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Abstract

We present three-dimensional local hydrodynamic simulations of flows around objects embedded within stellar
envelopes using a “wind tunnel” formalism. Our simulations model the common envelope dynamical inspiral
phase in binary star systems in terms of dimensionless flow characteristics. We present suites of simulations that
study the effects of varying the binary mass ratio, stellar structure, equation of state, relative Mach number of the
object’s motion through the gas, and density gradients across the gravitational focusing scale. For each model, we
measure coefficients of accretion and drag experienced by the embedded object. These coefficients regulate the
coupled evolution of the object’s masses and orbital tightening during the dynamical inspiral phase of the common
envelope. We extrapolate our simulation results to accreting black holes with masses comparable to that of the
population of LIGO black holes. We demonstrate that the mass and spin accrued by these black holes per unit
orbital tightening are directly related to the ratio of accretion to drag coefficients. We thus infer that the mass and
dimensionless spin of initially nonrotating black holes change by of order 1% and 0.05, respectively, in a typical
example scenario. Our prediction that the masses and spins of black holes remain largely unmodified by a common
envelope phase aids in the interpretation of the properties of the growing observed population of merging binary
black holes. Even if these black holes passed through a common envelope phase during their assembly, features of
mass and spin imparted by previous evolutionary epochs should be preserved.
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1. Introduction

A common envelope phase is a short episode in the life of a
binary star system in which the two components of the binary
evolve inside a shared envelope. Common envelope phases
typically occur when one of the stars in the binary expands,
engulfing its companion object (Paczynski 1976; Taam et al.
1978; Iben & Livio 1993; Taam & Ricker 2010; Ivanova et al.
2013; de Marco & Izzard 2017). Inside the common envelope,
the embedded companion object interacts with the material
flowing past it, giving rise to dynamical friction drag forces
(Chandrasekhar 1943; Ostriker 1999). These drag forces lead to
an orbital tightening as the two objects spiral in. Common
envelope phases are thought to be critical to the formation of
compact-object binaries that subsequently merge through the
emission of gravitational radiation (Smarr & Blandford 1976;
van den Heuvel 1976; see, e.g., Mandel & Farmer 2018, for a
review). Thus, understanding the common envelope phase is
important for understanding the formation channel and
evolutionary history of merging compact-object binaries, such
as those observed by the LIGO and Virgo gravitational-wave
detectors (Aasi et al. 2015; Acernese et al. 2015).

19 NSF Graduate Research Fellow.

Significant theoretical effort has gone into modeling the
physical processes of common envelope phases. This work has
been challenging because of the range of physically significant
spatial and temporal scales, as well as the range of potentially
important physical processes (Iben & Livio 1993; Ivanova et al.
2013). One crucial example is the energy release from the
recombination of ionized hydrogen and helium (Lucy 1967;
Roxburgh 1967; Han et al. 1994, 2002; Nandez et al. 2015;
Ivanova & Nandez 2016). Efforts have often focused on either
global hydrodynamic modeling of the overall encounter (for
example, the recent work of Ricker & Taam 2007; Passy et al.
2012; Ricker & Taam 2012; Ohlmann et al. 2016a, 2016b;
ITaconi et al. 2017, 2018; Chamandy et al. 2018, 2019a, 2019b;
Fragos et al. 2019; Reichardt et al. 2019) or local hydrodynamic
simulations that simplify and zoom in on one aspect of the larger
encounter (e.g., Fryxell et al. 1987; Fryxell & Taam 1989; Taam
& Fryxell 1989; Sandquist et al. 1998; MacLeod & Ramirez-
Ruiz 2015a, 2015b; MacLeod et al. 2017).

Global simulations attempt to model the full spatial extent of
binary systems for many orbital timescales. This approach
captures the full extent of the envelope structure and the physical
complexities involved. However, this also leads to the simulations
being highly computationally expensive, limiting the choice to
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exploring a small parameter space with high resolution, or
exploring a large parameter space with low resolution. Local
simulations, on the other hand, attempt to isolate and study flow
morphologies around the embedded object with a broad parameter
space and high resolution. This approach does not capture the full
geometry in a single simulation. However, the goal is to model
flow conditions representative of different regions or times within
the overall event. Adding together results from multiple such
simulations can help to interpret the outcomes of global models
and physics of the full common envelope interaction. A synthesis
of the global and local simulations offers a pathway toward
understanding the complex gas dynamics of common envelope
phases.

This paper extends previous work on local simulations of gas
flow past an object inspiraling through the gaseous surroundings
of a common envelope. We use the “wind tunnel” formalism,
first presented in MacLeod & Ramirez-Ruiz (2015b) and
expanded in MacLeod et al. (2017), to study the flow past a
compact object embedded in the stellar envelope of a red giant or
asymptotic giant branch star. The stellar profile of the donor at
the onset of the dynamically unstable mass transfer depends on
the mass ratio and initial separation between the centers of the
two stars in the binary. We focus in particular on the variation in
the properties as the binary mass ratio changes, and we present
two suites of simulations with ideal gas equations of state
characterized by adiabatic exponents v = 4/3 and v =5/3,
which bracket the range of typical values in stellar envelopes
(e.g., MacLeod et al. 2017; Murguia-Berthier et al. 2017).

This paper is organized as follows. In Section 2 we describe
the common envelope flow parameters and conditions. We
describe gravitational focusing in common envelope flows and
illustrate the parameter space that controls the properties of the
local flow past an object embedded in a common envelope. In
Section 3 we describe the wind tunnel setup for hydrodynamic
simulations, describe the model parameters, illustrate how the
flow evolves through the simulations, and provide the
quantities that we compute as a product of the simulations.
We present hydrodynamic simulations using the wind tunnel
setup for common envelope flows withay = 4/3 and v = 5/3
equation of state, describe the flow characteristics, and provide
the results obtained from the simulations. In Section 4, we
extrapolate our simulation results for the scenario of a black
hole inspiraling through the envelope of its companion. We
estimate the mass and spin accrued by black holes during the
common envelope phase and derive implications for the effect
of this phase on the properties of black holes in merging
binaries that constitute LIGO-Virgo sources. We conclude in
Section 5. A companion paper, Everson et al. (2020), explores
the validity of the expression of realistic stellar models in the
dimensionless terms adopted here.

2. Common Envelope Flow Parameters and Conditions
2.1. Characteristic Scales

The Hoyle-Lyttleton (HL) theory of accretion (Hoyle &
Lyttleton 1939; Bondi & Hoyle 1944; Edgar 2004) is used
extensively to describe accretion onto a compact object having a
velocity relative to the ambient medium. We use that as a
starting point to consider an embedded, accreting object of mass
M, moving with velocity v, relative to a surrounding gas of
unperturbed density p that follows a stellar profile typical of a
common envelope. The characteristic impact parameter inside
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which gas is gravitationally focused toward the embedded object
and can potentially accrete is set by the Bondi—-Hoyle accretion
radius, written as

2GM,

2 2
Voo + Cs,00

ey

RyBH =

For an object in significantly supersonic motion vy, > ¢ oo,
where ¢ o, is the sound speed of the gas, the Bondi-Hoyle
accretion radius can be replaced by the HL accretion radius,
written as

2GM,
—. 2)

o0

Rypr =

During the dynamical inspiral phase of common envelope
evolution for a system consisting of a black hole in a red
supergiant, the embedded object moves supersonically through
the host envelope (e.g., MacLeod & Ramirez-Ruiz 2015a).
This scenario can be appropriately described by HL scales
(with accretion radius R,y ), and this is the regime that we
model in this work. We refer to R, g1 as R, henceforth.

HL accretion implies a characteristic interaction cross
section of 7R (Hoyle & Lyttleton 1939). The corresponding
mass flux through this cross section and potential mass
accretion rate in HL flows can be written as (Edgar 2004)

My = 7R;] p vse. ©)

The characteristic scales for momentum and energy dissipation
due to gravitational interaction (Ostriker 1999) can be derived
from this cross section as well. The characteristic scale for the
momentum dissipation rate, or force, is

FuL = 7R} .o vy, = My vse, )
and the characteristic energy dissipation rate is

. ) o,

B, = 7R} p vy, = MuLvz, (5)

if we assume that all momentum and energy passing through
the interaction cross section 7R are dissipated.

2.2. Common Envelope Parameters

We imagine that the embedded object M, is spiraling in to
tighter orbital separations within the envelope of a giant-star
primary. The core of the primary is fixed at » = 0, and the orbital
radius of M, within the primary’s envelope is r = a. Thus, the
stellar cores are separated by a distance a, smaller than the
original radius of the primary. We use M,(r) to denote the mass
of the primary that is enclosed by the orbit of M,. Therefore,
the Keplerian orbital velocity is vy = /GM /a, where M =
Mi(a) + M, is the total enclosed mass of the binary (mass
outside of the orbital separation a does not contribute to the
orbital velocity). The relative velocity of the secondary to
the envelope gas, v, is related to the Keplerian velocity of the
secondary as vy, = f, vx. Thus, f is the fraction of the Keplerian
velocity that contributes to the relative velocity. In our
simulations, we adopt the simplification fi = 1. However,
Jfk < 1.0 is possible if the orbital motion of the embedded object
is partially synchronized to the donor’s envelope.

