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Mental workload represents the mental resources an individual de- 

votes to a task. In a building environment, understanding how am- 

bient thermal conditions affect occupants’ mental workload offers 

an opportunity to achieve optimal thermal settings for the heating, 

ventilation, and air conditioning (HVAC) systems. However,  di- 

rectly measuring mental workload on a large and continuous scale 

requires occupants to perform subjective tests or wear electroen- 

cephalogram (EEG) or similar devices, which is impractical. This 

paper  assesses the feasibility of using infrared facial thermography 

captured by a low-cost thermal camera to disclose mental workload. 

An experiment was conducted to measure the facial skin temper- 

ature while subjects performed cognitive tasks in three different 

thermal environments, representing occupants’ thermal sensation 

of slightly cool, neutral, and slightly warm. Mental workload was 

measured using an EEG headset to eliminate subjective bias. The 

correlations between facial temperature and mental workload vary 

with different individuals and thermal conditions. Relatively strong 

correlations  are found in the neutral environment and in the re- 

gions of ears, mouth, and neck. The results also suggest that future 

work should collect data under extended experiment duration. This 

is because it was observed that the response of facial skin temper- 

ature to mental workload varies with task type; thus, increasing 

the repetitiveness for each type of task or using more challenging 

tasks in the experiment could potentially lead to more insights on 

this relationship. 

 
CCS CONCEPTS 

• Computer systems organization → Sensor networks; • Gen- 

eral and reference → Validation; Experimentation. 
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1   INTRODUCTION 

Building indoor environment plays an important role in people’s 

well-being. In the U.S. and Canada, people on the average spend 

more  than  90% of their time indoors [21]. Several researchers stud- 

ied the impact of indoor environmental quality (IEQ) factors on 

building occupants, including lighting [18], acoustic conditions 

[46], and thermal comfort [23]. Good IEQ can improve occupants’ 

satisfaction, health, and work performance [7]. Therefore, in recent 

years, much effort has been placed to evaluate and improve the IEQ 

in the workplace [37]. 

Thermal  comfort,  as one of the most important IEQ factors, can 

significantly affect the building energy consumption,  as well as 

occupants’ well-being and satisfaction with the built environment 

[8, 22]. As the largest energy-consuming sector, the heating, venti- 

lation, and air conditioning  (HVAC) system accounts for approxi- 

mately 48% of building energy, primarily for providing occupants 

with comfortable working and living spaces [30]. In spite of the 

significant energy footprint to maintain desired thermal comfort, 

studies show that up to 43% occupants are not satisfied with their 

workplace thermal environments [19]. Dissatisfied thermal envi- 

ronment can lead to sick building syndrome symptoms, such as skin 

dryness, eye irritation, and headache [46]. In addition, poor thermal 

conditions can increase the number of complaints, absenteeism and 

reduce occupants’ productivity [14]. 

Studies have suggested that thermal environments have an effect 

on occupants’ mental workload, which is also related to occupants’ 

work performance and health [13]. Mental workload is defined as 

“the mental resources devoted to the task of an individual” [12]. It 

reflects the subjects’ personal efforts when performing  tasks under 

a specific condition  and describes “an overall efficiency of human 

performance”[20]. Changes in mental workload would ultimately 
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cause changes in occupants’ performance when it becomes high 

and approaches to the mental resource capacity of an individual 

[13]. In relation to thermal environments, Wang et al. (2019) found 

that the slightly warm indoor environment (28.6◦ C/83.5◦ F) results 

in higher mental workload demand in occupants [42]. Continuous 

high mental workload will result in subjects’ mental fatigue and 

cause mistakes, efficiency  and alertness decline, and effort disincli- 

nation [47]. In the long run, it would result in detrimental health 

effects on occupants [14]. Therefore, thermal environment should 

be controlled to yield an appropriate amount of mental workload. 

To investigate the effect of thermal environments on occupants’ 

mental workload, Wang et al. (2019) analyzed the electroencephalo- 

gram (EEG) signals of occupants performing standardized tasks 

under different room temperatures [42, 43]. EEG is a technique 

to monitor and record the brain electrical activity through the 

electrodes placed on the scalp surface [15, 16]. Although EEG is 

sensitive to mental workload as it directly captures central brain 

activities  and subjects’ cognitive  states, it can cause significant in- 

trusiveness  on the occupants (e.g. headaches if worn for a long time, 

difficulties to set up for subjects with thick hair, etc.), which pre- 

vents its applications in real operational built environments. Thus, 

developing  a non-intrusive method that can dynamically reflect the 

mental workload induced by thermal environments is critical to 

achieving a healthy and productive built environment. 

