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The ringdown is the late part of the postmerger signature emitted during the coalescence of two black
holes and comprises a superposition of quasinormal modes. Within the general theory of relativity, the no-
hair theorem for black holes states that the frequencies and the damping times of these modes are entirely
determined by the mass and the angular momentum of the final Kerr black hole. Detection of multiple
ringdown modes in the gravitational wave signal emitted during a binary black hole coalescence would
allow us to validate the no-hair theorem with observations. The signal-to-noise ratio of the black hole
ringdown and the amplitude of the subdominant modes to the dominant mode determine the detectability of
the subdominant mode. We use Bayesian inference to investigate the interplay between these two factors
towards their detectability. We systematically vary the two factors in a set of simulated analytical ringdown
signals to infer the minimum signal-to-noise ratio needed in a ringdown signal for performing black hole
spectroscopy. Our estimates on the minimum signal strength required to perform black hole spectroscopy
as a function of amplitude ratio allows us to gain insight into the kind of signals that will be promising for
black hole spectroscopy.
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I. INTRODUCTION

The morphology of the gravitational wave signal from a
binary black hole (BBH) merger is well known. Initially
when the black holes are far apart, the signal is oscillatory
with increasing amplitude and frequency; this part of the
signal is well described by post-Newtonian theory. As the
black holes get closer and merge to form a single remnant
black hole, the post-Newtonian description breaks down.
The amplitude reaches a maximum and then decreases as
the remnant black hole approaches its equilibrium state,
that of a Kerr black hole. At some point after the merger, the
remnant black hole spacetime is sufficiently close to its
final equilibrium state that it can be well modeled as a linear
perturbation of a Kerr black hole. Power-law tails are
expected at still later times, but these are likely too weak to
be observable.

The equation governing the perturbation of a Kerr black
hole can be cast in the form of a radiative boundary-value
problem similar to a Schrödinger equation (though with a
non-self-adjoint operator) with an effective potential
depending on the mass M and specific angular momentum
a of the black hole [1–5]. Imposing boundary conditions
that are purely outgoing at infinity and purely infalling into
the black hole horizon leads to exponentially damped
sinusoidal solutions, the quasinormal modes (QNMs).
For any given values of M and a, the frequencies
fnlmðM; aÞ and damping times τnlmðM; aÞ of the QNMs
are determined by three quantum numbers l; m; n; l andm
are the angular quantum numbers while n denotes the
overtones, i.e., number of zeroes of the radial part of the
wave function.
If one were to observe a single QNM, then a knowledge

of the mode indices l; m; n would allow us to measure the
mass and spin of the remnant black hole. It is reasonable to*spbhagwa@syr.edu
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assume that at sufficiently late times the least-damped
mode will dominate, but this may not be true closer to the
merger. It was found that the late time behavior of the first
BBH merger detected by the LIGO detectors, GW150914,
is consistent with the l ¼ m ¼ 2; n ¼ 0 QNM [6] of the
final black hole formed in this event.
This question is closely connected to the issue of

quantifying the time after which the merging black hole
spacetime can be treated perturbatively. By studying the
n ¼ 0 modes in numerical simulations of BBH mergers, it
was suggested in Ref. [7] that starting from a time
∼10 GM=c3 after the merger, the gravitational wave signal
is consistent with the QNM frequencies calculated from
black hole perturbation theory (this is also consistent with
the observational result in Ref. [6]). This is further
supported by an entirely different calculation, namely,
the decay of the horizon multipole moments [8]; it is
found that the decay rates of the horizon multipole
moments become consistent with the QNM damping times
roughly 10 GM=c3 after the merger. See also Ref. [9] for a
quantitative study of how the near horizon geometry
approaches a Kerr solution and this study suggests a
slightly later start time (∼16 GM=c3) for ringdown.
The general theory of relativity can be validated by

checking the consistency of ðM; aÞ between the ringdown
and premerger portions of the signal [6,10,11]. However,
the observation of frequencies and damping times of
multiple ringdown modes would allow a more stringent
test, and this is often referred to as black hole spectroscopy.
As first proposed in Ref. [12], verifying the consistency of
ðM;aÞ measured from different modes independently
allows us to test that the observations are consistent with
the no-hair theorem. We note that one could also use
information from the full inspiral-merger-ringdown models
as presented in Ref. [13].
In a recent work, it is indicated that higher overtones

