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ABSTRACT 

Molecular dynamics (MD) simulations have become increasingly popular in studying the 

motions and functions of biomolecules. The accuracy of the simulation, however, is highly 

determined by the molecular mechanics (MM) force field (FF), a set of functions with adjustable 

parameters to compute the potential energies from atomic positions. However, the overall quality 

of the FF, such as our previously published ff99SB and ff14SB, can be limited by assumptions 

that were made years ago. In the updated model presented here (ff19SB), we have significantly 

improved the backbone profiles for all 20 amino acids. We fit coupled φ/ψ parameters using 2D 

φ/ψ conformational scans for multiple amino acids, using as reference data the entire 2D 

quantum mechanics (QM) energy surface. We address the polarization inconsistency during 

dihedral parameter fitting by using both QM and MM in aqueous solution. Finally, we examine 

possible dependency of the backbone fitting on side chain rotamer. To extensively validate 

ff19SB parameters, and to compare to results using other Amber models, we have performed a 

total of ~5 milliseconds MD simulations in explicit solvent. Our results show that after amino-

acid specific training against QM data with solvent polarization, ff19SB not only reproduces the 

differences in amino acid specific Protein Data Bank (PDB) Ramachandran maps better, but also 

shows significantly improved capability to differentiate amino acid dependent properties such as 

helical propensities. We also conclude that an inherent underestimation of helicity is present in 

ff14SB, which is (inexactly) compensated by an increase in helical content driven by the TIP3P 

bias toward overly compact structures. In summary, ff19SB, when combined with a more 

accurate water model such as OPC, should have better predictive power for modeling sequence-
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specific behavior, protein mutations, and also rational protein design. Of the explicit water 

models tested here, we recommend use of OPC with ff19SB. 

 

Introduction 

State-of-the-art computational methods have been able to complement experimental structural 

biology with information that is both interesting and difficult to obtain without computers. 

Recent simulation highlights are the time-resolved, atomic-detail folding of ubiquitin during a 1-

millisecond MD simulation1, or the accurate reproduction of a large set of protein-ligand binding 

affinities2. Moreover, simulations are typically used during the refinement of high resolution 

structures obtained using experimental data such as crystallography, NMR or cryo-electron 

microscopy.  

However, two significant caveats apply to the hypothetical power of simulations: (1) the 

energy function must provide an accurate model of the underlying physics of the system, and (2) 

the simulation must adequately sample the important regions of the resulting energy landscape. 

These problems are coupled, and improving the physics model typically gains accuracy at the 

expense of greater computational cost, reducing the conformational diversity that can be 

sampled. One of the main challenges in successfully employing simulations is the need to 

optimize this precision/accuracy compromise based on the requirements of each research project.  

All-atom molecular dynamics (MD) is likely the most widely used biomolecular simulation 

sampling method. These often employ simple classical energy functions (force fields, FFs) which 

usually have many adjustable parameters, most often obtained by fitting to data from 

experiments or QM. Most modern FFs have very similar functional forms, but differ 
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significantly in choice of model systems and source of the training data. Although using even 

more complex models than those discussed here (such as including explicit polarizability3) may 

improve accuracy, these gains come at the cost of computational complexity and corresponding 

reduction in the sampling that is usually the limiting factor in the application of biopolymer force 

fields. 

Many approximations are made in fitting FF parameters. The FFs used for simulation of 

biomolecules in water tend to be relatively simple, due to the large number of atom pair 

interactions that contribute to the net forces. In this article we focus on the FFs associated with 

the Amber simulation package4, though others tend to be very similar. Amber FFs include 

harmonic terms for covalent structure, such as bond stretching and angle bending. The 

intramolecular and intermolecular nonbonded interactions are modeled as a Lennard-Jones 12-6 

potential for vdW interactions, and a simple Coulomb term for electrostatics typically using fixed 

partial atomic charges obtained using QM-based electrostatic potentials on intact peptides. The 

final and crucially important component is the dihedral (torsion) correction terms, which modify 

the energy of the system as a function of rotation around bonds. These bond rotations control the 

flexibility of the biopolymer, and different corrections can alter barrier heights as well as the 

relative energies of various stable rotamers, directly influencing the sampled ensembles5.  

The physical motivation for the dihedral corrections is that the rest of the FF is purely 

classical, and therefore lacks quantum orbital effects such as the increased energy barrier for 

rotation around a double bond. In practice, these corrections are used broadly to empirically 

optimize force fields during training, accounting for quantum effects as well as other weaknesses 

in the simple model, such as lack of conformation-dependent polarization that could impact 

electrostatic interaction profiles, or even to remedy lack of agreement with experiments. In 
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Amber and most other atomistic FFs, the dihedral correction is modeled as a simple truncated 

Fourier series with amplitudes and phases that are parameters in the FF. These parameters are 

optimized at the last stage in order to improve the agreement between training data and MM 

properties calculated without the dihedral terms. Some FFs add one or more additional empirical 

adjustment steps to improve agreement with experiments. 

Importantly, these force fields rely on an implicit assumption that each term is independent, 

with no coupling between parameters for bonds, angles and dihedrals. This additivity assumption 

extends to the nonbonded pairs as well, and is a major source of efficiency in force field 

calculations. In reality, coupling exists to varying extents, and parameters for one component 

may depend on the conformations or chemical identities of other nearby groups. This is 

neglected in most current biomolecular force fields. Another important key assumption is 

transferability: that a FF trained on one set of molecules (typically small) will perform as well on 

different, perhaps much larger molecules. Transferability also applies to neglecting the coupling 

between parameters, since it is usually assumed that one set of parameters (for example, for 

rotation around a bond) will perform well for multiple conformations of neighboring groups. 

Since transferability is imperfect, one way to improve FF accuracy is to ensure that the training 

data more closely reflect the situations in which the parameters will be applied, and by implicitly 

accounting for any coupling with neighboring groups at least in a mean-field way. Choice of 

model systems is therefore crucial. Enabled by greater computer power, this has led to a trend 

away from fitting against QM data for small organic compounds6 to that for larger peptides.  

An important example is the protein backbone φ and ψ dihedral parameters that can alter the 

energy profiles for these rotations, and thus influence secondary structure preferences and loop 

conformations. These have been frequently revised over the years based on observations of 
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secondary structure biases in prior models7. While early FFs used capped single amino acids 

(dipeptides) to train the backbone, our ff99SB5 FF used tetrapeptides8, allowing φ and ψ 

parameters to be trained in a context of conformational diversity of neighboring amino acids in a 

longer peptide. The improvement was significant, and ff99SB has been widely adopted.  

Since that time, widespread use of ff99SB exposed weakness in some amino acid side chain 

dihedral parameters9, probably because they were carried over from ff99 which trained them 

against a limited set of energy minima for simple organic compounds6b. In ff14SB10, we 

performed complete refitting of all side chain parameters using QM data for capped amino acids. 

An important update was the use of multidimensional QM conformational grid scans for every 

side chain, rather than fitting each rotatable bond separately. Likewise, fitting was done using 

both α and β peptide backbone contexts. Though it stopped short of explicit dihedral parameter 

coupling, this approach allowed implicit inclusion of coupling of rotational profiles to 

neighboring groups in a mean-field way, by fitting parameters for each bond rotational energy 

profile in the context of multiple conformations of neighboring groups, as was done for the 

backbone in ff99SB. ff14SB was a notable improvement; for example, a recent study11 of the 

ability of protein MD to reproduce high resolution experimental crystal data concluded that 

ff14SB performed best among all force fields tested, including several older Amber variants and 

even the empirically tuned CHARMM C3612.  

In addition to the weaknesses in side chain dihedral parameters, some studies also noted 

weaknesses in ff99SB backbone preferences. Several groups focused on empirically adjusting 

the ff99SB backbone parameters via comparison to experimental data such as NMR scalar 

couplings for very short peptides13, or amino acid helical propensities9, 13a. Similar to these other 

groups, we also included in ff14SB a small empirical adjustment to ff99SB (using TIP3P 
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water10) to improve agreement with NMR data for short alanine peptides. Empirical corrections 

can improve performance on training data but also can be problematic when extrapolated too far. 

The relative scarceness of experimental data compared to the number of parameters in the FF 

leaves the empirical fitting problem severely under constrained. Also, the common target of 

NMR J coupling data is sensitive to the choice of Karplus parameters14, they are not equally 

sensitive to variations in φ and ψ, and the χ2 values typically used to score performance15 can be 

highly sensitive to small details in the energy landscape yet relatively insensitive to the large 

differences that are observed between force fields16. Fitting backbone parameters to helical 

propensities is also challenging; it was shown that updating side chain dihedral parameters had a 

substantial impact on the backbone helical tendencies of some amino acids9, perhaps because 

side chain positioning details may play a role in helicity by shielding backbone hydrogen 

bonds7b, or due to side chain parameter changes modulating side chain entropy changes, which 

may influence helix formation17. Thus it is possible to erroneously adjust one part of the model 

(such as the backbone) to improve agreement with experiment, instead of fixing the more 

fundamental source of the error (e.g., the side chain rotamer energies). Designing or implicitly 

accepting cancellation of error can lead to models with unphysical and unwanted dependence 

between components, where one component cannot easily be improved (or even used) without 

exposing the compensating weakness in another. 

Another major challenge to empirical fitting against experiment is deconvolution of the solvent 

model from the solute FF, each of which may contribute inaccuracies that lead to deviation from 

experiment. This is complicated further when empirical adjustment creates dependence between 

solute and solvent models. Shell et al. showed that the best results for predicting small protein 

structures were obtained using the ff96 force field with the GB-OBC implicit solvent model, 
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despite each having well-established deficiencies18. The CHARMM C2219 FF was trained using 

TIP3P water, and backbone refitting was needed to use a different water model20. ff14ipq21 was 

developed with extensive training to TIP4P-Ew22 in the initial stages21, requiring refitting in 

ff15ipq23 to enable use with SPC/Eb water24. Moreover, weaknesses are apparent in studies of 

systems that sample diverse ensembles such as the unfolded states of proteins, or simulations of 

intrinsically disordered proteins (IDPs). This may well arise because of the vast number of nearly 

degenerate states, and the need for much higher accuracy than what is sufficient for simulating 

proteins in stable native basins. Currently, the challenge to FFs seems too great; for example, a 

recent study of IDPs found that the simulated ensembles depended dramatically on FF, but much 

less so on peptide sequence25. Piana et al. showed that the unfolded ensembles in their successful 

protein folding simulations were much more compact than expected from experiments26. 

Palazzesi compared simulations to NMR data, again finding generally poor agreement regardless 

of FF used27. In these and other cases, simulated ensembles are generally too compact. Several 

groups attempted to address the problem empirically by re-training backbone parameters against 

PDB coil libraries, and flattening energy landscapes28. Robustelli et al. carried out extensive 

refitting to improve the ability of ff99SB to model IDPs while retaining the ability to simulate 

folded proteins.29 

More recent IDP work has implicated overly weak water-protein interactions14, 30, consistent 

with other studies showing that protein-protein association in water is too favorable regardless of 

force field tested31. Best et al developed the ff03w model, empirically increasing the water-

protein dispersion interaction.14 Piana et al. developed the TIP4P-D water model, with 50% 

larger dispersion energies30b, further adjusted later29. Both adjustments resulted in improved 

match to IDP experimental data such as Rg values inferred from SAXS and FRET. Recently, the 
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new OPC 4-point explicit water model from Onufriev et al. was shown to better reproduce liquid 

water properties than most other models.32 It also results in much less compact ensembles for 

IDPs, suggested by the authors to be due to increased strength of the dispersion term as 

compared to models such as TIP3P.33 Such studies demonstrating that newer water models 

improve IDP behavior again highlight the dangers in empirically adjusting specific protein FF 

parameters to fix what may just be a symptom of a different problem (such as solvent model). 

This weakens transferability, and emphasizes the value of independent development and 

validation of solute and solvent models. 

Despite the issues described above, current force fields clearly are good enough to have 

enabled many excellent biophysical simulation studies. In terms of simulating global structure of 

proteins of various sequences, protein force fields have improved with time34. Current force 

fields typically result in stable simulations of folded proteins, with many reports of good match 

to experimental solution NMR observables such as NOEs, RDCs and S2 order parameters. More 

challenging are studies that attempt to predict structure from sequence35. A particularly 

impressive achievement was the successful brute-force folding of ubiquitin in MD simulations1, 

36. We reported accurate folding via MD for 16 out of 17 diverse proteins up to 100 amino acids 

long37.  

Despite these successes, a growing number of studies have suggested that even after the recent 

updates to backbone and side chain parameters, as well as water models, significant limitations 

remain present in protein simulations. There is a mounting consensus that current force fields do 

not accurately reproduce differences between backbone preferences of different amino acids. 

This is especially apparent in studies where the quantitative relative energies of basins are 

important, such as analysis of the effect of point mutations, or studies of flexible systems with 
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many nearly isoenergetic minima. Pande et al. suggested 6 of 19 amino acids were outliers vs. 

NMR and should be re-optimized34. Best9 et al. and later, we reported38 that Amber does not 

accurately reproduce experimental39 amino acid specific behavior such as helical propensities, 

shown in Figure 1 for ff14SB used with TIP3P. Correlation is generally poor, with most amino 

acids having similar helicity in simulation except the outliers of negatively charged Asp and Glu. 