Given a relative velocity set by the orbital motion, the ratio
of the gravitational focusing scale, R,, to the orbital separation,
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Figure 1. Fraction of the orbital separation falling within the gravitational
focusing radius of the embedded object, R,/a, as a function of the binary mass
ratio ¢,. The plot shows the relation for fi = 1.0, 0.9, and 0.8, where f; is the
fraction of the Keplerian velocity contributing to the relative velocity. Markers
show the points for which hydrodynamical simulations have been performed in
this paper. For small mass ratios, the accretion radius of M, is small relative to
the orbital separation. When ¢, is large, R, sweeps out a significant fraction of
the orbital separation. For fixed M5, ¢, increases as the embedded object spirals
further into the envelope of the primary.

a, is (MacLeod et al. 2017)

R, 2 M, 2 1

vl P ©)

a fiM  fil+g
where g, = M,/M,(r) is the mass ratio between the embedded
object and the mass enclosed by its orbit. Therefore, for a given
value of ¢, one can calculate R, in terms of a. The variation of
R, in terms of a with g, is shown in Figure 1 for fi = 1, 0.9,
and 0.8. As ¢, increases, R,/a also increases and gives an
approximate scale for the fraction of the envelope affected by
the embedded object.

The HL formalism assumes a homogeneous background for
the embedded object. In practice, such a situation does not arise
in common envelope encounters. As demonstrated in Figure 1,
R./a can be a large fraction of unity for typical mass ratios.
Therefore, the gaseous medium with which the embedded
object interacts spans a range of densities and temperatures
(MacLeod & Ramirez-Ruiz 2015a).

The flow upstream Mach number is the ratio of orbital
velocity to sound speed,

M = ==, M
Cs,00
where we specify ¢ » to be the sound speed measured at radius
r = a within the common envelope gas. Furthermore, the density
gradient in stellar profiles can be expressed in terms of a local
density scale height at the location of the embedded object as

dr
H = —p—. 8
P pdp (8)

The number of scale heights encompassed by the accretion
radius is then quantified by the ratio

€p=—, ©)
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which is, like other quantities, evaluated at the location of the
embedded object. This density gradient breaks the symmetry of
the flow envisioned in the HL scenario and gives the flow a net
angular momentum relative to the accreting object (MacLeod
& Ramirez-Ruiz 2015a, 2015b; MacLeod et al. 2017; Murguia-
Berthier et al. 2017).

MacLeod et al. (2017) showed that there is a clear relation
between Mach number and density gradient for typical
common envelope flows when the (local) envelope structure
is approximated as a polytrope with index

I‘s:(dlnP) ' (10)
dlnp envelope

Under the simplification of an ideal gas equation of state with
adiabatic index -, we can rewrite the hydrostatic equilibrium
condition of the envelope as a relationship between M, and ¢,
(Equation (18) of MacLeod et al. 2017),

» U +g)
Moof P zqr fk(’)/) (11)

This relation reduces the parameter space to a set of specific
combinations of ¢,, M, and g, values that are realized in
common envelope phases. The validity of this approximation in
the context of detailed stellar evolution models is discussed in
Everson et al. (2020), who argue that the simulations presented
in this paper are still applicable to a wide range of detailed
stellar models described by a realistic equation of state.

3. Hydrodynamic Simulations

In this section we describe hydrodynamic simulations in the
common envelope wind tunnel formalism (MacLeod et al.
2017) that explore the effects of varying the binary mass ratio
on coefficients of drag and accretion realized during the
dynamical inspiral of an object through the envelope of its
companion.

3.1. Numerical Method

The common envelope wind tunnel model used in this work
is a hydrodynamic setup using the FLASH adaptive mesh
refinement hydrodynamics code (Fryxell et al. 2000). A full
description of the model is given in Section 3 of MacLeod et al.
(2017). The basic premise is that the complex geometry of a
full common envelope scenario is replaced with a 3D Cartesian
wind tunnel surrounding a hypothetical embedded object. Flow
moves past the embedded object, and we are able to measure
rates of mass accretion and drag forces.

In the common envelope wind tunnel, flows are injected
from the —x boundary of the computational domain past a
gravitating point mass, located at the coordinate origin of the
three-dimensional domain. To simulate accretion, the point
mass is surrounded by a low-pressure “sink” of radius R;. The
gas obeys an ideal gas equation of state P = (y — 1)pe, where
e is the specific internal energy. The profile of inflowing
material is defined by its upstream Mach number, M., and the
ratio of the accretion radius to the density scale height, ¢,.
Calculations are performed in code units R, = v, = p,, = 1.
Here p,_ is the density of the unperturbed profile at the location
of the embedded object. This gives a time unit of R, /v, = 1,
which is the time taken by the flow to cross the accretion
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radius. The binary separation a in code units is

a 12 -1
= = £’ . 12
x. e +a7h (12)

The density profile of the gas in the y-direction is that of a
polytrope with index I'y in hydrostatic equilibrium with a
gravitational force

GM[(I‘) ~

, 13
(y_)’l)z )

Aoray,] = —

which represents the gravitational force from the primary star’s
enclosed mass, M;(r). The density scale height, sound speed,
and upstream Mach number vary across this profile as they
would in a polytropic star. At the +y and £z boundaries, a
“diode” boundary condition is applied, which allows material
to leave but not enter into the domain.

The size of the domain is set by the mass ratio of the binary
system and the effective size of the binary orbit, as described
by Equation (12). Gravitationally focused gas flows are
sensitive to the distance over which they converge and the
size of the wake that they leave (e.g., Ostriker 1999). In varying
the binary mass ratio, it is important to capture this physical
property of differing ratio of the gravitational focus radius to
the physical size of the system, Equation (12). In order to
capture the full flow, our domain has a diameter equal to the
binary separation a, implying that it extends a distance
+a/2 = (1 + g "R, /4 about the origin in the +x, +y, and
=z directions.

This domain is spatially resolved by cubic blocks that have
extent of R,/2 in each direction, and each block is made of 8’
zones. The largest zones have length R,/16. We allow for five
levels of adaptive mesh refinement, giving the smallest zones
length R,/256. We enforce maximum refinement around the
embedded object at all times.

3.2. Model Parameters

The simulations that we present later in this section assume
I'y = vand fi = 1. We are therefore modeling constant entropy
stellar envelope material (as in a convective envelope of a giant
star) and relative velocities between the embedded object and
the background gas equal to the Keplerian velocity. All models
adopt a sink radius for measuring accretion of R, = 0.05R,
around the embedded object. In Section 4.1, we perform
simulations with varying sink radius and discuss the depend-
ence of our results on this parameter.

This leaves three flow parameters in Equation (11): M, ¢,
and ¢, only two of which can be chosen independently.
Figure 2 shows the simulation grid presented in this paper and
those in MacLeod & Ramirez-Ruiz (2015b) and MacLeod et al.
(2017) in the My, — ¢, space. The simulations in this paper
expand the parameter space covered in the previous papers with
a broader range of M, (therefore ¢,) and, crucially, models of
varying mass ratio, ¢,. We construct a grid of ¢, — M values,
with g, values 1/10, 1/7, 1/5, 1/4, and 1/3. For each value of
g we perform simulations with M, of 1.15, 1.39, 1.69, 2.2,
2.84, 3.48, and 5.0. It was shown in MacLeod & Ramirez-Ruiz
(2015a) with the help of MESA simulations of 1-16M, stars
evolved from the zero-age main sequence to the giant branch
expansion that typical upstream Mach number values range
from M, ~ 2 in the deep interior to M., 2 5 near the stellar
limb. Extending these results in Everson et al. (2020), MESA is
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Figure 2. Points in the M.—¢, space representing flow parameters for
simulations performed with the “wind tunnel” setup. For polytropic envelopes,
each combination of M, and €, has a corresponding ¢, value (MacLeod
et al. 2017). Simulations are shown on lines of constant ¢,, with the exception
of three simulations from MacLeod & Ramirez-Ruiz (2015a) that do not follow
the polytropic relation. The simulations in this work expand on the previous
work as labeled, extending across both axes to higher Mach numbers and
steeper density gradients, significantly extending coverage across the region of
parameter space realized in realistic stellar profiles as detailed in Everson
et al. (2020).

used to evolve a broader range of stellar masses 3-90M,, with
binary mass ratios of 0.1-0.35, finding 1.5 < M, < 7 in giant
branch stellar envelopes. It should be noted that the Mach
number values discussed here and used as model parameters
are defined upstream of the flow. Mach number values would
differ when measured in the vicinity of the object, as material
might then have crossed a shock and been compressed or
heated, such as those measured in Iaconi et al. (2018).

Tabulated model parameters are presented in Tables 1 and 2.
We divide our discussion in the subsequent sections to consider
the y =T, =4/3 and v = Iy = 5/3 models separately.