might contribute closer to the merger [14] and can be used
for black hole spectroscopy. This statement relies on the
phenomenologically performing numerical fits of the post-
merger signal with overtones and could be affected by
parameter degeneracy. It could also be susceptible to
overfitting, as shown in Ref. [15]. On the other hand,
the decay rates of the multipole moments calculated in
Ref. [8] are consistent with the higher overtones closer to
the merger. The observation of higher overtones closer to
the merger [16], if fully confirmed, makes the prospects for
black hole spectroscopy very promising.
Traditionally, black hole spectroscopy has been studied

using the angular modes in ringdown. Angular modes offer
a particular advantage that they have a longer half-life
(generally comparable to the dominant mode) compared to
the overtones. From a data analysis perspective, the
prospects of measuring a subdominant mode depend
primarily on the overall signal-to-noise ratio (SNR) in
the ringdown (ρRD) and the relative mode excitation

amplitude (AR ¼ Asubdominant=Adominant). For instance, a
nearly equal mass BBH system like GW150914 does
not excite the (asymmetrical) subdominant modes suffi-
ciently and thus, is not ideal for inferring multiple modes in
the ringdown. As a rule of thumb, the higher the asymmetry
in the progenitor BBH system, the lower is the ρRD needed
to detect the subdominant modes. This question, along with
the related issue of resolving nearby frequencies and
damping times, were previously studied using the Fisher
matrix approximations (see, e.g., Refs. [17,18]). But more
recently, in the era of gravitational wave detections,
Bayesian parameter estimation techniques are used for
parameter inferences from the detector data and several tool
kits have been built specifically tailored towards gravita-
tional wave astronomy (see, e.g., Refs. [19–21]). In this
paper, we study the detectability of the subdominant
ringdown mode in a Bayesian inference framework using
the toolkit called PyCBC. Specifically, we study the effect
of the amplitude ratio AR and ρRD on detectability of the
subdominant mode and provide an insight into what kind of
BBH systems are likely to allow for multimode detect-
ability in their ringdown signal. For this study, we assume
that the underlying theory of gravity is the general theory of
relativity and compute the frequencies and damping times
as dictated by linear perturbation theory on the space-time
of Kerr black hole formed during the BBH merger [22,23]
for all the simulated signals used for this study.
Our goal is to provide an estimate of minimum SNR

required in the ringdown as a function of amplitude ratio for
a signal to be spectroscopically valuable. Further, we
investigate the effect of AR and ϕ33 in the detectability
of the subdominant mode by systematically studying
Bayesian parameter inference for a set of simulated ring-
down signals. We specifically study the detectability of the
subdominant mode in a full Bayesian parameter estimation
setup on simulated signals to provide a lower limit on the
SNR that is required to perform any 2-mode based ring-
down tests.
This paper is organized in the following way: in Sec. II,

we describe the ringdown waveform and the details of
injections. Then, in Sec. III, we provide the setup for the
Bayesian inference used for this study. This is followed by
Sec. IV, where we present our results and, finally, we
discuss its implications in Sec. V.

II. THE RINGDOWN WAVEFORM

For this study, we generate a simulated set of time-series
data corresponding to BBH ringdown signals. In the limit
when the wavelength of the signal is much larger than the
size of the detector, it can be shown that the strain hðtÞ
observed by a detector is

hðtÞ ¼ Fþðα; δ;ψÞhþðtÞ þ F×ðα; δ;ψÞh×ðtÞ; ð1Þ
where Fþ;× are the antenna patterns of the detector
associated with the þ and the × polarizations of the
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gravitational wave signal, hþ;×, and depend on the location
of the source with respect to the detector. The sky position
of the source in the detector frame is described by the right
ascension α and the declination δ, and the orientation of the
preferred wave frame is represented by the polarization
angle ψ .
The ringdown waveforms hþ;× can be expanded as a

superposition of damped sinusoids

hþ þ ih× ¼
X

l;m;n
2Ylmðι;φÞAlmneiðωlmntþϕlmnÞ: ð2Þ

Here, 2Ylm are the spin-weighted spherical harmonics
[24,25], ωlmn is the complex QNM frequency calculated
using the method of continued fractions developed in
Ref. [22], ϕlmn the initial phase, and Almn the (real) mode
amplitude. For a perturbed Kerr black hole, although it is
natural to use the spin-weighted spheroidal harmonics [5]
instead of the spin-weighted spherical harmonics 2Ylm,