In principle, nonbonded interactions should account for the impact of the side chain on backbone 

energetics (hereafter denoted “sequence dependence”), but weaknesses in the nonbonded 

function may limit the accuracy in modeling the short-range interactions that are responsible for 

backbone-side chain coupling. 

 

Figure 1. Helical propensities in ff14SB+TIP3P (Y) vs experiment39 (X) for amino acids (1 

letter codes). Values on the X-axis represent the data based on NMR and the reported standard 
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deviations.39 Values on Y-axis represent the helical propensities fit against the combined 

trajectory (3.2 μs * 12), with error bars calculated via bootstrapping analysis (see Methods: 

Bootstrapping analysis on helical propensity). Black line represents perfect agreement. Linear 

regression (red line) was performed against the data points, with R2 and slope quantifying the 

goodness of fit. 

Importantly, alanine is an outlier in having its helicity significantly under predicted (below the 

diagonal line) while most others are over predicted. This is concerning since alanine is used as 

the model system in all recent Amber protein force fields for fitting of backbone dihedral 

parameters that also are applied to the other amino acids (except Gly). CHARMM also uses the 

same alanine-based backbone map for all amino acids except Pro and Gly12, 40. The data clearly 

show that empirical correction of all amino acids using alanine helicity as a target would further 

increase the erroneously high  helical bias for the remaining amino acids.  

β-branched amino acids are not modeled correctly. Experimentally, steric clash between β-

branched side chains and the backbone carbonyl reduces helical propensity39, 41. Troublingly, 

simulations in ff14SB show that β-branched Ile, Val and Thr all have higher or similar helical 

propensity than Ala, the reverse of the experimental trend (Figure 1). In high resolution 

structures of folded proteins, the same trend of backbone-side chain coupling is apparent42, 

where the helical basin is narrower in valine than alanine, along with a broader, flatter region at 

high ψ values corresponding to polyproline 2 (ppII) and β conformations as compared to alanine 

(Figure 2). It is challenging for force fields to reproduce these differences, and the alanine and 

valine MD Ramachandran landscapes are similar using ff14SB (see Results). These observations 

are further corroborated by solution NMR data; higher HN-Hα scalar couplings for Val dipeptide 

than Ala dipeptide suggest more structures along the β-ppII transition for valine than for 
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alanine43, again not reproduced in the MD data (see Results). The situation is similar for 

CHARMM C36, where errors vs. NMR remained large for valine even though the force field 

was empirically adjusted to obtain a good fit for alanine45. Taken together, the results suggest 

that alanine may not be an ideal model for training other amino acids, in contrast to the central 

assumption in >20 years of Amber and CHARMM FF development.  

 

Figure 2. Ramachandran sampling in PDB shown for Ala (top) and Val (bottom) (using data 

from Lovell et al.42) Each contour line represents a doubling in population. Density is also shown 
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as grids filled with light (no density) to dark (maximum density). Side histograms on each 

subplot represent independent distributions on φ and ψ. 

We previously developed empirical backbone corrections for some amino acids in order to 

improve residue-specific helical propensities38. Alternatively, Best et al. found that empirically 

enforcing the alanine backbone partial charges on all amino acids also resulted in improvement 

for charged amino acids9, but this also may have been successful because it eliminated an 

inconsistency between using atom-specific partial charges and atom-type based dihedral 

parameters. Other recent work (for example, RSFF28a, 44 and ff99IDPs/ff14IDPs28b, 45) used PDB 

φ/ψ distributions to develop amino-acid specific empirical backbone parameters. However, in 

addition to the general problems with empirical fitting discussed above, these crystal data have 

significant limitations that prevent them from being used as an accurate source of 

thermodynamic training data (such as inconsistent and cryogenic temperatures, crystal packing 

effects, limited or noisy data outside low-energy basins, etc.). As a specific example, although 

the achiral glycine should have a fully symmetric φ/ψ energy profile, PDB-based distributions 

show significantly enhanced incidence of glycine in the positive φ region42, which would be 

reflected erroneously in force fields fit to these statistical distributions.  

Going beyond empirical adjustment requires insight into the physical weaknesses in the model. 

What is the source of this unsatisfactory sequence dependence, despite good reproduction of QM 

side chain rotational energy profile data10 in ff14SB? Speculation leads to several reasonable 

possibilities, including, but not limited to, lack of charge polarization of the backbone from the 

side chain (or weaknesses in the charge model overall), the inability of the current functional 

form to reproduce strong interactions between backbone and bulky side chains, or inaccurate 

empirical nonbonded scaling factors. Certainly using uncoupled cosine terms for backbone 
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dihedrals limits the accuracy attainable even with ideal QM training data or extensive empirical 

adjustment.  The relative orientation of the two adjacent amides depends on both ϕ and ψ of the 

intervening amino acid, thus independent cosine terms may be insufficient at correcting the 

interaction energy or lack of induced polarization between these groups. 

Parametrization Strategy.  

In this work, we revisit the ff14SB protein backbone description with an aim to improve the 

performance for amino-acid specific behavior discussed above. We hypothesize that several 

specific weaknesses in the ff99SB strategy may be dominant factors limiting accuracy. (1) 

Fitting only alanine data, and only at the gas-phase minima, poorly constrained the resulting 

energy landscape for many biologically relevant conformations46, or at locations of the slightly 

shifted φ/ψ minima sampled by other amino acids42. (2) The φ/ψ landscape is overly symmetric, 

arising from neglect of coupling in the simple cosine functional form. (3) Dihedral parameters 

are shared too broadly due to assignment by simple atom typing that does not discriminate amino 

acids. (4) Polarization was treated inconsistently in ff99SB and ff14SB, dating back to the 

original ff94 model. “Pre-polarized” Amber MM fixed partial charges47 intended for aqueous 

solution simulations48 are used while fitting dihedral parameters against gas-phase QM data, thus 

forcing the rotational energy profiles back towards the gas phase profiles and thereby 

counteracting the intended effect of better modeling charge polarization.  

We describe here modifications to the protein backbone parameters that at least partially 

address these issues. We continue our previous philosophy for the Amber “SB” (Stony Brook) 

force fields, assuming that physics-based force field development can provide excellent models 

with good transferability beyond their training data. Different approaches also have merit, such 

as in CHARMM, where physics-based training is followed by iterative rounds of empirical 
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adjustments that improve match to experimental data12, 49. The recent a99SB-disp model29 

derives from our ff99SB, followed by extensive empirical refitting of torsion parameters, 

nonbonded pair interactions, atomic partial charges and water dispersion energetics in order to 

improve agreement with experiments. Likewise, the recent ForceBalance approach is a 

promising method to automate iterative improvement through iterative cycles of fitting and 

comparison to experiment50. These adjustments can significantly enhance agreement with 

experiment, but the complex mapping of experimental observables to individual force field terms 

can also lead to the introduction of fortuitous (and non-transferable) cancellation of error 

between the various force field components. We attempt here to overcome the ff14SB 

weaknesses discussed above by a more self-consistent reconsideration of the physics-based 

training of protein backbone energetics, developing improved backbone parameters based on 

fitting to a wider variety of high-level QM, and eliminating a series of inconsistencies in past 

fitting that are likely to have negatively impacted the resulting models.  

The first departure from ff14SB relates to the training data and the function for backbone 

energies. Here we fit the entire φ/ψ 2D QM energy surface (generated using 2D φ/ψ 

conformational scans), rather than just local minima as in ff99SB/ff14SB. This will eliminate the 

problem of unconstrained energies outside the energy minima. We used a 2D function to fit this 

surface, rather than independent 1D cosine terms for φ and ψ. This explicitly accounts for 

coupling between these correction terms. As shown in Results, the correction profile needed to 

match the ff14SB MM to QM for the ψ rotation differs depending on the value of φ. In other 

words, in ff99SB/ff14SB, it is not possible to use a 1D correction profile to accurately reproduce 

QM energy profiles for ψ at all values of φ and vice versa. This 2D “CMAP” approach was 

pioneered in the CHARMM force field51, and extended here. The CMAP approach also was used 
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for backbone fitting in RSFF2+CMAP44b, but in that case the free energy surface derived from 

PDB statistics was used as the fitting target, rather than QM data as we use here. Previously, the 

“CMAP” approach was employed by other Amber force fields as well. In ff99IDPs/ff14IDPs28b, 

45, the 2D energy profile was fit against statistical data from a PDB coil library. In ff12SB-

cMAP38, the CMAPs adjusted only the relative depths of minima (such as α basin vs. β basin) 

adjusted using a CMAP by fitting to helical propensities and β strand population in MD. 

The second difference from ff14SB is that we address the polarization inconsistency during 

dihedral parameter fitting. While fitting the entire gas phase surface using CMAPs would ensure 

sampling of energies for regions populated in solution, a significant problem arises during 

dihedral fitting when comparing in vacuo energies between QM and MM. The MM fixed partial 

charges in most non-polarizable Amber models are traditionally fit to HF-level QM, which 

results in partial charges larger than expected in the gas phase, intending to mimic the higher 

dipoles induced in aqueous solution and avoid the need to explicitly include polarization in the 

FF calculation48. However, using these “pre-polarized” charges during dihedral fitting to 

reproduced higher level QM gas phase energies introduces error, and enforcing a match results 

in dihedral parameters that (at least partially) cancel out the effect of charge polarization. The 

ff03 Amber model addressed this by fitting new charges to QM calculations in low-dielectric 

organic solvent52, but the subsequent protocol for backbone dihedral fitting (also in organic 

solvent) resulted in erroneous double-counting of solvation effects53. The recent “ipq” force 

fields21, 23 addressed polarization inconsistency by using two independent charge sets, one for 

MD, fit to QM calculations that included a specific explicit water model54 that was used in MD 

simulations, while a second set of gas-phase partial charges was used during fitting dihedrals 

corrections to gas-phase QM rotational energy profiles. Our approach differs; we train backbone 
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dihedrals using the same pre-polarized MM charges as used in MD, but using continuum 

aqueous solvation rather than gas-phase energies, and with reference QM data also in aqueous 

implicit solvent to resolve the gas/aqueous phase inconsistency (following precedent in RNA 

parameter fitting53, 55). An additional benefit of fitting against QM data in solution is that the 

target energy surfaces will reflect conformation-dependent changes in solvent-induced 

polarization, which are then incorporated into the CMAP even though the MM model uses fixed 

partial atomic charges.56 These effects are missing in other current models (such as the “ipq” 

models) since dihedral fitting is done in the gas phase21, 23. 

More accurate reproduction of the QM training surfaces and resolving polarization 

inconsistencies allow us to undertake the third difference from ff14SB, that of exploring amino-

acid specific correction maps. Amber already used separate parameters for proline and glycine, 

and finer differentiation is a reasonable next step. We believe that optimizing amino-acid specific 

backbone parameters using uncoupled functions for φ and ψ (as done by other groups23, 28a) is 

unlikely to result in significant improvement for ff14SB since these are not able to accurately 

reproduce the QM training data even for a single amino acid (see Results). For example, despite 

fitting sets of uncoupled cosine parameters for several groups of amino acids, simulations using 

the ff15ipq23 force field show reduced accuracy for β-branched amino acids23. 

Alanine and valine (together with other β-branched isoleucine and threonine) are 

conformational outliers, justifying separate CMAP treatment. Alanine is very helical, whereas 

valine has a very flat φ distribution according to PDB φ/ψ distributions (Figure 2). Many 

residues exhibit conformational preferences between those of alanine and valine. Leucine is 

likely a better model for most amino acids (since all but Ala and Gly include a γ-carbon). We 

therefore used the CMAP fit to Leu for several other amino acids, including those with aromatic 
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rings (Phe, Trp, Tyr) and nonpolar but non- β-branched side chains (Met) and the three 

protonation states of His (His+, Hisδ, Hisε). Polar or charged side chains (Ser, Cys, Thr, Asp-, 

Asp, Asn, Glu-, Glu, Gln, Arg+, Lys+) all received individual CMAPs, Pro received its own 

CMAP and the β-branched Ile used the CMAP fit to the similar Val. Other force fields also fit 

different parameters for different amino acids. For example in Amber fb1557, full scanning over 

φ/ψ and χ1/χ2 dihedrals were performed for each amino acid, then the 4D φ/ψ/χ1/χ2 grid was 

mapped onto 2D φ/ψ grid by searching for lowest energy side chain conformation at each φ/ψ. 

Then, uncoupled (1D) cosine functions were used for each dihedral φ, ψ, χ1 and χ2, with all 

phases and amplitudes fit simultaneously. Here, we fit 2D CMAPs to φ/ψ energy maps using a 

single rotamer for each amino acid, in order to avoid transferring errors in the χ energy profiles 

into the φ/ψ correction, as could happen if the φ/ψ grid points also vary in χ values. 

Finally, we examine possible dependence of the backbone CMAP on side chain rotamer. In 

ff99SB and ff14SB backbone training (also CHARMM12), the coupling between backbone and 

rotamer was avoided by using the ff94 approach of Ala as a model for all other amino acids, thus 

ignoring any possible backbone-sidechain coupling correction. To account for rotamer 

dependency in RSFF2+CMAP44b, the 2-dimensional ϕ/ψ CMAP was supplemented by the use of  

additional  two-dimensional free energy surfaces including ϕ/χ1 and ψ/χ1. Here, we find that the 

2D CMAPs that we fit to QM data in solution, in combination with the high-quality side chain 

energy profiles from ff14SB, result in a model that is reasonably transferable to side chain 

rotamers not included in the training data. 