3.3. Model Time Evolution and Diagnostics

In Figure 3 (animated version online) we show the time
evolution of a representative model (A3) with parameters v = 4/3,
g- = 1/10, and M, = 1.69. The top panel in Figure 3 shows a
slice through the orbital (z = 0) plane of the binary, with the
white circle at the origin representing the absorbing sink around
the embedded companion object. We show a section of the
computational domain extending between £R,. The full domain
extends between (1 + qr’l)Ra/ 4 = £2.75R, in each direction.
The background gas injected into the domain at the —x boundary,
with speed M, carries with it the density profile set by ¢, (the
center of the primary is located at y = —a, so the density increases
with decreasing y). Once material enters the domain, it is
gravitationally focused by the embedded object and a bow shock
forms owing to the supersonic motion of the embedded object
relative to the gas. Denser material is drawn in from deeper within
the star y < 0, such that asymmetry is introduced into the bow
shock, and net rotation is imparted into the post-shock flow
(MacLeod & Ramirez-Ruiz 2015a; MacLeod et al. 2017). While
most of the injected material exits the domain through the +x and
+y boundaries, some is accreted into the central sink.
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Table 1 Table 2
Input Parameters (g, Mo, €,) and Results (C,, Cq) for v = 4/3 Simulations Input Parameters (g, Mo, €,) and Results (C,, Cy) for v = 5/3 Simulations
Name 0% qr Moo €p C, Cy Name ol qr Moo € C, Cy
Al 4/3 0.1 1.15 0.22 0.70 1.20 Bl 5/3 0.1 1.15 0.22 0.36 0.79
A2 4/3 0.1 1.39 0.32 0.77 1.44 B2 5/3 0.1 1.39 0.32 0.38 0.95
A3 4/3 0.1 1.69 0.47 0.66 1.60 B3 5/3 0.1 1.69 0.47 0.21 0.99
A4 4/3 0.1 2.20 0.80 0.38 1.91 B4 5/3 0.1 2.20 0.80 0.14 1.35
A5 4/3 0.1 2.84 1.33 0.10 3.36 B5 5/3 0.1 2.84 1.33 0.05 2.07
A6 4/3 0.1 3.48 2.00 0.07 5.44 B6 5/3 0.1 3.48 2.00 0.02 3.03
A7 4/3 0.1 5.00 4.13 0.04 18.92 B7 5/3 0.1 5.00 4.13 0.01 6.22
A8 4/3 0.143 1.15 0.29 0.74 1.03 B8 5/3 0.143 1.15 0.29 0.36 0.58
A9 4/3 0.143 1.39 0.42 0.65 1.20 B9 5/3 0.143 1.39 0.42 0.35 0.79
A10 4/3 0.143 1.70 0.63 0.52 1.22 B10 5/3 0.143 1.70 0.63 0.24 0.85
All 4/3 0.143 2.20 1.06 0.26 1.41 Bl1l1 5/3 0.143 2.20 1.06 0.13 1.14
Al12 4/3 0.143 2.84 1.77 0.09 2.93 BI12 5/3 0.143 2.84 1.77 0.05 1.63
Al3 4/3 0.143 3.48 2.65 0.10 5.15 B13 5/3 0.143 3.48 2.65 0.03 242
Al4 4/3 0.143 5.00 547 0.07 19.38 Bl14 5/3 0.143 5.00 5.47 0.03 5.70
AlS 4/3 0.2 1.15 0.37 0.80 0.80 B15 5/3 0.2 1.15 0.37 0.38 0.40
Al6 4/3 0.2 1.39 0.54 0.76 1.01 B16 5/3 0.2 1.39 0.54 0.37 0.57
Al7 4/3 0.2 1.70 0.80 0.45 0.97 B17 5/3 0.2 1.70 0.80 0.22 0.65
Al8 4/3 0.2 2.20 1.34 0.22 1.05 B18 5/3 0.2 2.20 1.34 0.13 0.84
A19 4/3 0.2 2.84 2.24 0.11 2.02 B19 5/3 0.2 2.84 2.24 0.06 1.24
A20 4/3 0.2 3.48 3.36 0.09 4.34 B20 5/3 0.2 3.48 3.36 0.06 1.85
A21 4/3 0.2 5.00 6.94 0.29 12.93 B21 5/3 0.2 5.00 6.94 0.04 4.76
A22 4/3 0.25 1.15 0.42 0.79 0.65 B22 5/3 0.25 1.15 0.42 0.39 0.32
A23 4/3 0.25 1.39 0.62 0.74 0.83 B23 5/3 0.25 1.39 0.62 0.39 0.46
A24 4/3 0.25 1.70 0.93 0.38 0.82 B24 5/3 0.25 1.70 0.93 0.20 0.54
A25 4/3 0.25 2.20 1.55 0.23 0.85 B25 5/3 0.25 2.20 1.55 0.09 0.65
A26 4/3 0.25 2.84 2.58 0.13 1.66 B26 5/3 0.25 2.84 2.58 0.07 1.03
A27 4/3 0.25 3.48 3.87 0.13 3.11 B27 5/3 0.25 3.48 3.87 0.07 1.54
A28 4/3 0.25 5.00 8.00 0.61 7.73 B28 5/3 0.25 5.00 8.00 0.11 3.55
A29 4/3 0.3333 1.15 0.50 0.64 0.53 B29 5/3 0.3333 1.15 0.50 0.42 0.17
A30 4/3 0.3333 1.39 0.73 0.62 0.65 B30 5/3 0.3333 1.39 0.73 0.35 0.31
A3l 4/3 0.3333 1.70 1.08 0.37 0.61 B31 5/3 0.3333 1.70 1.08 0.21 0.42
A32 4/3 0.3333 2.20 1.81 0.23 0.65 B32 5/3 0.3333 2.20 1.81 0.10 0.50
A33 4/3 0.3333 2.84 3.02 0.13 1.25 B33 5/3 0.3333 2.84 3.02 0.08 0.80
A34 4/3 0.3333 3.48 4.54 0.18 1.91 B34 5/3 0.3333 348 4.54 0.09 1.24
A35 4/3 0.3333 5.00 9.37 1.06 5.28 B35 5/3 0.3333 5.00 9.37 0.15 2.76

Note. The C,, Cy entries are median values computed over simulation
times 10R, /vy < t < 30R, /Vso-

As the simulation progresses, we monitor rates of mass and
momentum accretion into the central sink (Equations (24) and
25 of MacLeod et al. 2017), as well as the gaseous dynamical
friction drag force that arises from the overdensity in the wake
of the embedded object (Equation (28) of MacLeod et al.
2017). We define the coefficients of accretion and drag to be
the multiple of their corresponding HL values, Equations (3)
and (4), respectively, realized in our simulations. That is, the
coefficient of accretion is

CG=—p =1 (14)
T, Ra poc Voo MHL

where M is the mass accretion rate measured in the simulation.
The coefficient of drag is

Fge + F F

Cy= 27”«2‘ =4 (15)

7TRa Poo Voo Fur
where Fyy is the dynamical friction drag force, F) is the force
due to linear momentum accretion, and Fy = Fyr + F), is the net
drag force acting on the embedded object due to the gas. Fys is

Note. The C,, Cy4 entries are median values computed over simulation times
10R, /vee < 1 < 30 R,/ Vo

computed by performing a volume integral over the spherical
shell of inner radius R, and outer radius (1 + q;l)Ra / 4 (the size
of the computational domain in the +x, +y, -z directions). The
bottom panel of Figure 3 shows C, and Cy as a function of time
for model A3. We run our simulations for a duration
t = 30R, /vy (i.e., 30X code units). The flow sets up during
an initial transient phase, which is ~8R, /v,, for model A3
presented in Figure 3, after which the rates of accretion and drag
subside to relatively stable values. The upstream density gradient
imparts turbulence to the flow, which introduces a chaotic time
variability to the accretion rate and drag. Therefore, we report
median values of the C, and Cy4 time series from the steady-state
duration of the flow, 10R, /v <t <30 R,/vy in the
remainder of the paper, though C, and Cy are typically close
to their steady-state values after a time a/v...

Recently, Chamandy et al. (2019a) have undertaken a
detailed analysis of forces in their global models of common
envelope phases. One of their findings is that during the
dynamical inspiral phase, flow properties and forces are very
similar to those realized in local simulations such as those
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Figure 3. Movie of a simulation showing flow of material in the vicinity of an
object, embedded in the envelope of its companion star during a common
envelope interaction. The simulation has been performed with ideal gas
equation of state adiabatic constant v = 4/3, mass ratio ¢, = 0.1, and upstream
Mach number My, = 1.69 in the “wind tunnel” setup. The top panel shows
the density in units of p, in the orbital (x—y) plane of the binary, with the white
circle at the coordinate origin representing the embedded companion object.
The lines with arrowheads in white represent streamlines following the velocity
field in the flow. Material enters into the domain from the —x direction, and the
coefficient of accretion C, and the coefficient of drag Cy4 values are measured in
response to the incoming conditions. Supersonic flow of material past the
object results in a large pressure difference, causing formation of a shock wave.
The bottom panel shows the time series of coefficients of accretion C, (in red)
and drag Cq4 (blue) for the full simulation. The gray vertical line tracks the
instantaneous C,, C4 values as the simulation progresses. The time quoted in
the movie is in code units R, /vs., where R, is the accretion radius and v is the
relative velocity of the flow past the embedded object.

(An animation of this figure is available.)

presented here. For example, Figure 3 is very similar to Figure
7 of Chamandy et al. (2019a).

3.4. Gas Flow

In this section, we discuss the properties and morphology of
gas flow in our common envelope wind tunnel experiments for
the models tabulated in Tables 1 and 2. We focus, in particular,
on the differences that arise as we vary the dimensionless
characteristics of the flow in the form of upstream Mach
number, mass ratio, and gas adiabatic index.

3.4.1. Dependence on Mach Number, M,

Figures 4 and 5 show slices of density and Mach number
through the orbital (x—y) plane from the models with ¢, = 1/10
and a range of M, and corresponding ¢, values. In Figure 4
models from Table 1 are presented, which have v = I'y = 4/3,
while in Figure 5 models from Table 2 are presented, which

De et al.

have v =Ty = 5/3. In these slices, the x- and y-axes show
distances in units of the accretion radius R,, and we overplot
streamlines of the velocity field within the x—y plane.

Higher Mach numbers imply steeper density gradients
relative to the accretion radius, following Equation (11). These
conditions tend to be found in the outer regions of the stellar
envelope, whereas lower Mach numbers and shallower density
gradients are more representative of flows found deeper in the
stellar envelope. Thus, the sequence of Mach numbers
approximates the inspiral of an object from the outer regions
of the envelope of the donor star toward its center.