2Ylm is, however, a good approximation up to moderately
high BH spins (see, e.g., Ref. [26]).
In this paper, we shall restrict ourselves to the two

loudest angular modes in a nonspinning BBH ringdown,
and the one with the lower amplitude will be called the
subdominant mode. We limit this study to the longest-lived
overtone, i.e., n ¼ 0, and therefore we drop the overtone
index in the frequencies and damping times henceforward.
For a BBH system comprising two nonspinning progenitor
black holes, the loudest subdominant mode is known to be
l ¼ m ¼ 3 for all mass ratios of BBHs [27,28]. Therefore,
for simplicity, we consider only the l ¼ m ¼ 2 and l ¼
m ¼ 3 modes in this work. The QNM frequencies and
damping times are determined uniquely by the mass Mf

and specific angular momentum af of the final black hole
formed. The l ¼ m ¼ 2 mode is the dominant mode with
amplitude A22 and the subdominant (secondary) mode
amplitude A33 will be parametrized via the amplitude ratio
AR ≔ A33=A22. Consequently, the waveform model we
consider in this paper is fully described by six intrinsic
parameters fMf; af; A22; AR;ϕ22;ϕ33g.

III. THE PARAMETER ESTIMATION AND ITS
IMPLEMENTATION

Bayesian inference provides a general framework for
determining the parameters ϑ of a BBH system through the
posterior distributions pðϑjD;HÞ where D is the time-
series data and H is the model assumed. A signal from a
BBH system is parametrized by a set of intrinsic parameters
that affect the phase evolution of the signal (e.g., masses
and spins), and by a set of extrinsic parameters (such as the
sky position, luminosity distance, coalescence time, etc.)
which affect the slowly varying amplitude. The signal
model is then written as hðt;ϑÞ. Given a H, one has
expectations on the distribution of parameter values before
performing an observation [29,30] encoded in a probability

density function called the prior, PðϑjHÞ. Once the
observation is performed and the dataset is obtained, one
updates the priors with information obtained from this
observation. This input is encoded in the likelihood
function PðDjϑ;HÞ. The posterior probability density
function PðϑjD;HÞ for the parameters ϑ is given by
[29,30]

PðϑjD;HÞ ¼ PðϑjHÞPðDjϑ;HÞ
PðDjHÞ : ð3Þ

Here, PðDjHÞ is the evidence and serves as a normaliza-
tion factor.
The likelihood function PðDjϑ;HÞ depends on both the

signal and the nature of noise N present in the data. If the
noise model is Gaussian and stationary, the likelihood
function PðDjϑ;HÞ can be written as

PðDjϑ;HÞ ∝ e−
1
2
hN jN i ¼ e−

1
2
hD−HjD−Hi: ð4Þ

Here, h:j:i denotes an inner product in the space of signals
written as

hxijyiii ¼ 2Re
Z

∞

0

x̃⋆i ðfÞỹiðfÞ
SðiÞn ðfÞ

df: ð5Þ

The form of the prior distributions PðϑjHÞ is a choice
that one has to make and there is no unique way to pick it.
With the intention of extracting maximum information
from the data itself, we use noninformative priors.
The noninformative priors used in this study are sum-

marized below:
(i) Mf: Uniform between ½50; 100� M⊙.
(ii) af: Uniform between ½−0.99; 0.99�.
(iii) A22: Log-uniform between ½10−25; 5 × 10−20�.
(iv) AR: Uniform between [0, 0.5].
(v) ϕ22 and ϕ33: Uniform between ½0; 2π�.

Note that a log-uniform prior on A22 is appropriate since the
amplitude sets the scale of the ringdown signal. This choice
also ensures a better sampling of the smaller amplitudes.
On the other hand, since AR is a ratio of amplitudes, a
uniform prior is appropriate for it.
We perform a full Bayesian parameter estimation

using the PyCBC package [21] to produce the posterior
distribution for all the 6 ringdown parameters listed above.
In practice, these posterior distributions1 are computed by
sampling [31] the allowed parameter space. We use the in-
built implementation of the emcee_pt ensemble sampler to

1All the information about the distribution of the estimated
parameters is contained in the landscape of PðϑjD;HÞ and
therefore, the goal of a scheme using Bayesian parameter
estimation is to sample the parameters space of ϑ and construct
the distribution PðϑjD;HÞ In most cases where one is just
interested in estimating the parameter values for ϑ, PðϑjD;HÞ is
calculated up to a normalization factor. One need not compute the
evidence to estimate the parameters of the model. Calculating
the evidence is computationally challenging, especially when the
parameter space spanned by ϑ is large.
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perform the parallel tempered Markov chain Monte Carlo
(MCMC) operation [32–34]. The technical details of this
algorithm are presented in Ref. [35]. We use 38 inverse-
temperature chains to sample the parameter space. For each
temperature chain, we use 200 walkers to explore the space.
Also, we use an analytical model of the advanced LIGO
sensitivity curve, named the zero-detuned-high power
(ZDHP) noise curve,2 for calculating the likelihood func-
tion at each sampled point.
We perform the parameter estimation for the 6 intrinsic