In this research, we explore the use of facial infrared thermog- 

raphy  as a proxy to measuring mental workload reported through 

EEG signals. Li et al. (2019) proposed  a thermal camera network 

that can simultaneously collect facial temperature from multiple oc- 

cupants and predict their thermal comfort [26]. Several researchers 

explored the relationship between facial thermography collected 

from advanced thermal camera models and the subjective-rated 

mental workload [27, 32]. However, whether the facial thermogra- 

phy captured by a low-cost thermal camera is feasible to be used 

as the proxy to predict mental workload is still in question. In this 

study, the authors conducted experiments in three different thermal 

environments, representing the thermal sensation of slightly cool, 

neutral, and slightly warm, to evaluate the relationship between the 

temperature of different facial regions and mental workload mea- 

sured by EEG. The paper is organized to first review the existing 

methods for mental workload measurement in Section 2, followed 

by discussions of their main limitations and the formulation of our 

hypothesis to bridge the research gaps. Next, the research methods 

and experimental protocol are presented in Section 3. Then, the 

results are explained and discussed in detail in Section 4. Finally, 

the main conclusions of this study are highlighted in Section 5. 
 

 
2   BACKGROUND 

In this section, three categories of methods to measure mental 

workload and their limitations are discussed. The first category of 

methods measures mental workload through subjective ratings by 

asking subjects a series of questions about their self-perception. 

On the other hand, the second category assesses mental workload 

by using EEG to measure central nervous activities. In the third 

category, peripheral physiological data are examined to reflect men- 

tal workload, where the facial thermography-based method was 

discussed in detail. 

2.1 Subjective mental workload measurement 
The most common method to assess mental workload is through 

subjective ratings. Due to its simplicity and high sensitivity [3], 

subjective ratings are often used as the baseline  to evaluate  the effec- 

tiveness of other approaches to assess mental workload [27, 32, 38]. 

In existing studies, researchers have proposed different unidimen- 

sional rating scales. For example, Brennan (1992) developed the 

Instantaneous Self-Assessment method for real-time workload as- 

sessment, which  is a 5-point  rating scale from “Excessive workload” 

to “Under-utilized workload” [2]. Wierwille and Casali (1983) de- 

veloped the Modified Cooper-Harper Scale, which is a 10-point 

unidimensional rating scale [44]. It provides a global rating of per- 

ceptual, cognitive, and communications workload. However, the 

subjective ratings are highly biased. Some researchers argued that 

these unidimensional  scales, despite  their convenience, are not 

sufficient to reflect the complex nature of the mental workload [28]. 

Thus, multidimensional subjective mental workload measure- 

ment approaches have been developed. Two most popular ones 

are the NASA-Task Load Index scale (NASA-TLX) and the Subjec- 

tive Workload  Assessment Technique (SWAT). NASA-TLX  uses six 

subscales to assess mental workload, including mental demand, 

physical demand, temporal demand, performance, effort, and frus- 

tration [11]. Similarly, the SWAT produces an interval rating scale 

of mental workload from three dimensions, including time load, 

mental load, and physiological  stress load. Each dimension  has 

three levels: low, medium, and high [36]. 

Compared to unidimensional scales, the multidimensional men- 

tal workload measures have the merits of incorporating insights 

from multiple aspects [28]. However, several deficiencies prevent 

this approach from being applied in actual working or living set- 

tings. First, the rating process is relatively time-consuming (typi- 

cally 5-10 minutes) [34], which can interrupt  subjects’ normal work 

or harm their work performance. Meanwhile, the ratings can be 

inaccurate since subjects make responses based on their memory 

of the mental workload during the tasks. Furthermore, the assess- 

ment tools are rather complicated and require proper training or 

experience [31]. The complicated assessment processes can pose 

extra workload on subjects, which will affect their judgments on 

mental workload during designated tasks. 
 

 
 
2.2   EEG mental workload measurement 

EEG can monitor subjects’ cognitive states by directly capturing 

the brain electrical activity [37], and thus it is widely adopted by 

researchers to measure the mental workload [28]. According to 

the signal frequency, EEG rhythmic  activities can be divided into 5 

different frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 

Hz), beta (12-25 Hz) and gamma (>25 Hz) [29]. As mental workload 

increases, the theta band activity of frontal lobe increases and the 

alpha band activity of parietal  lobe decreases [10, 14, 20]. 