Extensive MD simulations (a total of ~5 milliseconds in explicit water) were performed to 

validate the performance of the ff19SB model. We show below that ff19SB, using amino-acid 

specific training against QM data with solvent polarization, reproduces the amino-acid specific 
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differences in crystallographic Ramachandran maps and experimental helical propensities much 

better than ff14SB or other older Amber models. We also show that the QM-based ff19SB is in 

reasonable agreement with experiments when combined with an accurate solvent model, while 

ff14SB performs poorly with the same solvent model and relies on cancellation of error with the 

less accurate TIP3P model in order to reproduce properties such as the helical content a Baldwin-

type peptide. We conclude that an inherent underestimation of helicity is present in ff14SB, 

which is (inexactly) compensated by an increase in helical content driven that is likely driven by 

the reported29-30, 58 TIP3P bias toward overly compact structures. The improvements in modeling 

helicity with ff19SB do not appear to result in less accurate performance on β systems. With 

ff19SB, the overall excellent performance of ff14SB and ff99SB in NMR order parameter 

reproduction is also generally maintained with even smaller RMSD values relative to 

experimental structures. Future work will examine the performance of ff19SB on IDP model 

systems. 

 

Methods  

Additional methods details are provided in Supporting Information.  

Structure preparation & simulations 

Unless noted otherwise, all crystal and NMR structures were downloaded from the PDB59 at 

www.rcsb.org. Alternate structures including fully extended and fully helical used to initiate 

some simulations were built via the LEaP module of AmberTools in the Amber v16 software4. 

Helical and extended conformations are defined as (φ, ψ) = (-60°, -45°) and (φ, ψ) = (-180°, -

180°) In explicit solvent MD simulations, TIP3P60, OPC32 SPC/Eb
24 and fb361  solvent models 

were used to solvate systems as noted. A truncated octahedron periodic box was used for all 
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simulations. Implicit solvent MD simulations with GBneck2 parameter set62 of the GBneck 

solvent model63 and ff14SB10 were performed to generate additional initial structures. ff14SB10, 

ff15ipq23, fb1557 and ff19SB were used for explicit solvent MD simulations as noted. System-

specific details are discussed below with additional details in Table S1.  

Dipeptides 

Acetyl and N-methyl capped dipeptides of the natural amino-acids (Ace-X-Nme) were used for 

force field training and testing. In training, 16 amino acids (including two protonation states of 

Asp and Glu, but excluding Ile, Trp, Tyr, Phe, Met and His) were fully scanned in backbone 

dihedral space using implicit solvation (see Structure preparation & simulations and 

Geometry scanning). In testing, helical and extended conformations for all natural amino acids 

(including two protonation states each for Glu and Asp side chains, and three protonation states 

for His side chain) were used as initial structures in 800 ns MD simulations. The number of 

explicit water molecules was equalized across all dipeptide systems and solvent models (Table 

S1).This was achieved by adjusting the value of buffer distance until desired number of water 

molecules was obtained. Four combinations including ff14SB10+TIP3P60, ff14SB10+OPC32, 

ff19SB+TIP3P60 and ff19SB+OPC32 were tested for dipeptides. 

Ala5 

Ala5 with a free N- and protonated C-terminus was used in simulation, corresponding to pH=2 

used in the NMR studies43 (see Parameter derivation for protonated C-terminal Ala). Both 

helical and extended conformations were used as initial structures for 800 ns MD simulations. 

The number of water molecules was equalized across all runs (Table S1). Four combinations 

including ff14SB10+TIP3P60, ff14SB10+OPC32, ff19SB+TIP3P60 and ff19SB+OPC32 were tested 

for Ala5. 
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A4XA4 and A9XA9 peptides 

Acetyl and NH2 capped polypeptides (matching pH=7 in NMR39) of the 20 natural amino-

acids (A4XA4: Ace-A4XA4-NH2 where X denotes the amino acid tested) were used to test 

amino-acid specific helical propensities. Two independent runs of 800 ns each starting from the 

helical and extended conformations were initially performed with ff14SB10+GBneck262, and 

cluster analysis (see Cluster analysis) was carried out on the combined trajectory. Cluster 

centroids from the top four clusters, together with helical and extended conformations were then 

selected as initial structures for MD simulations in explicit solvent (~4000 water molecules for 

both OPC and TIP3P runs, see Table S1). Each of these six initial structures seeded two 

independent runs each with different initial velocity assignment (using ig=-1 in Amber). 

Therefore, a total of 12 initial states were simulated for 3.2 μs each, in each explicit solvent, for 

each one of the 21 or 12 peptide sequences, for a total of 4146 μs for all force field + solvent 

model combinations (see Table S1). Helical propensities were calculated using six FF+water 

combinations including ff14SB10+TIP3P60, ff14SB10+OPC32, ff19SB+TIP3P60,  ff19SB+OPC32, 

ff15ipq23+SPC/Eb
24

 and fb1557+fb361.   

Acetyl and NH2 capped polypeptides of the 20 natural amino-acids in a longer peptide 

(A9XA9: Ace-A9XA9-NH2 where X denotes the amino acid tested) were used to test the 

sensitivity of the helical propensities to chain length. Two independent runs, starting from helical 

and extended conformations, were initially performed for 800 ns with ff14SB+GBneck2, and 

cluster analysis (see Cluster analysis) was carried out on the combined trajectory. Cluster 

centroids from the top four clusters were then selected as initial structures for additional MD 

simulations in GBneck2. Each of these six initial structures seeded two independent runs with 

different initial velocity assignment (using ig=-1 in Amber). Therefore, a total number of 12 
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initial states were simulated in ff14SB10+GBneck262 for each one of the 20 Ace-A9XA9-NH2 

systems, and each simulation was 2 μs long, for a total of 480 μs. These A9XA9 results were 

compared to data from A4XA4 (also in ff14SB10+GBneck262) by extending the 800ns 

simulations described above to 2 μs. 

K19 helical peptide 

Consistent with our previous work10, 64, the sequence of Ace-GGG(KAAAA)3K-NH2 was 

chosen to validate parameter quality in folding helices. Since it was unfeasible to run long 

simulations starting from fully extended conformations that require very large numbers of water 

molecules to solvate, a fully extended conformation was not selected for explicit solvent 

simulations. For instance, 12000 water molecules would be needed to solvate a fully extended 

conformation of K19 with 8 Å buffer. Instead, several semi-extended initial conformations were 

generated. Two independent runs starting from helical and extended conformations were run for 

800 ns with ff14SB10+GBneck262, and clustering analysis (see Cluster analysis) was performed 

on the combined trajectory. The cluster centroids (Figure S1) from the top 1st and 2nd were 

disregarded because both were partially helical with 2.7 Å and 4.4 Å RMSD (backbone C, N, CA 

atoms) referenced to a fully helical conformation. Therefore, the centroids from top 3rd (c2), 4th 

(3), 5th (c4) and 6th (c5) clusters were selected as semi-extended. Both semi-extended and helical 

conformations  were immersed in explicit water. The number of water molecules was equalized 

across all runs (Table S1). Each initial structure was used for two independent runs with random 

initial velocity assignment (ig=-1 in Amber). Therefore, a total of 10 initial states were simulated 

with each force field + explicit solvent combination, and each simulation was 3.2 μs. Three 

combinations including ff14SB10+TIP3P60, ff14SB10+OPC32, and ff19SB+OPC32 were tested for 

K19, for a total of 96 μs simulation. 
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CLN025 hairpin  

CLN025 (PDBID: 2RVD65, +H3N-YDPETGTWY-COO-) is an engineered fast-folding hairpin 

that is a thermally optimized variant of Chignolin66. The native conformation was chosen as the 

5th conformation in the NMR ensemble65 since that conformation was closest to the average of 

the NMR ensemble. A fully extended conformation of the same sequence was also used, and 

four independent runs (ig=-1 in Amber) were performed with an explicit solvent for both native 

and extended conformations. Each simulation was 7.2 μs long and the number of water 

molecules was equalized across all runs (Table S1). Three combinations including 

ff14SB10+TIP3P60, ff14SB10+OPC32, and ff19SB+OPC32 were tested for CLN025 for a total of 

172.8 μs. A cutoff of 1.5 Å RMSD was chosen to delineate native from non-native structures 

because the highest population peak at low RMSD across all force field + solvent models ends 

near 1.5 Å (Figure S2).   

Folded proteins 

Three folded proteins were simulated for comparison to NMR-based backbone dynamics 

measurements. First was the third Igg-binding domain of protein G (GB3). The native structure 

was defined from a liquid crystal NMR structure (PDBID: 1P7E67). Second was Ubiquitin (Ubq), 

with the native structure defined from a crystal structure (PDBID: 1UBQ68). Third was hen egg 

white Lysozyme (HEWL), with the native structure defined from a crystal structure (PDBID: 

6LYT69). Four independent runs with random initial velocity assignment (ig=-1 in Amber) were 

performed for each system in explicit solvent. Each simulation was 200 ns long and the number 

of water molecules was equalized across runs for each system (Table S1). These folded proteins 

were tested using three combinations including ff14SB10+TIP3P60, ff14SB10+OPC32, and 

ff19SB+OPC32. 
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Geometry scanning  

Backbone geometry scans were performed to generate structures for parameter training. All 

scans were carried out via the LEaP module of AmberTools in Amber v16 software4, 70. All 16 

dipeptides (see Dipeptides) were 2D scanned on φ and ψ dihedrals over ranges of -180° to 165° 

with an interval of 15°. For glycine dipeptide, a finer grid scanning with an interval of 5° was 

performed in the βregion (-180° to -125° and 120° to 175° on φ and ψ dihedrals) resulting in an 

additional 12*12 finer grid. We observed that the QM energy surface near βis highly sensitive to 

the  selected grid point and using 15° interval might unintentionally miss the energy at the true 

minimum. For proline dipeptide, structures were limited to -180° to 120° on φ in order to 

exclude structures with excessive ring strain. For dipeptides containing one or more heavy atom 

χ dihedrals (Val, Leu, Ash, Asp-, Asn, Glh, Glu-, Gln, Lys+, Arg+, but excepting Ser, Cys and 

Thr, see below; Ash and Glh are neutral Asp and Glu, respectively), χ dihedral values were 

initialized to the most populated rotamer for that amino acid, according to Lovell’s rotamer 

library42. 

Molecular mechanics (MM) optimization and energy calculations 

For Cys and Met, Lennard-Jones (LJ) parameters were taken from GAFF2 for sulfur and 

hydrogen (in -SH and –S-) for CMAP fitting, and also incorporated into ff19SB. This was done 

to keep consistent with the most recent LJ parametrization on these atoms performed by Wang et 

al71.  

Unless otherwise noted, use of the term “GBSA” in this paper denotes the combination of 

GBneck2 (igb=8 in Amber) and SASA (gbsa=1 in Amber). 

Dipeptide structures were minimized with restraints after geometry scanning. MM 

optimization and energy calculations were performed with Amber v164, 70 using ff14SB10 and 
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GBneck262 implicit solvent model with the mbondi3 radii set62 for polar solvation and SASA-

based nonpolar solvation72. The default 0.005 kcal mol-1 Å-1 surface tension was adopted. 

Dipeptides taken from geometry scanning were minimized using ff14SB10 and GBSA 

including restraints on φ and ψ values with harmonic force constant of 1000 kcal mol-1 rad-2.  All 

χ dihedrals were relaxed during minimization without restraints, except Ser, Cys and Thr, for 

which the χ2 dihedral (defined as CA-CB-OG-HG for Ser, CA-CB-SG-HG for Cys and CA-CB-

OG1-HG1 for Thr) was restrained (10 kcal mol-1 rad-2) to 165° to prevent the hydroxyl or 

sulfhydryl group from approaching too closely to the backbone amides during minimization. As 

we noted for ff14SB10, this was done to avoid incorporating into the backbone dihedral 

parameters any difference between the quantum mechanical (QM) and MM models in the short-

range potential between side chain and backbone.  

We adopted the strategy of initializing all structures on the grid at the same rotamer 

conformation, then minimizing with backbone restraints to relax the rotamer to a local minimum. 

The rationale for using a single initial rotamer for the entire φ/ψ grid scan is to reduce the 

likelihood of transferring any errors in the ff14SB side chain rotamer energy profiles to the 

CMAP (which can occur if neighboring grid points also differ significantly in χ dihedral values). 

The same relaxed rotamer was used in the QM calculations (discussed below).  

Structures were minimized for a maximum of 10,000 cycles in ff14SB+GBSA with no cutoff 

on non-bonded interactions. Steepest descent was employed for the first 10 cycles in the 

minimization and conjugate gradient for the following cycles. The convergence criterion for 

energy gradient is when the root-mean-square of the Cartesian elements of the gradient is less 

than 10-4 kcal mol-1 Å-1. Single point energies were calculated for the MM-optimized structures 

using ff14SB00+GBSA. ff14SB00 is defined as the original ff14SB10 force field with the 
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amplitudes of dihedrals sharing the same central two atoms with φ and ψ (C-N-CA-C, C-N-CA-

CB, N-CA-C-N, CB-CA-C-N, HA-CA-C=O) set to zero (see the content of the Amber frcmod-

format data in Table S2).  