Figures 4 and 5 demonstrate how a decreasing M, for fixed
q, affects the flow characteristics. A key distinction is that the
flow symmetry is more dramatically broken at high M, (and
€,), and it gradually becomes more symmetric with decreasing
M and €, (MacLeod & Ramirez-Ruiz 2015a; MacLeod et al.
2017). It is important to emphasize that the controlling
parameter generating this asymmetric flow is the density
gradient, rather than the Mach number itself. In the highly
asymmetric cases, the dense material from negative y values
does not stagnate at y =0, as in the canonical HL flow.
Instead, this material pushes its way to positive y values (where
the background density is lower), as it is deflected by the
gravitational influence of M,. In the cases where M., = 1.15,
the flow is nearly symmetric, as density gradients are quite mild
and the flow morphology approaches that of the classic
HL case.

The bottom panels of Figures 4 and 5 show slices of flow
Mach number near the embedded object. In case of the high
upstream Mach numbers or steeper upstream density gradients,
most of the material in the post-shock region is supersonic,
with a negligible amount of material having M < 1 values. As
the upstream Mach number is decreased, or the upstream
density gradient is made shallower, the bow shock becomes
more symmetric. The upstream flow is supersonic, whereas
after the material crosses the shock and meets the pressure
gradient caused by the convergence of the flow in the post-
shock region, the downstream flow becomes subsonic. In
Figure 4, for the lowest upstream Mach number case in the
v = 4/3 simulations, we observe a sonic surface in the Mach
number plot, crossed by red post-shock material, as it
transitions to blue (supersonic) infall toward the sink. For the
~v = 5/3 simulations, this feature is not visible, as the sonic
point is located at the accretor (at zero radius).

We can anticipate the implications of these flow distributions
on coefficients of accretion and drag. With increasing M., the
disturbance in the flow symmetry is expected to reduce the rate
of accretion: streamlines show that less material is converging
toward the embedded object. We also note that for larger
density gradients (higher M) the post-shock flow is generally
more turbulent, and the rate of accretion of material into the
sink becomes more variable. The variation of density flowing
within the accretion radius in the high-M,, cases cause dense
material from negative y regions to be focused into the object’s
wake, which might be expected to enhance the dynamical
friction drag force.

3.4.2. Dependence on Mass Ratio, q,

Varying mass ratio can be representative of differing binary
initial conditions, or even changing enclosed mass within a
given binary. Figure 6 shows slices of density through the
orbital (x—y) plane from the simulations performed for ¢, values
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Figure 4. Slices of density in units of o (top panels) and Mach number (bottom panels) through the orbital (x—y) plane, for a fixed mass ratio g, and varying upstream
Mach number M., for the simulation suite (I's, ) = (4/3, 4/3). The simulations use g, = 0.1 and M, 5.0, 3.48, 2.84, 2.20, 1.69, and 1.15, corresponding to density
gradients €, of 4.132, 2.0, 1.33, 0.8, 0.47, and 0.218, respectively. The slices compare the state of the flow at simulation time ¢ = 30R, /Vso- Moving from the highest
to the lowest M, the slices show the pattern of the flow around the embedded companion object as it inspirals from the outer to the inner regions of the primary star’s
envelope.

1/10 and 1/3 and a fixed M, = 1.15 for both v = I’y = 4/3 constant, the corresponding ¢, is largest in the ¢, = 1/3 case

and vy =T, =5/3. and smallest for ¢, = 1/10, as shown in Tables 1 and 2. This
Comparison of the panels of Figure 6 demonstrates the effect yields the most obvious difference with varying ¢g,: the flow in
of g, on the flow characteristics. Although M, is held the g, = 1/3 case is more asymmetric (e.g., the bow shock is
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Figure 5. Slices of density in units of p,, (top panels) and Mach number (bottom panels) through the orbital (x—y) plane, for a fixed mass ratio ¢, and varying upstream
Mach number M., for the simulation suite (I's, 7) = (5/3, 5/3). The simulations use g, = 0.1 and M, 5.0, 3.48, 2.84, 2.20, 1.69, and 1.15, corresponding to density
gradients ¢, of 4.132, 2.0, 1.33, 0.8, 0.47, and 0.218, respectively. The slices compare the state of the flow at simulation time ¢ = 30R, /Vso- Moving from the highest
to the lowest M, the slices show the pattern of the flow around the embedded companion object as it inspirals from the outer to the inner regions of the primary star’s

envelope.

more distorted) as a result of the stronger density gradient. choose our model domain sizes to capture this difference in
Second, we observe that the higher-q, cases have weaker scales, as described in Section 3.1. When the accretion radius is
focusing of the flow around the embedded object, as evidenced a larger fraction of the orbit size, gravitational focusing acts
by the pre-shock flow streamlines. This happens because as the over fewer characteristic lengths R, to concentrate the flow.
mass ratio increases, from Equation (6), R,/a increases. We One implication is that the effective interaction cross section is
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Figure 6. Slices of density in units of p,, for the simulation suite (T, ) = (4/3, 4/3) (left panels) and for the simulation suite (I, ) = (5/3, 5/3) (right panels)
through the orbital (x—y) plane, for a fixed upstream Mach number M, and varying ratio ¢,. The simulations for each v use M., = 1.69 and g, = 0.1 (top) and 0.33
(bottom). The slices compare the state of the flow at simulation time t = 30R, /v». The panels show the dependence of the flow pattern around the embedded

companion object in a specific region of the envelope on the binary mass ratio.

smaller than 7R?, because the original HL derivation of R,
assumes a ballistic trajectory focused from infinite distance.

Therefore, with increasing ¢, we anticipate a decrease in the
dynamical friction drag force due to the smaller effective cross
section. The implications for the accreted mass are less obvious
from these slices because the morphology of the post-shock
flow is largely similar owing to the competition between
steeper density gradients but smaller effective cross sections at
larger g,.

3.4.3. Dependence on Adiabatic Index, ~

Here we examine the dependence of flow properties on the
stellar envelope equation of state, using two limiting cases of
ideal gas equations of state that bracket the range of typical
stellar envelope conditions. A v = 4/3 equation of state is
representative of a radiation-pressure-dominated equation of
state, occurring in massive-star envelopes, or in zones of partial
ionization in lower-mass stars. A v = 5/3 equation of state
represents a gas-pressure-dominated equation of state, as
occurs in the interiors of relatively low mass stars with masses
less than approximately 8M., (e.g., MacLeod et al. 2017;
Murguia-Berthier et al. 2017). Values between these limits are
also possible, dependent on the microphysics of the density—
temperature regime (Murguia-Berthier et al. 2017).

While there are many similarities in overall flow morphology in
our simulation suites A (Table 1) and B (Table 2), because gas is
less compressible with v = 5/3 than it is with v = 4/3, there are
several key differences between these two cases. Gas near the
accretor tracks closer to ballistic, rotationally supported trajectories

in the v = 4/3 case, as compared to the less compressible v = 5/3
case. A related feature is that the bow shock stands farther off from
the accretor into the upstream flow when v = 5/3 than v = 4/3.
These properties are visible when comparing the equivalent panels
of Figures 5 and 4, or the left and right panels of Figure 6. The
underlying explanation is similar: shock structures around the
accretor are set by the balance of the gravitational attraction of the
accretor, the ram pressure of incoming material, and pressure
gradients that arise as gas is gravitationally focused. For the less
compressible v = 5/3 models, gas pressure gradients exceed the
accretor’s gravity and partially prevent accretion. We observe the
consequence of this in lower-density voids of hot, low Mach
number material in Figure 5. For the more compressible v = 4/3
flow, gas is more readily compressed, and pressure gradients build
at a similar rate to the gravitational force (Murguia-Berthier et al.
2017). One consequence of this is that higher densities near the
accretor track the compression of gas deep into the accretor’s
gravitational potential well.

3.5. Coefficients of Drag and Accretion

We now use the results from the wind tunnel experiments to
understand the effects of ¢, and M, on the accretion of material
onto the embedded object and on the drag force acting on the
embedded object. Figure 7 shows median values of C, and Cy4
computed over simulation times 10R, /v, < t < 30R, /vy, as a
function of M, for different values of ¢,. We use contributions
from both the dynamical friction drag force, Fyr, and the force
due to linear momentum accretion Fj in calculating Cy
(Equation (15)). In all our simulations, Fg is larger than Fj;
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Figure 7. Variations of the median coefficient of accretion C, and the median coefficient of drag Cy4 vs. upstream Mach number M, for the (I'y, ) = (4/3, 4/3)
simulations (top panels) and (T'y, 7) = (5/3, 5/3) simulations (bottom panels). C, (Cq) vs. M curves are shown for each g, value at which simulations are performed.
C, is obtained by normalizing the mass accretion rate in the system to the HL theory mass accretion rate. Cy is obtained by normalizing the drag force in the system to
the HL theory drag force. The C, and C4 median values are computed in the simulation time range 10R, /v,, < t < 30R, /v. For a fixed, small mass ratio g, a higher
M corresponds to a steeper upstream density gradient that breaks the symmetry of the flow, causing a reduction in C,, and a greater quantity of dense material

gravitationally focused from the deep stellar interior, which increases Cy.

however, as we find in Section 4.1, the sum of these forces is the
quantity that is invariant with respect to changing the numerical
parameter of sink radius.

In Appendix A, we present fitting formulae for the
coefficients of accretion C, and drag force C4 as a function
of the mass ratio and Mach number from both our v = 4/3 and
v =35/3 simulations, showing the mapping between the
(q,, Moo) — (C,, Cy) parameter space that we have explored.