Even though the emergence of low-cost  and wireless EEG makes 

it affordable and easier to use, its application to measure mental 

workload is still limited to laboratory settings. In previous stud- 

ies [42], it was found that the tight clamping of the EEG headset 

can cause headaches after wearing  it for about 30-40 minutes. As 

a result, the headset needs to be removed during the experiment 
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to relax subjects and reset after the rest, which prevents the con- 

tinuous measurement of mental workload. In addition, the set-up 

process and tight contact to subjects’ scalp also interfere with their 

daily work. Second, for a multi-occupancy  built environment, an 

EEG headset is needed for each occupant which can be cost prohib- 

itive and impractical to implement. Third, to obtain accurate EEG 

measurements, subjects are required to stay in steady states since 

physical movements will induce noises to EEG signals and greatly 

reduce the signal-to-noise ratio. However, regular work involves  a 

great number of movements and communications. Thus, keeping 

subjects in steady states is both impractical and intrusive. 
 

 
2.3 Peripheral physiological mental workload 

measurement 

In addition to subjective ratings  and EEG, a variety of peripheral 

physiological measurements have been used to assess mental work- 

load. For example, heart rate and heart rate variability (HRV, i.e., 

the beat-to-beat variation in heart rate) have shown inconsistent 

correlations with mental workload. Hankins and Wilson (1998) 

and Wilson  (2002) found that heart rate increases with increasing 

mental workload [10, 45]. Jorna (1992) found that higher mental 

workload cause decreases in HRV [17]. However, some researchers 

claimed no decrease in HRV was found with increasing mental 

workload [10, 39]. Others believe that heart rate and HRV can be 

influenced by multiple physiological and environmental factors, 

as well as subjects’ emotions, and thus are not robust enough to 

measure mental workload [28]. In terms of other physiological 

measurements, Recarte and Nunes (2003) discovered a significant 

increment in pupil diameter with increasing mental workload [35]. 

Veltman  and Gaillard  (1998) also observed an increase in eye blink 

interval and a decrease in eye blink duration during higher mental 

workload [40]. Nonetheless, researchers claim that eye blinks reflect 

visual workload instead of cognitive workload [4]. Respiratory rate 

was also used for mental workload measurement in some studies 

[9, 39]. However, Marinescu et al. (2017) found the correlation be- 

tween respiratory rate and mental workload was insignificant for 

most subjects [27]. These peripheral physiological  measurements 

assess subjects’ mental workload objectively through their physical 

responses to the imposed workload. Nevertheless, these methods 

suffer from the same limitations as EEG (i.e., cost prohibitive and 

intrusive to occupants). 

As a non-intrusive method, the thermal camera can detect the 

variation of face temperature  caused by the vasoconstriction re- 

sponse of the autonomic nervous system while subjects experience 

stress or negative emotions [32]. Therefore, the relationship be- 

tween facial thermography and mental workload have been ex- 

plored by several researchers. Or and Duffy (2007) observed a sig- 

nificant correlation between variations in nose temperature and 

mental workload [32]. Abdelrahman et al. (2017) found the facial 

thermography pattern changes with the Stroop test difficulty and 

reading text complexity [1]. Marinescu et al. (2017) also discov- 

ered that facial temperature could increase the mental workload 

prediction accuracy by 47.7% [27]. However, two limitations of 

these studies should be acknowledged. First, they either infer the 

increase of mental workload by increasing task difficulty or use 

subjective mental workload ratings, which is not as accurate  as 

EEG which measures mental workload directly from the central 

nervous activity. As proposed by the Cognitive  Reserve theory, 

when the subject’s neural resource is not sufficient to cope with the 

demands, mental workload  will not increase even though the task 

difficulty is increasing [13]. Meanwhile, subjective mental workload 

ratings  used as the baseline are biased towards subjects’ percep- 

tion and memory  as discussed in Section 2.1 [11]. Second, even 

though thermal camera can be configured to capture the facial skin 

temperature of multiple occupants instead of having one sensor 

for each subject, meaning the number of devices can be greatly 

reduced in multi-occupancy environments, it still suffers from the 

cost prohibitive problem  because even a single camera used in these 

studies is costly  ($3,000 - $15,000). 

The objectives of this study are: 

• Develop a framework  to study whether facial infrared ther- 

mography captured by a low-cost thermal camera ($200) can 

disclose the mental workload measured by EEG. The low- 

cost thermal camera network has high scalability potential 

and flexibility to capture facial infrared thermography in 

various building environments [26]. 

• Present preliminary results and develop recommendations 

for future studies in this area where non-intrusive methods 

can be used to simultaneously assess the mental workload 

of all occupants in multi-occupancy building environments. 

 
3   METHODOLOGY 

This study employs a variety of techniques to investigate the ca- 

pability of facial infrared thermography captured by the low-cost 

thermal camera to disclose mental workload. Considering the im- 

pact of indoor thermal environments on mental workload and facial 

thermography pattern [24, 42], the authors choose three typical 

thermal sensations occupants experience in the built environment, 

namely slightly cool, neutral, and slightly warm. The room temper- 

ature and relative humidity of each condition  is as shown in Table 

1. They are determined  based on Fanger’s Predicted Mean Vote 

model, which predict occupants’ thermal comfort level using four 

environment parameters (air temperature, mean radiant tempera- 

ture, air velocity, and relative humidity) and two occupant-related 

parameters (metabolic rate and clothing insulation) [6]. 