ringdown parameters, fMf; af; A22; AR;ϕ22;ϕ33g. All of
the other extrinsic parameters are chosen arbitrarily and are
held fixed throughout the study. The assumption is that
these extrinsic parameters by themselves only depend on
the propagation of gravitational radiation in our Universe,
and not on intrinsic properties of the source, such as the
validity of the no-hair theorem. In a more realistic case,
these extrinsic parameters would be provided independ-
ently through the measurements done using the full GW
signal from the event. We expect these extrinsic parameters
to not have strong correlations to the recovery of the
intrinsic parameters.

IV. RESULTS

A. Parameters of the injected signals

The injections used in this study contain two QNM
modes of ringdown, with the frequencies and damping
times fixed to be consistent with those of a Kerr QNM. In
Refs. [28,36] fits for amplitudes of QNMs were performed
using the postmerger in the numerical relativity simulations
of BBH systems and these studies suggest that l ¼ m ¼ 3
is the loudest subdominant mode for all BBH mass ratio
provided that the progenitor system comprises nonspinning
black holes. Each injection used in this study comprises
l ¼ m ¼ 2, 3. Note that the l ¼ 2, m ¼ 1 mode could be
of comparable strength as the l ¼ m ¼ 3 for high mass
ratio (q ≥ 6) BBH and is particularly important when the
progenitor BBH system has non-negligible black hole
spins. Note, however, that the subdominant mode detecta-
blility depends primarily on the overall ρRD and AR and
exact parameters of the BBH system effects only mildly—
at the level of correlation of the parameters—the conclu-
sions in this study. Although in this study we focus on the
l ¼ m ¼ 3 subdominant mode detection, we expect the
results to roughly hold for the l ¼ 2, m ¼ 1 mode too for
the following reasons—(a) the damping times of the l ¼ 2,
m ¼ 1, n ¼ 0, and l ¼ m ¼ 3 are comparable and this
ensures that for a given value of AR the power contained in
both the subdominant mode is comparable, (b) the fre-
quency difference between the both these angular mode
with the dominant mode is comparable (∼100 Hz) for a
GW150914-like system), suggesting a similar kind of

parameter correlations. Furthermore, neither of them have
significant issues with resolvablity from the fundamental
mode as studied in Ref. [28].
Moreover, unlike in the case of a full inspiral-merger-

ringdown signal, where the merger dynamics are governed
by the nonlinear space-time evolution predicted by general
relativity, our injections are a sum of QNMs as predicted by
the linear perturbation theory. Our study does not rely on
the choice of start time as our signal model is fully
consistent with linear perturbation theory. A followup
study needs to be performed on the numerical relativity
postmerger to access the influence of the choice of start
time of ringdown. Throughout this study we assume that
the SNR content in the part of the postmerger signal
considered as ringdown, i.e., the portion of the signal after
the chosen start time, is denoted by ρRD.

Our simulated ringdowns correspond to a black hole with
fMf ¼ 70 M⊙; af ¼ 0.65g, similar to the remnant formed
in the GW150914 event. During the first and second
observing runs of LIG0/Virgo detectors, final BH mass
in the rangeMf ∈ ½17; 80� ⊙were observed [37]. From the
perspective of the detectablility of a subdominant mode in
the ringdown, the choice of Mf determines the temporal
scaling of the signal, and thereby the SNR contained in the
ringdown. Therefore, we quantified our results in terms of
ρRD and AR and we do not expect the choices of parameters
of the BH to significantly effect any of our conclusions.
Along the same line of argument, we fix the values of the

extrinsic parameters for all of our injections.
(i) Inclination angle: ι ¼ 0.7 rad.
(ii) Right ascension and declination: α ¼ 2.2 rad,

δ ¼ −1.24 rad.
(iii) Polarization angle: ψ ¼ 0.3 rad.
(iv) Initial phases: ϕ22 ¼ 0, ϕ33 ¼ 1 rad.

