
of the displacement in each axis) [19]; the maximum speed
[21], [22], [25]; the mean velocity, acceleration, and jerk of
each axis [21]–[25]; the root mean square of the velocity,
acceleration, and jerk of each axis [21]–[25]; the signal entropy
of the velocity, acceleration, and jerk of each axis [21]–[25];
the dominant frequency of the velocity, acceleration, and jerk
of each axis [21], [22], [24]; the speed metric of each axis
[47]; and the jerk metric of each axis [21], [22].

Each benchmark model was trained and evaluated with the
same analytic pipeline as our proposed model. The compara-
tive performance of these models was assessed using a box plot
of the normalized absolute estimation errors, with significance
determined by a Kruskal-Wallis omnibus test and post-hoc
Dunn tests. A Levene test determined if the homoscedasticity
assumption of the omnibus test was satisfied.

J. Experiments with Shorter Random Movement Durations

Finding a minimal duration of the random movement task
that supports reasonable estimation performance would allow
the minimization of patients’ task burdens and thus poten-
tially improve protocol compliance in home and community
settings. To address this issue, we retrospectively adjusted the
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maximum task duration from ten seconds to the combined
duration of both random movement repetitions, in increments
of ten seconds. The features selected by the CFS algorithm in
Section II-G were extracted from each shortened time-series
while keeping the rest of the analytic pipeline identical. We
then investigated changes in the estimation performance of
our approach as the duration of the motor task, and thus the
number of extracted movement elements, varied.

III. RESULTS
A. Identification of the Homogeneous Cluster

As per the exclusion criteria discussed in Section II-D,
we discarded movement elements that accounted for 0.02%,
0.02%, and 0.01% of the total time duration in the ML-, AP-,
and RC-axes, respectively. The remaining movement elements
were used in the subsequent data analytic pipeline. Our cluster
fitness optimization, (1), identified the homogeneous cluster
with ε∗ = 0.375. Fig. 2a shows a 2D projection, obtained via
Principal Component Analysis, of time- and space-normalized
movement elements for all subjects and both repetitions of
the random movements tasks. The homogeneous set is in-
dicated by orange points and the outlier set by blue points.
The first two principal components accounted for 87.0% of
the variance of all movement elements, and the marginal
histograms demonstrate that the movement elements formed a
single, dense region. Fig. 2b and Fig. 2c show the mean (solid
line) and standard deviation (shaded region) of normalized
movement elements in the homogeneous and outlier sets,
respectively. The homogeneous set contained 77.2% of all

normalized movement elements, accounting for 67.3% of the
total task duration. This demonstrates that the majority of
movement elements produced by stroke survivors with at most
moderate impairment share a similar bell-shaped morphology.

B. Estimation of Impairment Level

Fig. 3a shows clinician FMA scores versus scores estimated
by our model in a LOSOCV fashion. The NRMSE was 18.2%
and the coefficient of determination (r2) was 0.70. The MAE
was 5.27 FMA points, which is approximately the clinically
important difference of the upper-limb FMA (5.25 points) [48].
Fig. 3b shows the corresponding Bland-Altman plot with a
bias of 0.15 points and limit-of-agreement of 12.46 points,
demonstrating no clear bias in our estimations. ICC(3, 1) was
0.67 (p < 0.01). After removing an outlier, ICC(3, 1) was
0.74 (p < 0.01), indicating good test-retest reliability [49].

Between three and seven features were selected in each
iteration of LOSOCV, with three features selected in every
iteration: 1) the interquartile range of the travelled distances
of all movement elements, 2) the ninetieth percentile of the
skewness of the movement element vectors in the homoge-
neous set, and 3) the average position of the peak velocity
of the movement elements in the outlier set. The next-most
selected feature appeared in only 35% of the iterations. Fig. 4
shows the distribution of these top features with respect to the
impairment groups described in Section II-H. The first feature
(Fig. 4a) demonstrates that less-impaired subjects were able
to generate a wider range of movements in terms of spatial
distance. This feature had a significant Spearman correlation
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Fig. 4. The distributions of features that were selected in every iteration of LOSOCV for different impairment groups. Each group contains a near-equal amount
of subjects. The asterisks denote statistical significance (p < 0.05) between two groups as determined by a post-hoc Dunn test following a Kruskal-Wallis
test. Though (a) does not distinguish between the impairment groups, it captures an overall trend. The features in (b) and (c) respond to high and low-to-no
impairment, respectively, and when considered together may indicate mid impairment if the values of neither feature are in the significant range.
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Fig. 5. The normalized absolute errors for the proposed approach, the sliding
window approach, and no segmentation approach. The dotted greens line
are the normalized mean absolute errors. The asterisk denotes statistically
significant medians (p < 0.05), though this significance should be considered
with caution because of the unequal variances between the three groups.