An overview of the research methodology and data analysis 

method is shown in Figure 1. In each thermal condition, mental 

workload is measured by EEG while subjects perform tasks (see 

Section 3.1 for task details). In the meantime, facial thermography is 

measured using a low-cost  thermal camera (see Figure  2, the camera 

was placed beneath the computer  screen). After the timestamp 

calibration of the facial thermography and EEG-measured mental 

workload (i.e. align them onto the same timestep), the correlation 

between them is examined for each subject. Based on the correlation 

result, prediction  models are trained and tested to disclose the 

mental workload from selected facial skin temperature features. 

 
3.1   Baseline and Cognitive tasks 

At the start of the experiment in each thermal condition,  subjects 

were asked to try their best to relax and keep their mind blank 

to record a baseline EEG and facial thermography data, which is 

recognized as the subjects’ status with the lowest mental workload. 
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Figure 1: Research Methodology  Overview 

 
Table 1: Thermal environment settings 

 
PMV Thermal Sensation Air Temperature Humidity 

PMV=-1 

PMV=0 

PMV=1 

Slightly Cool 

Neutral 

Slightly Warm 

21.7 ◦ C (71.1 ◦ F) 

25.2 ◦ C (77.4 ◦ F) 

28.6 ◦ C (83.5 ◦ F) 

23% ±1% 

23% ±1% 

23% ±1% 

 

 
 

Figure 2: Thermal camera setting 
 
 

During  the experiment, subjects were asked to perform four cogni- 

tive tasks, including number addition, digit span, choice reaction, 

and visual search on a desktop computer. The cognitive  tasks were 

developed using Javascript. No calculator or note-taking was al- 

lowed during the task period. The number addition task requires 

subjects to add up a column  of numbers and consists of two dif- 

ficulty levels (Figure 3a). The digit span task requires subjects to 

memorize and recall a series of numbers appeared on the computer 

screen one after another, which also consists of two difficulty levels 

(Figure 3b). The choice reaction task consists of three parts, includ- 

ing the simple reaction task (easy level), the four-choice reaction 

task (hard level, requires subjects to press the corresponding key 

when the target emerge in different boxes), and the Stroop task 

(Figure 3c). The visual search task only has one difficulty level. 

It requires subjects to search for the target pattern among given 

choices rapidly and accurately (Figure 3d). The detailed description 

of the four cognitive tasks could be found in [47]. 
 

 

 
 

Figure 3: Cognitive task interface 
 
 
 
3.2 Low-cost thermal camera and facial skin 

temperature extraction 

In this study, the FLIR Lepton 2.5 radiometric  thermal camera was 

used to capture facial thermography. It is a low-cost, uncooled ther- 

mal imaging core that provides a factory-calibrated  temperature 

value through long-wave infrared thermography. Compared to the 

advanced thermal camera models, it has relatively  low radiometric 

accuracy (±5◦ C or ± 0.5 % of reading) and low resolution (80(h) × 

60(v) pixels). However, its feasibility to disclose occupants’ mental 

workload is still worth investigation because continuous thermal 

videos consist of multiple frames are adopted in this study instead 

of a single image frame. As a result, the error of temperature mea- 

surement, which follows  a Gaussian distribution,  could be reduced 

by removing outliers and averaging data within a period of time. 

Meanwhile, Li et al. (2018) have successfully used the facial skin 

temperature data collected by the same thermal camera module to 

predict occupants’ thermal comfort level [24, 25]. 
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In spite of the low resolution of the thermal camera, the contour 

of interested regions on human faces (e.g. forehead, nose) are pre- 

served in the thermal image (Figure 4). As a result, Haar Cascade 

algorithm  can be applied to detect the existence of faces in thermal 

images [41]. Haar Cascade algorithm can detect the existence of 

certain image characteristics (e.g. edges, changes in texture), and 

thus could be used for frontal and profile face recognition  [41]. 

Based on previous studies, we select forehead, nose, cheeks, ears, 

mouth,  and neck as ROI (Regions of Interest). The face contour, the 

nose, and the eyes are first detected by the Haar Cascade algorithm 

directly. The other ROI are inferred during the runtime based on 

their size and relative location to the already detected face regions 

(i.e. facial contour,  eyes, and nose), which  had been tuned on several 

subjects in advance to ensure correct recognition  (Figure 4). For 

each ROI, we use the average temperature of all pixels within the 

identified region to represent the corresponding skin temperature. 