3.5.1. Dependence on Mach Number, M,

We begin by examining the dependence of drag and
accretion coefficients with upstream Mach number, M.
Figure 7 shows that for M, < 3, at fixed g,, C, decreases
with increasing M,,. For ¢, < 0.2, this trend continues to
higher M., while for g, = 0.2, the coefficient of accretion
rises again with increasing M, particularly in the v = 4/3
models. This general trend can be understood in the context of
the associated density gradients. For fixed g, higher-M, flows
correspond to steeper density gradients relative to the accretion
radius. The steep density gradient breaks the symmetry of the
post-shock flow, as discussed in Section 3.4.1. The resulting

10

net rotation and angular momentum act as a barrier to accretion
and lead to a drop in the accretion rate as compared to the HL
rate (71'Ra2 ProVso; MacLeod & Ramirez-Ruiz 2015a). The
increase in C, for large ¢, at high M, runs counter to this
overall trend. In these cases, the combined steepening of the
density gradient and weakening of the overall gravitational
focus and slingshot discussed in Section 3.4.2 lead to a flow
morphology that very effectively transports dense material
from —y impact parameters toward the sink, instead of
imparting so much angular momentum that it is flung to +y
coordinates, resulting in large C,.

As for the drag force, we see that for each value of ¢, Cq4
monotonically increases by a factor of O(10) with increasing
M, across the range of M,, values for which we have
performed simulations. This trend reflects the fact that higher
local gas densities, p, are achieved within the accretion radius
of M, for higher values of the upstream Mach number, M.
This higher-density material (p > p. ) focused into the wake
of the embedded object from deeper inside the interior of the
primary star enhances the dynamical friction drag force as
compared to the HL drag force (7R poovozo).
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3.5.2. Dependence on Mass Ratio, q,

For each M, we can also see the dependence of C, and Cy4
on the mass ratio g, in Figure 7. As the mass ratio increases, the
accretion radius becomes a larger fraction of the orbit size. This
causes the flows to be focused from a distance that is a smaller
multiple of the accretion radius, causing weaker focusing and
gravitational slingshot of the gas, as discussed in Section 3.4.2.
The effect of this difference on the coefficients of accretion at
My <3 is minimal. However, as discussed above in
Section 3.5.1, at higher M., there is a dramatic increase in
C, with increasing ¢, that results in the capture of dense
material from —y impact parameters that does not possess
sufficient momentum to escape the accretor’s gravity.

In the higher-g, cases, there is relatively weak momentum
transfer to the gas. This weakens the drag forces relative to the
HL drag force, which reduces the deceleration of the object. In
Section 3.4.2, we discussed this effect in terms of a reduced
effective cross section. In terms of the coefficients of drag in
Figure 7, the quantitative effects are particularly clear. When
gas is gravitationally focused over fewer characteristic length
scales (because R, is a larger fraction of a at larger ¢,), we see
lower dimensionless drag forces, Cy.

3.5.3. Dependence on Adiabatic Index, ~

The gas adiabatic index has important consequences for
coefficients of drag and accretion because while pressure
gradients enter into the fluid momentum equation, distributions
of gas densities set rates of drag and accretion. Thus, the
equation of state is crucial both for the flow morphology, as
discussed in Section 3.4.3, and for C, and Cy.

In Figure 7 we note that the increased resistance to
compression by the accretor’s gravitational force of the v = 5/3
models leads to lower C, by a factor of approximately 2 than
the equivalent y = 4/3 models. We saw the effects of this in the
density slices of Figures 4 and 5, in which the material in the
vicinity of M, is not as dense in the v = 5/3 models as it is in
the v = 4/3 simulations. Second, the larger pressure support
provided by the gas in the vy = 5/3 simulations decreases the
overdensity of the post-shock wake versus what is realized in the
simulations with v = 4/3. The greater upstream-downstream
symmetry that results decreases the net dynamical friction force
exerted on the embedded object. We observe that Cy is
approximately a factor of 3 lower for v =5/3 than v =4/3
in the right panels of Figure 7.

Having explored the parameter space of gas flow and
coefficients of gas and accretion in our wind tunnel models, in
the following section we explore the application of these results
to astrophysical common envelope encounters. In Appendix B,
we compare the drag forces measured in this work with other
approaches to measure drag forces in common envelope
encounters.

4. Accretion onto Black Holes during a Common Envelope
Inspiral

In this section we discuss the application of our wind tunnel
results to the scenario of a black hole dynamically inspiraling
through the envelope of its companion. We focus in particular
on the accreted mass and spin, because these parameters
directly enter into the gravitational-wave observables. To do so,
we discuss the application and extrapolation of our numerical
measurements of C, and Cy to black holes and the implications
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on the accreted mass and spin for LIGO-Virgo’s growing
binary black hole merger population.

4.1. Projected Accretion and Drag Coefficients for Compact
Objects

A limitation of our numerical models is that the accretion rate
and, to a lesser extent, the drag force have been shown to depend
on the size of the central absorbing sink (see Ruffert 1994, 1995;
Ruffert & Arnett 1994; Blondin & Raymer 2012; MacLeod &
Ramirez-Ruiz 2015a; Antoni et al. 2019). This dependence
indicates that results do not converge to a single value regardless
of the numerical choice of sink radius, R,. Further, simulta-
neously resolving the gravitational focusing radius, R,, and the
size of a compact object is currently not computationally
feasible: R, might be on the order of the envelope radius, while
an embedded compact object’s radius is orders of magnitude
smaller still. Previous work by MacLeod & Ramirez-Ruiz
(20154, 2015b) and MacLeod et al. (2017) has pointed out that
these limitations make accretion coefficients derived from
simulations at most upper limits on the realistic accretion rate.

Here we attempt to systematically explore the scaling of
coefficients of accretion and drag to smaller sink radii, which is
smaller R;/R, values. We ran two additional sets of 35 models
that reproduce models A1 through A35, reducing the sink radius
by a factor of two to Ry/R, = 0.025 and R;/R, = 0.0125. To
preserve the same level of resolution across the sink radius, we
add an additional layer of mesh refinement around the sink with
each reduction of sink radius (effectively halving the minimum
zone width). From these models, we measure coefficients of drag
and accretion following the methodology identical to our
standard models presented earlier.

With accretion and drag coefficients derived across a factor
of four in sink radius, we fit the dependence on sink radius with
power laws of the form

IOglo(M) = Qapy 10g]o(Rs/Ra) + Bwm
loglo(Ei) = QFf loglo(Rs/Ra) + BF-

Thus, M  (Ry/R,)*" and Fj x (Ry/R,)**. With these coeffi-
cients, we have some indication of how rates of accretion and
drag forces might extrapolate to much smaller R;/R, that are
astrophysically realistic.

Figure 8 presents the exponents of the power-law relations of
the accretion rate and drag force on the sink radius, as a function
of M. For each (g,, M) model, there are three sets of (C,, Cq)
values from the Ry/R, = [0.0125, 0.025, 0.05] simulations,
respectively. A linear least-squares fit of Equation (16) to the
three C, values is performed. The slope of the fitted line is oy,
which is the exponent of the power-law function relating M to
Rs/R,. Similarly, a linear least-squares fit of Equation (17) to the
three C4 values is used to derive ag, the exponent of the power-
law function relating F, to Ry/R,. Thus, we derive one oy and
one ap (represented with crosses in Figure 8) per (g, M)
model. We observe that the majority of the «y; values are
positive, indicating that accretion rates drop as sink sizes get
smaller relative to R, Additionally, we observe that o is
typically lower in low Mach number flows, M., < 2, which
have proportionately shallower density gradients. Above
My 2 2, ayy is approximately constant with increasing M.
At a given M, there is variation between the models,
depending on the mass ratio, g.. However, for simplicity,
the following piecewise linear plus constant least-squares fit

(16)
7)
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Figure 8. Exponents of power-law relations of the accretion rate, ay7, and drag
force, ag, on the sink radius. Top panel: for each = 4/3 simulation in
Table 1, an avyy (denoted by a cross) is derived from a linear least-squares fit of
Equation (16) to the C, value measured from that simulation of sink size
Ry = 0.05 R,, plus similar simulations with Ry = [0.025, 0.0125] R,. The plot
shows a largely positive a7, which indicates that accretion rates decrease as
sink size decreases. The blue line shows a fit to the dependence of cy; on M,
using the piecewise fitting relation given by Equation (18). Bottom panel:
Following the same procedure for calculating avy;, each o (denoted by a cross)
value is derived from a linear least-squares fit of Equation (17) to C4 values
from simulations of varying sink sizes. The plot shows values of ag ~ 0,
indicating little change in the overall drag force as the sink radius is modified.
The blue line shows ap across M, values using a constant least-squares fit,
which gives ag ~ 0.05.

(blue line in Figure 8) reproduces the main trends

0.62M — 0.72, M, < 1.7,
0.33, My 2 1.7.

ay ~ (18)

By comparison, exponents of power-law dependence of the
drag coefficients on sink radius, ag, do not show particularly
structured behavior with M. Further, most values are near
zero, with all but one model lying within —0.2 < ag < 0.2.
Least-squares fitting of a constant finds ag = 0.05, which is
close to 0. This indicates that there is little change in the drag
force with changing sink size.

Taken together, these scalings indicate that when R,/R, < 1,
we can expect drag forces to remain relatively unchanged while
accretion rate decreases. As a specific example, if an accreting
black hole has R;/R, = 107> at M, = 2, our scaling above
suggests that we can expect the realistic accretion coefficient to
be approximately 6% of the value derived in our simulations
with Ry/R, = 0.05 (because (10°/0.05)°** ~ 0.06). This result
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makes intuitive sense in light of our simulation results: drag
forces arise from the overdensity on the scale of R, while,
especially in the higher-M (higher-¢,) cases, rotation inhibits
radial, supersonic infall of gas to the smallest scales.

4.2. Coupled Orbital Tightening and Accretion

As a black hole spirals through the common envelope gas, its
orbit tightens in response to drag forces, and it may also
potentially accrete mass from its surroundings. Under the HL
theory of mass accretion and drag, the degree of mass growth is
coupled to the degree of orbital tightening. Thus, a given
orbital transformation is always accompanied by a corresp-
onding mass change in this theory. Chevalier (1993), Brown
(1995), and Bethe & Brown (1998) elaborated on this argument
and suggested that compact objects in common envelope
phases might easily double their masses.

