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ABSTRACT

Molecular dynamics (MD) simulations have become increasingly popular in studying the
motions and functions of biomolecules. The accuracy of the simulation, however, is highly
determined by the molecular mechanics (MM) force field (FF), a set of functions with adjustable
parameters to compute the potential energies from atomic positions. However, the overall quality
of the FF, such as our previously published ff99SB and {f14SB, can be limited by assumptions
that were made years ago. In the updated model presented here (ff19SB), we have significantly
improved the backbone profiles for all 20 amino acids. We fit coupled @/y parameters using 2D
¢/y conformational scans for multiple amino acids, using as reference data the entire 2D
quantum mechanics (QM) energy surface. We address the polarization inconsistency during
dihedral parameter fitting by using both QM and MM in aqueous solution. Finally, we examine
possible dependency of the backbone fitting on side chain rotamer. To extensively validate
ff19SB parameters, and to compare to results using other Amber models, we have performed a
total of ~5 milliseconds MD simulations in explicit solvent. Our results show that after amino-
acid specific training against QM data with solvent polarization, ff19SB not only reproduces the
differences in amino acid specific Protein Data Bank (PDB) Ramachandran maps better, but also
shows significantly improved capability to differentiate amino acid dependent properties such as
helical propensities. We also conclude that an inherent underestimation of helicity is present in
ff14SB, which is (inexactly) compensated by an increase in helical content driven by the TIP3P
bias toward overly compact structures. In summary, ff19SB, when combined with a more

accurate water model such as OPC, should have better predictive power for modeling sequence-
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specific behavior, protein mutations, and also rational protein design. Of the explicit water

models tested here, we recommend use of OPC with ff19SB.

Introduction

State-of-the-art computational methods have been able to complement experimental structural
biology with information that is both interesting and difficult to obtain without computers.
Recent simulation highlights are the time-resolved, atomic-detail folding of ubiquitin during a 1-
millisecond MD simulation!, or the accurate reproduction of a large set of protein-ligand binding
affinities>. Moreover, simulations are typically used during the refinement of high resolution
structures obtained using experimental data such as crystallography, NMR or cryo-electron
microscopy.

However, two significant caveats apply to the hypothetical power of simulations: (1) the
energy function must provide an accurate model of the underlying physics of the system, and (2)
the simulation must adequately sample the important regions of the resulting energy landscape.
These problems are coupled, and improving the physics model typically gains accuracy at the
expense of greater computational cost, reducing the conformational diversity that can be
sampled. One of the main challenges in successfully employing simulations is the need to
optimize this precision/accuracy compromise based on the requirements of each research project.

All-atom molecular dynamics (MD) is likely the most widely used biomolecular simulation
sampling method. These often employ simple classical energy functions (force fields, FFs) which
usually have many adjustable parameters, most often obtained by fitting to data from

experiments or QM. Most modern FFs have very similar functional forms, but differ
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significantly in choice of model systems and source of the training data. Although using even
more complex models than those discussed here (such as including explicit polarizability®) may
improve accuracy, these gains come at the cost of computational complexity and corresponding
reduction in the sampling that is usually the limiting factor in the application of biopolymer force
fields.

Many approximations are made in fitting FF parameters. The FFs used for simulation of
biomolecules in water tend to be relatively simple, due to the large number of atom pair
interactions that contribute to the net forces. In this article we focus on the FFs associated with
the Amber simulation package?, though others tend to be very similar. Amber FFs include
harmonic terms for covalent structure, such as bond stretching and angle bending. The
intramolecular and intermolecular nonbonded interactions are modeled as a Lennard-Jones 12-6
potential for vdW interactions, and a simple Coulomb term for electrostatics typically using fixed
partial atomic charges obtained using QM-based electrostatic potentials on intact peptides. The
final and crucially important component is the dihedral (torsion) correction terms, which modify
the energy of the system as a function of rotation around bonds. These bond rotations control the
flexibility of the biopolymer, and different corrections can alter barrier heights as well as the
relative energies of various stable rotamers, directly influencing the sampled ensembles®.

The physical motivation for the dihedral corrections is that the rest of the FF is purely
classical, and therefore lacks quantum orbital effects such as the increased energy barrier for
rotation around a double bond. In practice, these corrections are used broadly to empirically
optimize force fields during training, accounting for quantum effects as well as other weaknesses
in the simple model, such as lack of conformation-dependent polarization that could impact

electrostatic interaction profiles, or even to remedy lack of agreement with experiments. In
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Amber and most other atomistic FFs, the dihedral correction is modeled as a simple truncated
Fourier series with amplitudes and phases that are parameters in the FF. These parameters are
optimized at the last stage in order to improve the agreement between training data and MM
properties calculated without the dihedral terms. Some FFs add one or more additional empirical
adjustment steps to improve agreement with experiments.

Importantly, these force fields rely on an implicit assumption that each term is independent,
with no coupling between parameters for bonds, angles and dihedrals. This additivity assumption
extends to the nonbonded pairs as well, and is a major source of efficiency in force field
calculations. In reality, coupling exists to varying extents, and parameters for one component
may depend on the conformations or chemical identities of other nearby groups. This is
neglected in most current biomolecular force fields. Another important key assumption is
transferability: that a FF trained on one set of molecules (typically small) will perform as well on
different, perhaps much larger molecules. Transferability also applies to neglecting the coupling
between parameters, since it is usually assumed that one set of parameters (for example, for
rotation around a bond) will perform well for multiple conformations of neighboring groups.
Since transferability is imperfect, one way to improve FF accuracy is to ensure that the training
data more closely reflect the situations in which the parameters will be applied, and by implicitly
accounting for any coupling with neighboring groups at least in a mean-field way. Choice of
model systems is therefore crucial. Enabled by greater computer power, this has led to a trend
away from fitting against QM data for small organic compounds® to that for larger peptides.

An important example is the protein backbone ¢ and y dihedral parameters that can alter the
energy profiles for these rotations, and thus influence secondary structure preferences and loop

conformations. These have been frequently revised over the years based on observations of
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secondary structure biases in prior models’. While early FFs used capped single amino acids
(dipeptides) to train the backbone, our ff99SB°> FF used tetrapeptides®, allowing ¢ and y
parameters to be trained in a context of conformational diversity of neighboring amino acids in a
longer peptide. The improvement was significant, and ff99SB has been widely adopted.

Since that time, widespread use of ff99SB exposed weakness in some amino acid side chain
dihedral parameters’, probably because they were carried over from ff99 which trained them
against a limited set of energy minima for simple organic compounds®. In ff14SB'°, we
performed complete refitting of all side chain parameters using QM data for capped amino acids.
An important update was the use of multidimensional QM conformational grid scans for every
side chain, rather than fitting each rotatable bond separately. Likewise, fitting was done using
both a and B peptide backbone contexts. Though it stopped short of explicit dihedral parameter
coupling, this approach allowed implicit inclusion of coupling of rotational profiles to
neighboring groups in a mean-field way, by fitting parameters for each bond rotational energy
profile in the context of multiple conformations of neighboring groups, as was done for the
backbone in ff99SB. ff14SB was a notable improvement; for example, a recent study!! of the
ability of protein MD to reproduce high resolution experimental crystal data concluded that
ff14SB performed best among all force fields tested, including several older Amber variants and
even the empirically tuned CHARMM C36'2.

In addition to the weaknesses in side chain dihedral parameters, some studies also noted
weaknesses in ff99SB backbone preferences. Several groups focused on empirically adjusting
the ff99SB backbone parameters via comparison to experimental data such as NMR scalar
couplings for very short peptides!®, or amino acid helical propensities® !3?, Similar to these other
groups, we also included in ff14SB a small empirical adjustment to ff99SB (using TIP3P
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water'®) to improve agreement with NMR data for short alanine peptides. Empirical corrections
can improve performance on training data but also can be problematic when extrapolated too far.
The relative scarceness of experimental data compared to the number of parameters in the FF
leaves the empirical fitting problem severely under constrained. Also, the common target of
NMR J coupling data is sensitive to the choice of Karplus parameters'®, they are not equally
sensitive to variations in ¢ and v, and the y? values typically used to score performance'® can be
highly sensitive to small details in the energy landscape yet relatively insensitive to the large
differences that are observed between force fields'é. Fitting backbone parameters to helical
propensities is also challenging; it was shown that updating side chain dihedral parameters had a
substantial impact on the backbone helical tendencies of some amino acids’, perhaps because
side chain positioning details may play a role in helicity by shielding backbone hydrogen
bonds, or due to side chain parameter changes modulating side chain entropy changes, which
may influence helix formation!”. Thus it is possible to erroneously adjust one part of the model
(such as the backbone) to improve agreement with experiment, instead of fixing the more
fundamental source of the error (e.g., the side chain rotamer energies). Designing or implicitly
accepting cancellation of error can lead to models with unphysical and unwanted dependence
between components, where one component cannot easily be improved (or even used) without
exposing the compensating weakness in another.

Another major challenge to empirical fitting against experiment is deconvolution of the solvent
model from the solute FF, each of which may contribute inaccuracies that lead to deviation from
experiment. This is complicated further when empirical adjustment creates dependence between
solute and solvent models. Shell et al. showed that the best results for predicting small protein

structures were obtained using the ff96 force field with the GB-OBC implicit solvent model,
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despite each having well-established deficiencies'®. The CHARMM C22' FF was trained using
TIP3P water, and backbone refitting was needed to use a different water model®°. ff14ipg®! was

2 in the initial stages?!, requiring refitting in

developed with extensive training to TIP4P-Ew?
ff15ipq* to enable use with SPC/Ey water’*. Moreover, weaknesses are apparent in studies of
systems that sample diverse ensembles such as the unfolded states of proteins, or simulations of
intrinsically disordered proteins (IDPs). This may well arise because of the vast number of nearly
degenerate states, and the need for much higher accuracy than what is sufficient for simulating
proteins in stable native basins. Currently, the challenge to FFs seems too great; for example, a
recent study of IDPs found that the simulated ensembles depended dramatically on FF, but much
less so on peptide sequence?. Piana et al. showed that the unfolded ensembles in their successful
protein folding simulations were much more compact than expected from experiments®.
Palazzesi compared simulations to NMR data, again finding generally poor agreement regardless
of FF used?’. In these and other cases, simulated ensembles are generally too compact. Several
groups attempted to address the problem empirically by re-training backbone parameters against
PDB coil libraries, and flattening energy landscapes®®. Robustelli et al. carried out extensive
refitting to improve the ability of ff99SB to model IDPs while retaining the ability to simulate
folded proteins.?’

14,30 consistent

More recent IDP work has implicated overly weak water-protein interactions
with other studies showing that protein-protein association in water is too favorable regardless of
force field tested’!. Best et al developed the ff03w model, empirically increasing the water-
protein dispersion interaction.!* Piana et al. developed the TIP4P-D water model, with 50%
larger dispersion energies*®, further adjusted later”. Both adjustments resulted in improved

match to IDP experimental data such as Rg values inferred from SAXS and FRET. Recently, the
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new OPC 4-point explicit water model from Onufriev et al. was shown to better reproduce liquid
water properties than most other models.*? It also results in much less compact ensembles for
IDPs, suggested by the authors to be due to increased strength of the dispersion term as
compared to models such as TIP3P.* Such studies demonstrating that newer water models
improve IDP behavior again highlight the dangers in empirically adjusting specific protein FF
parameters to fix what may just be a symptom of a different problem (such as solvent model).
This weakens transferability, and emphasizes the value of independent development and
validation of solute and solvent models.

Despite the issues described above, current force fields clearly are good enough to have
enabled many excellent biophysical simulation studies. In terms of simulating global structure of
proteins of various sequences, protein force fields have improved with time**. Current force
fields typically result in stable simulations of folded proteins, with many reports of good match
to experimental solution NMR observables such as NOEs, RDCs and S order parameters. More
challenging are studies that attempt to predict structure from sequence®. A particularly
impressive achievement was the successful brute-force folding of ubiquitin in MD simulations
3%, We reported accurate folding via MD for 16 out of 17 diverse proteins up to 100 amino acids
long?’.