Pixel values that are lower than 28 ◦ C or higher than 38 ◦ C in each 

ROI are recognized as outliers  or noises and are excluded from the 

analysis. 
 

 
 

Figure 4: Facial region of interest 

 
In this study, only one subject was tested at a time and the 

camera was placed at a 0.8-1m distance in front of the subject’s 

face. However,  the thermal  camera module could be assembled with 

Microsoft Kinect into a thermal camera network that is capable 

of extracting facial skin temperature of multiple occupants at the 

same time from a longer distance (about 2m) [26]. 
 

3.3   Experiment 

A three-day experiment was designed to find the relationship be- 

tween facial skin temperature and EEG-measured mental workload. 

The experiment was conducted in a research office with the air qual- 

ity, lighting, and ventilation condition controlled to be the same 

during the experiments. The room temperature was controlled by a 

thermostat connected to the air-conditioning system. The air tem- 

perature and relative humidity of subjects’ ambient environment 

were measured using two COZIR sensors placed 0.6m above the 

floor level. The experiment protocol was approved by the univer- 

sity’s Institutional Review Board. 

All 15 subjects were recruited from healthy graduate students, 

who were well-acquainted with computer use. Subjects were re- 

quired to keep their hair clear, remove makeup, and avoid energy 

drink or alcohol before coming to the experiment. They were also 

asked to pay full attention to the tasks and try their best to get 

the correct answers. In order to improve consistency and eliminate 

irrelevant factors, subjects were asked to come to the testbed office 

at the same time on three consecutive days to avoid the circadian 

effects. The order of different thermal conditions was randomly 

shuffled for different subjects. Meanwhile, a good night’s sleep and 

consistent sleep time were recommended on the nights before the 

experiment. The experiment data of three subjects were excluded 

from analysis due to connectivity loss or excessive sweating. 

On each experiment  day, subjects followed  the experiment  pro- 

cedures as outlined  in Figure 5. In the preparation  phase, subjects 

spent 30 minutes relaxing in the testbed office to adapt to the en- 

vironment and receive experiment instructions. EEG headset and 

thermal camera were set up subsequently to record the baseline 

data, followed by the first cognitive task session that randomly 

selected two tasks from the four cognitive tasks. After a 15-minute 

rest with EEG headset removed, EEG and thermal camera were 

reset and subjects continued to perform the second cognitive task 

session that consists of the other two tasks. While subjects perform 

tasks, the authors constantly checked the EEG channel connectivity 

through the interface of the bundled software to ensure the success 

of the experiment and the quality of data collected. 
 

3.4   Data preprocessing and analysis 

Mental workload was measured using a wireless  low-cost EEG 

headset Emotiv EPOC+ [5], which has 14 channels with the sam- 

pling frequency of 128 Hz. The absolute power of each frequency 

band was calculated 8 times per second using the bundled software. 

The absolute power data was sliced into data segment according to 

the start and end timestamp of each cognitive task recorded by the 

system, with each segment containing the EEG data of one difficulty 

level of a cognitive  task. Since the data collected by the thermal 

camera was recorded once per second, which has fewer recordings 

than the EEG relative power, and it may lose some frames when 

it fails to detect the ROI, the facial thermography  and EEG data 

need to be calibrated  into an aligned timestep. The method for 

calibration  is: (1) for each frame in facial thermography  data, find 

the data point in the EEG data with the nearest timestamp to that 

of facial skin temperature; (2) assign the facial skin temperature to 

the nearest EEG timestamp; (3) use forward filling to fill the nearest 

facial skin temperature data in the forward to the timestamp that 

with no facial data assigned; (4) if the first few timestamps in EEG 

were not assigned facial data (i.e. no forward  data can be filled in), 

the nearest facial data backward was used for these timestamps. 

This method is feasible because human facial skin temperature does 

not change rapidly in a very short time period. After calibration,  a 

size 199 median window and a size 101 Savitzky-Golay  filter with 

polynomial order 3 were applied to smooth and remove the outliers 

of the EEG relative power and facial skin temperature data. The 

average of left and right cheek ROI temperature is used to repre- 

sent cheek temperature and the average of left and right ear ROI 

temperature is used to represent ear temperature. 
 