These choices are arbitrary and they either affect the value
of ρRD [as in the case of ðα; δÞ] or AR (as in the case of ι).
Figure 3 of Ref. [17] presents the effect of the choice of ι on
the observed amplitudes of QNM; we note that our choice
of ι ¼ 0.7 rad is fairly favorable for viewing the subdomi-
nant mode. However, since our results are parametrized in
terms of AR and ρRD, we highlight that these choices do not
affect our results.
Further, we perform these injections in zero noise. Zero

noise is a realization of Gaussian noise and therefore any
assumption during the PE that relies on the nature of noise
being Gaussian still remains valid. However, a more
detailed followup work of a similar nature needs to be
performed in the presence of detector noise to understand
the influences of noise in a realistic scenario. This is
beyond the scope of our current study. Here, we aim to
provide a lower bound for the SNR in the ringdown that is
required for detection of the subdominant mode and
provide optimistic quantitative results.
We consider 16 combinations of the optimal ringdown

SNR ρRD and the mode amplitude ratio AR ¼ A33=A22 in2https://dcc.ligo.org/LIGO-T1800044/public
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this study. In particular, we focus on ringdown signals
corresponding to the following values of ρRD and AR.

(i) ρRD ¼ f15; 20; 25; 30g.
(ii) AR ¼ f0; 0.1; 0.2; 0.3g.
Note that for a fixed choice of ι, the value of AR is

determined by the mass ratio and the spins of the progenitor
BBH system. Therefore, this results’ dependence on AR for
detectablity can be used to gain an insight into the kind of
BBH system that will allow for black hole spectroscopy
using angular modes in ringdown. For moderate values of
the mass ratio, studies show that it is not unreasonable to
have AR ¼ Oð10−1Þ, which motivates our choice of the
values for AR listed above [38–40].

B. Detectability of the subdominant mode

To study the detectability of the subdominant mode,
we infer the intrinsic parameters, i.e., fMf; af; A22; AR;
ϕ22;ϕ33g, for each of the simulated ringdowns described in
Sec. II using a Bayesian parameter estimation framework.
For each case, we find that the 90% credible interval of the
posterior distribution contains the injected values of all
the parameters. As an example of parameter recovery,
we provide the posterior distribution for the inference of
final mass and spin corresponding to our least favorable
ringdown simulation, i.e., AR ¼ 0.1 and ρRD ¼ 15, in
Fig. 1.
We define a subdominant mode as “detectable” in the

ringdown if the 90% credible interval of the recovered
posterior distribution for AR excludes AR ¼ 0. Since we
aim to focus on the detectability of the subdominant mode
in ringdown, henceforward we focus only on the recovered

posterior distributions of the mode amplitude ratios and the
phases.
In Appendix, we present the recovered posterior distri-

bution of AR and ϕ33 along with 50% and 90% credible
intervals for all the simulations used in this study. Figure 6
show posteriors for AR;ϕ33 with varying ρRD and AR. We
find that the injected value of AR;ϕ33 (indicated by blue
line in the figures) lies within the 50% (and thus, 90%)
credible interval for all the simulations. Further, in Fig. 2,
we present “the null tests,” where the injection contains
only one mode, i.e., AR ¼ 0. Further from the plots
presented in the Appendix, we confirm that this holds true
for single mode injection of varying strengths, i.e., we find
that the posterior distribution indeed rails against AR ¼ 0
and no information on ϕ33 is obtained.
Among the injections we studied, the most unlikely

candidate to allow for detection of the subdominant mode is
AR ¼ 0.1 and ρRD ¼ 15 (top right panel of Fig. 2). For this
case, AR ¼ 0 is not excluded from the 90% credible interval
from the posterior distribution and, therefore, the presence
of the subdominant mode cannot be inferred. For the ease
of comparison, we present the joint posterior distribution
for AR − ϕ33 for the case of AR ¼ 0.1, ρRD ¼ 15 and the
null test side by side in Fig. 2. We note that the posterior
distribution for AR has more support for higher values of AR
compared to the null test. Further, it is striking that the
marginalized posterior distribution of ϕ33 peaks around the
injected value of ϕ33, even for the most unfavorable cases
considered in our study. This feature should be explored
further in a future work and could serve as a hint for the
possible presence of the subdominant mode with a low
amplitude.
Moreover, we confirm that as ρRD increases, the posterior

distribution for AR shifts towards the injected values of
AR ¼ 0.1 and the phase of the l ¼ m ¼ 3 modes is better
inferred. Since the population studies of BBH favor nearly
equal mass BBH systems [41] where the asymmetrical

FIG. 1. Final mass and spin recovery. This plot presents the
recovery of final massMf and final spin af for the case of ρRD ¼
15 and AR ¼ 0.1. Although we provide the posterior probability
distribution Mf − af for just one case, we would emphasize that
recovery of the mass and spin have similar behavior for all the
cases (including the single mode null tests).