Despite these successes, a growing number of studies have suggested that even after the recent
updates to backbone and side chain parameters, as well as water models, significant limitations
remain present in protein simulations. There is a mounting consensus that current force fields do
not accurately reproduce differences between backbone preferences of different amino acids.
This is especially apparent in studies where the quantitative relative energies of basins are
important, such as analysis of the effect of point mutations, or studies of flexible systems with
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many nearly isoenergetic minima. Pande et al. suggested 6 of 19 amino acids were outliers vs.
NMR and should be re-optimized**. Best’ et al. and later, we reported®® that Amber does not
accurately reproduce experimental®® amino acid specific behavior such as helical propensities,
shown in Figure 1 for ff14SB used with TIP3P. Correlation is generally poor, with most amino
acids having similar helicity in simulation except the outliers of negatively charged Asp and Glu.
In principle, nonbonded interactions should account for the impact of the side chain on backbone
energetics (hereafter denoted “sequence dependence”), but weaknesses in the nonbonded
function may limit the accuracy in modeling the short-range interactions that are responsible for

backbone-side chain coupling.
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Figure 1. Helical propensities in ff14SB+TIP3P (Y) vs experiment’® (X) for amino acids (1

letter codes). Values on the X-axis represent the data based on NMR and the reported standard
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deviations.?’ Values on Y-axis represent the helical propensities fit against the combined
trajectory (3.2 us * 12), with error bars calculated via bootstrapping analysis (see Methods:
Bootstrapping analysis on helical propensity). Black line represents perfect agreement. Linear
regression (red line) was performed against the data points, with R? and slope quantifying the

goodness of fit.

Importantly, alanine is an outlier in having its helicity significantly under predicted (below the
diagonal line) while most others are over predicted. This is concerning since alanine is used as
the model system in all recent Amber protein force fields for fitting of backbone dihedral
parameters that also are applied to the other amino acids (except Gly). CHARMM also uses the
same alanine-based backbone map for all amino acids except Pro and Gly'* *°. The data clearly
show that empirical correction of all amino acids using alanine helicity as a target would further
increase the erroneously high helical bias for the remaining amino acids.

p-branched amino acids are not modeled correctly. Experimentally, steric clash between [3-
branched side chains and the backbone carbonyl reduces helical propensity®> *!. Troublingly,
simulations in ff14SB show that B-branched Ile, Val and Thr all have higher or similar helical
propensity than Ala, the reverse of the experimental trend (Figure 1). In high resolution
structures of folded proteins, the same trend of backbone-side chain coupling is apparent®,
where the helical basin is narrower in valine than alanine, along with a broader, flatter region at
high y values corresponding to polyproline 2 (ppll) and B conformations as compared to alanine
(Figure 2). It is challenging for force fields to reproduce these differences, and the alanine and
valine MD Ramachandran landscapes are similar using ff14SB (see Results). These observations
are further corroborated by solution NMR data; higher HN-H® scalar couplings for Val dipeptide

than Ala dipeptide suggest more structures along the B-ppll transition for valine than for
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alanine®, again not reproduced in the MD data (see Results). The situation is similar for
CHARMM (36, where errors vs. NMR remained large for valine even though the force field
was empirically adjusted to obtain a good fit for alanine®. Taken together, the results suggest
that alanine may not be an ideal model for training other amino acids, in contrast to the central

assumption in >20 years of Amber and CHARMM FF development.
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Figure 2. Ramachandran sampling in PDB shown for Ala (top) and Val (bottom) (using data

from Lovell et al.*?) Each contour line represents a doubling in population. Density is also shown
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as grids filled with light (no density) to dark (maximum density). Side histograms on each

subplot represent independent distributions on ¢ and .

We previously developed empirical backbone corrections for some amino acids in order to
improve residue-specific helical propensities®. Alternatively, Best et al. found that empirically
enforcing the alanine backbone partial charges on all amino acids also resulted in improvement
for charged amino acids’, but this also may have been successful because it eliminated an
inconsistency between using atom-specific partial charges and atom-type based dihedral
parameters. Other recent work (for example, RSFF?* 4 and ffo9IDPs/ff14IDPs>®>4°) used PDB
¢/y distributions to develop amino-acid specific empirical backbone parameters. However, in
addition to the general problems with empirical fitting discussed above, these crystal data have
significant limitations that prevent them from being used as an accurate source of
thermodynamic training data (such as inconsistent and cryogenic temperatures, crystal packing
effects, limited or noisy data outside low-energy basins, etc.). As a specific example, although
the achiral glycine should have a fully symmetric ¢/y energy profile, PDB-based distributions
show significantly enhanced incidence of glycine in the positive ¢ region*’, which would be
reflected erroneously in force fields fit to these statistical distributions.

Going beyond empirical adjustment requires insight into the physical weaknesses in the model.
What is the source of this unsatisfactory sequence dependence, despite good reproduction of QM
side chain rotational energy profile data'® in ff14SB? Speculation leads to several reasonable
possibilities, including, but not limited to, lack of charge polarization of the backbone from the
side chain (or weaknesses in the charge model overall), the inability of the current functional
form to reproduce strong interactions between backbone and bulky side chains, or inaccurate

empirical nonbonded scaling factors. Certainly using uncoupled cosine terms for backbone
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dihedrals limits the accuracy attainable even with ideal QM training data or extensive empirical
adjustment. The relative orientation of the two adjacent amides depends on both ¢ and vy of the
intervening amino acid, thus independent cosine terms may be insufficient at correcting the
interaction energy or lack of induced polarization between these groups.

Parametrization Strategy.

In this work, we revisit the ff14SB protein backbone description with an aim to improve the
performance for amino-acid specific behavior discussed above. We hypothesize that several
specific weaknesses in the ff99SB strategy may be dominant factors limiting accuracy. (1)
Fitting only alanine data, and only at the gas-phase minima, poorly constrained the resulting
energy landscape for many biologically relevant conformations*S, or at locations of the slightly
shifted ¢/y minima sampled by other amino acids*?. (2) The ¢/y landscape is overly symmetric,
arising from neglect of coupling in the simple cosine functional form. (3) Dihedral parameters
are shared too broadly due to assignment by simple atom typing that does not discriminate amino
acids. (4) Polarization was treated inconsistently in ff99SB and ff14SB, dating back to the
original ff94 model. “Pre-polarized” Amber MM fixed partial charges*’ intended for aqueous
solution simulations*® are used while fitting dihedral parameters against gas-phase QM data, thus
forcing the rotational energy profiles back towards the gas phase profiles and thereby
counteracting the intended effect of better modeling charge polarization.

We describe here modifications to the protein backbone parameters that at least partially
address these issues. We continue our previous philosophy for the Amber “SB” (Stony Brook)
force fields, assuming that physics-based force field development can provide excellent models
with good transferability beyond their training data. Different approaches also have merit, such
as in CHARMM, where physics-based training is followed by iterative rounds of empirical
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adjustments that improve match to experimental data'> *. The recent a99SB-disp model®
derives from our ff99SB, followed by extensive empirical refitting of torsion parameters,
nonbonded pair interactions, atomic partial charges and water dispersion energetics in order to
improve agreement with experiments. Likewise, the recent ForceBalance approach is a
promising method to automate iterative improvement through iterative cycles of fitting and
comparison to experiment™’. These adjustments can significantly enhance agreement with
experiment, but the complex mapping of experimental observables to individual force field terms
can also lead to the introduction of fortuitous (and non-transferable) cancellation of error
between the various force field components. We attempt here to overcome the ff14SB
weaknesses discussed above by a more self-consistent reconsideration of the physics-based
training of protein backbone energetics, developing improved backbone parameters based on
fitting to a wider variety of high-level QM, and eliminating a series of inconsistencies in past
fitting that are likely to have negatively impacted the resulting models.

The first departure from ff14SB relates to the training data and the function for backbone
energies. Here we fit the entire ¢/v 2D QM energy surface (generated using 2D o¢/y
conformational scans), rather than just local minima as in ff99SB/ff14SB. This will eliminate the
problem of unconstrained energies outside the energy minima. We used a 2D function to fit this
surface, rather than independent 1D cosine terms for ¢ and y. This explicitly accounts for
coupling between these correction terms. As shown in Results, the correction profile needed to
match the ff14SB MM to QM for the y rotation differs depending on the value of ¢. In other
words, in ff99SB/ff14SB, it is not possible to use a 1D correction profile to accurately reproduce

QM energy profiles for y at all values of ¢ and vice versa. This 2D “CMAP” approach was

pioneered in the CHARMM force field’!, and extended here. The CMAP approach also was used
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for backbone fitting in RSFF2+CMAP*®, but in that case the free energy surface derived from
PDB statistics was used as the fitting target, rather than QM data as we use here. Previously, the
“CMAP” approach was employed by other Amber force fields as well. In ff9O9IDPs/ff14IDPs?®
4, the 2D energy profile was fit against statistical data from a PDB coil library. In ff12SB-
cMAP?8, the CMAPs adjusted only the relative depths of minima (such as o basin vs. B basin)
adjusted using a CMAP by fitting to helical propensities and B strand population in MD.

The second difference from ff14SB is that we address the polarization inconsistency during
dihedral parameter fitting. While fitting the entire gas phase surface using CMAPs would ensure
sampling of energies for regions populated in solution, a significant problem arises during
dihedral fitting when comparing in vacuo energies between QM and MM. The MM fixed partial
charges in most non-polarizable Amber models are traditionally fit to HF-level QM, which
results in partial charges larger than expected in the gas phase, intending to mimic the higher
dipoles induced in aqueous solution and avoid the need to explicitly include polarization in the

FF calculation®.

However, using these “pre-polarized” charges during dihedral fitting to
reproduced higher level QM gas phase energies introduces error, and enforcing a match results
in dihedral parameters that (at least partially) cancel out the effect of charge polarization. The
ff03 Amber model addressed this by fitting new charges to QM calculations in low-dielectric
organic solvent®’, but the subsequent protocol for backbone dihedral fitting (also in organic
solvent) resulted in erroneous double-counting of solvation effects®. The recent “ipq” force
fields?"" 23 addressed polarization inconsistency by using two independent charge sets, one for
MD, fit to QM calculations that included a specific explicit water model>* that was used in MD

simulations, while a second set of gas-phase partial charges was used during fitting dihedrals

corrections to gas-phase QM rotational energy profiles. Our approach differs; we train backbone
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dihedrals using the same pre-polarized MM charges as used in MD, but using continuum
aqueous solvation rather than gas-phase energies, and with reference QM data also in aqueous
implicit solvent to resolve the gas/aqueous phase inconsistency (following precedent in RNA
parameter fitting>> >°). An additional benefit of fitting against QM data in solution is that the
target energy surfaces will reflect conformation-dependent changes in solvent-induced
polarization, which are then incorporated into the CMAP even though the MM model uses fixed

2

partial atomic charges.’® These effects are missing in other current models (such as the “ipq
models) since dihedral fitting is done in the gas phase®!> %,

More accurate reproduction of the QM training surfaces and resolving polarization
inconsistencies allow us to undertake the third difference from ff14SB, that of exploring amino-
acid specific correction maps. Amber already used separate parameters for proline and glycine,
and finer differentiation is a reasonable next step. We believe that optimizing amino-acid specific
backbone parameters using uncoupled functions for ¢ and y (as done by other groups®* %) is
unlikely to result in significant improvement for ff14SB since these are not able to accurately
reproduce the QM training data even for a single amino acid (see Results). For example, despite
fitting sets of uncoupled cosine parameters for several groups of amino acids, simulations using
the ff15ipg> force field show reduced accuracy for B-branched amino acids®.

Alanine and valine (together with other [-branched isoleucine and threonine) are
conformational outliers, justifying separate CMAP treatment. Alanine is very helical, whereas
valine has a very flat ¢ distribution according to PDB ¢/y distributions (Figure 2). Many
residues exhibit conformational preferences between those of alanine and valine. Leucine is
likely a better model for most amino acids (since all but Ala and Gly include a y-carbon). We

therefore used the CMAP fit to Leu for several other amino acids, including those with aromatic
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rings (Phe, Trp, Tyr) and nonpolar but non- B-branched side chains (Met) and the three
protonation states of His (His", His®, His®). Polar or charged side chains (Ser, Cys, Thr, Asp,
Asp, Asn, Glu, Glu, Gln, Arg", Lys") all received individual CMAPs, Pro received its own
CMAP and the B-branched Ile used the CMAP fit to the similar Val. Other force fields also fit
different parameters for different amino acids. For example in Amber fb15°7, full scanning over
¢/y and x1/x2 dihedrals were performed for each amino acid, then the 4D ¢@/y/x1/x2 grid was
mapped onto 2D ¢/y grid by searching for lowest energy side chain conformation at each @/y.
Then, uncoupled (1D) cosine functions were used for each dihedral ¢, y, x1 and x2, with all
phases and amplitudes fit simultaneously. Here, we fit 2D CMAPs to ¢/y energy maps using a
single rotamer for each amino acid, in order to avoid transferring errors in the x energy profiles
into the @/y correction, as could happen if the @/y grid points also vary in  values.