Here we reexpress this line of argument with the addition of
separate coefficients of drag and accretion (which might, for
example, be motivated by numerical simulations). Orbital
energy, E = —GM,M,/2a, is dissipated by the drag force at a

rate £ = —Fv (if force is defined positive, as in our notation).
Exprqssed in terms of 'the coefficient of drag, £ = —CqFyLv =
—CyMy v? = —CyEyp, (Equations (3) and (4)). We will

approximate the relative velocity here as the Keplerian
velocity, such that Vo G(M; + M,)/a. We can then write
the mass gain per unit orbital energy change,

My M CMp. G
dE E CyMy v? Cov?’
- ;%g (19)
2(1 +¢q) E Cq4
or equivalently,
dlnM2 _ 1 Ce1 (20)

dImE 21 +¢)Cq

This implies that the mass gained by the embedded, accreting
compact object is related to the reduced mass of the pair and
the ratio of accretion to drag coefficients. We can integrate this
equation under the approximation that ¢, C,, and Cy4 remain
close to typical values, which we denote C,, Cy, and g,, over
the course of the inspiral from the onset of common envelope
evolution through envelope ejection. In this approximation,

1 G
M, E (21 ——)
2.f z(—f) (1+7,) Cq . 1)

M, ; E;

We can therefore conclude that if C, = Cy = 1, the fractional
change in the mass of the embedded object is on the order of the
square root of the change in the orbital energy, i.e., binary
separation (Chevalier 1993; Brown 1995; Bethe & Brown 1998).
If accreted material carries net angular momentum, a black
hole will also accrue spin. Assuming an initially nonspinning
black hole, the accrued spin can be written in terms of
AM,/M, ;. The highest spins are achieved if material accretes
with the specific angular momentum of the last stable circular
orbit and uniform direction. In this case, the final spin is

x = \Exm —J18x2 - 2),

(22)
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where X = 1/(1 + AM,/M,;) (King & Kolb 1999). Under
these assumptions, the dimensionless spin reaches unity when
X = 1/46 or AM/M,; ~ 1.4 (as shown in Figure I of King
& Kolb 1999).

From these arguments, we see that the ratio of accretion to
drag coefficient is crucial in determining the accrued mass and
spin onto a compact object. In the HL formalism, in which
C, = C4 = 1, and the accreted mass is given by Equation (21),
for g; = 0.1, we find that x — 1 for E//E; > 7.

4.3. Implications for Common Envelope Transformation of
Black Holes and Gravitational-wave Observables

In Figure 9 we show the ratio of the coefficients of drag and
accretion derived in our simulations. For illustrative purposes,
we also scale these values using the power-law slopes derived
in Section 4.1 to a much smaller sink radius, R,/R, = 107°.
This is, for example, appropriate for a SM, black hole (with
horizon radius of approximately 1.5 x 10° cm) embedded deep
within a 30M, primary-star envelope at a separation of 10R.
Then, g, = 1/6 and R,/a ~ 0.3, from Equation (6). Thus,
R, ~ 2 x 10" c¢m, and Rs/R, ~ 10~>. However, we note that
for larger separations, even smaller Ry/R, will be appropriate.

We observe that for the majority of the g, — M, parameter
space, C,/Cq < 1, even in the direct simulation coefficients,
though C,/C4 approaches unity as M., — 1. For specificity, if
we use our direct (unscaled) simulation coefficients and take
the example case of a black hole involved in a g ~ 0.1
encounter, C,/Cyq < 0.1 for M, = 2. This is the bulk of the
relevant parameter space for a dynamical inspiral if the relative
velocity between the black hole and the envelope gas is similar
to the Keplerian velocity (see Figures 3 and 4 of MacLeod &
Ramirez-Ruiz 2015a and Figure 1 of MacLeod et al. 2017). If
C,/Cq = 0.1, then dInM,/dInE ~ 0.045 (Equation (20)),
i.e., a 5% change in the mass of the black hole due to accretion
per orbital e-folding during the common envelope encounter. If
this accreted mass is coherently maximally rotating, the black
hole would spin up to x ~ 0.15 (if it begins with x = 0). Thus,
if the orbital energy changes by a factor of 25, the black hole
would accrete about 15% of its original mass (Equation (21))
and spin up to x ~ 0.4 (Equation (22)).

However, we have argued in Section 4.1 that the simulated
C,/Cq can be misleadingly high (or, alternatively, is best
interpreted as a strict upper limit) because the compact-object
radius is orders of magnitude smaller than R,. With the rescaled
results of the second panel of Figure 9 for R, = 10 °R,, we see
that for the same g, = 0.1 encounter in which M, 2 2, the ratio
of the accretion to drag coefficient is C,/Cyq < 10™ . This in turn
implies that a black hole undergoing such a common envelope
encounter accretes according to dInM, /dInE ~ 0.0045.
Again, taking the example of orbital energy changing by a factor
of 25, the black hole would accrete 1.4% of its own mass and spin
up to x ~ 0.05. Even if the binary hardens by three orders of
magnitude during the common envelope phase, a nonspinning
black hole would only accrete ~3% of its original mass and spin
up to x ~ 0.1

A possible exception to these predictions of low accreted mass
and spin are black holes embedded in M, ~ 1 flows (involving
dense stellar envelope material) and proportionately shallow
density gradients. In these cases black holes can accrete at
similar to the HL rate, largely because the environment is nearly
homogeneous on the scale of R,. This regime of Mach numbers
may be relevant to the self-regulated common envelope inspiral

13

De et al.

Simulation coefficients, Ry/R, =0.05

e N
N
\

%6
~

~

U

~

~—

-]

4.6
3.6

24

r1.2

r0.0

r—1.2

-2.4

-3.6

logi0(Ca/Cq)

, , —4.6
03 04

4.6

3.6
2.4
r1.2
0.0

log10(Ca/Cq)

F—1.2

24

-3.6

—4.6

0.1 0.3

0.4

Figure 9. Two-dimensional contour plot of log,,(C,/Cy) in the g, — M
space using numerical results from the v = 4/3 simulations presented in this
paper. The top panel shows the (g,, Mq) — (C,, Cq) mapping for the sink
size used in the simulations R;/R, = 0.05. The bottom panel shows the
(q,» Mo) — (Cy, Cy) mapping with the coefficients extrapolated to a sink size
Rs/R, = 1073 , which is more realistic for a black hole embedded in a common
envelope.

phase that follows the dynamical inspiral. However, in this case,
Mach numbers are lower in part because the embedded objects
interact with much lower density, higher entropy gas as the orbit
starts to stabilize (e.g., Ivanova & Nandez 2016; Ohlmann et al.
2016a; laconi et al. 2018; Chamandy et al. 2019a). This is
presented quantitatively in the study by Chamandy et al. (2019a)
of forces during a common envelope simulation, which showed
that forces significantly decrease below those expected from the
original stellar profile as the orbit stabilizes.

The current catalog of gravitational-wave events observed by
the LIGO-Virgo detectors demonstrates the existence of
moderately massive black holes in binary systems (Abbott
et al. 2016a, 2016b, 2017a, 2017b, 2017c, 2019; Biwer et al.
2019; De et al. 2019; Nitz et al. 2019, 2020; Venumadhav et al.
2020; Zackay et al. 2019). Common envelope evolution is
considered to be one of the preferred channels for the formation
of these binaries (Belczynski et al. 2016; Eldridge & Stanway
2016; Kruckow et al. 2016; Stevenson et al. 2017; Mapelli 2018).
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These predictions therefore have important potential implications
when considering the evolutionary history of the LIGO-Virgo
network’s growing population of gravitational-wave merger
detections.

If the typical black hole passing through a common envelope
phase accreted a significant fraction of its own mass and
reached dimensionless spin near unity (as implied by
Equations (21) and (22) if C,/Cyq = 1), this would have two
directly observable consequences on the demographics of
merging black holes. The mass gaps believed to exist in the
birth distributions of black holes masses (Bailyn et al. 1998;
Ozel et al. 2010; Farr et al. 2011; Kreidberg et al. 2012; Yusof
et al. 2013; Belczynski et al. 2014; Marchant et al. 2016;
Woosley 2017) would be efficiently eradicated if black holes
doubled their masses over the typical evolutionary cycle.
Second, the average projected spins of merging black holes
onto the orbital angular momentum would be large (xeg ~ 1 if
coherently oriented) or at least broadly distributed (if randomly
oriented), contrary to the existing interpretation of spins from
LIGO-Virgo black hole observations (e.g., Farr et al
2017, 2018; Tiwari et al. 2018; Piran & Piran 2020), or the
predictions of spins in merging binary black holes (e.g.,
Kushnir et al. 2016; Schrgder et al. 2018; Zaldarriaga et al.
2018; Bavera et al. 2020; Batta & Ramirez-Ruiz 2019; Fuller &
Ma 2019).

Our prediction of percent-level mass and spin accumulation
yields a very different landscape of post—common envelope
black holes. Our models suggest that common envelope phases
should not significantly modify the natal masses or spins of
black holes. If black holes are formed with nonsmooth mass
distributions (including gaps or other features) or with low spin
values, our models predict that these features would persist
through a common envelope phase.