4   RESULTS AND DISCUSSIONS 

4.1   Mental workload index 

By comparing  several EEG signal indexes, Holm  et al. (2009) found 

the ratio of frontal theta power and parietal alpha power is more 
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 Baseline Easy Hard 

Subject 1 0.417 1.305 1.389 
Subject 2 0.385 0.940 1.097 

Subject 3 0.359 0.965 1.186 

Subject 4 0.564 1.052 1.323 

Subject 5 0.403 0.980 1.185 

Subject 6 0.457 1.240 1.376 

Subject 7 0.373 0.796 1.062 

Subject 8 0.387 0.737 1.052 

Subject 9 0.421 0.836 1.118 

Subject 10 0.389 0.955 1.200 

Subject 11 0.376 1.620 1.856 

Subject 12 0.395 0.995 1.122 

 

 

 
 

Figure 5: Experiment  Protocol 

 
sensitive in reflecting mental workload [14]. Considering the con- 

figuration of the 14-channel EEG headset used in this study, the 

authors propose a mental workload index calculated using Equation 

(1), where the relative power of each component was calculated 

using Equation (2). A large mental workload index represents a 

high mental workload. 

Table 2: Mental workload comparison of baseline, easy, and 

hard tasks for each subject 

 
 

Mental wor kload index = 

 
= 

Aver aдe f rontal theta power 

Aver aдe par ietal alpha power 

F 3 T heta RP + F 4 T heta RP 

P 7 Alpha RP + P 8 Alpha RP 

 
 
(1) 

 
 

Relative power (RP ) = 
power o f cer tain f r equency band 

I. 
all f r equency bands power 

(2)
 

Before calculating the index, the authors filter each relative 

power component to smooth the data and remove the noise. To val- 

idate the capability of the EEG mental workload index, a pairwise 

comparison among the average mental workload  during the base- 

line, easy tasks (i.e. easy level number addition,  digit span, choice 

reaction), and hard tasks (i.e. hard level number addition, digit span, 

choice reaction) are conducted. The mental workload comparison 

is shown in Table 2. For the baseline, the average mental workload 

of three baseline recordings under three thermal conditions are pre- 

sented. For the easy and hard tasks, we present the average mental 

workload values of the easy and hard level number addition, digit 

span, and choice reaction tasks under three thermal conditions, re- 

spectively. Each subject had nine data points (3 thermal conditions 

× 3 easy/hard tasks) for easy and hard level tasks each. According 

to the result of the one-way repeated measures ANOVA and the 

Least Significant Difference test (α = 0.05), the mental workload 

index of the hard tasks is significantly higher than that of the easy 

tasks. Both of the mental workload index during tasks are signif- 

icantly higher than the baseline. The result proves that the EEG 

mental workload index could sensitively assess mental workload 

and be used to examine the validity of facial skin temperature  as a 

potential mental workload measurement method. 

Through preliminary observation of the data, the authors find the 

EEG mental workload  data fluctuates during the task period while 

the facial skin temperature data is relatively stable. One possible 

reason for this is that EEG is very sensitive to subjects’ central 

neural activity, and thus varies significantly while the subject was 

reading the question, figuring out the answer, and typing in the 

result. However, the facial skin temperature does not have rapid 

and quick responses to subjects’ cognitive  status as a peripheral 

physiological  measurement. As a result, facial skin temperature 

could not reflect the real-time mental workload at each timestamp. 

Nevertheless, the facial skin temperature still has the potential to 

 
 
 

 
disclose the mental workload  during a task period (3 minutes - 9.5 

minutes),  as other related studies found. In this study, we use the 

average mental workload  index of each data segment to represent 

the mental workload for a subject to perform a specific task and 

evaluate its relationship with the average facial skin temperature 

during the task period. Nine tasks of different types and difficulty 

levels are studied in each thermal condition. 
 

4.2  Facial skin temperature and mental 

workload 

After obtaining  each subject’s facial skin temperature and the men- 

tal workload for each of the tasks, their relationships are studied in 

three different scales using the Pearson correlation.  We first con- 

sider the data from all subjects in all the three thermal environments 

at the same time. The correlation results are shown in Figure 6. The 

numbers in the cells represent the Pearson correlation  coefficient 

between the corresponding  average facial skin temperature and the 

average mental workload  of each task for the 324 (3 environments 

× 9 tasks × 12 subjects) data points for all subjects. The correlation 

is found to be poor when considering all thermal environments at 

the same time. A possible reason is that the facial skin temperature 

increases significantly with room temperature [24]; however, no sig- 

nificant difference in mental workload is found between the slightly 

cool and neutral environment. In addition, the change of mental 

workload in different thermal environments varies significantly 

within individuals [42]. For example, some subjects demonstrate 

lower mental workload in the cooler environment, while vice versa 

for the other subjects. Therefore, rather than having a general 

model for all thermal conditions, the relationship between facial 



93 

Can Infrared Facial Thermography Disclose Mental Workload in Indoor Thermal Environments? UrbSys’19, November  13–14, 2019, New York, NY, USA  

 

 
thermography and mental workload under each thermal condition 

should be studied separately. 