of 0.55 (p < 0.01) to the FMA. However, the omnibus test did
not indicate significant differences between the three groups
(p = 0.051) even though the feature captures an overall
trend. The second feature (Fig. 4b) had a significant Spearman
correlation of -0.56 (p < 0.01) and captured the flatness
or peakedness of movement elements, which is related to
how quickly patients accelerated when generating movement
elements. Near-zero values of this feature represent peakedness
and more negative values represent flatness. Following the
omnibus test (p < 0.01), post-hoc tests identified significant
differences between the high-impairment group and both the
mid-impairment (p < 0.01) and low-to-no-impairment groups
(p < 0.05). The third feature (Fig. 4c), which we believe is
relevant to movement variability (as discussed in Section IV),
had a Spearman correlation coefficient of 0.53 (p < 0.01).
Following the omnibus test (p < 0.05), post-hoc tests identi-
fied significant differences between the low-to-no-impairment
group and both the high-impairment (p < 0.05) and mid-
impairment groups (p < 0.05). Based on these results, we
believe that the first feature plays a supporting role in capturing
the overall trend and that the second and third features help
our estimation model identify relatively severely- and mildly-
impaired subjects within our data set, respectively. We discuss
the implications of these features in Section IV.

C. Comparison Experiments

Fig. 5 shows the distribution of the normalized absolute
errors of estimations produced by our movement element-

Random Movement Duration (s)
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%
)
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Fig. 6. Estimation performance in terms of normalized mean absolute error
(NMAE) as a function of the maximum combined duration of both random
movements repetitions. The errors bars show one standard deviation.

based approach, the benchmark sliding window approach, and
the benchmark approach with no segmentation. A Kruskal-
Wallis test showed significant differences in the median values
(p < 0.01), with post-hoc Dunn tests identifying signifi-
cance between our approach and the windowing approach
(p < 0.01). However, the variances between all three groups
were not equal (Levene test, p < 0.05), which implies this
significance should be taken with care. Despite a lack of
homoscedasticity and significance—caused by the similar me-
dian values and smaller variance in the lower half of errors—
between our approach and the full time-series approach,
the figure clearly demonstrates that our approach generates
more accurate estimations. In summary, the two benchmark
approaches yielded noticeably larger MAEs and inferior esti-
mation performance, showing that the proposed decomposition
method and movement element analysis contribute to extract-
ing clinically important kinematic characteristics in stroke
survivors related to their impairment levels.

D. Experiments with Shorter Random Movement Durations

Fig. 6 shows changes in estimation performance with re-
spect to the maximum combined duration of the random
movements repetitions. This result shows that the proposed
model can achieve reasonable performance when at least one
minute of random movement data are available. Though the
performance sightly fluctuates past one minute, it begins to
converge (with decreasing variance) to the result presented in
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Fig. 3 at approximately three minutes and twenty seconds.
Though more data may further increase our model’s perfor-
mance, requiring shorter random movement tasks may be a
desirable trade-off between accuracy and patient burden.