Finally, we examine possible dependence of the backbone CMAP on side chain rotamer. In
ff99SB and ff14SB backbone training (also CHARMM!'?), the coupling between backbone and
rotamer was avoided by using the ff94 approach of Ala as a model for all other amino acids, thus
ignoring any possible backbone-sidechain coupling correction. To account for rotamer
dependency in RSFF2+CMAP*®, the 2-dimensional ¢y CMAP was supplemented by the use of
additional two-dimensional free energy surfaces including ¢/y1 and y/x1. Here, we find that the
2D CMAPs that we fit to QM data in solution, in combination with the high-quality side chain
energy profiles from ff14SB, result in a model that is reasonably transferable to side chain
rotamers not included in the training data.

Extensive MD simulations (a total of ~5 milliseconds in explicit water) were performed to
validate the performance of the ff19SB model. We show below that ff19SB, using amino-acid

specific training against QM data with solvent polarization, reproduces the amino-acid specific
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differences in crystallographic Ramachandran maps and experimental helical propensities much
better than ff14SB or other older Amber models. We also show that the QM-based {f19SB is in
reasonable agreement with experiments when combined with an accurate solvent model, while
ff14SB performs poorly with the same solvent model and relies on cancellation of error with the
less accurate TIP3P model in order to reproduce properties such as the helical content a Baldwin-
type peptide. We conclude that an inherent underestimation of helicity is present in ff14SB,
which is (inexactly) compensated by an increase in helical content driven that is likely driven by
the reported?®* 38 TIP3P bias toward overly compact structures. The improvements in modeling
helicity with ff19SB do not appear to result in less accurate performance on B systems. With
ff19SB, the overall excellent performance of ff14SB and ff99SB in NMR order parameter
reproduction is also generally maintained with even smaller RMSD values relative to
experimental structures. Future work will examine the performance of ff19SB on IDP model

systems.

Methods

Additional methods details are provided in Supporting Information.

Structure preparation & simulations

Unless noted otherwise, all crystal and NMR structures were downloaded from the PDBY at
www.rcsb.org. Alternate structures including fully extended and fully helical used to initiate
some simulations were built via the LEaP module of AmberTools in the Amber v16 software?.
Helical and extended conformations are defined as (¢, y) = (-60°, -45°) and (o, y) = (-180°, -
180°) In explicit solvent MD simulations, TIP3P%’, OPC?? SPC/Ey?* and fb3®!' solvent models
were used to solvate systems as noted. A truncated octahedron periodic box was used for all
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simulations. Implicit solvent MD simulations with GBneck2 parameter set? of the GBneck
solvent model®® and ff14SB’ were performed to generate additional initial structures. ff14SB,
ff15ipq?, fb15°7 and ff19SB were used for explicit solvent MD simulations as noted. System-
specific details are discussed below with additional details in Table S1.

Dipeptides

Acetyl and N-methyl capped dipeptides of the natural amino-acids (Ace-X-Nme) were used for
force field training and testing. In training, 16 amino acids (including two protonation states of
Asp and Glu, but excluding Ile, Trp, Tyr, Phe, Met and His) were fully scanned in backbone
dihedral space using implicit solvation (see Structure preparation & simulations and
Geometry scanning). In testing, helical and extended conformations for all natural amino acids
(including two protonation states each for Glu and Asp side chains, and three protonation states
for His side chain) were used as initial structures in 800 ns MD simulations. The number of
explicit water molecules was equalized across all dipeptide systems and solvent models (Table
S1).This was achieved by adjusting the value of buffer distance until desired number of water
molecules was obtained. Four combinations including ff14SB!°+TIP3P%, ff14SB!*+OPC>?,
ff19SB+TIP3P® and ff19SB+OPC>? were tested for dipeptides.

Alas

Alas with a free N- and protonated C-terminus was used in simulation, corresponding to pH=2
used in the NMR studies*’ (see Parameter derivation for protonated C-terminal Ala). Both
helical and extended conformations were used as initial structures for 800 ns MD simulations.
The number of water molecules was equalized across all runs (Table S1). Four combinations
including ff14SB!'°+TIP3P®, ff14SB!*+OPC*, ff19SB+TIP3P% and ff19SB+OPC* were tested
for Alas.
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A4XA4 and A9XA9 peptides

Acetyl and NHz capped polypeptides (matching pH=7 in NMR?°) of the 20 natural amino-
acids (A4XA4: Ace-AsXAs-NH> where X denotes the amino acid tested) were used to test
amino-acid specific helical propensities. Two independent runs of 800 ns each starting from the
helical and extended conformations were initially performed with ff14SB'°+GBneck2%?, and
cluster analysis (see Cluster analysis) was carried out on the combined trajectory. Cluster
centroids from the top four clusters, together with helical and extended conformations were then
selected as initial structures for MD simulations in explicit solvent (~4000 water molecules for
both OPC and TIP3P runs, see Table S1). Each of these six initial structures seeded two
independent runs each with different initial velocity assignment (using ig=-1 in Amber).
Therefore, a total of 12 initial states were simulated for 3.2 ps each, in each explicit solvent, for

each one of the 21 or 12 peptide sequences, for a total of 4146 us for all force field + solvent

model combinations (see Table S1). Helical propensities were calculated using six FF+water

combinations including ff14SB!%+TIP3P%, ff14SB!°+OPC*, ff19SB+TIP3P%, ff19SB+OPC™*,
ff15ipq**+SPC/Ep** and fb15°7+fb36!,

Acetyl and NH2 capped polypeptides of the 20 natural amino-acids in a longer peptide
(A9XA9: Ace-A9XA9-NH2 where X denotes the amino acid tested) were used to test the
sensitivity of the helical propensities to chain length. Two independent runs, starting from helical
and extended conformations, were initially performed for 800 ns with ff14SB+GBneck2, and
cluster analysis (see Cluster analysis) was carried out on the combined trajectory. Cluster
centroids from the top four clusters were then selected as initial structures for additional MD

simulations in GBneck2. Each of these six initial structures seeded two independent runs with

different initial velocity assignment (using ig=-1 in Amber). Therefore, a total number of 12
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initial states were simulated in ff14SB!+GBneck2% for each one of the 20 Ace-A9XAqo-NH2
systems, and each simulation was 2 us long, for a total of 480 ps. These A9XA9 results were
compared to data from A4XA4 (also in ffl14SB'%+GBneck2%?) by extending the 800ns
simulations described above to 2 ps.

K19 helical peptide

Consistent with our previous work!® ¢ the sequence of Ace-GGG(KAAAA);K-NH2 was
chosen to validate parameter quality in folding helices. Since it was unfeasible to run long
simulations starting from fully extended conformations that require very large numbers of water
molecules to solvate, a fully extended conformation was not selected for explicit solvent
simulations. For instance, 12000 water molecules would be needed to solvate a fully extended
conformation of K19 with 8 A buffer. Instead, several semi-extended initial conformations were
generated. Two independent runs starting from helical and extended conformations were run for
800 ns with ff14SB'+GBneck2, and clustering analysis (see Cluster analysis) was performed
on the combined trajectory. The cluster centroids (Figure S1) from the top 1% and 2™ were
disregarded because both were partially helical with 2.7 A and 4.4 A RMSD (backbone C, N, CA
atoms) referenced to a fully helical conformation. Therefore, the centroids from top 3™ (c2), 4"
(3), 5" (c4) and 6™ (c5) clusters were selected as semi-extended. Both semi-extended and helical
conformations were immersed in explicit water. The number of water molecules was equalized
across all runs (Table S1). Each initial structure was used for two independent runs with random
initial velocity assignment (ig=-1 in Amber). Therefore, a total of 10 initial states were simulated
with each force field + explicit solvent combination, and each simulation was 3.2 ps. Three
combinations including ff14SB!%+TIP3P%, ff14SB!°+OPC>2, and ff19SB+OPC>? were tested for
K19, for a total of 96 us simulation.
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CLNO25 hairpin

CLNO025 (PDBID: 2RVD®, “H;N-YDPETGTWY-COO) is an engineered fast-folding hairpin
that is a thermally optimized variant of Chignolin®. The native conformation was chosen as the
5" conformation in the NMR ensemble® since that conformation was closest to the average of
the NMR ensemble. A fully extended conformation of the same sequence was also used, and
four independent runs (ig=-1 in Amber) were performed with an explicit solvent for both native
and extended conformations. Each simulation was 7.2 us long and the number of water
molecules was equalized across all runs (Table S1). Three combinations including
ff14SB!'+TIP3P%, ff14SB!+OPC*, and ff19SB+OPC*? were tested for CLN025 for a total of
172.8 us. A cutoff of 1.5 A RMSD was chosen to delineate native from non-native structures
because the highest population peak at low RMSD across all force field + solvent models ends
near 1.5 A (Figure S2).

Folded proteins

Three folded proteins were simulated for comparison to NMR-based backbone dynamics
measurements. First was the third Igg-binding domain of protein G (GB3). The native structure
was defined from a liquid crystal NMR structure (PDBID: 1P7E%7). Second was Ubiquitin (Ubq),
with the native structure defined from a crystal structure (PDBID: 1UBQ®%). Third was hen egg
white Lysozyme (HEWL), with the native structure defined from a crystal structure (PDBID:
6LYT®). Four independent runs with random initial velocity assignment (ig=-1 in Amber) were
performed for each system in explicit solvent. Each simulation was 200 ns long and the number
of water molecules was equalized across runs for each system (Table S1). These folded proteins
were tested using three combinations including ff14SB!%+TIP3P% ff14SB!°+OPC??, and
ff19SB+OPC>2,
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Geometry scanning

Backbone geometry scans were performed to generate structures for parameter training. All
scans were carried out via the LEaP module of AmberTools in Amber v16 software* 7°. All 16
dipeptides (see Dipeptides) were 2D scanned on ¢ and vy dihedrals over ranges of -180° to 165°
with an interval of 15°. For glycine dipeptide, a finer grid scanning with an interval of 5° was
performed in the PBregion (-180° to -125° and 120° to 175° on ¢ and y dihedrals) resulting in an
additional 12*12 finer grid. We observed that the QM energy surface near Bis highly sensitive to
the selected grid point and using 15° interval might unintentionally miss the energy at the true
minimum. For proline dipeptide, structures were limited to -180° to 120° on ¢ in order to
exclude structures with excessive ring strain. For dipeptides containing one or more heavy atom
y dihedrals (Val, Leu, Ash, Asp”, Asn, Glh, Glu, Gln, Lys®, Arg", but excepting Ser, Cys and
Thr, see below; Ash and Glh are neutral Asp and Glu, respectively), y dihedral values were
initialized to the most populated rotamer for that amino acid, according to Lovell’s rotamer
library*2,

Molecular mechanics (MM) optimization and energy calculations

For Cys and Met, Lennard-Jones (LJ) parameters were taken from GAFF2 for sulfur and
hydrogen (in -SH and —S-) for CMAP fitting, and also incorporated into ff19SB. This was done
to keep consistent with the most recent LJ parametrization on these atoms performed by Wang et
al’,

Unless otherwise noted, use of the term “GBSA” in this paper denotes the combination of
GBneck?2 (igb=8 in Amber) and SASA (gbsa=1 in Amber).

Dipeptide structures were minimized with restraints after geometry scanning. MM

optimization and energy calculations were performed with Amber v16* 7* using ff14SB'° and
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GBneck2%? implicit solvent model with the mbondi3 radii set®? for polar solvation and SASA-
based nonpolar solvation’. The default 0.005 kcal mol”! A" surface tension was adopted.

Dipeptides taken from geometry scanning were minimized using ffl14SB!' and GBSA
including restraints on ¢ and y values with harmonic force constant of 1000 kcal mol! rad?. All
x dihedrals were relaxed during minimization without restraints, except Ser, Cys and Thr, for
which the y dihedral (defined as CA-CB-OG-HG for Ser, CA-CB-SG-HG for Cys and CA-CB-
OG1-HG]1 for Thr) was restrained (10 kcal mol! rad?) to 165° to prevent the hydroxyl or
sulthydryl group from approaching too closely to the backbone amides during minimization. As
we noted for ff14SB'?, this was done to avoid incorporating into the backbone dihedral
parameters any difference between the quantum mechanical (QM) and MM models in the short-
range potential between side chain and backbone.

We adopted the strategy of initializing all structures on the grid at the same rotamer
conformation, then minimizing with backbone restraints to relax the rotamer to a local minimum.
The rationale for using a single initial rotamer for the entire ¢/y grid scan is to reduce the
likelihood of transferring any errors in the ff14SB side chain rotamer energy profiles to the
CMAP (which can occur if neighboring grid points also differ significantly in y dihedral values).
The same relaxed rotamer was used in the QM calculations (discussed below).