 

 
 

Figure 6: Pearson  correlation coefficients  between facial 

skin temperature of each region and mental workload (con- 

sidering all thermal environments and all subjects) 

 
Next, the correlations between facial skin temperature and men- 

tal workload are examined for each thermal condition  separately, 

as shown in Figure 7. The numbers in the cells represent the Pear- 

son correlation coefficient between the corresponding facial skin 

temperature and mental workload for the 108 (9 tasks × 12 sub- 

jects) data points for all subjects in each thermal condition.  Even 

though the facial skin temperature in the slightly cool environment 

demonstrates higher correlations with mental workload than the 

other two, the relationships are still weak even if we consider each 

thermal condition separately. 

 

 
 

Figure 7: Pearson  correlation coefficients  between facial 

skin temperature and mental workload (considering all sub- 

jects in each thermal environment) 

 
In order to examine whether the poor correlation in each thermal 

environment is caused by individual  differences, the authors evalu- 

ate the within-subject  correlation between facial skin temperature 

and mental workload in each thermal condition  for the 9 tasks, as 

shown in Figure 8. It is found that the correlation varies significantly 

within individuals. While some subjects’ facial skin temperature is 

positively correlated with mental workload (e.g. Subject 11), others’ 

facial skin temperature decreases with mental workload (e.g. Sub- 

ject 12). Meanwhile,  while some subjects’ facial skin temperature 

has relatively strong correlations with mental workload (e.g. Sub- 

ject 12), the correlations  for some subjects are weak (e.g. Subject 5). 

Even for the same subject, the correlation of a specific facial region 

could be positive in one environment but negative in another, such 

as the correlation between neck temperature and mental workload 

for Subject 2. The individual  difference in the relationship between 

facial thermal patterns and subjective mental workload ratings 

was also observed by [38]. The neutral environment demonstrated 

stronger relationships between facial skin temperature and mental 

workload, possibly because the vasoconstriction and vasodilation 

responses are weak when the air temperature is cool or warm that 

attenuates the response of facial temperature to mental workload. 

For most subjects, the forehead and mouth temperature is found 

to be negatively correlated with the mental workload, while the 

ear temperature is positively correlated with the mental workload. 

Despite the fact that several studies found a significant decrease of 

the nose temperature with an increasing subjective mental work- 

load rating or task difficulty [32], the correlation between nose 

temperature with EEG-measured mental workload is found to be 

weak or moderate for most subjects in this study. 
 

4.3 Facial skin temperature variation and 

mental workload 

Instead of using the absolute facial skin temperature of each task 

as shown in Section 4.1, the variation of facial skin temperature is 

studied in this section. The facial temperature variation is calcu- 

lated by subtracting the average temperature during the baseline 

period while the subjects relax from the average temperature of 
 

 
[Slightly cool environment] 

 

 
[Neutral environment] 
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[Slight warm environment] 

 
 

Figure 8: Pearson  correlation coefficients  between facial 

skin temperature and mental workload in each thermal en- 

vironment 
 
 
 

the corresponding ROI during different cognitive task periods in a 

thermal environment. The correlations between the facial tempera- 

ture variation and mental workload are examined using Pearson 

Correlation, as shown  in Figure 9. Similar to the absolute facial skin 

temperature, the correlations between facial temperature variation 

and mental workload  are inconsistent among different subjects. The 

correlations also vary among different thermal conditions. Despite 

the correlations for some subjects are relatively strong, such as Sub- 

ject 1, the correlations between facial skin temperature variation 

and mental workload are poor in general. 

 
4.4 Mental workload classification using 

absolute facial skin temperature 

From the results of Section 4.2 and Section 4.3, it could be observed 

that mental workload has stronger correlations with the absolute 

facial skin temperature than with the facial skin temperature varia- 

tion. Despite the differences among different subjects, the absolute 

skin temperature of some facial regions shows moderate or strong 

correlations with mental workload. Therefore, the feasibility of us- 

ing the absolute facial skin temperature to disclose mental workload 

is examined using the Random Forest classifier. 

In this study, the mental workload prediction model is trained 

for each subject in each thermal environment to develop thermal 

condition-specific models using the skin temperature of six facial 

regions (see column  names in Figure 8). The mental workload is 

classified into two classes. Mental workload with the value higher 

than the median workload of the corresponding thermal condition 

was classified to be high, and vice versa. Considering  the individual 

difference in mental workload, the classification of mental workload 

is conducted within each subject. 

 

After tuning the model hyper-parameters using grid search, 

leave-one-out  cross-validations  are used to evaluate the perfor- 

mance of the classification models, which means the facial tem- 

perature of one task is treated as the test data each time and the 

remaining eight data points are used to train the predictive model. 