5. Conclusions

In this paper have we explored the effects of varying the
binary mass ratio on common envelope flow characteristics, as
well as coefficients of accretion and drag, using the common
envelope wind tunnel setup of MacLeod et al. (2017). As the
binary mass ratio is varied, the ratio of the gravitational
focusing scale of the flow to the binary separation changes. We
have also varied the flow upstream Mach number and gas
adiabatic constant, which were investigated in MacLeod et al.
(2017) and MacLeod & Ramirez-Ruiz (2015a). We have
derived fitting formulae for the efficiency of accretion and drag
from our simulations and have applied these to derive
implications for the mass and spin accreted by black holes
during the common envelope encounter. Some key conclusions
of this work are as follows:

1. Using a systematic survey of the dimensionless para-
meters that characterize gas flows past objects embedded
within common envelopes, we use our simplified
common envelope wind tunnel hydrodynamic model to
study the role of the upstream Mach number M,
enclosed mass ratio ¢, and the equation of state (as
bracketed by adiabatic indices v =4/3 and v = 5/3).
For each model, we derive time-averaged coefficients of
accretion, C,, and drag, Cy4 (Tables 1 and 2).

2. Upstream Mach number M is a proxy for the dimension-
less upstream density gradient €, (Equation (11)). Higher-
M, flows tend to have more asymmetric geometries owing
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to steeper density gradients (Figures 4 and 5). This transition
in flow morphology is accompanied by higher drag
coefficients but lower accretion coefficients (Figure 7).

3. The gas equation of state, parameterized here by the
adiabatic index of ideal gas hydrodynamic models -,
primarily affects the concentration of gas flow around the
accretor. When v = 5/3, pressure gradients partially act
against gravitational focusing (Figure 5 as compared to
Figure 4) and reduce coefficients of both accretion and
drag by a factor of a few relative to v = 4/3 (Figure 7).

4. The binary mass ratio affects the ratio of gravitational
focusing length to binary separation, R,/a, shown in
Equation (6) and Figure 1. As a result, larger mass ratio
cases have weaker focusing of the flow around the
embedded object, because gravitational focusing acts
over a smaller number of gravitational focusing lengths to
concentrate the flow (Figure 6). The consequences of this
distinction are reduced drag (lower Cg4) because of
reduced momentum exchange with the flow, and,
especially in the highest-M,, cases, higher capture
fractions (increased C,) because gas does not receive a
sufficient gravitational slingshot to escape the accretor
(Figure 7).

5. The size of a typical accretor is a factor of 10°~10® times
smaller than the gravitational focusing radius, R,. Due to
the limits of computational feasibility, our default numer-
ical models adopt R,/R, = 0.05. We rerun the v = 4/3
models with R;/R, = 0.025 and R;/R, = 0.0125. We find
that drag coefficients are insensitive to R, but accretion
coefficients have a dependence that we parameterize with a
power-law slope, oy (Figure 8). These scalings allow us
to extend our common envelope wind tunnel results to
more astrophysically realistic scenarios.

6. The amount of mass accreted by a compact object during
a common envelope phase is coupled to the degree of
orbital tightening, as per the HL theory (Chevalier 1993;
Brown 1995; Bethe & Brown 1998, and Section 4.2).
Angular momentum carried by the accreted mass may
also spin up the object. Therefore, the values of C, and Cy
are crucial in determining the mass and spin accrued by
embedded objects during the common envelope phase
(specifically, the ratio C,/Cy sets the mass gain per unit
orbital tightening, Equation (20)). In the HL scenario,
where C,/Cq = 1, the typical black hole immersed in a
common envelope would gain on the order of its own
mass and spin up to xy = 1.

7. Our simulation results that C,/Cyq < 1 suggest that black
holes spiraling in through common envelopes accumulate
less than 1% mass per logarithmic change in orbital
energy. In a typical event, this might correspond to a
1%—2% growth in black hole mass and spin up to a
dimensionless spin of 0.05 for an initially nonspinning
black hole (Figure 9 and Section 4.3). Thus, our
predictions suggest that common envelope phases should
not modify the mass and spin distributions of black holes
from their natal properties.

The hydrodynamic models presented in this paper have
numerous simplifications relative to the complex, time-
dependent geometry and flow likely realized in a common
envelope interaction. Nonetheless, they allow us to discover
trends by systematically exploring the parameter space that
may arise in typical interactions. A companion paper,
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Everson et al. (2020), considers the stellar evolutionary
conditions for donor stars in common envelope systems under
which this dimensionless treatment is useful.

The ratio of accretion to drag coefficients (relative to their
HL values) determines the amount of mass accretion during the
dynamical inspiral phase of common envelope evolution. If our
finding that C,/Cy < 1 is correct, then the implications of this
for gravitational-wave observables are significant. In particular,
if the birth mass distributions of black holes have nonsmooth
features, including gaps, or if black holes have low natal spins,
these characteristic distributions will be preserved after the
common envelope phase.

We gratefully acknowledge helpful discussions with
A. Murgia-Berthier, P. Macias, A. Frank, E. Blackman, and
D. Brown. We thank the Niels Bohr Institute for its hospitality
while part of this work was completed, and we acknowledge the
Kavli Foundation and the DNRF for supporting the 2017 Kavli
Summer Program. S.D. received support for this work by the
U.S. National Science Foundation grant PHY-1707954, the
Inaugural Kathy 73 and Stan /72 Walters Endowed Fund for
Science Research Graduate Fellowship, and the Research
Excellence Doctoral Fellowship at Syracuse University. S.D.
also thanks the Kavli Institute for Theoretical Physics (KITP),
where portions of this work were completed. KITP is supported
in part by the National Science Foundation under grant No. NSF
PHY-1748958. M.M. is grateful for support for this work
provided by NASA through Einstein Postdoctoral Fellowship
grant No. PF6-170169 awarded by the Chandra X-ray Center,
which is operated by the Smithsonian Astrophysical Observatory
for NASA under contract NAS8-03060. Support for program
No. 14574 was provided by NASA through a grant from the
Space Telescope Science Institute, which is operated by the
Association of Universities for Research in Astronomy, Inc.,
under NASA contract NAS 5-26555. This material is based on
work supported by the National Science Foundation under grant
No. 1909203. E.R.-R. and R.W_.E. thank the David and Lucile
Packard Foundation, the Heising-Simons Foundation, and the
Danish National Research Foundation (DNRF132) for support.
R.W.E. is supported by the Eugene V. Cota-Robles Fellowship
and National Science Foundation Graduate Research Fellowship
Program (Award No. 1339067). A.A. is supported by the
Berkeley Graduate Fellowship and the Cranor Fellowship.
Resources supporting this work were provided by the NASA
High-End Computing (HEC) Program through the NASA
Advanced Supercomputing (NAS) Division at Ames Research
Center, by the Institute for Advanced Study, by the University of
Copenhagen high-performance computing cluster funded by a
grant from VILLUM FONDEN (project No. 16599), and by
Syracuse University. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

De et al.

Software: FLASH (Fryxell et al. 2000), yt (Turk et al. 2011),
Astropy (Astropy Collaboration 2013, 2018), Plotly (Plotly
2015), Matplotlib (Hunter 2007).

Appendix A
Fitting Formulae to Coefficients of Drag and Accretion

We present fitting formulae for the coefficients of accretion
C, and drag force Cy as a function of the mass ratio g, and
upstream Mach number M, from both our = 4/3 and
~ = 5/3 simulations. Fits are constructed using the ¢, M.,
C,, Cq4 data sets presented in Tables 1 and 2 in Section 3. The
fits show a mapping from the simulation results to the input
parameters for the parameter space we have explored. For the
~ = 4/3 simulations, we use third-order polynomials as fitting
functions for both log,(C, and log;oCy4, which are expressed as
follows:

log,oCo = a1 + a2q, + asMy + asq. Mo + asqr2
+ ag M2, + arq M2, + agqrz./\/lOC + agqr3 + ajo M3,
(A1)

loglo Cqo=d + dzqr + dz My + d4c]r./\/loo + dsqr2
+ dﬁ./\/lio + d7qr./\/lio + dgqrz./\/loc + dgqr3 + dlo./\/lgo.
(A2)

Accumulation of material from accretion onto an embedded
compact object requires either that the object be a black hole or
the presence of an effective cooling channel if the object has a
surface. In the case of objects with a surface, accretion releases
gravitational potential energy and generates feedback. Our
simulations include a completely absorbing central boundary
condition, and therefore our setup is appropriate for calculating
accretion rates for cases where the feedback from accretion can
be neglected. The fitting formulae from the v = 4/3 simula-
tions presented above are applicable for systems where a black
hole is inspiraling inside the envelope of a more massive giant
branch star. This is because, taking into account the minimum
mass of black holes and the fact that the envelope must belong
to a more massive giant star than the embedded object, the
mass of the giant star in this scenario would be greater than
~10M,. As mentioned earlier, the flow of material in such
high-mass stars would be represented by a v = 4/3 equation of
state.

For the v = 5/3 simulations, we use second-order poly-
nomials as fitting functions for both log;oC, and log,oCy,
which can be expressed as

logyCa = a1 + a2q, + a3 Mo + asq, Mo + asq’
+ agM>2, (A3)

Table Al
Coefficients of Fitting Formula for the Efficiency of Accretion and Drag from v = 4/3 Simulations: Least-squares Solutions for the log,,C, and log,,Cy Third-order
Polynomial Fits

ap az as ay as ae as ag dy ao
0.8169 —-9.9784 0.1382 —0.4803 46.9755 —0.3330 0.6713 —4.1620 —58.9379 0.0379
d dy d; dy ds ds dy ds do dio
0.5510 0.4502 —0.6741 0.5946 —14.9500 0.3159 —0.0203 —1.7043 30.4494 —0.0309
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Figure Al. Relation between the coefficient of accretion, mass ratio, and upstream Mach number—Ilog,, C,(g,, M) for (I', 7) = (4/3, 4/3) flows. The red circles
represent the log;,C, results obtained from the hydrodynamic simulations with ¢, and M, parameters. The three-dimensional surface shows the best-fitting third-
order polynomial relation of log;,C, in terms of (g, M). (An interactive version of this figure is available.)