Structures were minimized for a maximum of 10,000 cycles in ff14SB+GBSA with no cutoff
on non-bonded interactions. Steepest descent was employed for the first 10 cycles in the
minimization and conjugate gradient for the following cycles. The convergence criterion for
energy gradient is when the root-mean-square of the Cartesian elements of the gradient is less
than 10 kcal mol! A”. Single point energies were calculated for the MM-optimized structures
using ff14SB00+GBSA. ff14SB00 is defined as the original ff14SB!® force field with the
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amplitudes of dihedrals sharing the same central two atoms with ¢ and y (C-N-CA-C, C-N-CA-
CB, N-CA-C-N, CB-CA-C-N, HA-CA-C=0) set to zero (see the content of the Amber frcmod-
format data in Table S2).

CMAP fitting groups

A total of 16 CMAPs were fit and then applied to the 20 natural amino acids with several
having alternate protonation states (Table S3). CMAPs are only applied to central residues but
not to uncapped terminal residues. Ala, Gly, Pro were fit separately because the allowable
regions in Ramachandran plot according to PDB are notably different from each other.” Ser, Cys
and Thr were fit separately from others because of the proximity of the polar group to the
backbone, and from each other because the polarity of their side chains is different (Ser vs. Cys)
or the side chain B-branching structure is different (Ser vs. Thr). Val CMAP was fit and applied
to both Val and Ile since Val and Ile are the only two amino acids having B-branched non-polar
side chain. Arg", Lys", Asp’, Ash, Asn, Glu’, Glh and GIn were fit separately because the charge
state is different (Arg" and Lys™ vs. Asp” and Glu"), the polarity of side chain is different (Arg"
vs. Lys™, Asp™ vs. Ash vs. Asn, Glu™ vs. Glh vs. Gln), or the length of side chain is different (Asp
vs. Glu', Ash vs. Glh, Asn vs. Gln). Leu CMAP was fit and applied to long non-polar and non-
charged side chains including amino acids with aromatic rings (Phe, Trp and Tyr), Met, Cys in
disulfide bonds (Cyx) and Cys interacting with metal (Cym). Leu CMAP was also applied to the
three protonation states of His (His", His®, His®).

CMAP fitting

A CMAP is defined by a 24*24 grid that is evenly spaced (15°) in ¢/y dihedral space, the
same spacing as used in C22/CMAP*%? C36'3®, C36m*® and RSFF?%* * force fields. At each

grid point, the energy Uemap(¢, ) corresponds to the following:
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Ucmap((P'l.b) = EQgI\C/lIS + ESI?/Ilarization + Ecs)%vation _ (EI‘]:I];/Il4SB00 + Elfq%vation 1),

larization
EP?
oM

where Eglﬁs represents gas-phase QM energy, represents the contribution from

Esolvation
oM

solute-solvent polarization from QM solvation and represents the remaining specific

solvation effects in QM. EAf,,];,,l 45B00 represents MM energy calculated in ff14SB00 (Table S2)

using pre-polarized charges, and E;o74°" represents MM solvation energy calculated in GBSA.

In practice, Egy » Egy 0" and Eg2"®"*°™ cannot be separated since the solute electron

density is evaluated self-consistently with the solvent polarization represented in a reaction field.

In Amber, the CMAP grid is represented using a bicubic spline function

Ucmap (o, 9) = 2L$=0 Z?:O aij(Pil/)j (2),
where ¢ and ¢ are dihedral values in radians, and ajj are coefficients that are solved from a set

17*. This function is used to

of linear equations derived from values at the 4 corners of the grid cel
interpolate MM energy at any arbitrary ¢/y dihedral.

The resulting CMAP forces are calculated by the chain rule and added to the total forces”. The
CMAPs are intended to be used as direct replacement for the cosine-based ¢/y dihedral terms in
ff14SB and should not be combined with those cosine terms. The CMAP code was originally
implemented in Amber with the support of CHAmber module’. Further details are provided in

Supporting Information.

QM energies in solution
To calculate Eg,,; + Eg;,larization + E§3vation (Equation 1), we used the SMD solvent model

that includes both polar and nonpolar solvation components’®. The polar component uses the
integral-equation-formalism polarizable continuum model (IEFPCM)’’, where the solute cavity

is defined through superposition of atom-centered spheres with reparametrized “intrinsic radii”.
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The non-polar component is a product of the solvent-accessible surface area (SASA) and the
surface tension, which is a function of several element-specific parameters. These empirical
parameters for effective radii and surface tension were iteratively optimized to reproduce 2346
solvation free energies of both neutral solutes and ions’®. In the original work’¢, the authors
concluded that among various QM theories used in their parameter fitting, the DFT method
M05-2X"® yielded the best performance. Taking these results into consideration, particularly
performance for amides, we selected the hybrid functional M05-2X with basis set 6-311G**
together with SMD to compute the total solvation energy in QM. In the original paper’®, 6-
31+G** was shown to have smaller mean unsigned error in aqueous solvation free energy for all
tested molecules, including four amides, compared to other basis sets such as MIDI!6D, 6-31G*
and cc-pVTZ. The diffuse functions in 6-31+G**, however, cause convergence issues in some of
our calculations where the geometries are far from equilibrium. Instead, we use the comparable
6-311G** basis set. We also tested whether M05-2X/6-311G** is accurate in calculating
conformational energies of Ala dipeptide in gas-phase (see SI: Comparing various methods on
QM energy calculations in gas phase). The calculated average relative energy error (see
Methods: Average relative energy error (REE) calculation) against MP2/cc-pVQZ for nine
conformations of Ala dipeptide is ~0.35 kcal/mol, very close to MP2/cc-pVTZ level of accuracy
(average REE = 0.2 kcal/mol). Based on our results, M05-2X/6-311G** is reasonably accurate
relative to MP2/cc-pVQZ at reproducing relative energy of Ala dipeptides in gas phase (Figure
S3), and errors are likely comparable to those arising from other sources such as the spacing of
the grid scan and fundamental inaccuracies in the MM treatment.

QM optimization and energy calculations
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QM calculations were performed with Gaussian 09”°. Geometry optimizations and single point
energy calculations were performed on the 16 dipeptides at the M05-2X/6-311G**/SMD level of
theory’®. Grimme’s dispersion correction with the original D3 damping function®® was used to
correct for long-range dispersion. The solvation environment was represented as a self-consistent
reaction field, with exterior dielectric set to default 78.3553, using SMD’® with consideration of
both polar and nonpolar solvation energy components.

Very tight optimization convergence criterion was used to generate data for fitting. To
maintain the structure on the @/y grid, one of the dihedrals sharing the same central two atoms
with ¢, and one dihedral sharing the central two atoms with y were constrained to the values
from the structures taken from the last step of MM optimization. In order to avoid inclusion of
errors in the y energy profiles into the QM-MM energy difference used for CMAP fitting, we
also restrained one of the dihedrals for each y dihedral to the value from the last step of MM
optimization (see Molecular mechanics (MM) optimization and energy calculations) (details
on restrained dihedrals provided in Table S4).

For glycine dipeptide, QM optimization and energy calculations were done on both 24*24
coarse grid with 15° interval (same as other amino acids) and 12*12 sub-grid with 5° interval
(specific to glycine). In the region with fine grid data, the QM energies of coarse grid points
were replaced with lowest energy in the surrounding fine grid points (within 10° from the coarse
grid). This was only done for QM energy calculations on Gly. MM calculations on Gly were
performed the same as other amino acids, and the 24x24 grids were used to obtain the CMAPs.

Average relative energy error (REE) calculation

Unless otherwise noted, average REE between two sets of energies were calculated as
following:
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average REE = $Z§V‘1Z§Lil(w - E]a) — (Ef - Ef)' &)

where N is the number of conformations. E* and E;* are energies calculated in method “a”
(QM, MM, etc) of conformation i and j. EP and Ejb are energies calculated in method “b” (QM,

MM, etc) of conformation i and j.
Parameter derivation for protonated C-terminal Ala

Following the original RESP method for peptide partial charge assignment® #®

, new charges
were fit using the RESP approach for an Ala residue with a protonated C-terminus. The model
system for fitting was Ala with a protonated C-terminus and an acetylated N-terminus (using
existing charges for this capping group). Helical and extended conformations were used for
RESP fitting. The partial charges on all atoms except the -COOH group were restrained to the
charges from ff94%% while the ~-COOH charges were refit via RESP. QM calculation was
performed with Gaussian 09”. HF/6-31G* was used for geometry optimization. MK?!
population analysis was performed on the optimized geometry. Antechamber, espgen and
residuegen as implemented in Amber v16’° were used in RESP fitting.

The resulting atomic charges are listed in Table S5. The -COOH functional group in the
protonated C-terminal Ala was assigned the same atom types as “COOH in side chains of Alh or
Glh, thus sharing existing bonds, angles, dihedral and LJ parameters. When simulating a system
with a protonated (uncapped) C-terminal Ala in ff19SB, standard ff14SB parameters were
applied to the C-terminal residue without application of a CMAP due to lack of C-terminal
amide.

MD simulations

The following methods were used for all MD simulations unless otherwise noted. Bonds to

hydrogen atoms were constrained with the SHAKE algorithm®? using a geometrical tolerance of
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0.000001A. The direct space non-bonded interaction cutoff was 10.0 A for explicit solvent
simulations and 9999.0 (no cutoff) for implicit solvent simulation. Long-range electrostatic
interactions in explicit solvent were calculated via the particle mesh Ewald (PME) approach®.
There were a total of 9 steps of equilibration in both implicit and explicit simulations (see SI:
MD equilibration). For production runs, the time step was increased to 4 fs using the hydrogen-
mass repartitioning method implemented as described previously®®, and explicit solvent
simulations were changed to the NVT ensemble (ntb=1, ntp=0 in Amber).

Cluster analysis

Unless noted otherwise, cluster analysis was performed on the combined trajectories starting
from helical and extended conformations. The hierarchical agglomerative (bottom-up) approach
was used with average linkage (defined by RMSD of C, N and CA atoms) to generate a
maximum of 10 clusters using default settings in Cpptraj®. Our goal was to identify alternate
structures to initiate independent runs, thus we specified the number of clusters rather than a
similarity metric for cluster members since structures other than the representative were not
examined further. The representative structures extracted from these clusters were used as initial
conformations in independent MD runs to check convergence.

RMSD calculations

Unless otherwise noted, all RMSD calculations were done on backbone C, N and CA atoms
via Cpptraj®. In all cases, terminal residues and capping groups on termini were neglected.

Helical propensity

Following the Best et al.'3* protocol of implementing Lifson-Roig model®

for computing
helical propensities, we explored the helical propensities of each amino acid in the context of the

sequence Ace-AsXAs4-NH» to compare to experimental data®. This model measures the
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equilibrium properties of coil-to-helix transitions: three states are defined: coil, start/end of the
helix, and within a helix. Their relative weights are 1, v; and w;, respectively. The start/end of the
helix is defined when residue i is in the helical region but either of its two adjacent residues is
not in the helical region. The residue within a helix is defined when residue i and its two adjacent
residues are all in the helical region. Everything else is considered to be random coil within the
model. A residue is considered helical if inside the a region using the basin definition in Table
S6. The sensitivity to this definition was tested by calculating helical propensity with a wider
range definition (Table S6 and Figure S4).

Following Best et al.!* the partition function for the blocked peptide of length N (N=9) is

defined as:
w; V; 0

Z=001DII~, M (001)", whereM; =|0 0 1 @),
V; v; 1

The log-likelihood that residue i will be assigned a helical propensity parameter w; is given by:
In(L) =X Nyiln(w;) + Z; Ny iln(v;) — Nyln(Z) (5),

where v; and w; are the parameters for fitting, Ny is the total number of frames in the
simulation, N,,;and N,,; are the total number of times in the simulation that residue i is within a
helix and start/end of a helix, respectively. More specifically, Ny, is incremented if residue i is
within a helix and N,;is incremented if residue i is start/end of a helix. The subscript i indicates
the amino acid (Ala, Val, Leu, etc). The model parameters (v and w), and their distributions,
were optimized by following the genetic algorithm protocol of Perez et al.*® to maximize the
objective function, /n(L), which maximized the likeliness of residue i being assigned to specific v
and w. Mutation and crossover moves were performed to change /n(w;) and In(v;), with a rate of

0.3 and 0.7 respectively. A total of 1000 genetic optimization cycles were performed to yield
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specific v and w for residue i. vu. and wa, were initially evaluated for all Ala in the capped
A4AA4 peptide, then v; and w; for X were evaluated in capped A4sXA4 peptide with v and w
parameters for Ala being fixed to the values of previously optimized va. and wa. The helical

propensity data (from both NMR and MD) are provided in Table S7 and Table S8.