CMAP fitting groups 

A total of 16 CMAPs were fit and then applied to the 20 natural amino acids with several 

having alternate protonation states (Table S3). CMAPs are only applied to central residues but 

not to uncapped terminal residues. Ala, Gly, Pro were fit separately because the allowable 

regions in Ramachandran plot according to PDB are notably different from each other.73 Ser, Cys 

and Thr were fit separately from others because of the proximity of the polar group to the 

backbone, and from each other because the polarity of their side chains is different (Ser vs. Cys) 

or the side chain β-branching structure is different (Ser vs. Thr). Val CMAP was fit and applied 

to both Val and Ile since Val and Ile are the only two amino acids having β-branched non-polar 

side chain. Arg+, Lys+, Asp-, Ash, Asn, Glu-, Glh and Gln were fit separately because the charge 

state is different (Arg+ and Lys+ vs. Asp- and Glu-), the polarity of side chain is different (Arg+ 

vs. Lys+, Asp- vs. Ash vs. Asn, Glu- vs. Glh vs. Gln), or the length of side chain is different (Asp- 

vs. Glu-, Ash vs. Glh, Asn vs. Gln). Leu CMAP was fit and applied to long non-polar and non-

charged side chains including amino acids with aromatic rings (Phe, Trp and Tyr), Met, Cys in 

disulfide bonds (Cyx) and Cys interacting with metal (Cym). Leu CMAP was also applied to the 

three protonation states of His (His+, Hisε, Hisδ).  

CMAP fitting 

A CMAP is defined by a 24*24 grid that is evenly spaced (15°) in φ/ψ dihedral space, the 

same spacing as used in C22/CMAP40a, C3613b, C36m40b and RSFF28a, 44 force fields. At each 

grid point, the energy Ucmap(φ, ψ)  corresponds to the following: 
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𝑈𝑐𝑚𝑎𝑝(𝜑, 𝜓)  = 𝐸𝑄𝑀
𝑔𝑎𝑠

+ 𝐸𝑄𝑀
𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

+ 𝐸𝑄𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 − (𝐸𝑀𝑀

𝑓𝑓14𝑆𝐵00
+ 𝐸𝑀𝑀

𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛)  (1), 

where 𝐸𝑄𝑀
𝑔𝑎𝑠

 represents gas-phase QM energy, 𝐸𝑄𝑀
𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

represents the contribution from 

solute-solvent polarization from QM solvation and 𝐸𝑄𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 represents the remaining specific 

solvation effects in QM. 𝐸𝑀𝑀
𝑓𝑓14𝑆𝐵00

 represents MM energy calculated in ff14SB00 (Table S2) 

using pre-polarized charges, and 𝐸𝑀𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 represents MM solvation energy calculated in GBSA. 

In practice, 𝐸𝑄𝑀
𝑔𝑎𝑠

, 𝐸𝑄𝑀
𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 and 𝐸𝑄𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛  cannot be separated since the solute electron 

density is evaluated self-consistently with the solvent polarization represented in a reaction field.  

In Amber, the CMAP grid is represented using a bicubic spline function 

𝑈𝑐𝑚𝑎𝑝(𝜑, 𝜓) =  ∑ ∑ 𝑎𝑖𝑗𝜑𝑖𝜓𝑗3
𝑗=0

3
𝑖=0         (2), 

where φ and ψ are dihedral values in radians, and aij are coefficients that are solved from a set 

of linear equations derived from values at the 4 corners of the grid cell74. This function is used to 

interpolate MM energy at any arbitrary φ/ψ dihedral.  

The resulting CMAP forces are calculated by the chain rule and added to the total forces75. The 

CMAPs are intended to be used as direct replacement for the cosine-based φ/ψ dihedral terms in 

ff14SB and should not be combined with those cosine terms. The CMAP code was originally 

implemented in Amber with the support of CHAmber module75. Further details are provided in 

Supporting Information.  

QM energies in solution 

To calculate 𝐸𝑄𝑀
𝑔𝑎𝑠

+ 𝐸𝑄𝑀
𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

+ 𝐸𝑄𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 (Equation 1), we used the SMD solvent model 

that includes both polar and nonpolar solvation components76. The polar component uses the 

integral-equation-formalism polarizable continuum model (IEFPCM)77, where the solute cavity 

is defined through superposition of atom-centered spheres with reparametrized “intrinsic radii”.  
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The non-polar component is a product of the solvent-accessible surface area (SASA) and the 

surface tension, which is a function of several element-specific parameters. These empirical 

parameters for effective radii and surface tension were iteratively optimized to reproduce 2346 

solvation free energies of both neutral solutes and ions76. In the original work76, the authors 

concluded that among various QM theories used in their parameter fitting, the DFT method 

M05-2X78 yielded the best performance. Taking these results into consideration, particularly 

performance for amides, we selected the hybrid functional M05-2X with basis set 6-311G** 

together with SMD to compute the total solvation energy in QM. In the original paper76, 6-

31+G** was shown to have smaller mean unsigned error in aqueous solvation free energy for all 

tested molecules, including four amides, compared to other basis sets such as MIDI!6D, 6-31G* 

and cc-pVTZ. The diffuse functions in 6-31+G**, however, cause convergence issues in some of 

our calculations where the geometries are far from equilibrium. Instead, we use the comparable 

6-311G** basis set. We also tested whether M05-2X/6-311G** is accurate in calculating 

conformational energies of Ala dipeptide in gas-phase (see SI: Comparing various methods on 

QM energy calculations in gas phase). The calculated average relative energy error (see 

Methods: Average relative energy error (REE) calculation) against MP2/cc-pVQZ for nine 

conformations of Ala dipeptide is ~0.35 kcal/mol, very close to MP2/cc-pVTZ level of accuracy 

(average REE = 0.2 kcal/mol). Based on our results, M05-2X/6-311G** is reasonably accurate 

relative to MP2/cc-pVQZ at reproducing relative energy of Ala dipeptides in gas phase (Figure 

S3), and errors are likely comparable to those arising from other sources such as the spacing of 

the grid scan and fundamental inaccuracies in the MM  treatment.  

QM optimization and energy calculations 
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QM calculations were performed with Gaussian 0979. Geometry optimizations and single point 

energy calculations were performed on the 16 dipeptides at the M05-2X/6-311G**/SMD level of 

theory78. Grimme’s dispersion correction with the original D3 damping function80 was used to 

correct for long-range dispersion. The solvation environment was represented as a self-consistent 

reaction field, with exterior dielectric set to default 78.3553, using SMD76 with consideration of 

both polar and nonpolar solvation energy components.  

Very tight optimization convergence criterion was used to generate data for fitting. To 

maintain the structure on the φ/ψ grid, one of the dihedrals sharing the same central two atoms 

with φ, and one dihedral sharing the central two atoms with ψ were constrained to the values 

from the structures taken from the last step of MM optimization. In order to avoid inclusion of 

errors in the χ energy profiles into the QM-MM energy difference used for CMAP fitting, we 

also restrained one of the dihedrals for each χ dihedral to the value from the last step of MM 

optimization (see Molecular mechanics (MM) optimization and energy calculations) (details 

on restrained dihedrals provided in Table S4).  

For glycine dipeptide, QM optimization and energy calculations were done on both 24*24 

coarse grid with 15° interval (same as other amino acids) and 12*12 sub-grid with 5° interval 

(specific to glycine). In the region with fine grid data, the QM energies of coarse grid points 

were replaced with lowest energy in the surrounding fine grid points (within 10° from the coarse 

grid). This was only done for QM energy calculations on Gly. MM calculations on Gly were 

performed the same as other amino acids, and the 24x24 grids were used to obtain the CMAPs. 

Average relative energy error (REE) calculation 

Unless otherwise noted, average REE between two sets of energies were calculated as 

following: 
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𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝐸𝐸 =  
2

𝑁∗(𝑁−1)
∑ ∑ |(𝐸𝑖

𝑎 − 𝐸𝑗
𝑎) − (𝐸𝑖

𝑏 − 𝐸𝑗
𝑏)|𝑁

𝑗>𝑖
𝑁−1
𝑖      (3), 

where N is the number of conformations. 𝐸𝑖
𝑎  and 𝐸𝑗

𝑎  are energies calculated in method “a” 

(QM, MM, etc) of conformation i and j. 𝐸𝑖
𝑏 and 𝐸𝑗

𝑏 are energies calculated in method “b” (QM, 

MM, etc) of conformation i and j. 

Parameter derivation for protonated C-terminal Ala 

Following the original RESP method for peptide partial charge assignment6b, 48b, new charges 

were fit using the RESP approach for an Ala residue with a protonated C-terminus. The model 

system for fitting was Ala with a protonated C-terminus and an acetylated N-terminus (using 

existing charges for this capping group). Helical and extended conformations were used for 

RESP fitting. The partial charges on all atoms except the –COOH group were restrained to the 

charges from ff9448a while the –COOH charges were refit via RESP. QM calculation was 

performed with Gaussian 0979.  HF/6-31G* was used for geometry optimization. MK81 

population analysis was performed on the optimized geometry. Antechamber, espgen and 

residuegen as implemented in Amber v1670 were used in RESP fitting.  

The resulting atomic charges are listed in Table S5. The –COOH functional group in the 

protonated C-terminal Ala was assigned the same atom types as –COOH in side chains of Alh or 

Glh, thus sharing existing bonds, angles, dihedral and LJ parameters. When simulating a system 

with a protonated (uncapped) C-terminal Ala in ff19SB, standard ff14SB parameters were 

applied to the C-terminal residue without application of a CMAP due to lack of C-terminal 

amide.   

MD simulations  

The following methods were used for all MD simulations unless otherwise noted. Bonds to 

hydrogen atoms were constrained with the SHAKE algorithm82 using a geometrical tolerance of 
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0.000001Å. The direct space non-bonded interaction cutoff was 10.0 Å for explicit solvent 

simulations and 9999.0 (no cutoff) for implicit solvent simulation. Long-range electrostatic 

interactions in explicit solvent were calculated via the particle mesh Ewald (PME) approach83. 

There were a total of 9 steps of equilibration in both implicit and explicit simulations (see SI: 

MD equilibration).  For production runs, the time step was increased to 4 fs using the hydrogen-

mass repartitioning method implemented as described previously84, and explicit solvent 

simulations were changed to the NVT ensemble (ntb=1, ntp=0 in Amber). 

Cluster analysis  

Unless noted otherwise, cluster analysis was performed on the combined trajectories starting 

from helical and extended conformations. The hierarchical agglomerative (bottom-up) approach 

was used with average linkage (defined by RMSD of C, N and CA atoms) to generate a 

maximum of 10 clusters using default settings in Cpptraj85. Our goal was to identify alternate 

structures to initiate independent runs, thus we specified the number of clusters rather than a 

similarity metric for cluster members since structures other than the representative were not 

examined further. The representative structures extracted from these clusters were used as initial 

conformations in independent MD runs to check convergence.  

RMSD calculations 

Unless otherwise noted, all RMSD calculations were done on backbone C, N and CA atoms 

via Cpptraj85. In all cases, terminal residues and capping groups on termini were neglected.  

Helical propensity  

Following the Best et al.13a protocol of implementing Lifson-Roig model86 for computing 

helical propensities, we explored the helical propensities of each amino acid in the context of the 

sequence Ace-A4XA4-NH2 to compare to experimental data39. This model measures the 
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equilibrium properties of coil-to-helix transitions: three states are defined: coil, start/end of the 

helix, and within a helix. Their relative weights are 1, vi and wi, respectively. The start/end of the 

helix is defined when residue i is in the helical region but either of its two adjacent residues is 

not in the helical region. The residue within a helix is defined when residue i and its two adjacent 

residues are all in the helical region. Everything else is considered to be random coil within the 

model. A residue is considered helical if inside the α region using the basin definition in Table 

S6. The sensitivity to this definition was tested by calculating helical propensity with a wider 

range definition (Table S6 and Figure S4).  

Following Best et al.13a, the partition function for the blocked peptide of length N (N=9) is 

defined as: 

𝑍 = (0 0 1) ∏ 𝑀𝑖  (0 0 1)𝑇𝑁
𝑖=1 , where 𝑀𝑖 = |

𝑤𝑖 𝑣𝑖 0
0 0 1
𝑣𝑖 𝑣𝑖 1

|     (4), 

The log-likelihood that residue i will be assigned a helical propensity parameter wi is given by:  

𝑙𝑛(𝐿)  = ∑ 𝑁𝑤,𝑖𝑙𝑛(𝑤𝑖)𝑖 + ∑ 𝑁𝑣,𝑖𝑙𝑛(𝑣𝑖)𝑖  − 𝑁𝑘𝑙𝑛(𝑍)      (5), 

where vi and wi are the parameters for fitting, Nk is the total number of frames in the 

simulation, Nw,i and Nv,i are the total number of times in the simulation that residue i is within a 

helix and start/end of a helix, respectively. More specifically, Nw,i is incremented if residue i is 

within a helix and Nv,i is incremented if residue i is start/end of a helix. The subscript i indicates 

the amino acid (Ala, Val, Leu, etc). The model parameters (v and w), and their distributions, 

were optimized by following the genetic algorithm protocol of Perez et al.38 to maximize the 

objective function, ln(L), which maximized the likeliness of residue i being assigned to specific v 

and w. Mutation and crossover moves were performed to change ln(wi) and ln(vi), with a rate of 

0.3 and 0.7 respectively. A total of 1000 genetic optimization cycles were performed to yield 
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specific v and w for residue i. vala and wala were initially evaluated for all Ala in the capped 

A4AA4 peptide, then vi and wi for X were evaluated in capped A4XA4 peptide with v and w 

parameters for Ala being fixed to the values of previously optimized vala  and wala.  The helical 

propensity data (from both NMR and MD) are provided in Table S7 and Table S8. 