FIG. 2. The joint posterior distributions of AR-ϕ33 obtained
for injections with AR ¼ 0ðleftÞ, 0.1(right) corresponding to
ρRD ¼ 15. The left panel is the null test and the right panel has
an injection where the subdominant mode does not satisfy our
criterion for detecability. In this figure we would like to
highlight that even when the subdominant mode is not
detectable, the shape of the posterior hints towards the presence
of the subdominant mode.
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subdominant mode is not excited sufficiently, studying the
RDs for smaller AR is crucial. We therefore perform an
injection followed by parameter estimation with ρRD ¼ 40
for the AR ¼ 0.1 event. We present the posterior distribu-
tion inferred for this case in Fig. 3. In this case, we find that
we indeed infer the presence of the subdominant mode.
Also, in plots presented in Appendix, higher AR and ρRD

allows for detectability of the subdominant mode confi-
dently. For instance, for the simulation corresponding to
AR ¼ 0.3, the 90% credible interval of the posterior
distribution of AR excludes zero clearly even for
ρRD ¼ 15. The joint posterior distribution illustrating this
is shown in Fig. 4. For quantitative comparison, we tabulate
the 90% highest posterior density (HPD) credible interval
on the marginalized PDF of AR for all our simulations in
Table I. In the table, we use bold type for the simulations
that pass our criterion for detectability of the subdominant
ringdown mode. We see that for AR ¼ 0.1 the detection of a
subdominant mode cannot be claimed confidently (for
ρRD ≤ 30). However, for AR ¼ 0.2, we can infer the
presence of the subdominant mode with ρRD ≥ 20. And,
finally, for AR ¼ 0.3, we can infer the presence of the
second mode for all the injections used in this study,
including ρRD ¼ 15.
Next, we access the interplay between the false alarm

and the false dismissal probabilities for the inferred
presence of the subdominant mode in these cases. This
will provide an intuition towards the goodness of the

criterion used to infer the presence and absence of the
mode. We compare the marginalized posterior distributions
for AR at different SNR with the null case to access the false
alarm and false dismissal probabilities. In Fig. 5 we show
the marginalized posterior distributions for AR. The panels
are arranged from top to bottom for ρRD ¼ 15, 20, 25, 30,
respectively, and different colors correspond to values of
AR in the injections.
To define the false dismissal probability β, we need to

choose a threshold on AR based on the null case. The
thresholds A90%

R and A95%
R correspond, respectively, to 90%

and 95% false alarm rates and these are shown as vertical
lines in Fig. 5. For any of these thresholds, say A90%

R , the
false dismissal probability is

β90% ¼
Z

A90%
R

0

pðARjÂRÞdAR; ð6Þ

where ÂR is the true injected value of AR. If the posterior
distribution for AR of the injected simulations separates out
(does not have large support for AR smaller than the false
alarm threshold value) from the posterior distribution of the
null test, i.e., AR ¼ 0, the presence of the subdominant
mode can be inferred confidently. We note that the posterior
distributions corresponding to AR ¼ 0.3 (pink) always
separates from AR ¼ 0 (black), even for ρRD ¼ 15, whereas
that which corresponds to AR ¼ 0.2 (the blue histogram)
separates out after ρRD ¼ 20. Table II lists the values of β
for all the cases considered for this study and these results

FIG. 3. Parameter estimation results for the AR ¼ 0.1 case with
the SNR increased to ρRD ¼ 40. (Left) Posterior distribution for
the amplitude ratio and phase of the subdominant mode. (Right)
Comparison of the marginalized posterior distribution of the
amplitude ratio for AR ¼ 0 (black) and AR ¼ 0.1 (green).

TABLE I. 90% highest posterior density (HPD) credible
interval on the marginalized PDF of AR. In bold type are the
cases where we are able to infer the presence of the subdominant
mode. Posterior distributions are shown in Fig. 6.