IV. DISCUSSION
We have proposed an approach for estimating the im-

pairment level of stroke survivors from a single, minimally-
burdensome random movement task with low instrumentation
requirements. To do this, we segment complex 3D upper-limb
movements into constituent 1D movement elements using a
novel decomposition approach. We believe our approach is
a promising avenue towards enabling frequent, low burden
estimation of impairment because 1) it uses only two sensors
worn at patient-preferred body locations and 2) our results
demonstrate that this approach may require as little as one
minute of a simple-to-perform motor task involving any type
of arbitrary, voluntary upper-limb movements. In other words,
the proposed approach reduces both the instrumentation and
task burdens imposed on patients with respect to prior works,
such as the closely related works in Table I. It is worth noting,
however, that more accurate results have been obtained by
studies that have replicated the entire FMA. In particular, a
camera-based study that automated the assessment of nearly
all FMA tasks reported an r2 value of 0.985 [15]. However,
despite significantly reducing clinician burden, the patient task
burden of performing the entire motor scale is unchanged.
Because the FMA may take up to 30 minutes to complete,
automating entire clinical scales may pose compliance issues
for frequent assessment. Other studies have instead produced
estimations by asking patients to perform related tasks or a
subset of the tasks that comprise a motor scale. These studies,
like the proposed method herein, typically extract relevant
features from the task set and use a machine learning algorithm
to estimate the target scale. Patel et al. and Del Din et al. used
eight tasks from the WMFT to estimate the FAS (NRMSE
of 5%) and FMA (NRMSE of 10.8%), respectively [21],
[22]. However, these works used six sensors and required the
performance of specific tasks, thereby imposing larger instru-
mentation and task burdens than our approach. In comparison,
Wang et al. estimated the FMA (NRMSE = 7.1%) using only
two wrist-worn sensors, but required the performance four
FMA shoulder-elbow tasks [25]. Yu et al. also proposed a
low-burden method, estimating the FMA (r2 = 0.92) using
two sensors on the upper and lower arm and a single exercise
[23]. Unfortunately, the results reported in prior works were
achieved using subject-dependent methodologies, such as 10-
fold cross validation. More specifically, data points from the
same subject appeared in both the train and test sets, which
can result in optimistic (or rather, personalized) results [50],
[51]. Notably, Wang et al. did use LOSOCV to fit their
models, but they selected the feature set in a subject-dependent
manner. Considering these methodological differences, we
believe our results are comparable to those reported in prior
works given that we employed LOSOCV to provide a fair,
subject-independent estimation and that our approach only
requires two sensors and a single, minimally-burdensome task
as opposed to a set of tightly controlled tasks.

Given that our approach can estimate impairment, it follows
that movement decomposition and our clustering analysis
can be useful for extracting clinically-relevant features from
complex 3D movement data. Our clustering shows that stroke
survivors generate a large subset of movement elements resem-
bling 1D, bell-shaped, point-to-point reaching motions, similar
to those observed in neurologically healthy subjects in prior
work [33]. Though movement elements in the homogeneous
set are not necessarily healthy patterns, differentiating between
the dense homogeneous set and the sparser outlier set can
be useful in determining impairment, as demonstrated by the
features in Fig. 4. In particular, these features identified by
the feature selection algorithm reflect kinematic characteristics
of stroke survivors previously noted in the literature. The
interquartile range of the travelled distances of all movement
elements is related to subjects’ overall ability to generate
movement elements with a wide range of spatial distances
during the performance of voluntary movements. Impairment
is often associated with limited range of motion [52], which
may result in patients’ inability to produce submovements
with a large variety of distances. Therefore this feature may
reflect repetitive motions or smaller workspace volume within
which voluntary movements were performed [53]. Another
feature, the 90th percentile of the skewness of the normalized
movement element vectors in the homogeneous set, captures
the flatness or peakedness of subjects’ movement elements. In
particular, this feature seems to indicate that some movement
elements generated by more-impaired subjects have sharper
peaks (i.e., a more pronounced acceleration and decelera-
tion) when compared to less-impaired subjects. We believe
this characteristic may be related to jerkiness of continuous
wrist movements [54], which is equivalent to the temporal
concatenation of movement elements. Finally, we believe the
average position of the peak speed of movement elements
in the outlier set may be related to movement variability
and how the CNS weighs exploring new movement patterns
versus exploiting known patterns [55], [56]. In particular,
more-impaired subjects may prefer exploiting known patterns
to overcome their motor deficits resulting in a symmetric
distribution of outlier movement elements. On the other hand,
less-impaired subjects may be able to explore a wider va-
riety of patterns while still achieving their goals resulting
in an asymmetric distribution of outlier movement elements.
However, additional experimentation is needed to examine the
role of outlier movement elements with respect to upper-limb
performance, which remains as important future work.