Bootstrapping analysis on helical propensity

In order to quantify the uncertainty of the computed w, bootstrapping analysis was performed
for each system. When the sample size is insufficient for straightforward statistical inference,
bootstrapping provides a way to account for the distortions caused by a specific sample that may
not be fully representative of the population. First, a combined trajectory from 12 independent
runs of each A4XA4 (3.2 ps for each run) was used to fit the v and w for that X. Second, the
combined trajectory was split into 10 segments with same length. Third, 50 times of resampling
with replacement were done on the 10 sub-trajectories. This step generated 50 trajectories with
the same length of the initially combined one (3.2 ps * 12) but with some segments repeated. 50x
resampling has been suggested to lead to reasonable standard error estimates®’. Lastly, we fit the
v and w parameters with each of the 50 trajectories respectively and calculated the standard
deviation of the 50 resulting w values for each amino acid. According to the distribution of the
sampled w parameters (Figure S6), all amino acids have a high peak and a narrow range on w
which suggests good quality sampling and precise estimates of helical propensity.

NMR scalar coupling calculations

Following Best et al.'’> and our previous work®, scalar couplings were calculated from

9990 1 43

simulations using Karplus relations® and the “Orig parameters™ also adopted by Graf et a
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To quantify the discrepancy between experimental scalar couplings and those calculated from
simulation, ? error was defined in Best et al.’s work!® and also here as:
X% = N7 E0 (Ujsim = Jjexn)?/ of (©6)
where N is the total number of scalar coupling types, <J>n is the averaged scalar coupling
from the simulation for scalar coupling type j. J; ey 1s the NMR data for type j. o; is the estimated
systematic error of the Karplus equation for type j adopted by both Best et al.’s work'® and our
previous work®®. Precision of %? is estimated as half the difference of y* calculated from two
simulations starting from either helical or extended conformation. For dipeptides, Table S9 lists
3Junia data and an estimated systematic error of 0.91 was used in the > calculation'® %, For

Alas, Table S10 lists all scalar coupling types and the corresponding systematic errors'°.

Since
the NMR data®' were measured at pH=4.9, side chains for Arg, Lys and His were modeled in
protonated state. For Glu and Asp, both deprotonated and protonated states were simulated, and
the error was reported as a weighted average value. Constant pH simulations were performed to
obtain the appropriate ratio of protonated state versus deprotonated state respectively.

Constant pH simulation

Constant pH simulations of 800 ns with TIP3P® and OPC?? explicit solvent were performed
on the capped dipeptide forms for the titratable residues Glu and Asp. Initially, these titratable
residues were assigned to be protonated, and the state change was attempted every 100 MD steps
through Monte Carlo approach using a Generalized Born implicit solvent model (igb=2)"? which
was the model used to parameterize the reference compounds in constant pH simulation®.
Following published protocol, the intrinsic Born radii of carboxylate oxygen atoms were shrunk

in order to reduce artifacts arising from including all four alternate hydrogen atom positions in

the GB descreening calculation.”® 200 steps of explicit solvent relaxation dynamics (in which the
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solute was held fixed) were performed before resuming simulation if any protonation states were
changed”. The solvent pH value was set to 4.9 in agreement with the NMR experiment®!. The
rest of the input was retained from the standard MD protocol described above.

These constant pH simulations have limitations, such as using an older GB model®? (igb=2) for
reference compound energy, and neglect of updating dihedral parameters when protonation state
switches”. Therefore, the constant pH simulations were only used to estimate the percentage of
protonation states for titratable residues, and the sampled ensembles were not used directly for x?
analysis. The y* analysis was performed on the combination of protonated and deprotonated
trajectories in explicit water, weighted by the ratio of protonated state versus deprotonated state
obtained from constant pH MD.

NMR order parameters

The ability of a force field to model local dynamics accurately in well-folded proteins in
solution was examined by comparing to NMR experimental backbone NH S? order parameters
for GB3%, ubiquitin®® and lysozyme®. We adopted the model-free approach originally proposed
by Lipari and Szabo® and used iRED® as implemented in Cpptraj. iRED is based on a
covariance matrix analysis of inter-nuclear vector orientations, represented by spherical
harmonics, extracted from MD simulations. For this analysis, we averaged iRED results
calculated for windows of length five times the tumbling correlation time (t¢), which was
suggested to best reproduce the model-free S? order parameters’®. Thus, window sizes of 2 ns, 4
ns and 8 ns were used for GB3, ubiquitin and lysozyme respectively, in agreement with previous
work®?’. The uncertainties in the computed S? were calculated by taking the standard deviation
from four independent MD runs. The absolute difference (AD) is computed between theoretical
and experimental S” for each residue.
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Statistical analysis of PDB data

To compare the ¢/y distributions from simulation against PDB data, we used Lovell’s rotamer
library** °® of 7957 high-resolution, quality-filtered protein chains to generate the PDB-based
¢/v distributions. Two filters were applied to select a portion of the original 7957 structures.
Firstly, only residues in coil and turn as defined by DSSP were selected. Secondly, these
residues were eliminated if any of the backbone heavy atoms had B factors larger than 30.
Biopython!® was used to apply the two filters against 7957 PDB files (PDB IDs and residue
numbers of the filtered structures are provided in SI file pdbid_residue.csv. The script used to

generate the filtered results are provided in SI file filtering_extract_phipsi.sh).

Results and Discussion

Backbone rotational energies in ff19SB compared to ff14SB

Alanine and Glycine energetics. Backbone ¢/y rotational energy profiles were analyzed for
QM, ff19SB, {f14SB and CMAP (derived by subtracting ff14SB00 from QM energies on the 2D
grid, see Methods). Ala and Gly are discussed first because they are the simplest with no
significant side chain degrees of freedom. We performed 2D backbone rotation scans for the
capped Ala and Gly dipeptides, followed by restrained minimization and energy evaluation with
implicit solvent for QM and MM. The CMAPs were derived by subtracting MM from QM
energies on the 2D grid. The ff19SB energies were obtained by adding the CMAP-based bicubic
function to ff14SB00 (see Methods: Molecular mechanics (MM) optimization and energy
calculations and CMAP fitting). As shown in Figure 3&4, the ff19SB energy profiles are
nearly identical to the QM reference data, which was anticipated based on the training method.

However, significant differences between ff14SB and QM are apparent. In ff14SB, the overall
Page 36 of 81



energy profiles are highly symmetric with little @/y coupling, likely due to the lack of coupling
between the ff14SB dihedral correction parameters. This coupling may arise from polarization
changes as the amide dipoles become aligned in the helical conformation. The shape and location
(the bin having lowest energy in the basin defined in Table S11) of the a basins from QM are
poorly reproduced by ff14SB for both Ala and Gly. Importantly, the diagonal shape of the left-
and right-handed a helical basins as observed in QM and ff19SB is poorly reproduced in ff14SB,
which instead samples too deeply into negative ¢ for y < 0. In addition, for Ala, the C7;*1 local
minimum between ppll and ar in QM (Figure 3) is absent in ff14SB, but reproduced with
ff19SB. For Gly, the QM energy barrier at ¢ = -120 / y = -60 is more accurate with ff19SB
(Figure 4).
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Figure 3. Ala dipeptide Ramachandran potential energy surfaces (kcal/mol) calculated in (left)
ff14SB+GBSA, (middle) QM+SMD and (right) ff19SB+GBSA. All energies were zeroed
relative to the lowest energy in the ppll region (defined in Table S6). The values above the color
bar range are depicted in dark red. Solid, labeled contours indicate integer energy values in
kcal/mol, whereas dashed contours indicate half-integer energies. The bicubic spline

interpolation implemented in Python was used to calculate values between grid points.
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Figure 4. Gly dipeptide Ramachandran potential energy surfaces (kcal/mol) calculated in (left)
ff14SB+GBSA, (middle) QM+SMD and (right) ff19SB+GBSA. All energies were zeroed
relative to the lowest energy at ppll region (defined in Table S6). The values above the color bar
range are depicted in dark red. Solid, labeled contours indicate integer energy values in kcal/mol,
whereas dashed contours indicate half-integer energies. The bicubic spline interpolation

implemented in Python was used to calculate values between grid points.

Overall, the deviation of ff14SB from QM for Ala and Gly is notable despite the use of QM
data for multiple conformations of Alas and Gly; during training of ff14SB/ff99SB backbone
parameters. This relative weakness in ffO9SB/ff14SB is likely a result of the use of only gas-
phase energy minima for training (thus lacking the compulsion to reproduce the entire basin
shape, or even the locations of aqueous-phase minima), along with dihedral correction terms that
lack @/y coupling, resulting in an overly symmetric energy map. Use of the CMAP approach for
ff19SB results in improved reproduction of the overall energy surfaces for both amino acids.

We tested the impact of using QM in gas-phase as the target data. We fit an Ala dipeptide
CMAP (same protocol as in CMAP fitting) against the grid surface of gas-phase QM energy
instead of aqueous QM (Figure S7A), and ff14SB00 was used for gas-phase MM energy. The

resulting energy surface (ff_gas) applied in solution (Figure S7C) has an unusual shape of the ar
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basin (extending much farther into $<-120°), and the ar energy basin is unexpectedly deep as
compared to the results obtained using the aqueous QM surfaces. We conclude that fitting
CMAPs using solution QM & MM calculations is important for good results here.

Amino acids with multiple side chain rotamers. The 2D CMAP training provides a “perfect”
fit against the 2D reference QM data for Ala and Gly since no other significant rotational degrees
of freedom are present. However, all other amino acids have longer side chains with additional
degrees of freedom, and the situation becomes more complex since the energies (and their errors)
depend on rotational degrees of freedom not sampled explicitly during CMAP training. While
3D fitting might accommodate some amino acids such as Val or Ser, this rapidly becomes
intractable. We first compare alanine and valine using the valine rotamer used in training, then
evaluate the transferability of the Val CMAP to alternate Val rotamers.

Our strategy to improving rotamer dependence extends the approach to improving
transferability in the side chain parameters we used when developing {f14SB, where we assumed
that the largest contribution to poor transferability of dihedral parameters arises from including
structures in the training set that expose inaccuracies in the MM short-range nonbonded model
that depend on degrees of freedom outside those being trained. If correction to these errors were
to be incorporated into the backbone parameter for that ¢/y grid point, it would be applied
erroneously for conformations sampling the same ¢/y values but with different rotamers that
lack these inaccurate interaction energies. Therefore, rotamer dependency was addressed here by
initializing all structures on each CMAP training ¢/y grid at the same rotamer conformation,
then locally relaxing the side chain conformations to relieve any backbone:sidechain steric
clashes that were likely to be inaccurately modeled in MM. If corrections for training set

structures with inaccurate backbone:rotamer MM energies were to be incorporated into the
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backbone parameter for that ¢/y grid point, the CMAP would have poor transferability to
structures with the same ¢/y values but with alternate rotamers that lack these inaccurately
modeled interactions (see Methods: Molecular mechanics (MM) optimization and energy
calculations).

Comparison of Alanine and Valine Energy Surfaces. For Val, we selected the trans rotamer
for CMAP training (Figure 5 first row). As shown in Figure 3 and Figure 5B, the QM profiles
are qualitatively different between Ala and Val. Val prefers a flatter B/ppll transition region with
a U-shape, while Ala has a higher barrier, a stronger preference of ppll over B, and a lower
transition barrier between aR and ppll. The C7° local minimum between ppll and aR observed
in Ala is absent in Val. In addition, the elongated diagonal shape of the aR and aL basins in Ala
(indicating strong ¢/y coupling) is quite different from the narrow circular minimum in Val. The
energy minimum at ¢ = 60 and y -150 in Ala is shifted upwards at ¢ = 70 and y = -60 in Val.
Importantly, these differences in the Ala/Val QM surfaces are reproduced poorly in ff14SB

where the Ala and Val surfaces are generally too similar; both Ala and Val prefer ppll over B and

have similar symmetric or/or basins (Figure 3(left) vs. Figure SA).
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Figure 5. Val dipeptide Ramachandran potential energy surfaces using the frans (t) rotamer,
calculated in (A) ff14SB+GBSA, (B) QM+SMD and (C) ff19SB+GBSA, and using the gauche(-
) (g-) rotamer, calculated in (D) ff14SB+GBSA, (E) QM+SMD and (F) ff19SB+GBSA. The
trans rotamer was used for ff19SB training. All energies were zeroed relative to the lowest
energy at ppll region (Table S6). The values beyond the color bar range are depicted in dark red.
Solid, labeled contours indicate integer energy values in kcal/mol and dashed contours indicate
half-integer energies. The bicubic spline interpolation implemented in Python was used to

calculate values between grid points.