 

Bootstrapping analysis on helical propensity 

In order to quantify the uncertainty of the computed w, bootstrapping analysis was performed 

for each system. When the sample size is insufficient for straightforward statistical inference, 

bootstrapping provides a way to account for the distortions caused by a specific sample that may 

not be fully representative of the population. First, a combined trajectory from 12 independent 

runs of each A4XA4 (3.2 μs for each run) was used to fit the v and w for that X. Second, the 

combined trajectory was split into 10 segments with same length. Third, 50 times of resampling 

with replacement were done on the 10 sub-trajectories. This step generated 50 trajectories with 

the same length of the initially combined one (3.2 μs * 12) but with some segments repeated. 50x 

resampling has been suggested to lead to reasonable standard error estimates87. Lastly, we fit the 

v and w parameters with each of the 50 trajectories respectively and calculated the standard 

deviation of the 50 resulting w values for each amino acid. According to the distribution of the 

sampled w parameters (Figure S6), all amino acids have a high peak and a narrow range on w 

which suggests good quality sampling and precise estimates of helical propensity. 

NMR scalar coupling calculations 

Following Best et al.15 and our previous work88, scalar couplings were calculated from 

simulations using Karplus relations89 and the “Orig parameters”90 also adopted by Graf et al.43. 
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To quantify the discrepancy between experimental scalar couplings and those calculated from 

simulation, χ2 error was defined in Best et al.’s work15 and also here as: 

𝜒2 =  𝑁−1 ∑ (〈𝐽𝑗〉𝑠𝑖𝑚 − 𝐽𝑗,𝑒𝑥𝑝)2 𝜎𝑗
2⁄𝑁

𝑗=1        (6) 

where N is the total number of scalar coupling types,  <Jj>sim is the averaged scalar coupling 

from the simulation for scalar coupling type j. Jj,exp is the NMR data for type j. σj is the estimated 

systematic error of the Karplus equation for type j adopted by both Best et al.’s work15 and our 

previous work88. Precision of χ2 is estimated as half the difference of χ2 calculated from two 

simulations starting from either helical or extended conformation. For dipeptides, Table S9 lists 

3JHNHA data and an estimated systematic error of 0.91 was used in the χ2 calculation15, 88. For 

Ala5, Table S10 lists all scalar coupling types and the corresponding systematic errors10.  Since 

the NMR data91 were measured at pH=4.9, side chains for Arg, Lys and His were modeled in 

protonated state. For Glu and Asp, both deprotonated and protonated states were simulated, and 

the error was reported as a weighted average value. Constant pH simulations were performed to 

obtain the appropriate ratio of protonated state versus deprotonated state respectively.  

Constant pH simulation 

Constant pH simulations of 800 ns with TIP3P60 and OPC32 explicit solvent were performed 

on the capped dipeptide forms for the titratable residues Glu and Asp. Initially, these titratable 

residues were assigned to be protonated, and the state change was attempted every 100 MD steps 

through Monte Carlo approach using a Generalized Born implicit solvent model (igb=2)92 which 

was the model used to parameterize the reference compounds in constant pH simulation93. 

Following published protocol, the intrinsic Born radii of carboxylate oxygen atoms were shrunk 

in order to reduce artifacts arising from including all four alternate hydrogen atom positions in 

the GB descreening calculation.93 200 steps of explicit solvent relaxation dynamics (in which the 
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solute was held fixed) were performed before resuming simulation if any protonation states were 

changed93. The solvent pH value was set to 4.9 in agreement with the NMR experiment91. The 

rest of the input was retained from the standard MD protocol described above.  

These constant pH simulations have limitations, such as using an older GB model92 (igb=2) for 

reference compound energy, and neglect of updating dihedral parameters when protonation state 

switches93. Therefore, the constant pH simulations were only used to estimate the percentage of 

protonation states for titratable residues, and the sampled ensembles were not used directly for χ2 

analysis. The χ2 analysis was performed on the combination of protonated and deprotonated 

trajectories in explicit water, weighted by the ratio of protonated state versus deprotonated state 

obtained from constant pH MD. 

NMR order parameters 

The ability of a force field to model local dynamics accurately in well-folded proteins in 

solution was examined by comparing to NMR experimental backbone NH S2 order parameters 

for GB367, ubiquitin68 and lysozyme69. We adopted the model-free approach originally proposed 

by Lipari and Szabo94 and used iRED95 as implemented in Cpptraj. iRED is based on a 

covariance matrix analysis of inter-nuclear vector orientations, represented by spherical 

harmonics, extracted from MD simulations. For this analysis, we averaged iRED results 

calculated for windows of length five times the tumbling correlation time (τc), which was 

suggested to best reproduce the model-free S2 order parameters96. Thus, window sizes of 2 ns, 4 

ns and 8 ns were used for GB3, ubiquitin and lysozyme respectively, in agreement with previous 

work97. The uncertainties in the computed S2 were calculated by taking the standard deviation 

from four independent MD runs. The absolute difference (AD) is computed between theoretical 

and experimental S2 for each residue.  
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Statistical analysis of PDB data 

To compare the φ/ψ distributions from simulation against PDB data, we used Lovell’s rotamer 

library42, 98 of 7957 high-resolution, quality-filtered protein chains to generate the PDB-based 

φ/ψ distributions. Two filters were applied to select a portion of the original 7957 structures. 

Firstly, only residues in coil and turn as defined by DSSP99 were selected. Secondly, these 

residues were eliminated if any of the backbone heavy atoms had B factors larger than 30.  

Biopython100 was used to apply the two filters against 7957 PDB files (PDB IDs and residue 

numbers of the filtered structures are provided in SI file pdbid_residue.csv. The script used to 

generate the filtered results are provided in SI file filtering_extract_phipsi.sh).  

 

Results and Discussion 

Backbone rotational energies in ff19SB compared to ff14SB 

Alanine and Glycine energetics. Backbone φ/ψ rotational energy profiles were analyzed for 

QM, ff19SB, ff14SB and CMAP (derived by subtracting ff14SB00 from QM energies on the 2D 

grid, see Methods). Ala and Gly are discussed first because they are the simplest with no 

significant side chain degrees of freedom. We performed 2D backbone rotation scans for the 

capped Ala and Gly dipeptides, followed by restrained minimization and energy evaluation with 

implicit solvent for QM and MM. The CMAPs were derived by subtracting MM from QM 

energies on the 2D grid. The ff19SB energies were obtained by adding the CMAP-based bicubic 

function to ff14SB00 (see Methods: Molecular mechanics (MM) optimization and energy 

calculations and CMAP fitting). As shown in Figure 3&4, the ff19SB energy profiles are 

nearly identical to the QM reference data, which was anticipated based on the training method. 

However, significant differences between ff14SB and QM are apparent. In ff14SB, the overall 



Page 37 of 81 

 

energy profiles are highly symmetric with little φ/ψ coupling, likely due to the lack of coupling 

between the ff14SB dihedral correction parameters. This coupling may arise from polarization 

changes as the amide dipoles become aligned in the helical conformation. The shape and location 

(the bin having lowest energy in the basin defined in Table S11) of the α basins from QM are 

poorly reproduced by ff14SB for both Ala and Gly. Importantly, the diagonal shape of the left- 

and right-handed α helical basins as observed in QM and ff19SB is poorly reproduced in ff14SB, 

which instead samples too deeply into negative φ for ψ < 0. In addition, for Ala, the C7
eq local 

minimum between ppII and αR in QM (Figure 3) is absent in ff14SB, but reproduced with 

ff19SB. For Gly, the QM energy barrier at φ = -120 / ψ = -60 is more accurate with ff19SB 

(Figure 4).  

 

Figure 3. Ala dipeptide Ramachandran potential energy surfaces (kcal/mol) calculated in (left) 

ff14SB+GBSA, (middle) QM+SMD and (right) ff19SB+GBSA. All energies were zeroed 

relative to the lowest energy in the ppII region (defined in Table S6). The values above the color 

bar range are depicted in dark red. Solid, labeled contours indicate integer energy values in 

kcal/mol, whereas dashed contours indicate half-integer energies. The bicubic spline 

interpolation implemented in Python was used to calculate values between grid points.   
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Figure 4. Gly dipeptide Ramachandran potential energy  surfaces (kcal/mol) calculated in (left) 

ff14SB+GBSA, (middle) QM+SMD and (right) ff19SB+GBSA. All energies were zeroed 

relative to the lowest energy at ppII region (defined in Table S6). The values above the color bar 

range are depicted in dark red. Solid, labeled contours indicate integer energy values in kcal/mol, 

whereas dashed contours indicate half-integer energies. The bicubic spline interpolation 

implemented in Python was used to calculate values between grid points.   

Overall, the deviation of ff14SB from QM for Ala and Gly is notable despite the use of QM 

data for multiple conformations of Ala3 and Gly3 during training of ff14SB/ff99SB backbone 

parameters. This relative weakness in ff99SB/ff14SB is likely a result of the use of only gas-

phase energy minima for training (thus lacking the compulsion to reproduce the entire basin 

shape, or even the locations of aqueous-phase minima), along with dihedral correction terms that 

lack φ/ψ coupling, resulting in an overly symmetric energy map. Use of the CMAP approach for 

ff19SB results in improved reproduction of the overall energy surfaces for both amino acids. 

We tested the impact of using QM in gas-phase as the target data. We fit an Ala dipeptide 

CMAP (same protocol as in CMAP fitting) against the grid surface of gas-phase QM energy 

instead of aqueous QM (Figure S7A), and ff14SB00 was used for gas-phase  MM energy. The 

resulting energy surface (ff_gas) applied in solution (Figure S7C) has an unusual shape of the αR 
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basin (extending much farther into ϕ<-120°), and the αL energy basin is unexpectedly deep as 

compared to the results obtained using the aqueous QM surfaces. We conclude that fitting 

CMAPs using solution QM & MM calculations is important for good results here. 

Amino acids with multiple side chain rotamers. The 2D CMAP training provides a “perfect” 

fit against the 2D reference QM data for Ala and Gly since no other significant rotational degrees 

of freedom are present. However, all other amino acids have longer side chains with additional 

degrees of freedom, and the situation becomes more complex since the energies (and their errors) 

depend on rotational degrees of freedom not sampled explicitly during CMAP training. While 

3D fitting might accommodate some amino acids such as Val or Ser, this rapidly becomes 

intractable. We first compare alanine and valine using the valine rotamer used in training, then 

evaluate the transferability of the Val CMAP to alternate Val rotamers. 

Our strategy to improving rotamer dependence extends the approach to improving 

transferability in the side chain parameters we used when developing ff14SB, where we assumed 

that the largest contribution to poor transferability of dihedral parameters arises from including 

structures in the training set that expose inaccuracies in the MM short-range nonbonded model 

that depend on degrees of freedom outside those being trained. If correction to these errors were 

to be incorporated into the backbone parameter for that φ/ψ grid point, it would be applied 

erroneously for conformations sampling the same φ/ψ values but with different rotamers that 

lack these inaccurate interaction energies. Therefore, rotamer dependency was addressed here by 

initializing all structures on each CMAP training φ/ψ grid at the same rotamer conformation, 

then locally relaxing the side chain conformations to relieve any backbone:sidechain steric 

clashes that were likely to be inaccurately modeled in MM. If corrections for training set 

structures with inaccurate backbone:rotamer MM energies were to be incorporated into the 
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backbone parameter for that φ/ψ grid point, the CMAP would have poor transferability to 

structures with the same φ/ψ values but with alternate rotamers that lack these inaccurately 

modeled interactions (see Methods: Molecular mechanics (MM) optimization and energy 

calculations).  

Comparison of Alanine and Valine Energy Surfaces. For Val, we selected the trans rotamer 

for CMAP training (Figure 5 first row). As shown in Figure 3 and Figure 5B, the QM profiles 

are qualitatively different between Ala and Val. Val prefers a flatter β/ppII transition region with 

a U-shape, while Ala has a higher barrier, a stronger preference of ppII over β, and a lower 

transition barrier between αR and ppII. The C7
eq local minimum between ppII and αR observed 

in Ala is absent in Val. In addition, the elongated diagonal shape of the αR and αL basins in Ala 

(indicating strong φ/ψ coupling) is quite different from the narrow circular minimum in Val. The 

energy minimum at φ = 60 and ψ -150 in Ala is shifted upwards at φ = 70 and ψ = -60 in Val. 