ρRD AR ¼ 0.1 AR ¼ 0.2 AR ¼ 0.3

15 6.6 × 10−8 − 0.24 1.4 × 10−5 − 0.35 0.122–0.49
20 1.4 × 10−5 − 0.19 0.04–0.34 0.16–0.46
25 5 × 10−5 − 0.17 0.08–0.32 1.18–0.43
30 1.2 × 10−4 − 0.16 0.1–0.3 0.2–0.4

FIG. 4. The joint posterior distributions of AR-ϕ33 obtained for
injections with AR ¼ 0ðtop; leftÞ, 0.1(bottom, left), 0.2(top,
right), 0.3(bottom, right) corresponding to each of their minimum
SNR required to detect the subdominant mode. This corresponds
to a SNR ρRD ¼ 15, 30, 20, 15 for AR ¼ 0, 0.1, 0.2, 0.3,
respectively.
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are consistent with the credible intervals listed in Table I.
Note also that for the case of AR ¼ 0.1, the posterior
distribution (green) of AR does not separate from the null
test cases, thus not allowing for confident detection of the
subdominant mode at a ρRD ∼ 30. However, when we
increase ρRD to 40, we find that the presence of subdomi-
nant mode can be inferred confidently for simulation with
AR ¼ 0.1. This result is presented in the left panel of Fig. 3.
From our study, we conclude that the minimum signal

strength required for a confident detection on the subdomi-
nant mode depends largely on the amplitude ratio between
the modes. We find the minimum of ρ ¼ f40; 20; 15g is
required for the detection of the subdominant modes for the
signal with mode amplitude ratio AR ¼ f0.1; 0.2; 0.3g,
respectively. AR is determined by the property of the
BBH system and hence, these results can be used to gain
insight into the kind of signals that will be promising for
performing BH spectroscopy. The excitation amplitude of
the different modes depends on the perturbation conditions
set up by the inspiral-merger phase. This, in turn, is dictated
by the asymmetry of the BBH system, i.e., the mass ratio q
and the spin of the progenitor BHs χ. More asymmetric
BBH systems have higher subdominant modes excitation
amplitudes. If the BBH system comprises nonspinning
BHs, then the value of AR is determined by the mass ratio q
of the component BH. AR ¼ 0.1 maps to a BBH system
with q ∼ 1.5, AR ¼ 0.2 to q ∼ 2.5, and AR ¼ 0.3 to q ∼ 5.
Therefore, our result indicates for a BBH with q ∼ 1.5, a
loud ringdown with ρRD ∼ 40 will be required to detect a
subdominant angular mode confidently.

V. DISCUSSIONS AND IMPLICATIONS

BH spectroscopy can validate the no-hair theorem with
observational GW data and requires confident detection of
multiple ringdown modes. In this paper, we have applied
Bayesian inference techniques to the problem of detecting a
sub-dominant ringdown mode for different values of the
ringdown SNR ρRD and mode amplitude ratio AR. The
minimum SNR required to claim detection of subdominant
mode is dependent on the amplitude ratio between the
modes which, in turn, depends on to the initial BBH
parameters like mass ratio and initial BH spins. A BBH
system with a low mass ratio like the GW150914
(q ∼ 1.22) would require a high value of ringdown SNR

TABLE II. False dismissal probability β90% for detection of a
nonzero value of AR for different values of the SNR and injected
amplitude AR.

ρRD AR ¼ 0.1 AR ¼ 0.2 AR ¼ 0.3

15 0.75 0.46 0.17
20 0.67 0.23 0.02
25 0.53 0.07 1.6 × 10−3

30 0.45 0.02 10−4

FIG. 5. Marginalized posterior distributions of the amplitude
ratio for all the injections in this study. From top to bottom, the
ringdown injections have optimal SNR ρRD ¼ f15; 20; 25; 30g,
respectively. The black histograms correspond to the null case,
where the injected signal has only one mode. The green, blue,
and red histograms correspond to the injection with amplitude
ratio of AR ¼ f0.1; 0.2; 0.3g, respectively. We claim the detec-
tion of a second mode when the colored histograms (corre-
sponding to a nonzero amplitude ratio) separate clearly from the
black histogram.
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(ρRD ≥ 40) to detect the subdominant mode. In particular,
we find that if a nonspinning BBH with mass ratio q ∼ 1.5
were to produce a remnant similar to that formed
GW150914 event, a SNR of ρRD ∼ 40 is required to detect
the subdominant mode.
Further, for this study, we have taken the l¼m¼2;n¼0

and l ¼ m ¼ 3; n ¼ 0 modes to be the dominant and
subdominant modes, respectively. For a nonspinning
BBH system, l ¼ m ¼ 3; n ¼ 0 is the loudest subdomi-
nant mode [27,28]. However, if the progenitor BHs had
non-negligible spins, then for certain mass ratios l ¼ 2,
m ¼ 1, n ¼ 0 can be louder than or comparable to the
excitation of l ¼ m ¼ 3; n ¼ 0mode. It would be straight-
forward to extend it to include other choices for the
subdominant modes, including higher overtones in a
similar framework. However, given that the subdominant
mode frequencies are well separated (∼80–100 Hz) from
the dominant mode frequency for both l¼2,m ¼ 1, n ¼ 0