Transferability of ff19SB backbone parameters to different side chain rotamers
We tested the ability of our approach to provide reasonable transferability of CMAPs between
alternate rotamers using valine, for which the side chain rotamer is known to significantly

influence backbone populations!”> *> 19 We switched the Val rotamer from trans to gauche(-),
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calculating QM and MM ¢/y energies for gauche(-) conformations, but keeping the Ala-based
ff14SB and trans-based Val ff19SB MM parameters (Figure 5, bottom row). Even though
ff19SB was fit using the trans rotamer, it reasonably reproduces the changes in the Val QM data
from trans to gauche(-). For example, moving from trans to gauche(-), the a basins become
more diagonal, ar extends farther into the upper left quadrant, the barrier between ppll and B
increases, and the minimum at (90, -60) disappears. As seen with the Ala/Val comparison,
ff14SB poorly reproduces each of these changes, and the overall energy profiles are generally
much too similar between the two rotamers, inconsistent with the QM results. Even though the a
basin is stabilized more and becomes wider from trans to gauche(-) for {ff14SB, the energy
profiles are still highly symmetric in both rotamers and the notable difference in the shape of a
basins reflected by QM and {f19SB is poorly reproduced in ff14SB, along with a too-flat barrier
between ppll and B. Furthermore, rather than the disappearance of the (90, -60) minimum as seen
in QM and ff19SB, the two minima with positive ¢ values merge into a single minimum in the
wrong location with ff14SB. Thus even though ff19SB was trained using a single rotamer for
Val, it does a better job than ff14SB at reproducing the rotamer-dependent backbone profiles
from the QM calculations. The results also demonstrate that the high quality match between QM
and ff19SB is not simply the result of empirical fitting to an energy map with a single rotamer,
but that the accurate reproduction of the QM profiles is maintained even when the map is
qualitatively different for an alternate rotamer. To quantify the changes, we calculated average
REE (see Methods: Average relative energy error (REE) calculation) between QM and MM
for trans and gauche(-) as a function of QM energy range above the minimum (Figure S8). For
structures having QM energy within 7 kcal/mol above the minimum, the average REE for the

training rotamer trans are 1.78 kcal/mol and 0.03 kcal/mol for ff14SB and ff19SB respectively.
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The average REE for the test rotamer gauche(-) are 1.39 kcal/mol and 0.89 kcal/mol for {f14SB
and ff19SB. Reasonable transferability is observed for other amino acids as well; examples
include Ser and Glu. For Ser (Figure S9), {ff19SB was trained against gauche(+), but is able to
reproduce reasonable QM surfaces for both gauche(+) and gauche(-), such as the diagonal shape
of ar and ar basin for both rotamers and the local minimum between ppll and ar for gauche(-).
For structures having QM energy within 7 kcal/mol above the minimum, the average REE for
gauche(+) are 1.80 kcal/mol and 0.06 kcal/mol for ff14SB and ff19SB. The average REE for
gauche(-) are 1.98 kcal/mol and 1.01 kcal/mol for ff14SB and ff19SB. For Glu (Figure S10),
ff19SB was trained against rotamer mt-10 (using naming conventions from literature*?)
(gauche(-) for y1, trans for ¥2 and -10° for ¥3) and reproduces reasonably the QM surfaces for
both mt-10 and tt0 (trans for 1, trans for y2 and 0° for x3). In contrast, ff14SB merges the two
minima into one at ¢ = 60° for mt-10, and poorly reproduces the barrier height at ¢ = -120° and
v > 30° for tt-0*2. For structures having QM energy within 7 kcal/mol above the minimum, the
average REE for mt-10 are 2.05 kcal/mol and 0.08 kcal/mol for ff14SB and ff19SB. The average
REE for tt10 are 1.82 kcal/mol and 0.72 kcal/mol for ff14SB and ff19SB.

The QM, ff14SB and ff19SB energy maps for all 16 amino acid dipeptides in the training set
are shown in Figure S11.

Amino-acid specific Ramachandran sampling from PDB is reproduced better with
ff19SB

As shown above, the CMAP procedure allows the MM 2D ¢/y energy surfaces to
quantitatively match the QM 2D training data. Furthermore, we showed that using CMAPs
improves the ability of MM to reproduce changes in QM ¢/y basin shapes and locations for

different y rotamers. An important question, though, is whether these QM-based training data for
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dipeptide models in solution provide good reference states for longer peptides in solution, or
larger proteins with more complex structures and interactions. In order to explore the relevance
of the differences seen between the ff19SB and ff14SB energy maps for different amino acids,

42,98 on each amino acid and compared them to dipeptide

we sought out high-quality PDB data
¢/y sampling in MD using ff19SB. As discussed above in the context of statistical potentials,
such comparisons have significant flaws, largely arising from the imperfect assumption that the
distribution of backbone conformations for an amino acid across different proteins in a crystal
environment (at different and typically low temperatures) corresponds to the MD-sampled
Boltzmann distribution for the unconstrained peptide in solution at room temperature. Here, we
restrict the use of the PDB data to a comparison of qualitative differences between amino acids
from the same data source, such as from PDB or MD simulations. We expect that comparison of
general features such as simulation and crystallographic basin shapes could provide valuable
feedback that is independent of the dipeptide QM training data. However, we avoid assessment
of quantitative features such as basin energies, for the reasons discussed above.

Distributions from the high resolution crystal structures’” (“PDB”), dipeptide MD in
ff14SB+OPC and dipeptide MD in ff19SB+OPC are shown in Figure 6 for Ala, Val and Leu
(with all amino acids shown in Figure S12). The OPC solvent model was selected for this test
since this model was developed by optimizing the charge distribution to match QM data and
vdW parameters to reproduce water density. Neither ff14SB nor ff19SB parameters were
empirically adjusted with OPC (ff14SB used TIP3P-based MD data in training).

Because the dipeptide is fully exposed to the solvent, the results are more sensitive to the
protein force field than to the solvent model, consistent with our previous report that similar

populations of basins of Ala dipeptide were obtained with various solvent models'®?. Here,
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similar distributions for each amino acid are observed between ff14SB+OPC and ff14SB+TIP3P,
and also between ff19SB+OPC and ff19SB+TIP3P (Figure S12). However when comparing
between force fields, differences are observed.

As expected, the PDB distributions indicate that each of these amino acids samples unique
features on the Ramachandran map. The ff14SB approach is clearly overly simplistic; when the
same uncoupled Ala-based parameters are applied to all three amino acids (A, V and L), the
peptides exhibit very similar ¢/y sampling during MD, with the only apparent difference being
slight changes to the population of the  basin (Figure 6). This result is consistent with the
ff14SB potential energy maps (Figure 3 and Figure 5) where only subtle differences in B basins
are observed between Ala and Val. The ff14SB population maps also lack the diagonal shape of
the a basin that is clearly seen in the PDB data (also apparent in the dipeptide QM data discussed
above). In contrast, using amino-acid specific training against QM data with solvent polarization,
the differences in Ramachandran maps are reproduced much better with ff19SB CMAPs. For
instance in the PDB, Val and Leu both have a flatter B-ppll transition region than Ala, with Val
preferring greater population in this transition region. Compared to Ala, Leu has a broader
diagonal a basin extending into the positive y region; these differences are reproduced more
faithfully with ff19SB than ff14SB. The relative insensitivity of ff14SB backbone sampling to
amino acid identity also explains its poor ability in modeling sequence dependence as discussed
in the Introduction. Overall, given the fact that PDB data were not used in ff19SB training, this
agreement between ff19SB and PDB shows a remarkable improvement in reproducing sequence-
dependent behavior obtained using physics-based training, and highlights that these trends can be

recapitulated without problematic empirical fitting against PDB data.
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Figure 6. Ramachandran sampling shown for Ala, Val and Leu in dipeptide simulations with
OPC water and ff14SB (A)-(C), in PDB (by Lovell et al.#> %) (D)-(F), in dipeptide simulations at
300K with OPC water and ff19SB (G)-(I). Each contour line represents a doubling in population.
Density is also shown as grids filled with light (no density) to dark (maximum density). Side

histograms on each subplot represent independent distributions on ¢ and y. The MD simulations

were run for a total of ~10 us for all data shown.
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Improved reproduction of NMR *J(HNHA) scalar couplings on blocked dipeptides

Another way to examine the ability of ff19SB to improve amino-acid specific behavior in
solution is through quantitative comparison against NMR data probing backbone dihedrals,
which have been reported®! for each of the amino acids in a dipeptide form (except Pro which
lacks HN). As explained (Methods: CMAP fitting groups), a total of 16 CMAPS were fit and
then applied to 20 natural amino acids (also including alternate side chain protonation states) in
ff19SB. We compared the performance of ff19SB and ff14SB by simulating blocked dipeptide
systems (Methods: Structure preparation & simulations) in both OPC and TIP3P solvent

models. We then calculated the 3J(HNHA) from each MD trajectory based on the Karplus

9 t90

equation® and “Orig” parameter set” and quantified the agreement by calculating the > error

115 and us®®. This 4 error was used as an empirical target in ff14SB backbone

following Best et a
training'®. The y* value quantifies the agreement between experimental and MD ensemble
average J value(s), also taking into account the uncertainty of the theoretical model being used.
In theory, smaller y* errors correspond to better agreement between MD and experiment.
However, > values below one only indicate that the error is smaller than the uncertainty of the
model and do not necessarily indicate continued improvement vs. experiment. Further details of
the calculations and precision estimates are provided in Methods (Methods: NMR scalar
coupling calculations).

The calculated 3J(HNHA) values for each amino acid, using four different combinations of FF
(ff14SB and ff19SB) and water model (OPC and TIP3P), are provided in Table S9, with the
errors for OPC shown in Figure 7 and TIP3P shown in Figure S13. Though we observed
differences among force fields for the Ramachandran sampling maps, the %> errors and actual

3J(HNHA) values appear relatively insensitive to force field. For a given force field, neither
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Ramachandran sampling maps nor the y* errors and actual 3J(HNHA) values are sensitive to
solvent model. For instance, for either ff14SB or ff19SB, the average y° errors are similar and
mostly below 0.5 for both OPC and TIP3P (Figure 7 and Figure S13). In this respect, the
performance of ff19SB is not significantly improved over ff14SB for dipeptide NMR data, as
ff14SB already showed reasonable behavior with few amino acids having errors larger than 1.0
(His™ and Cys) for both solvent models. In addition, the histograms of y? etrors are similar
regardless of the force field and solvent model (Figure S14). Together with the fact that
3J(HNHA) in the Karplus calculation is sensitive only to the ¢ dihedral, this test seems
insufficient to examine the specificity of parameters for different amino acids and the quality of
parameters across the full Ramachandran space. However, this is a good indicator that the QM

fitting is reasonable and ff19SB introduced no spurious outliers.
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Figure 7. y* errors in reproducing NMR J(HNHA) coupling data for all non-Pro amino acids
(using single letter codes on X axis), with data for ff14SB+OPC (red) and ff19SB+OPC (blue).

The MD simulations were run at 300K for a total of ~60 us for all data shown.
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As shown in Figure 7, ff19SB+OPC gave a slightly larger error for Glu, but since the pH
used in the NMR experiment (4.9) was close to the Glu side chain pKa (~ 4.25), a simulation
using either a protonated or deprotonated state of Glu may not adequately model the
experimental ensemble. To address this ambiguity, we ran constant pH simulation (pH=4.9) on
Glu dipeptide (Methods: Constant pH simulation), and obtained the carboxyl group protonated
state ratio for each force field + solvent model combinations (Table S12). Next, we performed
regular MD for both protonated and deprotonated Glu. The combined trajectory weighted by
protonation state ratio (Methods: Constant pH simulation) was used so that our calculated y*
more accurately reflected the protonation states in the experiment.

For deprotonated Glu, the ppll region is the most populated in both {ff14SB and ff19SB and the
shape of energy basins are similar between {f14SB and ff19SB regardless of the solvent model
(Figure S12). However, ff19SB samples the ppll basin extending farther towards ¢ > -60° than
ff14SB. This subtle change causes the SJ(HNHA) to deviate significantly from experiment (> =
1.31£0.03). This shift, however, is much less pronounced in the protonated state MD with
ff19SB (Figure S12), resulting in a much smaller * error of 0.031+0.01. Overall, the % value
from the re-weighted population at pH 4.9 was calculated to be 0.50+0.03, indicating that the
scalar coupling calculated with ff19SB is in reasonable agreement with experiment once the
protonation state is taken into account.

We also performed constant pH simulation at pH=4.9 for Asp, obtaining the side chain
carboxyl protonation ratio for different force field + solvent model combinations (Table S12).
The > values from Asp simulation with deprotonated side chain and pH-weighted ensemble
were calculated to be 0.01+0.01 and 0.30+0.01, respectively, with both indicating reasonable
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agreement with experiment for ff19SB. In addition, for both Asp and Glu, in either ff14SB or
ff19SB simulations, using TIP3P vs. OPC has little effect on the y* results with average ¥ errors
all below 0.5.