Importantly, these differences in the Ala/Val QM surfaces are reproduced poorly in ff14SB 

where the Ala and Val surfaces are generally too similar; both Ala and Val prefer ppII over β and 

have similar symmetric αR/αL basins (Figure 3(left) vs. Figure 5A).  
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Figure 5. Val dipeptide Ramachandran potential energy surfaces using the trans (t) rotamer, 

calculated in (A) ff14SB+GBSA, (B) QM+SMD and (C) ff19SB+GBSA, and using the gauche(-

) (g-) rotamer, calculated in (D) ff14SB+GBSA, (E) QM+SMD and (F) ff19SB+GBSA. The 

trans rotamer was used for ff19SB training. All energies were zeroed relative to the lowest 

energy at ppII region (Table S6). The values beyond the color bar range are depicted in dark red. 

Solid, labeled contours indicate integer energy values in kcal/mol and dashed contours indicate 

half-integer energies. The bicubic spline interpolation implemented in Python was used to 

calculate values between grid points.   

 

Transferability of ff19SB backbone parameters to different side chain rotamers 

We tested the ability of our approach to provide reasonable transferability of CMAPs between 

alternate rotamers using valine, for which the side chain rotamer is known to significantly 

influence backbone populations17, 42, 101. We switched the Val rotamer from trans to gauche(-), 
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calculating QM and MM φ/ψ energies for gauche(-) conformations, but keeping the Ala-based 

ff14SB and trans-based Val ff19SB MM parameters (Figure 5, bottom row). Even though 

ff19SB was fit using the trans rotamer, it reasonably reproduces the changes in the Val QM data 

from trans to gauche(-). For example, moving from trans to gauche(-), the α basins become 

more diagonal, αL extends farther into the upper left quadrant, the barrier between ppII and β 

increases, and the minimum at (90, -60) disappears. As seen with the Ala/Val comparison, 

ff14SB poorly reproduces each of these changes, and the overall energy profiles are generally 

much too similar between the two rotamers, inconsistent with the QM results. Even though the α 

basin is stabilized more and becomes wider from trans to gauche(-) for ff14SB, the energy 

profiles are still highly symmetric in both rotamers and the notable difference in the shape of α 

basins reflected by QM and ff19SB is poorly reproduced in ff14SB, along with a too-flat barrier 

between ppII and β. Furthermore, rather than the disappearance of the (90, -60) minimum as seen 

in QM and ff19SB, the two minima with positive φ values merge into a single minimum in the 

wrong location with ff14SB. Thus even though ff19SB was trained using a single rotamer for 

Val, it does a better job than ff14SB at reproducing the rotamer-dependent backbone profiles 

from the QM calculations. The results also demonstrate that the high quality match between QM 

and ff19SB is not simply the result of empirical fitting to an energy map with a single rotamer, 

but that the accurate reproduction of the QM profiles is maintained even when the map is 

qualitatively different for an alternate rotamer. To quantify the changes, we calculated average 

REE (see Methods: Average relative energy error (REE) calculation) between QM and MM 

for trans and gauche(-) as a function of QM energy range above the minimum (Figure S8). For 

structures having QM energy within 7 kcal/mol above the minimum, the average REE for the 

training rotamer trans are 1.78 kcal/mol and 0.03 kcal/mol for ff14SB and ff19SB respectively. 
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The average REE for the test rotamer gauche(-) are 1.39 kcal/mol and 0.89 kcal/mol for ff14SB 

and ff19SB. Reasonable transferability is observed for other amino acids as well; examples 

include Ser and Glu. For Ser (Figure S9), ff19SB was trained against gauche(+), but is able to 

reproduce reasonable QM surfaces for both gauche(+) and gauche(-), such as the diagonal shape 

of αR and αL basin for both rotamers and the local minimum between ppII and αR for gauche(-). 

For structures having QM energy within 7 kcal/mol above the minimum, the average REE for 

gauche(+) are 1.80 kcal/mol and 0.06 kcal/mol for ff14SB and ff19SB. The average REE for 

gauche(-) are 1.98 kcal/mol and 1.01 kcal/mol for ff14SB and ff19SB. For Glu (Figure S10), 

ff19SB was trained against rotamer mt-10 (using naming conventions from literature42) 

(gauche(-) for χ1, trans for χ2 and -10° for χ3) and reproduces reasonably the QM surfaces for 

both mt-10 and tt0 (trans for χ1, trans for χ2 and 0° for χ3). In contrast, ff14SB merges the two 

minima into one at ϕ = 60° for mt-10, and poorly reproduces the barrier height at ϕ = -120° and 

ψ > 30° for tt-042. For structures having QM energy within 7 kcal/mol above the minimum, the 

average REE for mt-10 are 2.05 kcal/mol and 0.08 kcal/mol for ff14SB and ff19SB. The average 

REE for tt10 are 1.82 kcal/mol and 0.72 kcal/mol for ff14SB and ff19SB. 

The QM, ff14SB and ff19SB energy maps for all 16 amino acid dipeptides in the training set 

are shown in Figure S11. 

Amino-acid specific Ramachandran sampling from PDB is reproduced better with 

ff19SB 

As shown above, the CMAP procedure allows the MM 2D φ/ψ energy surfaces to 

quantitatively match the QM 2D training data. Furthermore, we showed that using CMAPs 

improves the ability of MM to reproduce changes in QM φ/ψ basin shapes and locations for 

different χ rotamers. An important question, though, is whether these QM-based training data for 
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dipeptide models in solution provide good reference states for longer peptides in solution, or 

larger proteins with more complex structures and interactions. In order to explore the relevance 

of the differences seen between the ff19SB and ff14SB energy maps for different amino acids, 

we sought out high-quality PDB data42, 98 on each amino acid and compared them to dipeptide 

φ/ψ sampling in MD using ff19SB. As discussed above in the context of statistical potentials, 

such comparisons have significant flaws, largely arising from the imperfect assumption that the 

distribution of backbone conformations for an amino acid across different proteins in a crystal 

environment (at different and typically low temperatures) corresponds to the MD-sampled 

Boltzmann distribution for the unconstrained peptide in solution at room temperature. Here, we 

restrict the use of the PDB data to a comparison of qualitative differences between amino acids 

from the same data source, such as from PDB or MD simulations. We expect that comparison of 

general features such as simulation and crystallographic basin shapes could provide valuable 

feedback that is independent of the dipeptide QM training data. However, we avoid assessment 

of quantitative features such as basin energies, for the reasons discussed above.  

Distributions from the high resolution crystal structures73 (“PDB”), dipeptide MD in 

ff14SB+OPC and dipeptide MD in ff19SB+OPC are shown in Figure 6 for Ala, Val and Leu 

(with all amino acids shown in Figure S12). The OPC solvent model was selected for this test 

since this model was developed by optimizing the charge distribution to match QM data and 

vdW parameters to reproduce water density. Neither ff14SB nor ff19SB parameters were 

empirically adjusted with OPC (ff14SB used TIP3P-based MD data in training).  

Because the dipeptide is fully exposed to the solvent, the results are more sensitive to the 

protein force field than to the solvent model, consistent with our previous report that similar 

populations of basins of Ala dipeptide were obtained with various solvent models102. Here, 
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similar distributions for each amino acid are observed between ff14SB+OPC and ff14SB+TIP3P, 

and also between ff19SB+OPC and ff19SB+TIP3P (Figure S12). However when comparing 

between force fields, differences are observed.  

As expected, the PDB distributions indicate that each of these amino acids samples unique 

features on the Ramachandran map. The ff14SB approach is clearly overly simplistic; when the 

same uncoupled Ala-based parameters are applied to all three amino acids (A, V and L), the 

peptides exhibit very similar φ/ψ sampling during MD, with the only apparent difference being 

slight changes to the population of the β basin (Figure 6). This result is consistent with the 

ff14SB potential energy maps (Figure 3 and Figure 5) where only subtle differences in β basins 

are observed between Ala and Val. The ff14SB population maps also lack the diagonal shape of 

the α basin that is clearly seen in the PDB data (also apparent in the dipeptide QM data discussed 

above). In contrast, using amino-acid specific training against QM data with solvent polarization, 

the differences in Ramachandran maps are reproduced much better with ff19SB CMAPs. For 

instance in the PDB, Val and Leu both have a flatter β-ppII transition region than Ala, with Val 

preferring greater population in this transition region. Compared to Ala, Leu has a broader 

diagonal α basin extending into the positive ψ region; these differences are reproduced more 

faithfully with ff19SB than ff14SB. The relative insensitivity of ff14SB backbone sampling to 

amino acid identity also explains its poor ability in modeling sequence dependence as discussed 

in the Introduction. Overall, given the fact that PDB data were not used in ff19SB training, this 

agreement between ff19SB and PDB shows a remarkable improvement in reproducing sequence-

dependent behavior obtained using physics-based training, and highlights that these trends can be 

recapitulated without problematic empirical fitting against PDB data. 
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Figure 6. Ramachandran sampling shown for Ala, Val and Leu in dipeptide simulations with 

OPC water and ff14SB (A)-(C), in PDB (by Lovell et al.42, 98) (D)-(F), in dipeptide simulations at 

300K with OPC water and ff19SB (G)-(I). Each contour line represents a doubling in population. 

Density is also shown as grids filled with light (no density) to dark (maximum density). Side 

histograms on each subplot represent independent distributions on φ and ψ. The MD simulations 

were run for a total of ~10 μs for all data shown. 
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Improved reproduction of NMR 3J(HNHA) scalar couplings on blocked dipeptides 

  Another way to examine the ability of ff19SB to improve amino-acid specific behavior in 

solution is through quantitative comparison against NMR data probing backbone dihedrals, 

which have been reported91 for each of the amino acids in a dipeptide form (except Pro which 

lacks HN). As explained (Methods: CMAP fitting groups), a total of 16 CMAPS were fit and 

then applied to 20 natural amino acids (also including alternate side chain protonation states) in 

ff19SB. We compared the performance of ff19SB and ff14SB by simulating blocked dipeptide 

systems (Methods: Structure preparation & simulations) in both OPC and TIP3P solvent 

models. We then calculated the 3J(HNHA) from each MD trajectory based on the Karplus 

equation89  and “Orig” parameter set90 and quantified the agreement by calculating the χ2 error 

following Best et al15 and us88. This χ2 error was used as an empirical target in ff14SB backbone 

training10. The χ2 value quantifies the agreement between experimental and MD ensemble 

average J value(s), also taking into account the uncertainty of the theoretical model being used. 

In theory, smaller χ2 errors correspond to better agreement between MD and experiment. 

However, χ2 values below one only indicate that the error is smaller than the uncertainty of the 

model and do not necessarily indicate continued improvement vs. experiment. Further details of 

the calculations and precision estimates are provided in Methods (Methods: NMR scalar 

coupling calculations). 

The calculated 3J(HNHA) values for each amino acid, using four different combinations of FF 

(ff14SB and ff19SB) and water model (OPC and TIP3P), are provided in Table S9, with the χ2 

errors for OPC shown in Figure 7 and TIP3P shown in Figure S13. Though we observed 

differences among force fields for the Ramachandran sampling maps, the χ2 errors and actual 

3J(HNHA) values appear relatively insensitive to force field. For a given force field, neither 
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Ramachandran sampling maps nor the χ2 errors and actual 3J(HNHA) values are sensitive to 

solvent model. For instance, for either ff14SB or ff19SB, the average χ2 errors are similar and 

mostly below 0.5 for both OPC and TIP3P (Figure 7 and Figure S13). In this respect, the 

performance of ff19SB is not significantly improved over ff14SB for dipeptide NMR data, as 

ff14SB already showed reasonable behavior with few amino acids having errors larger than 1.0 

(His+ and Cys) for both solvent models. In addition, the histograms of χ2 errors are similar 

regardless of the force field and solvent model (Figure S14). Together with the fact that 

3J(HNHA) in the Karplus calculation is sensitive only to the φ dihedral, this test seems 

insufficient to examine the specificity of parameters for different amino acids and the quality of 

parameters across the full Ramachandran space. However, this is a good indicator that the QM 

fitting is reasonable and ff19SB introduced no spurious outliers.  

 

 

Figure 7.  χ2 errors in reproducing NMR 3J(HNHA) coupling data for all non-Pro amino acids 

(using single letter codes on X axis), with data for ff14SB+OPC (red) and ff19SB+OPC (blue). 

The MD simulations were run at 300K for a total of ~60 μs for all data shown. 
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  As shown in Figure 7, ff19SB+OPC gave a slightly larger error for Glu, but since the pH 

used in the NMR experiment (4.9) was close to the Glu side chain pKa (~ 4.25), a simulation 

using either a protonated or deprotonated state of Glu may not adequately model the 

experimental ensemble. To address this ambiguity, we ran constant pH simulation (pH=4.9) on 

Glu dipeptide (Methods: Constant pH simulation), and obtained the carboxyl group protonated 

state ratio for each force field + solvent model combinations (Table S12). Next, we performed 

regular MD for both protonated and deprotonated Glu. The combined trajectory weighted by 

protonation state ratio (Methods: Constant pH simulation) was used so that our calculated χ2 

more accurately reflected the protonation states in the experiment. 