Figure A2. Relation between the coefficient of drag, mass ratio, and upstream Mach number—log,, C4(g,, M) for (T, 7) = (4/3, 4/3) flows. The blue circles
represent the log;,Cy results obtained from the hydrodynamic simulations with ¢, and M., parameters. The three-dimensional surface shows the best-fitting third-
order polynomial relation of log;,Cy in terms of (g,, M). (An interactive version of this figure is available.)

Table A2
Coefficients of Fitting Formula for the Efficiency of Accretion and Drag from v = 5/3 Simulations: Least-squares Solutions for the log,,C, and
log;,C4 Second-order Polynomial Fits

a ar as ay as ag
0.9184 —0.9619 —1.2057 1.2247 —2.480 0.1150233
d, dy d; dy ds dg

—0.1552 —3.0323 0.2756 0.1976 1.4186 —0.0092

logiy Ca = di + dag, + dsMo + dag, Mo + dsq;
+ de M.

These fitting formulae from the v =15/3 simulations are
applicable for systems where a white dwarf or a main-sequence

(A4)
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star is inspiraling inside the envelope of a more massive giant
branch star. The giant star in this case would be less massive than
that in the -y = 4/3 systems. However, despite flow convergence in
such systems, we do not expect significant mass accumulation from
accretion onto the compact object owing to the lack of an apparent
cooling mechanism. Main-sequence stars and white dwarfs are not
compact enough to promote cooling channels such as neutrino
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Figure A3. Relation between the coefficient of accretion, mass ratio, and upstream Mach number—log,, C.(g,, M) for (I', ) = (5 /3, 5/3) flows. The red circles
represent the log;,C, results obtained from the hydrodynamic simulations with g, and M, parameters. The three-dimensional surface shows the best-fitting second-
order polynomial relation of log;,C; in terms of (g, M). (An interactive version of this figure is available.)

Figure A4. Relation between the coefficient of drag, mass ratio, and upstream Mach number—log,, C4(g,, M) for (T, ) = (5/3, 5/3) flows. The blue circles
represent the log,,Cy results obtained from the hydrodynamic simulations with ¢, and M., parameters. The three-dimensional surface shows the best-fitting second-
order polynomial relation of log;,Cy in terms of (g,, M). (An interactive version of this figure is available.)

emission, mediating the luminosity of the accretion onto the
neutron stars. Also, the common envelope flows are optically thick,
preventing the escape of heat through photon diffusion. It would be
more appropriate to model these objects with a hard-surface
boundary condition than an absorbing boundary condition.

The least-squares solutions we obtain for the fits to the y = 4/
3 and v = 5/3 data sets are tabulated in Tables Al and A2,
respectively. In Figures A1-A4 we present the log,, C, (¢,, M)
and log,, C4(g,, M) data sets from the v = 4/3 and v = 5/3
simulations. Overlaid are the best-fit surfaces as presented
in Equations (A1)—-(A4) above. Interactive versions of these
figures can be viewed at https://soumidel102.github.io/
common-envelope-hydro-paper and in the online Journal article.

Appendix B
Comparison with Other Studies Measuring Drag Forces

Several studies have looked at the evolution of drag forces in
common envelope interactions with numerical simulations and
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analytical modeling and have compared them to the linear
estimates from the HL formalism. In our simulations, we have
modeled the regime where the upstream Mach numbers are
greater than 1. This limits the applicability of our results to the
dynamical inspiral phase, during which the embedded object
falls supersonically through the common envelope. The resulting
gaseous dynamic friction forces have been modeled analytically
in Ostriker (1999) and numerically, in the context of common
envelope phases, in Staff et al. (2016), Reichardt et al. (2019),
and Chamandy et al. (2019a), allowing comparison of their
results with those from our work.

Ostriker (1999) used time-dependent linear perturbation
theory to evaluate the dynamical friction force on a massive
perturber in an infinite, homogeneous, gaseous medium, when
moving both supersonically and subsonically. The Ostriker
(1999) results define the strength of the dynamical friction
relative to the size of the wake the object has created.

Among the global simulations of common envelope phases,
Staff et al. (2016) modeled an extreme mass ratio system
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Figure B1. Comparison of the evolution of drag forces with upstream Mach
number obtained from “wind tunnel” simulations in this work with other efforts
to estimate drag forces applicable to common envelope interactions. Plotted are
drag force estimates (i) on a massive perturber in a gaseous medium, derived
analytically in Ostriker (1999); (ii) from global simulations in Staff et al. (2016)
modeling a common envelope interaction with binary mass ratio ¢ ~ 0.003 and
gas adiabatic index v = 5/3; (iii) from global simulations in Chamandy et al.
(2019a) modeling a common envelope interaction with binary mass ratio
g ~ 0.125 and gas adiabatic index y = 5/3; and (iv) from local simulations in
this work modeling the common envelope dynamical inspiral phase with binary
mass ratio ¢ =~ 0.1 and gas adiabatic indices v = 4/3 and v = 5/3.

(¢ ~ 0.003), with gas adiabatic index «y = 5/3. In the supersonic
regime, their numerical drag force is ~2-3 times larger than the
HL drag force, as described by Equation (4). Reichardt et al.
(2019) modeled a moderate mass ratio regime, g =~ 0.6. The
numerical drag forces obtained from their simulation were within a
factor of ~2 of the drag forces calculated using the analytical
approximation from the HL formalism (Equation (4)), which is in
agreement with Staff et al. (2016). Chamandy et al. (2019a)
performed global simulations for three different mass ratio cases,
q =1/2,1/4, 1/8, with a gas adiabatic constant y = 5/3. At their
smallest g value of 1/8, they find that the Bondi-HL estimates
provide a good approximation for the drag force in their
simulation. The differences between the simulation results and
the Bondi-HL estimates increase with increasing g values, with a
factor of 10 difference at their largest g value of 1/2.

In Figure BI, we show the evolution of the drag forces
(normalized by [47rpoo(GM2)2/ cs%oc]) as a function of Mach
numbers. We compare results obtained using the analytical
approach in Ostriker (1999) with results obtained using
the numerical approaches in Staff et al. (2016), Chamandy
et al. (2019a), and this work. For the “Ostriker '99” curve,
we use Equations(14) and (15) of Ostriker (1999), with
In(cst/hmin) = 4, 10 obtain  Fie /[47p, (GML)* [v2] (M),
and then we divide Fiag / [47p, (GM,)? / v2]1(My) by M2 to
obtain Fye /[47p, (GM2)? [c2, 1(My.). For the “Staff+ °16”
curve, we use Figure4 in Staff et al. (2016) to extract the
Finag /1470, (GMs)? /2] — M., data. We divide the
numerical drag force time series obtained from their high-
resolution red giant branch simulations by the analytical drag
force (including pressure effects) time series, to extract [,/
[47p, (GM2)? /vE1(2). We then divide Fyg /[47p, (GM:)? /v21(1)
by the square of their Mach number time series data to obtain
Firag [ (470 (GM)* /2, 1 (1) and plot Fyrag / [47p, (GMo) /]

18

De et al.

(M). For the “Chamandy+ *19” curve, we use the ¢ = 1/8
panels from Figures 4 and 5 in Chamandy et al. (2019a) to extract
the Fyag /[47p (GM)?/c2, ] — My, data. We divide their
R,(t) by H,(?) data to get €,(f), and we use Equation (11) to get
Mo () from (e,(?), g). We divide their numerical drag force time
series by their analytical drag force time series (based on the
Bondi-HL theory) to obtain Fig/[470, (GM2)?/v2]1(t), further
divide Firag/[47p, (GM2)?/v21(t) by Moo(1)? to obtain Fig/
[47p, (GMp)?/c2. (1), and plot Foray /[47p, (GM2)? /]
(My). For closest comparisons with this work, we use our
g: = 0.1 simulation data and plot both v = 4/3 and 5/3 cases. We
obtain Firag /[470, (GM2)*/ 2] (M) on dividing Co(Moo)
by M>2,.

The overall pattern of evolution of the normalized drag is
similar in all of these works. The magnitude of our drag force
agrees with the corresponding values in the supersonic regime in
the global simulations, to within a factor of 2. A combination of
the data from all these works enables the understanding of the
overall evolution of the drag force. As the object spirals in
through the dynamical inspiral phase, it sweeps through the
surrounding envelope supersonically. In this regime, the Mach
number decreases as the object spirals deeper within the
envelope. When the Mach number decreases below 1.0, a
qualitative change occurs, and the coefficient of drag becomes
significantly less than unity (e.g., Shima et al. 1985; Ostriker
1999). This causes a turnover in the drag force, and it decreases
as the Mach number decreases through values less than 1.0. The
decrease in drag force slows down the inspiral at late times of the
spiral-in phase. In short, in the supersonic regime, HL theory
provides an underestimate of drag forces, while in the subsonic
regime, it dramatically overestimates the magnitude of the force.

Finally, we discuss the impact of different gas equations of
state in simulations. As discussed in Section 3.5.3, the overall
patterns of the evolution of drag forces with M., and ¢, are
similar between our v = 4/3 and « = 5/3 simulations. How-
ever, the magnitude of drag coefficients in the v = 5/3 case is
lower than in the v = 4/3 case. This suggests that the v = 5/3
case would generate a slower orbital decay owing to lower drag
forces. Studies such as Reichardt et al. (2020) have performed
simulations with an ideal gas equation of state, as well as a
tabulated equation of state with a range of effective v as a
function of density and temperature. The overall inspiral
morphologies in their results are similar between the two
models. The differences can be attributable to differences in the
magnitudes of the coefficients of drag, which can generate a
faster or slower orbital decay, depending on the equation of state.
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