After uncertainty analysis, with the confidence interval of 95%, the 

average prediction accuracy for all subjects under the slightly  cool, 

neutral, and slightly warm environment is 45% ± 9%, 57% ± 9%, and 

44% ± 9%, respectively, which means the facial skin temperature 

could not predict the EEG-measured mental workload  well. 
 

 
 

[Slightly cool environment] 

 
 
 

[Neutral environment] 
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[Slightly warm environment] 

 
 

Figure 9: Pearson  correlation coefficients  between facial 

skin temperature variation and mental workload in each 

thermal environment 
 

 
 
4.5   Discussion 

Even though several other studies discovered the relationship be- 

tween facial skin temperature and subjective-rated mental work- 

load, it is found from the extent of the experiment conducted that 

facial thermography captured by a low-cost thermal camera could 

not conclusively  disclose EEG-measured mental workload. One 

possible reason is that EEG measures mental workload through 

brain cognitive activities; however, subjects’ self-perception of their 

mental workload  mainly  depends on their perception of their own 

performance and task difficulty, which leads to the differences be- 

tween the two measurements. 

Meanwhile, several limitations  of this study could also affect the 

result. First, the time duration for the experiment  might not be long 

enough to detect significant  changes in skin temperature. Except 

for the visual search task that lasts 9.5 min, all the other tasks 

last between 2-6 min. While EEG has a rapid response to mental 

workload, time lags exist in peripheral physiological measurement 

such as facial skin temperature  to respond to the change of mental 

workload. In the meantime, the noise of the low-cost thermal camera 

could not be balanced out thoroughly because only  a limited number 

of data points were collected within the short task duration. 

Second, the dataset might not be large enough. Even though 

numerous time-series mental workload and facial thermography 

data are obtained for each task, it could not be used to develop 

prediction model because of the high variation of mental workload 

and low variation of facial skin temperature within each task period. 

As a result, an average value is used to represent each task, which 

greatly limited the number of data points we have for each subject 

under a thermal environment. The correlation analysis relying on 

 

such a few data points could be greatly affected by outliers. Fur- 

thermore, only eight data points were used to train the prediction 

model each time, which also leads to low prediction accuracy. 

Third, the task employed in the experiment is in different type. In 

order to simulate the state of typical building occupants that would 

engage in a variety of mental activities, four types of cognitive 

tasks were involved in the experiment that stimulates subjects’ 

cognitive function on thinking, working memory, reaction, and 

perception. However, it was found that different types of tasks 

result in various facial thermography patterns [33], which makes it 

difficult to explore the relationship or make predictions with data 

combined by different types of tasks. 

The limitations found in this study provide us with some direc- 

tions for future work in this field, which could potentially improve 

the prediction result. First, the duration of each task could be ex- 

tended to produce more significant physiological responses. It also 

allows for an increasing repetitiveness for each type of task such 

that more data could be collected for correlation analysis and for 

training the prediction model. Second, increasing  the task difficulty 

to stimulate higher mental workload on subjects could also result 

in more significant responses on facial skin temperature, which 

would potentially lead to higher prediction accuracy. Third, we 

could study the information loss of the low-cost thermal camera 

compared to the delicate ones that prevents it from accurately re- 

flect mental workload. It would provide us with potential directions 

on model improvement. 
 
 
 
 
 
5   CONCLUSIONS 

A low-cost and non-intrusive method to understand occupants’ 

mental workload offers an ideal opportunity  for developing an op- 

timal indoor environment control technique that maximizes its 

occupants’ productivity, health, and quality of life. In this study, 

the correlation of facial skin temperature and its variation with 

the EEG-measured mental workload is examined in three differ- 

ent thermal environments. The mental workload fluctuates more 

widely as tasks go on, while the facial skin temperature is rela- 

tively stable. Therefore, the relationships between average facial 

skin temperature and the average mental workload during each 

task are studied. The relationships are found to be different with 

thermal conditions and individuals. In general, the absolute facial 

temperature has stronger correlations with mental workload than 

facial temperature variation. Compared to the slightly cool and 

slightly warm environments, relatively stronger correlations be- 

tween absolute facial skin temperature and mental workload are 

found in the neutral environment.  The results suggest increasing 

the repetitiveness of each type of task in future studies since task 

type could affect the response of facial skin temperature to mental 

workload. Extending task duration or using more challenging tasks 

in the experiment could also lead to more insights on the relation- 

ship between facial thermography and mental workload, so that 

non-intrusive data collection  methods such as low-cost  thermal 

cameras can be used to simultaneously assess the mental workload 

of all occupants in multi-occupancy building environments. 
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