and l ¼ m ¼ 3; n ¼ 0 and the damping times are of the
same order of magnitude, we do not expect the qualitative
behavior of the posterior distribution of AR to change
significantly. The results presented in this paper are based
on the posterior distributions inferred for AR and ϕ33 and,
therefore, we expect our result to not change significantly.
For a BBH ringdown signal, the excitation amplitude of

the different modes depends on the perturbation conditions
set up by the inspiral-merger phase. This, in turn, is dictated
by the asymmetry of the initial BBH system, i.e., mass ratio
and the spin of the progenitor. Generally speaking, more
asymmetric systems will have higher modes excited but are
also less likely to be detected.
Asymmetrical BBH systems produce ringdown with a

larger value of AR but are also less likely to be detected
[37,42,43]. The general question of how likely we are to
detect a sufficiently asymmetric system with networks of
future gravitational wave detectors, and the issue of
determining the frequencies and damping times rather than
just detecting them, will be addressed in a companion
paper [44].
Lastly, we would like to highlight that the quantitative

values for the SNR provided for detectability of the
subdominant modes in this study are optimistic lower
bounds. This study is performed in noiseless data and with
the assumption that the underlying theory of gravity is GR,
i.e., we derive the QNM frequencies expected in GR. We
sample for the final mass and spin of the BH instead of the
QNM frequencies and damping time and this reduces the
parameter space for Bayesian inference, thereby allowing
the detection of the second mode at a smaller SNR.
However, we would like to highlight that in the situations
when the SNR in the ringdown is not sufficiently high to
extract the values of frequencies and damping times of
the subdominant modes reliably, obtaining the posterior
distribution for fMf; af; A22; AR;ϕ22;ϕ33g under the

assumption they are QNM as dictated by GR provides a
valuable information in itself and acts as a null hypothesis
test. If there is a deviation of the signal from what is
predicted by GR, it is expected to be reflected as features of
posterior distribution; for example, one might observe
features like multimodal posterior for final mass and spin
if the frequency for the second mode is significantly
different from the GR predictions. Another interesting
analysis in the case of low SNR would be comparing
the variance of the inferred posteriors from the GW data
with that of a simulated signal injected in similar signal-to-
noise levels.
Although the setup we have used already sheds light on

our assumption that the underlying theory is GR, a more
robust test of GR would require measurement of the QNM
frequencies and damping times directly from the data.
Using a Fisher matrix framework combined with the
Rayleigh criterion as presented in Ref. [17] a rough lower
bound of SNR required for resolving the ringdown modes
are ρRD ∼ 25, 13, 9 for AR ¼ f0.1; 0.2; 0.3g, respectively.
In future work, we plan to investigate the measurement of
subdominant mode frequencies and damping time in a fully
Bayesian framework.
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APPENDIX: POSTERIOR DISTRIBUTION
OF AR AND ϕ33

In Fig. 6, we provide the joint posterior distribution for
AR-ϕ33 for all the injections used for this study. Note the
interplay of AR and ρRD on the shape of the posterior
probability distribution as well as on the spread of the 90%
and 50% credible interval. The color bars in each of
these panels correspond to the recovered SNR and the
blue lines indicate the injection parameters. The top row in
the figure corresponds to “the null test,” where the
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injections contains only one mode, i.e., AR ¼ 0. The
second, third, and fourth row correspond to AR ¼ 0.1,
0.2, and 0.3, respectively. The columns in the panel
correspond to injections with ρRD ¼ f15; 20; 25; 20g from
left to right. In each of these cases, we find that the injected
values of the parameters (indicated by the red line in

the figures) lie within the 50% (and thus, 90%) credible
interval. Further, the null tests in Fig. 6 are consistent with
what is expected; the marginalized posterior for AR rails
against AR ¼ 0, thereby, indicating the absence of the
second mode. Also, no information on the phase of
l ¼ m ¼ 3 mode can be inferred for this case.

FIG. 6. Posterior distributions for the amplitude ratio AR and phase of the subdominant mode ϕ33 for all the cases investigated in this
study. The purple lines indicate the injected values in each of these cases. From top to bottom, the rows correspond to AR ¼ 0, 0.1, 0.2,
0.3 and from left to right the columns correspond to ρRD ¼ 15, 20, 25, 30.
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