In summary, both ff19SB and ff14SB provided reasonable results in reproducing NMR scalar
coupling when using either OPC or TIP3P solvent, indicating that this test is relatively
insensitive to the sampling differences that are apparent in the Ramachandran surfaces (Figure
S12). It is encouraging, however, that ff14SB includes an empirical adjustment to improve
agreement with the same type of NMR data as used here, while the QM-trained ff19SB achieves

similar or better accuracy without empirical adjustment.

Accurate reproduction of Alas NMR scalar couplings is maintained in ff19SB
We next tested ff19SB by simulating Alasin both OPC and TIP3P solvents, and compared to
ff14SB. A total of six NMR scalar couplings have been measured on this peptide**. Following

Best et al."” and us'® %8

previously, we calculated the scalar couplings from each MD trajectory
as discussed above, and quantified the agreement between simulations and NMR by calculating
the ¥* error (Methods: NMR scalar coupling calculations). The NMR data, calculated scalar
couplings for ff14SB and ff19SB in both OPC and TIP3P water and the systematic error !> %
used in y? calculations are provided in Table S10, with the * errors in OPC shown in Figure 8
and TIP3P shown in Figure S15. Overall, the average > errors are smaller than one regardless of
force field and solvent model, indicating a reasonable reproduction of NMR data for ff14SB and
ff19SB with both OPC and TIP3P. Specifically, ff19SB has smaller averaged y*> compared to
ff14SB for both OPC (0.77+0.03 vs. 0.93+0.10) and TIP3P (0.77+0.03 vs. 0.88+0.09) solvent

model. The measurement of SJ(HNCA) is correlated with the ¢ dihedral as well as the y dihedral
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of the preceding amino acid** *; this is the only coupling we examined that depends on two
dihedrals instead of one. This Karplus correlation has the smallest ¢ among all of these scalar
coupling types, making it more sensitive to error than other scalar coupling types. Even though
the * value is large (Figure 8 and Figure S15), the difference between simulation and NMR in
actual 3J(HNCA) value is as small as 0.2 across all models, suggesting reasonable agreement

between simulation and NMR across different models (Table S10).
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NMR J-coupling Type
Figure 8. %> errors in reproducing six NMR scalar coupling data for Alas, with data for

ff14SB+OPC (red) and ff19SB+OPC (blue). The MD simulations were run at 300K for a total of

~3 us.

Amino-acid specific helical propensities are significantly improved in ff19SB
Since the scalar coupling y? analysis presented above was relatively insensitive to the updated
residue-specific parameters, additional tests were performed to further validate the new model.

The 3J(HNHA) analysis is only sensitive to the distribution for ¢; thus, we calculated amino-acid

Page 51 of 81



specific helical propensities to probe y dihedral sampling. We focus both on the absolute helical
propensity in the force field as well as the ability to reproduce known differences between amino
acids. We performed multiple MD simulations on model peptides with sequence Ace-AsXAs-
NH2 with varying X, and fit helical propensity parameters w through Lifson-Roig® theory
implemented in a genetic algorithm (Methods: Helical propensity). Different from having three
substitutions in Best et al.’s system’, our model peptides only have a single substitution, as was
done for the experimental system®, to avoid possible interaction between the substitutions across
turns of helix. The sensitivity to the peptide length was tested by comparing propensities
calculated using A4sXA4 and A9XAy in ff14SB + GBneck?2; calculated helical propensities for all
amino acids with ff14SB + GBneck?2 are highly correlated between AsXA4 and A9XA9 (Figure
S16), justifying the use of the shorter peptide in the more computationally expensive explicit
solvent simulations.

We also calculated the sensitivity of the results to the exact definition of the helical region of
overall ¢/y space (defined in Table S6) using ff14SB and ff19SB, in both OPC and TIP3P. The
calculated helical propensities for each force field and solvent model show little sensitivity to
thea basin definition, especially for ff19SB+OPC (Figure S4).

Helical propensities were calculated for A4XA4 with ff14SB and ff19SB, in TIP3P and OPC.
The results of the MD simulations are compared to values based on experiments®®. Data for
ff14SB+TIP3P, {f14SB+OPC, ff19SB+TIP3P and ff19SB+OPC are shown in Histidine is a
special case because the imidazole protonation state (9, € or both) is difficult to assign, and the
reported experimental scales for 20 natural amino acids vary the most for His, with it being the
least helical from one experimental scale but almost in the middle of the helicity from another>”

103

103 For instance, Pace and Scholtz!®® summarized a helical propensity scale based on NMR
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measurements of helix propensity from 11 systems, including both proteins and short peptides, at
different pH values and temperatures. All helical propensities were reported in AAG relative to
Ala (0 kcal/mol, the most helical) and normalized by setting Gly=1 kcal/mol, the least helical. In
that report, His exhibits a value of 0.61£0.11 (error bar calculated from 13 reported
measurements) averaged across systems and protonation states (estimated based on experimental
pH). Specifically, for neutral His, the helical propensity is 0.56+0.07 (uncertainty calculated
from seven reported measurements), and for the protonated His®, the helical propensity is
0.66+0.10 (uncertainty calculated from six reported measurements). This value is much lower
(closer to Ala, meaning more helical) than several other amino acids including Asn, Thr, Cys and
Asp. However, according to the NMR data*® (reported as helical propensity w instead of AAG),
His is the least helical along with Gly (see Table S7). These NMR data are generally consistent
with Pace and Scholtz except for His (Figure S5). Due to these uncertainties, we decided to
remove His from the helical propensity comparisons in Figure 9. The helical propensity data
(from both NMR and MD) including His are provided in Table S7 and Table S8.

In general, ff14SB has difficulty reproducing the trend from NMR experiments regardless of
solvent model. In TIP3P, Ala should be the most helical amino acid but is distinctly
underestimated, while most other amino acids have significantly overestimated helical
propensities, and the overall residue-specific correlation with NMR is poor at R? = 0.38 (Figure
9A). Although OPC is arguably a better water model*? than TIP3P, combining it with ff14SB
produces worse results than in TIP3P (R*> = 0.27, Figure 9B), with helical propensities being
underestimated for most amino acids. There is very little sequence dependence, with a slope of

0.49. The amino acids with negatively charged side chains (Asp and Glu) are outliers in both
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solvent models for ff14SB. The correlation and sequence dependence furtherworsen when Asp
and Glu are removed (R? = 0.18 and Slope = 0.22).

This poor correlation with experiment appears to be due to ff14SB rather than weaknesses in
these solvent models; the correlation is significantly higher when comparing the helical
propensities of ff14SB in two water models (OPC vs. TIP3P R?=0.84 as shown in Figure S17,
with TIP3P giving ~70% higher helical propensities than in OPC). These results suggest that the
ff14SB force field would be unable to reliably model quantitative changes to secondary structure
or protein stability due to point mutations, despite its ability to successfully fold large proteins to

near-native structures®’. Protein folding tests are likely less sensitive to sequence-specific
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energetics since the overall fold can be maintained even when a large fraction of the protein
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Figure 9. Correlation between helical propensities w from experiment’ and simulations using
(A) ff14SB+TIP3P, (B) ff14SB+OPC, (C) ff19SB+TIP3P and (D) ff19SB+OPC. Amino acids
are indicated using single letter codes. Values on the X-axis represent the data based on NMR
and the reported standard deviations. Values on Y-axis represent the helical propensities fit
against the combined trajectory (3.2 pus * 12), with error bars calculated via bootstrapping

analysis. Black lines represent perfect agreement. Linear regression (red lines) was performed
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against the data points, with R? and slope quantifying the goodness of fit. The MD simulations

were run at 300K for a total of ~3225 us.

Ideally, the ff19SB residue-specific training against QM data should improve modeling of
sequence-dependent behavior and give improved correlation to experimental residue-specific
differences. Consistent with this expectation, we find that using ff19SB+TIP3P reproduces the
experimental trend much better than ff14SB+TIP3P (R?= 0.62 vs 0.38, respectively, Figure 9C
vs. 9A). However for ff19SB+TIP3P we also observe substantially higher sensitivity to amino
acid variation than in experiment (slope = 1.95, Figure 9C). The source of this high slope and
amplified sensitivity may be weaknesses in TIP3P (see Introduction), in particular the bias
favoring compact structures like helices.

When ff19SB is combined with the better water model OPC (Figure 9D), the correlation
between simulated and experimental helical propensities is further improved (R*>= 0.75 vs. 0.62
in TIP3P) and the sensitivity to amino acid is also improved (slope = 1.27 vs. 1.95 in TIP3P).
The sensitivity of the model still seems slightly overestimated, with slope modestly larger than
unity. The remaining deviations from a perfect linear correlation may not be highly significant,
since small disagreements also exist among various experimental measurements (Figure S5). In
OPC, the helical propensity for Ala remains slightly too low with ff19SB, and Leu is similar to
Ala within uncertainties (Table S7). Ser, Thr and Cys are all predicted to have helical propensity
somewhat lower than experiment; all have short, polar side chains that could compete with
backbone hydrogen bonding and reduce helical content. This will be investigated in more detail
in the future.

These results show that ff19SB has significantly improved capability to differentiate amino

acid properties and thus should have better predictive power for modeling sequence-specific
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behavior, protein mutations, and also rational protein design which requires quantitative
sequence-structure accuracy.

In addition to ff14SB and ff19SB, we also considered several other recent Amber-related force
fields in combination with their recommended water model (Table S8). In ff15ipq*+SPC/Ev>*,
Ala shows good agreement with experiment, but otherwise there is poor overall correlation and
weak sensitivity among the remaining amino acids (R?> = 0.26 and slope = 0.52, Figure S18A).
In fb15°7+H3%! Ala helical propensity is much lower than NMR, and the overall correlation is
also poor (R? = 0.28 and slope = 0.74, Figure S18B). Best et al. reported helical propensity
benchmarks for 20 amino acids, showing that the overall trend from experiments*® was poorly
reproduced by two force field + water combinations (ff03w!%*+TIP4P/2005'% and
ffO9SB*13+TIP3P®’) with correlation coefficients R* being 0.01 and 0.22 respectively.’
Therefore, they performed an empirical adjustment of a few amino acids, together with the
updated parameters in the ILDN'7 variants of ff09SB*, to better match helix-coil transition data.
They refit partial charges of Ca and side chain atoms on charged amino acids (D, E, K, R) while
forcing the charges on amide N, H, C, O to have same values as all the other residues. The
helical propensities’ using these charge-refit residues were better correlated with experiment
(ff99SB* ILDN _Q + TIP3P, R? = 0.51 and slope = 0.68 for all amino acids, Figure S19) than
the original ff03w and ff99SB*, but even with this empirical fitting the overall trend for the 20
amino acids is still notably worse than ff19SB+OPC (R? = 0.75 and slope =1.27, Figure 9D &

Figure S19).

Evaluating helical content in the K19 peptide
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In order to assess the ability of ff19SB to model a-helices in more complex systems, we
employed the Ala-rich Baldwin-type'® peptide K19%* that was previously simulated'® using
ff14SB. Experimental measurements® on K19 using NMR chemical shift deviations (CSDs)
suggest that the fraction helix at 300 K of four central residues and two residues near the C-
terminus are ~0.38 and ~0.17, respectively (Figure 10). Simulations with ff14SB+TIP3P
exhibited an average 0.30+0.05 (central four) and 0.19+0.03 (two near C terminus) fraction
helix, in close agreement with our previously reported!® value of 0.30+0.05 and 0.20+0.04 using
the same force field and solvent model. Both values are in good agreement with the experiment,
likely reflecting the inclusion of K19 data generated using TIP3P in the empirical adjustment of
ff14SB backbone parameters.

In order to better separate the accuracy of the solute force field from that of the solvent model,
we ask: does the good match come from a good modeling of protein and water separately, or
from training-based error cancellation between the force field and solvent model? As shown in
Figure 10, after substituting TIP3P with a better model for water (OPC), ff14SB MD resulted in
significantly reduced helicity, with 0.084+0.02 (central four) and ~0.08+0.01 (two near C
terminus) helical content for the 6 measured residues. Given OPC’s excellent agreement with
water properties, the worsened agreement with experiment for K19 supports a fortuitous
cancellation of error in the combination of ff14SB+TIP3P. Since overly weak solvent-solute
dispersion in TIP3P*%* 8¢ may introduce a bias in favor of compact structures, it seems
reasonable that this bias may also enhance helical content to maintain hydrogen bonding in
compact states. This hypothesis is supported by data in Figure S20, which shows an inverse
correlation between helical content and radius of gyration of K19, indicating that more compact

structures tend to be more helical, and also A4XA4 data in Figure 9, which shows a dramatic
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increase in helical propensities when combining ff19SB with TIP3P vs. OPC. We conclude that
an inherent underestimation of helicity is present in ff14SB, which is (inexactly) compensated by

an increase in helical content driven by the TIP3P bias toward overly compact structures.
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Figure 10. The fraction helix of each amino acid in K19 sampled in simulations using
ff14SB+TIP3P (red), ff14SB+OPC (yellow) and ff19SB+OPC (blue). Uncertainties reflect the
standard deviation of 10 independent runs. The black dots represent values reported in NMR

experiments at 300 K. The MD simulations were run at 300K for a total of ~96 ps.