For deprotonated Glu, the ppII region is the most populated in both ff14SB and ff19SB and the 

shape of energy basins are similar between ff14SB and ff19SB regardless of the solvent model 

(Figure S12). However, ff19SB samples the ppII basin extending farther towards ϕ > -60° than 

ff14SB. This subtle change causes the 3J(HNHA) to deviate significantly from experiment (χ2 = 

1.31±0.03). This shift, however, is much less pronounced in the protonated state MD with 

ff19SB (Figure S12), resulting in a much smaller χ2 error of 0.031±0.01. Overall, the χ2 value 

from the re-weighted population at pH 4.9 was calculated to be 0.50±0.03, indicating that the 

scalar coupling calculated with ff19SB is in reasonable agreement with experiment once the 

protonation state is taken into account. 

 We also performed constant pH simulation at pH=4.9 for Asp, obtaining the side chain 

carboxyl protonation ratio for different force field + solvent model combinations (Table S12). 

The χ2 values from Asp simulation with deprotonated side chain and pH-weighted ensemble 

were calculated to be 0.01±0.01 and 0.30±0.01, respectively, with both indicating reasonable 
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agreement with experiment for ff19SB. In addition, for both Asp and Glu, in either ff14SB or 

ff19SB simulations, using TIP3P vs. OPC has little effect on the χ2 results with average χ2 errors 

all below 0.5. 

In summary, both ff19SB and ff14SB provided reasonable results in reproducing NMR scalar 

coupling when using either OPC or TIP3P solvent, indicating that this test is relatively 

insensitive to the sampling differences that are apparent in the Ramachandran surfaces (Figure 

S12). It is encouraging, however, that ff14SB includes an empirical adjustment to improve 

agreement with the same type of NMR data as used here, while the QM-trained ff19SB achieves 

similar or better accuracy without empirical adjustment.  

 

Accurate reproduction of Ala5 NMR scalar couplings is maintained in ff19SB 

We next tested ff19SB by simulating Ala5 in both OPC and TIP3P solvents, and compared to 

ff14SB. A total of six NMR scalar couplings have been measured on this peptide43. Following 

Best et al.15 and us10, 88 previously, we calculated the scalar couplings from each MD trajectory 

as discussed above, and quantified the agreement between simulations and NMR by calculating 

the χ2 error (Methods: NMR scalar coupling calculations). The NMR data, calculated scalar 

couplings for ff14SB and ff19SB in both OPC and TIP3P water and the systematic error σ15, 88 

used in χ2 calculations are provided in Table S10, with the χ2 errors in OPC shown in Figure 8 

and TIP3P shown in Figure S15. Overall, the average χ2 errors are smaller than one regardless of 

force field and solvent model, indicating a reasonable reproduction of NMR data for ff14SB and 

ff19SB with both OPC and TIP3P. Specifically, ff19SB has smaller averaged χ2 compared to 

ff14SB for both OPC (0.77±0.03 vs. 0.93±0.10) and TIP3P (0.77±0.03 vs. 0.88±0.09) solvent 

model. The measurement of 3J(HNCA) is correlated with the ϕ dihedral as well as the ψ dihedral 
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of the preceding amino acid43, 89; this is the only coupling we examined that depends on two 

dihedrals instead of one. This Karplus correlation has the smallest σ among all of these scalar 

coupling types, making it more sensitive to error than other scalar coupling types. Even though 

the χ2 value is large (Figure 8 and Figure S15), the difference between simulation and NMR in 

actual 3J(HNCA) value is as small as 0.2 across all models, suggesting reasonable agreement 

between simulation and NMR across different models (Table S10). 

 

 

Figure 8. χ2 errors in reproducing six NMR scalar coupling data for Ala5, with data for 

ff14SB+OPC (red) and ff19SB+OPC (blue). The MD simulations were run at 300K for a total of 

~3 μs. 

 

Amino-acid specific helical propensities are significantly improved in ff19SB 

Since the scalar coupling χ2 analysis presented above was relatively insensitive to the updated 

residue-specific parameters, additional tests were performed to further validate the new model. 

The 3J(HNHA) analysis is only sensitive to the distribution for φ; thus, we calculated amino-acid 
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specific helical propensities to probe ψ dihedral sampling. We focus both on the absolute helical 

propensity in the force field as well as the ability to reproduce known differences between amino 

acids. We performed multiple MD simulations on model peptides with sequence Ace-A4XA4-

NH2 with varying X, and fit helical propensity parameters w through Lifson-Roig86 theory 

implemented in a genetic algorithm (Methods: Helical propensity). Different from having three 

substitutions in Best et al.’s system9, our model peptides only have a single substitution, as was 

done for the experimental system39, to avoid possible interaction between the substitutions across 

turns of helix. The sensitivity to the peptide length was tested by comparing propensities 

calculated using A4XA4 and A9XA9 in ff14SB + GBneck2; calculated helical propensities for all 

amino acids with ff14SB + GBneck2 are highly correlated between A4XA4 and A9XA9 (Figure 

S16), justifying the use of the shorter peptide in the more computationally expensive explicit 

solvent simulations.  

We also calculated the sensitivity of the results to the exact definition of the helical region of 

overall φ/ψ space (defined in Table S6) using ff14SB and ff19SB, in both OPC and TIP3P. The 

calculated helical propensities for each force field and solvent model show little sensitivity to 

theα basin definition, especially for ff19SB+OPC (Figure S4).  

Helical propensities were calculated for A4XA4 with ff14SB and ff19SB, in TIP3P and OPC. 

The results of the MD simulations are compared to values based on experiments39. Data for 

ff14SB+TIP3P, ff14SB+OPC, ff19SB+TIP3P and ff19SB+OPC are shown in Histidine is a 

special case because the imidazole protonation state (δ, ε or both) is difficult to assign, and the 

reported experimental scales for 20 natural amino acids vary the most for His, with it being the 

least helical from one experimental scale but almost in the middle of the helicity from another39, 

103 For instance, Pace and Scholtz103 summarized a helical propensity scale based on NMR 
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measurements of helix propensity from 11 systems, including both proteins and short peptides, at 

different pH values and temperatures. All helical propensities were reported in ΔΔG relative to 

Ala (0 kcal/mol, the most helical) and normalized by setting Gly=1 kcal/mol, the least helical. In 

that report, His exhibits a value of 0.61±0.11 (error bar calculated from 13 reported 

measurements) averaged across systems and protonation states (estimated based on experimental 

pH). Specifically, for neutral His, the helical propensity is 0.56±0.07 (uncertainty calculated 

from seven reported measurements), and for the protonated His+, the helical propensity is 

0.66±0.10 (uncertainty calculated from six reported measurements). This value is much lower 

(closer to Ala, meaning more helical) than several other amino acids including Asn, Thr, Cys and 

Asp. However, according to the NMR data39 (reported as helical propensity w instead of ΔΔG), 

His is the least helical along with Gly (see Table S7). These NMR data are generally consistent 

with Pace and Scholtz except for His (Figure S5). Due to these uncertainties, we decided to 

remove His from the helical propensity comparisons in Figure 9. The helical propensity data 

(from both NMR and MD) including His are provided in Table S7 and Table S8.  

In general, ff14SB has difficulty reproducing the trend from NMR experiments regardless of 

solvent model. In TIP3P, Ala should be the most helical amino acid but is distinctly 

underestimated, while most other amino acids have significantly overestimated helical 

propensities, and the overall residue-specific correlation with NMR is poor at R2 = 0.38 (Figure 

9A). Although OPC is arguably a better water model32 than TIP3P, combining it with ff14SB 

produces worse results than in TIP3P (R2 = 0.27, Figure 9B), with helical propensities being 

underestimated for most amino acids. There is very little sequence dependence, with a slope of 

0.49. The amino acids with negatively charged side chains (Asp and Glu) are outliers in both 
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solvent models for ff14SB. The correlation and sequence dependence furtherworsen when Asp 

and Glu are removed (R2 = 0.18 and Slope = 0.22).  

This poor correlation with experiment appears to be due to ff14SB rather than weaknesses in 

these solvent models; the correlation is significantly higher when comparing the helical 

propensities of ff14SB in two water models (OPC vs. TIP3P R2 =0.84 as shown in Figure S17, 

with TIP3P giving ~70% higher helical propensities than in OPC). These results suggest that the 

ff14SB force field would be unable to reliably model quantitative changes to secondary structure 

or protein stability due to point mutations, despite its ability to successfully fold large proteins to 

near-native structures37. Protein folding tests are likely less sensitive to sequence-specific 
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energetics since the overall fold can be maintained even when a large fraction of the protein 

sequence is varied104.  

Figure 9. Correlation between helical propensities w from experiment39 and simulations using 

(A) ff14SB+TIP3P, (B) ff14SB+OPC, (C) ff19SB+TIP3P and (D) ff19SB+OPC. Amino acids 

are indicated using single letter codes. Values on the X-axis represent the data based on NMR39 

and the reported standard deviations. Values on Y-axis represent the helical propensities fit 

against the combined trajectory (3.2 μs * 12), with error bars calculated via bootstrapping 

analysis. Black lines represent perfect agreement. Linear regression (red lines) was performed 
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against the data points, with R2 and slope quantifying the goodness of fit. The MD simulations 

were run at 300K for a total of ~3225 μs.   

Ideally, the ff19SB residue-specific training against QM data should improve modeling of 

sequence-dependent behavior and give improved correlation to experimental residue-specific 

differences. Consistent with this expectation, we find that using ff19SB+TIP3P reproduces the 

experimental trend much better than ff14SB+TIP3P (R2 = 0.62 vs 0.38, respectively, Figure 9C 

vs. 9A). However for ff19SB+TIP3P we also observe substantially higher sensitivity to amino 

acid variation than in experiment (slope = 1.95, Figure 9C). The source of this high slope and 

amplified sensitivity may be weaknesses in TIP3P (see Introduction), in particular the bias 

favoring compact structures like helices. 

When ff19SB is combined with the better water model OPC (Figure 9D), the correlation 

between simulated and experimental helical propensities is further improved (R2 = 0.75 vs. 0.62 

in TIP3P) and the sensitivity to amino acid is also improved (slope = 1.27 vs. 1.95 in TIP3P). 

The sensitivity of the model still seems slightly overestimated, with slope modestly larger than 

unity. The remaining deviations from a perfect linear correlation may not be highly significant, 

since small disagreements also exist among various experimental measurements (Figure S5). In 

OPC, the helical propensity for Ala remains slightly too low with ff19SB, and Leu is similar to 

Ala within uncertainties (Table S7). Ser, Thr and Cys are all predicted to have helical propensity 

somewhat lower than experiment; all have short, polar side chains that could compete with 

backbone hydrogen bonding and reduce helical content. This will be investigated in more detail 

in the future.  

These results show that ff19SB has significantly improved capability to differentiate amino 

acid properties and thus should have better predictive power for modeling sequence-specific 
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behavior, protein mutations, and also rational protein design which requires quantitative 

sequence-structure accuracy.   

In addition to ff14SB and ff19SB, we also considered several other recent Amber-related force 

fields in combination with their recommended water model (Table S8). In ff15ipq23+SPC/Eb
24, 

Ala shows good agreement with experiment, but otherwise there is poor overall correlation and 

weak sensitivity among the remaining amino acids (R2 = 0.26 and slope = 0.52, Figure S18A). 

In fb1557+fb361, Ala helical propensity is much lower than NMR, and the overall correlation is 

also poor (R2 = 0.28 and slope = 0.74, Figure S18B). Best et al. reported helical propensity 

benchmarks for 20 amino acids, showing that the overall trend from experiments39 was poorly 

reproduced by two force field + water combinations (ff03w105+TIP4P/2005106 and 

ff99SB*13a+TIP3P60) with correlation coefficients R2 being 0.01 and 0.22 respectively.9 

Therefore, they performed an empirical adjustment of a few amino acids, together with the 

updated parameters in the ILDN107 variants of ff99SB*, to better match helix-coil transition data. 

They refit partial charges of Cα and side chain atoms on charged amino acids (D, E, K, R) while 

forcing the charges on amide N, H, C, O to have same values as all the other residues. The 

helical propensities9 using these charge-refit residues were better correlated with experiment 

(ff99SB*_ILDN_Q + TIP3P, R2 = 0.51 and slope = 0.68 for all amino acids, Figure S19) than 

the original ff03w and ff99SB*, but even with this empirical fitting the overall trend for the 20 

amino acids is still notably worse than ff19SB+OPC (R2 = 0.75 and slope =1.27, Figure 9D & 

Figure S19).  

 

Evaluating helical content in the K19 peptide 
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In order to assess the ability of ff19SB to model α-helices in more complex systems, we 

employed the Ala-rich Baldwin-type108 peptide K1964 that was previously simulated10 using 

ff14SB. Experimental measurements64 on K19 using NMR chemical shift deviations (CSDs) 

suggest that the fraction helix at 300 K of four central residues and two residues near the C-

terminus are ~0.38 and ~0.17, respectively (Figure 10). Simulations with ff14SB+TIP3P 

exhibited an average 0.30±0.05 (central four) and 0.19±0.03 (two near C terminus) fraction 

helix, in close agreement with our previously reported10 value of 0.30±0.05 and 0.20±0.04 using 

the same force field and solvent model. Both values are in good agreement with the experiment, 

likely reflecting the inclusion of K19 data generated using TIP3P in the empirical adjustment of 

ff14SB backbone parameters.  