We envision a clinical scenario in which ubiquitous mobile
platforms, such as a smart-phone or smart-watch, will auto-
matically remind patients to don sensors and perform a short-
duration random movement task at regular intervals in their
home and community settings. When coupled with clinicians’
understanding of patients’ specific impairments obtained from
traditional motor scales during clinical visits, frequent assess-
ment could allow clinicians to monitor patients’ responses to
prescribed therapeutic interventions and thus identify optimal
interventions [57], [58]. For example, an automatic system
could prompt patients to schedule an appointment if their im-
pairment declines or plateaus instead of waiting for a regularly
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scheduled appointment. Therefore, we believe the proposed
system has the potential to help clinicians devise individually-
tailored rehabilitation programs, enable closer clinician-patient
relationships, and improve continuity of care [58], ultimately
helping to maximize patients’ abilities to perform essential
activities of daily living and the chances of independent living
[5]. Furthermore, we believe the random movement task could
be a stepping stone towards truly unobtrusive assessment—
i.e., to seamlessly assess upper-limb impairment from stroke
survivors’ natural activities of daily living—because the pro-
posed analytic method does not rely on explicit motor tasks
but rather segments arbitrary voluntary upper-limb movements.
We believe additional work may be needed to cluster and
analyze a subset of upper-limb movements—perhaps those
that span a large range of active motion, similarly to the
random movement task—from activities of daily living. In
such a scenario, we believe that the proposed method could be
combined with methods that monitor the amount of limb use,
which is another important dimension of motor recovery in
stroke survivors (i.e., functionality) [59]. We hope that further
work will allow us to refine our system into a practical clinical
solution for more frequent assessment of impairment level
and functionality to provide clinicians with a finer-grained
view of a patients’ recovery processes, and eventually facilitate
automatic therapeutic interventions in the home setting.

One limitation of our study is the number of subjects,
though comparable works included similarly sized popula-
tions (see Table I). Regardless, our statistical comparisons
should be considered carefully and verified by future work.
However, our regression results should generalize to new
subjects because we used LOSOCV to train and validate
the estimation model. Though techniques that analyze the
performances of specific movements may ultimately be more
accurate, reduced accuracy may be an acceptable trade-off for
low burden to ensure patient adherence to frequent assessment.
Another limitation is our reliance on the performance of large,
continuous movements spanning patients’ ranges of motion,
which can be tiresome for some patients. However, because
the random movements task allows subjects to perform move-
ments at self-selected speeds, subjects were able to able to
avoid fatigued movements. All patients included in this study
were able to perform the random movements task for at least
one minute, which we have shown is enough data to yield
accurate estimations. Unmotivated subjects may also refrain
from utilizing the their full range of motion and may perform
overly repetitive movements. However, future work should be
able to analyze task performance to ensure correct execution.
Furthermore, existing methods also suffer from improper task
performance and we believe that the reduced burden of our
approach could increase the likelihood of compliance. Finally,
validating that our approach can track longitudinal changes in
impairment level remains as important future work.

V. CONCLUSION

We estimated the impairment of stroke survivors from a
single, minimally-burdensome task. Subjects’ 3D movements
were segmented into 1D point-to-point movement elements

using movement decomposition and further separated into a
dense homogeneous set and outlier set using unsupervised
density-based clustering. Our approach compared favorably to
segmentation techniques previously used in the literature. We
showed the random movement task could be shortened to as
little as one minute, further reducing patient burden. With ad-
ditional development and testing, we believe this relatively low
burden technique can be used for frequent, remote assessment
in stroke survivors, thus enabling longitudinal monitoring and
personalized intervention strategies. Furthermore, we believe
the random movements task is a stepping stone towards
truly seamless monitoring and that further work may be able
to extract useful features from short bursts of upper-limb
movements during activities of daily living.
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