Simulation of K19 with ffl9SB+OPC resulted in modestly increased helical content vs.
ff14SB+TIP3P, with 0.48+0.05 (central four) and ~0.29+0.01 (two near C terminus) average
helicity. These values are also somewhat higher than those from experiment (~0.38 and ~0.17
respectively), but the deviation in MD corresponds to an error of only 0.24 and 0.35 kcal/mol
free energy, respectively. Furthermore, uncertainties were not reported for the NMR-based data
for K19, and ff19SB+OPC is in quantitative agreement with experiment for helical propensities
for Lys and Ala that make up the majority of K19 (Figure 9). The simulations also agree with

the trend from experiments, with the helical content falling off towards the C-terminus, with the
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two measured Ala in this region being less helical than the central four. Overall, we conclude
that the QM-based ff19SB is in reasonable agreement with experiment when combined with an
accurate solvent model, while ff14SB performs poorly with the same solvent model and relies on
cancellation of error with the less accurate TIP3P model in order to reproduce the helical content

of this alanine-based peptide.

B-hairpin stability

We next tested whether the improvements in modeling helical content with ff19SB (and
perhaps a slight overestimation of helical content) were obtained at the cost of less accurate
performance on B systems. Following our previous work!® with ff14SB, we used CLN025%, an
engineered fast-folding hairpin that is a thermally optimized variant of Chignolin®. CLN025
contains four aromatic side chains, including three Tyr and one Trp. This system presents a
challenge due to the relatively slow folding of B-sheets compared to the helical systems (though
T-jump IR experiments®® estimate a 100-ns folding time for CLNO025). Because of the
computational cost in obtaining highly precise estimates of [ hairpin population in MD
simulations with explicit water, we limit our testing here to a qualitative view of whether
ff19SB’s improved helical propensity prediction may compromise P stability. We again tested
ff14SB with TIP3P and OPC, and ff19SB with OPC.

We performed four MD runs, each of 7 ps in length, at 300K starting from the NMR structure
(two runs) and a fully extended structure (two runs) (56 ps total for all ff+water combinations).
As measured by backbone RMSD against the NMR structure (PDBID: 2RVD®), folding was
reversible in every simulation using each of the three combinations of the force field + solvent

model (Figure 11). The histogram of RMSD values shows that both ff14SB+TIP3P and
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ff19SB+OPC predominantly sample the NMR structure (Figure S2). The average fraction of
native population (£standard deviation) across all MD runs for ff14SB+TIP3P, ff14SB+OPC and
ff19SB+OPC are 0.75+£0.23, 0.33+0.19 and 0.50+0.17, respectively, compared to the
experimental estimate® of 0.9 based on CD spectra. These populations suggest that
ff14SB+TIP3P might stabilize the B-hairpin to a greater extent than the other combinations, but
the differences are within the uncertainties of the populations. It is interesting that with ff14SB,
MD in TIP3P appears to prefer more B-hairpin structure than with OPC. The same preference for
the native structure in TIP3P was seen with K19, perhaps indicating that the weaker solute-
solvent dispersion in TIP3P generally stabilizes compact structure (such as native folds)

29-30, 58

consistent with previous studies , rather than a specific secondary helical bias such as the

K19 stability increase discussed above.

Page 61 of 81



ff14SB+TIP3P,nat ff14SB+TIP3P,ext

. 1st - 3rd . 1st - 3rd
8 2nd . 4th 2nd . 4th

: i [ RS | .

RMSD against NMR (A)

)-I‘ ¥ 1
ff19SB+OPC,nat ffL9SB+OPC,ext

Figure 11. Backbone RMSD to the NMR structure (PDBID: 2RVD?’) vs. time for the four
extended (ext) and four native (nat) runs of CLNO025 with ff14SB+TIP3P, ff14SB+OPC and

ff19SB+OPC. The MD simulations were run at 300K for a total of ~172 ps.

High quality backbone dynamics vs. NMR is maintained with ff19SB

NMR §? order parameters reflect the internal protein dynamics that are helpful to validate MD
trajectories. These internal motions need to be separated from global tumbling on time scale of
pico to nanosecond. Therefore, a choice for the window size of the MD trajectory needs to be

made over which $? values are computed and averaged, which remains challenging®?%. As
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reported in our previous work, ff14SB+TIP3P maintained ff99SB’s overall good reproduction of
NMR §? order parameters.!” Here, we also evaluated the ability of ff19SB to recapitulate local
dynamics in well-folded proteins. Interestingly, ff19SB+OPC samples structures with even lower
RMSD against native crystal structure than either ff14SB+TIP3P or ff14SB+OPC (Figure S21-
S23). As shown in Figure 12, the NMR data were reasonably reproduced by the different force
field + solvent model combinations, with average absolute difference between NMR S’ and
calculated S? over all amino acids close to 0.04. The overall differences were not statistically
significant; however we note some instances where all three force field + solvent models deviate
from experiment and also some instances where ff19SB results are in worse agreement with
experiment than is ff14SB. These residues typically have overestimated flexibility in MD as
compared to NMR for Gly (smaller $? in MD). I Rendered crystal structures of the three proteins
are provided in Figure S24, highlighting the locations of residues that are discussed below. All

NMR and MD data are provided in Table S13-S15.
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Ubiquitin’/? and (bottom) Lysozyme’/!. AD is the absolute difference between NMR and MD
simulation. For each subplot, error bars represent the standard deviation from four independent
109-

runs. Some residues are missing experimental values as indicated in the original NMR papers

111 ' The MD simulations were run at 300K for a total of ~1.8 us.

In GB3, Glyl4 was reported to have a high S$? (0.74) using NMR, likely due to its
intermolecular hydrogen bond in a B-sheet secondary structure. However, Glyl4 is similarly
more flexible with ff19SB+OPC (0.65+0.04), ff14SB+TIP3P (0.68+0.03) and ff14SB+OPC
(0.66+0.03). This may not reflect problems in ff19SB Gly parameters since this trend is reversed
for Gly41 in the loop region connecting a B-strand to an a-helix. $° from NMR is quite low for
Gly41l (0.50) due to loop flexibility, and this flexibility is reproduced much better with
ff19SB+OPC (0.56+0.04) than ff14SB+TIP3P (0.66+0.02) and ff14SB+OPC (0.67+0.03).

In Ubiquitin, Glyl0 flexibility is overestimated in ff19SB+OPC (0.55+0.02), but not in
ff14SB+TIP3P (0.72+0.02) and ff14SB+OPC (0.69+£0.01) compared to NMR (0.73). Except for
the slightly worsened performance on Glyl0, ff19SB+OPC yields the best overall agreement
with NMR compared to ff14SB with either TIP3P or OPC solvent model.

In Lysozyme, Ser85 lies in a loop region connecting two a helices, and is overly rigid with all
three simulation models (~0.75 in MD vs 0.55 in NMR). However, Ser85 backbone (¢/y) and
side chain (y1/¢2) sampling in all three force field + solvent model combinations reproduces that
seen in the crystal structure.

In spite of subtle disagreements with NMR in both models, we concluded that ff19SB
generally maintained the overall performance of ff14SB and ff99SB in order parameter
reproduction, with a few outliers that do not appear to follow any systematic trend that could be

attributed to the CMAPs.
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Conclusions

In the updated ff19SB (with the “SB” models indicating Stony Brook) protein force field
presented here, we have developed new backbone dihedral parameters with amino-acid specific
CMAP functions. We trained the parameters to match solution phase QM data using full 2D ¢/y
scans, instead of the gas-phase minima used for training uncoupled ¢ and y cosine terms in
ff99SB. Use of energies calculated from QM in solution provides better consistency with the pre-
polarized partial atomic charges used by the MM model, as compared to gas-phase energies that
were used previously. Fitting of dihedral corrections against QM in solution also allows the
model to incorporate (to some extent) conformation-dependent polarization energy that is not
present explicitly in a fixed-charge MM model such as the one used here.

A total of 16 CMAPs were fit, with applicability to all amino acids using a grouping approach
based on side chain size, branching and polarity. Leu was used as a general model for other
amino acids, in contrast to Ala that has traditionally been used as a protein backbone model. We
also investigated whether CMAP functions fit using a single side chain rotamer could remain
accurate for other rotamer states, and found good transferability as measured by the ability of the
model to reproduce rotamer-dependent differences in Ramachandran space QM energetics and
PDB-based statistics.

One possible weakness to our approach was the use of simple implicit water models during
training, such as the GB model in the MM component. Older GB models exhibit secondary
structure biases for longer peptides'!'?, but here we have used our GBneck2 model®? that much
more accurately reproduces secondary structure preferences. Furthermore, we have shown that
the solvation energy of dipeptides (which we used here for the CMAP training in GB) is largely
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insensitive to specific GB model used!®. Nevertheless, our use of GB during training could be a
limitation, which is one reason we carried out extensive testing here using a variety of fully
explicit water models.

We performed a total of ~5 milliseconds MD simulations in explicit solvent to extensively
validate ff19SB against experiments. The results show that our new FF more accurately
reproduces amino-acid specific NMR properties such as scalar coupling and helical propensity,
as well as structure and stability of a Baldwin-type helical peptide and a small hairpin. While the
balance of secondary structure seems reasonable in our helix and hairpin runs, the results may
suggest a slight overstabilization of helix vs. sheet. More quantitative testing via longer
simulations on a larger variety of systems is needed to see if this is a general trend in the model.
Folded proteins show good agreement with NMR §? order parameters, and modestly improved
RMSD values as compared to ff14SB.

We make the important observation that the performance of the QM-based ff19SB model
improves as the quality of the water model is improved (going from TIP3P to OPC), suggesting
lack of fortuitous cancellation of error with a particular water model, and that the water model is
likely the limiting factor in these comparisons of ff19SB to experiment. Behavior with more

water models will be tested in the future to see if this is a general trend. Currently, our best

results are obtained using ff19SB with OPC water, and we recommend that combination. Since

ff19SB was not fit using OPC, however, there is no reason to expect that better performance
cannot be obtained using other models not tested here. Biomolecular force fields such as ff19SB
that are not tied to a specific water model through empirical adjustment will be in a stronger
position to take advantage of future, better-quality water models, ideally with independent
training of these components. In contrast, use of a better model for water does not lead to
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improved match with experiment for ffl14SB that was empirically trained using TIP3P,
supporting that both a good water model and good protein force field are needed for an accurate
simulation. We also conclude that weaker solute-solvent dispersion in TIP3P not only leads to
overly compact unfolded states as has been reported previously, but also overstabilizes both
secondary structure elements as compared to OPC.

If water models can be sufficiently improved, there is in principle no need for specialized
“IDP” force fields, as suggested in recent work?® by Robustelli et al. Our belief is that physics-
based protein FFs trained against short peptides should be quite capable of modeling IDPs and
unfolded ensembles, which are more similar to the peptide training data than are folded proteins.
Amber’s OPC 4-point water model not only better reproduces liquid water properties as
compared to most other models*?, but IDP simulations with OPC result in much less compact
ensembles as compared to simulations using the same FFs in older water models.*® This provides
additional evidence that the current problems with modeling IDPs are likely to be related to the
water models, and further improvement of physics-based protein FFs is warranted, independent
of water model development going on in parallel. While the studies here of flexible peptides
using ff19SB+OPC are promising, future studies using this combination for IDPs will be carried

out in the future.

ASSOCIATED CONTENT

Supporting Information. Additional files for ff19SB implementation test and PDB statistical
analysis. Additional information about MD equilibration, protein system details, information on
dihedral restraints, modified force field parameter files, CMAP fitting group, refitted partial

charges, secondary definition, protonation state ratio, NMR J couplings from experiment and
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MD, NMR helical propensities from experiment and MD, NMR S? parameters from experiment
and MD, initial structures of K19 simulations, REE vs. CPU for QM methods, distribution of
bootstrapped resampling, energy maps from QM, ff14SB and ff19SB, ¢/y distribution on
dipeptides, helical propensities from more force field and water model, RMSD vs time and

histogram on RMSD for GB3, ubiquitin and lysozyme.

The following files are available free of charge.

Input and output files for validation of ff19SB implementations

PDB IDs and the residue numbers for statistical analysis (pdbid_residue.csv)
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