In order to better separate the accuracy of the solute force field from that of the solvent model, 

we ask: does the good match come from a good modeling of protein and water separately, or 

from training-based error cancellation between the force field and solvent model? As shown in 

Figure 10, after substituting TIP3P with a better model for water (OPC), ff14SB MD resulted in 

significantly reduced helicity, with 0.08±0.02 (central four) and ~0.08±0.01 (two near C 

terminus) helical content for the 6 measured residues. Given OPC’s excellent agreement with 

water properties, the worsened agreement with experiment for K19 supports a fortuitous 

cancellation of error in the combination of ff14SB+TIP3P. Since overly weak solvent-solute 

dispersion in TIP3P58a, 58c may introduce a bias in favor of compact structures, it seems 

reasonable that this bias may also enhance helical content to maintain hydrogen bonding in 

compact states. This hypothesis is supported by data in Figure S20, which shows an inverse 

correlation between helical content and radius of gyration of K19, indicating that more compact 

structures tend to be more helical, and also A4XA4 data in Figure 9, which shows a dramatic 
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increase in helical propensities when combining ff19SB with TIP3P vs. OPC. We conclude that 

an inherent underestimation of helicity is present in ff14SB, which is (inexactly) compensated by 

an increase in helical content driven by the TIP3P bias toward overly compact structures. 

 

 

Figure 10. The fraction helix of each amino acid in K19 sampled in simulations using 

ff14SB+TIP3P (red), ff14SB+OPC (yellow) and ff19SB+OPC (blue). Uncertainties reflect the 

standard deviation of 10 independent runs. The black dots represent values reported in NMR 

experiments at 300 K64. The MD simulations were run at 300K for a total of ~96 μs. 

Simulation of K19 with ff19SB+OPC resulted in modestly increased helical content vs. 

ff14SB+TIP3P, with 0.48±0.05 (central four) and ~0.29±0.01 (two near C terminus) average 

helicity. These values are also somewhat higher than those from experiment (~0.38 and ~0.17 

respectively), but the deviation in MD corresponds to an error of only 0.24 and 0.35 kcal/mol 

free energy, respectively. Furthermore, uncertainties were not reported for the NMR-based data 

for K19, and ff19SB+OPC is in quantitative agreement with experiment for helical propensities 

for Lys and Ala that make up the majority of K19 (Figure 9). The simulations also agree with 

the trend from experiments, with the helical content falling off towards the C-terminus, with the 
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two measured Ala in this region being less helical than the central four. Overall, we conclude 

that the QM-based ff19SB is in reasonable agreement with experiment when combined with an 

accurate solvent model, while ff14SB performs poorly with the same solvent model and relies on 

cancellation of error with the less accurate TIP3P model in order to reproduce the helical content 

of this alanine-based peptide. 

 

β-hairpin stability  

We next tested whether the improvements in modeling helical content with ff19SB (and 

perhaps a slight overestimation of helical content) were obtained at the cost of less accurate 

performance on β systems. Following our previous work10 with ff14SB, we used CLN02565, an 

engineered fast-folding hairpin that is a thermally optimized variant of Chignolin65. CLN025 

contains four aromatic side chains, including three Tyr and one Trp. This system presents a 

challenge due to the relatively slow folding of β-sheets compared to the helical systems (though 

T-jump IR experiments66 estimate a 100-ns folding time for CLN025). Because of the 

computational cost in obtaining highly precise estimates of β hairpin population in MD 

simulations with explicit water, we limit our testing here to a qualitative view of whether 

ff19SB’s improved helical propensity prediction may compromise β stability. We again tested 

ff14SB with TIP3P and OPC, and ff19SB with OPC.  

We performed four MD runs, each of 7 μs in length, at 300K starting from the NMR structure 

(two runs) and a fully extended structure (two runs) (56 μs total for all ff+water combinations). 

As measured by backbone RMSD against the NMR structure (PDBID: 2RVD65), folding was 

reversible in every simulation using each of the three combinations of the force field + solvent 

model (Figure 11). The histogram of RMSD values shows that both ff14SB+TIP3P and 
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ff19SB+OPC predominantly sample the NMR structure (Figure S2). The average fraction of 

native population (±standard deviation) across all MD runs for ff14SB+TIP3P, ff14SB+OPC and 

ff19SB+OPC are 0.75±0.23, 0.33±0.19 and 0.50±0.17, respectively, compared to the 

experimental estimate65 of 0.9 based on CD spectra. These populations suggest that 

ff14SB+TIP3P might stabilize the β-hairpin to a greater extent than the other combinations, but 

the differences are within the uncertainties of the populations. It is interesting that with ff14SB, 

MD in TIP3P appears to prefer more β-hairpin structure than with OPC. The same preference for 

the native structure in TIP3P was seen with K19, perhaps indicating that the weaker solute-

solvent dispersion in TIP3P generally stabilizes compact structure (such as native folds) 

consistent with previous studies29-30, 58, rather than a specific secondary helical bias such as the 

K19 stability increase discussed above. 
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Figure 11. Backbone RMSD to the NMR structure (PDBID: 2RVD65) vs. time for the four 

extended (ext) and four native (nat) runs of CLN025 with ff14SB+TIP3P, ff14SB+OPC and 

ff19SB+OPC. The MD simulations were run at 300K for a total of ~172 μs. 

 

High quality backbone dynamics vs. NMR is maintained with ff19SB 

NMR S2 order parameters reflect the internal protein dynamics that are helpful to validate MD 

trajectories. These internal motions need to be separated from global tumbling on time scale of 

pico to nanosecond. Therefore, a choice for the window size of the MD trajectory needs to be 

made over which S2 values are computed and averaged, which remains challenging95-96. As 
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reported in our previous work, ff14SB+TIP3P maintained ff99SB’s overall good reproduction of 

NMR S2 order parameters.10 Here, we also evaluated the ability of ff19SB to recapitulate local 

dynamics in well-folded proteins. Interestingly, ff19SB+OPC samples structures with even lower 

RMSD against native crystal structure than either ff14SB+TIP3P or ff14SB+OPC (Figure S21-

S23). As shown in Figure 12, the NMR data were reasonably reproduced by the different force 

field + solvent model combinations, with average absolute difference between NMR S2 and 

calculated S2 over all amino acids close to 0.04. The overall differences were not statistically 

significant; however we note some instances where all three force field + solvent models deviate 

from experiment and also some instances where ff19SB results are in worse agreement with 

experiment than is ff14SB. These residues typically have overestimated flexibility in MD as 

compared to NMR for Gly (smaller S2 in MD). I Rendered crystal structures of the three proteins 

are provided in Figure S24, highlighting the locations of residues that are discussed below. All 

NMR and MD data are provided in Table S13-S15. 
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Figure 12. Per-residue order parameters (S2) from NMR compared to simulations at 300K using 

ff14SB+TIP3P (red), ff14SB+OPC (yellow) and ff19SB+OPC (blue) of (top) GB3109, (middle) 
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Ubiquitin110 and (bottom) Lysozyme111. AD is the absolute difference between NMR and MD 

simulation. For each subplot, error bars represent the standard deviation from four independent 

runs. Some residues are missing experimental values as indicated in the original NMR papers109-

111. The MD simulations were run at 300K for a total of ~1.8 μs. 

In GB3, Gly14 was reported to have a high S2 (0.74) using NMR, likely due to its 

intermolecular hydrogen bond in a β-sheet secondary structure. However, Gly14 is similarly 

more flexible with ff19SB+OPC (0.65±0.04), ff14SB+TIP3P (0.68±0.03) and ff14SB+OPC 

(0.66±0.03). This may not reflect problems in ff19SB Gly parameters since this trend is reversed 

for Gly41 in the loop region connecting a β-strand to an α-helix. S2 from NMR is quite low for 

Gly41 (0.50) due to loop flexibility, and this flexibility is reproduced much better with 

ff19SB+OPC (0.56±0.04) than ff14SB+TIP3P (0.66±0.02) and ff14SB+OPC (0.67±0.03). 

In Ubiquitin, Gly10 flexibility is overestimated in ff19SB+OPC (0.55±0.02), but not in 

ff14SB+TIP3P (0.72±0.02) and ff14SB+OPC (0.69±0.01) compared to NMR (0.73). Except for 

the slightly worsened performance on Gly10, ff19SB+OPC yields the best overall agreement 

with NMR compared to ff14SB with either TIP3P or OPC solvent model. 

In Lysozyme, Ser85 lies in a loop region connecting two α helices, and is overly rigid with all 

three simulation models (~0.75 in MD vs 0.55 in NMR). However, Ser85  backbone (ϕ/ψ) and 

side chain (χ1/χ2) sampling in all three force field + solvent model combinations reproduces that 

seen in the crystal structure.  

In spite of subtle disagreements with NMR in both models, we concluded that ff19SB 

generally maintained the overall performance of ff14SB and ff99SB in order parameter 

reproduction, with a few outliers that do not appear to follow any systematic trend that could be 

attributed to the CMAPs.  
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Conclusions 

In the updated ff19SB (with the “SB” models indicating Stony Brook) protein force field 

presented here, we have developed new backbone dihedral parameters with amino-acid specific 

CMAP functions. We trained the parameters to match solution phase QM data using full 2D φ/ψ 

scans, instead of the gas-phase minima used for training uncoupled φ and ψ cosine terms in 

ff99SB. Use of energies calculated from QM in solution provides better consistency with the pre-

polarized partial atomic charges used by the MM model, as compared to gas-phase energies that 

were used previously. Fitting of dihedral corrections against QM in solution also allows the 

model to incorporate (to some extent) conformation-dependent polarization energy that is not 

present explicitly in a fixed-charge MM model such as the one used here. 

A total of 16 CMAPs were fit, with applicability to all amino acids using a grouping approach 

based on side chain size, branching and polarity. Leu was used as a general model for other 

amino acids, in contrast to Ala that has traditionally been used as a protein backbone model. We 

also investigated whether CMAP functions fit using a single side chain rotamer could remain 

accurate for other rotamer states, and found good transferability as measured by the ability of the 

model to reproduce rotamer-dependent differences in Ramachandran space QM energetics and 

PDB-based statistics. 

One possible weakness to our approach was the use of simple implicit water models during 

training, such as the GB model in the MM component. Older GB models exhibit secondary 

structure biases for longer peptides112, but here we have used our GBneck2 model62 that much 

more accurately reproduces secondary structure preferences. Furthermore, we have shown that 

the solvation energy of dipeptides (which we used here for the CMAP training in GB) is largely 
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insensitive to specific GB model used102. Nevertheless, our use of GB during training could be a 

limitation, which is one reason we carried out extensive testing here using a variety of fully 

explicit water models.  

We performed a total of ~5 milliseconds MD simulations in explicit solvent to extensively 

validate ff19SB against experiments. The results show that our new FF more accurately 

reproduces amino-acid specific NMR properties such as scalar coupling and helical propensity, 

as well as structure and stability of a Baldwin-type helical peptide and a small hairpin. While the 

balance of secondary structure seems reasonable in our helix and hairpin runs, the results may 

suggest a slight overstabilization of helix vs. sheet. More quantitative testing via longer 

simulations on a larger variety of systems is needed to see if this is a general trend in the model. 

Folded proteins show good agreement with NMR S2 order parameters, and modestly improved 

RMSD values as compared to ff14SB. 

We make the important observation that the performance of the QM-based ff19SB model 

improves as the quality of the water model is improved (going from TIP3P to OPC), suggesting 

lack of fortuitous cancellation of error with a particular water model, and that the water model is 

likely the limiting factor in these comparisons of ff19SB to experiment. Behavior with more 

water models will be tested in the future to see if this is a general trend. Currently, our best 

results are obtained using ff19SB with OPC water, and we recommend that combination. Since 

ff19SB was not fit using OPC, however, there is no reason to expect that better performance 

cannot be obtained using other models not tested here. Biomolecular force fields such as ff19SB 

that are not tied to a specific water model through empirical adjustment will be in a stronger 

position to take advantage of future, better-quality water models, ideally with independent 

training of these components. In contrast, use of a better model for water does not lead to 
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improved match with experiment for ff14SB that was empirically trained using TIP3P, 

supporting that both a good water model and good protein force field are needed for an accurate 

simulation. We also conclude that weaker solute-solvent dispersion in TIP3P not only leads to 

overly compact unfolded states as has been reported previously, but also overstabilizes both 

secondary structure elements as compared to OPC.  

If water models can be sufficiently improved, there is in principle no need for specialized 

“IDP” force fields, as suggested in recent work29 by Robustelli et al. Our belief is that physics-

based protein FFs trained against short peptides should be quite capable of modeling IDPs and 

unfolded ensembles, which are more similar to the peptide training data than are folded proteins. 

Amber’s OPC 4-point water model not only better reproduces liquid water properties as 

compared to most other models32, but IDP simulations with OPC result in much less compact 

ensembles as compared to simulations using the same FFs in older water models.33 This provides 

additional evidence that the current problems with modeling IDPs are likely to be related to the 

water models, and further improvement of physics-based protein FFs is warranted, independent 

of water model development going on in parallel. While the studies here of flexible peptides 

using ff19SB+OPC are promising, future studies using this combination for IDPs will be carried 

out in the future.  
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