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Abstract1

Electric force microscopy was used to record the light-dependent impedance spec-2

trum and the probe transient photoconductivity of a film of butylammonium lead iodide,3

BA2PbI4, a 2D Ruddlesden–Popper perovskite semiconductor. The impedance spec-4

trum of BA2PbI4 showed modest changes as the illumination intensity was varied up to5

1400 mW cm−2, in contrast with the comparatively dramatic changes seen for 3D lead-6

halide perovskites under similar conditions. BA2PbI4’s light-induced conductivity had a7

rise time and decay time of ∼100µs, 104 slower than expected from direct electron-hole8

recombination and yet 105 faster than the conductivity-recovery times recently observed9

in 3D lead-halide perovskites and attributed to the relaxation of photogenerated vacancies.10

What sample properties are probed by electric force microscope measurements remains an11

open question. A Lagrangian-mechanics treatment of the electric force microscope experi-12

ment was recently introduced by Dwyer, Harrell, and Marohn which enabled the calculation13

of steady-state electric force microscope signals in terms of a complex sample impedance.14

Here this impedance treatment of the tip-sample interaction is extended, through the intro-15

duction of a time-dependent transfer function, to include time-resolved electrical scanned16

probe measurements. It is shown that the signal in a phase-kick electric force microscope17

experiment, and therefore also the signal in a time-resolved electrostatic force microscope18

experiment, can be written explicitly in terms of the sample’s time-dependent resistance19

(i.e., conductivity).20

1 Introduction21

Recent interest in using 2D Ruddlesden–Popper perovskite for photovoltaic applications has22

increased due to unique properties that distinguish them from the widely studied 3D per-23

ovskite. These properties include higher environmental stability due to the hydrophobic24

nature of the organic spacer and higher formation energy,1 increased exciton binding energy25

due to alternating organic and inorganic layer with disparate dielectric constants,2 surpris-26

ingly reduced in-plane ion motion both in the dark and under illumination presumably due27
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to higher formation energy of vacancies,3 and the existence of edge states with low energy1

that are thought to help in exciton dissociation or lead to unusual charge carrier densities.4,5
2

DC galvanostatic polarization measurements and AC impedance spectroscopy have revealed3

(C6H10N2)PbI4, a commonly studied 2D perovskite, is a mixed ionic electronic conductors with4

low dark ionic and electronic conductivities on the order of 1×10−10 S cm−1.6 Despite the pres-5

ence of the insulating organic layer and exciton binding energy of 100’s of milli electron volts,6

free carrier generation in the quasi 2D perovskites with more than one layer of the inorganic7

octahedron (n > 1 where n is the number of layers of the inorganic octahedron) seems to be8

efficient enough such that power conversion efficiency greater than 18% have been reported9

for solar cells made from a quasi-2D perovskite.7 The working principle of such cells for higher10

n is thought to involve charge transfer from layered 2D regions to a 3D perovskite network.8
11

An alternative proposal for the efficient generation of free carriers from bound exciton involves12

edge states.4 Anisotropy between in-plane and out-of-plane charge carrier mobility has been13

reported; the charge carriers motion is not inhibited completely in the out-of-plane direction,14

with reported mobility on the order of 1×10−4 cm2 V−1 s−1 8 for an n = 3 system. Here we study15

a 2D Ruddlesden–Popper phase of perovskite butylammonium lead iodide ((C4H9NH3)2PbI416

or BA2PbI4, herein referred BAPI). BAPI, with n = 1, where higher dimension/bulk perovskite is17

absent, can act as a model system to understand the true nature of charge motion in a quasi 2D18

system.19

We have recently revealed persistent photoinduced conductivity in a variety of 3D per-20

ovskite samples using time- and frequency-resolved electrical SPM techniques.9–11 The con-21

ductivity dynamics in these 3D systems, while substrate dependent, generally exhibited a slow,22

activated recovery in the dark around room temperature which became faster at low temper-23

ature. We hypothesized that light-induced vacancy generation could explain the long lived24

changes in conductivity.9,11 We wanted to test if the same surprisingly persistent light-induced25

conductivity was present in the 2D system.26

Time resolved electrical scanning probe microscopy (SPM) techniques have been used to27
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probe charge dynamics in photovoltaic and ion conducting materials.12 These techniques com-1

bine the very high charge sensitivity of microcantilevers with carefully designed measurement2

protocols to push the time resolution of measured sample parameters (such as capacitance,3

non-contact friction, dissipation, and surface (photo) voltage) beyond the natural time res-4

olution limit of the cantilever period. To harness the true power of these microscopic and5

localized measurements, and compare results with bulk electrical characterization techniques,6

it is imperative that we establish which sample properties these measurements probe.13 By7

extending a recently developed theoretical framework14 for quantitatively interpreting elec-8

trical scanning probe microscopy data, we show here that changes in sample resistance can be9

followed by combination of techniques that measure sample response either in the frequency10

and/or in the time domain.11

Ginger and coworkers have recently performed one of the first electrical SPM studies of the12

2D Ruddlesden–Popper phase of perovskite BAPI to characterize light-induced charge carrier13

dynamics. They used two electrical scanning probe techniques, namely fast-free time-resolved14

electrostatic force microscopy (FF-tr-EFM) and general-acquisition-mode Kelvin probe force15

microscopy (G-mode KPFM, or G-KPFM). They measured charging times and time-resolved16

surface photovoltage measurements, observing 100 to 1000µs dynamics in these material17

in response to light irradiation over a large area.15 They attributed these dynamics to trap-18

mediated electron or ion motion. The two techniques measured time scales that were dif-19

ferent by several hundred microseconds. Dielectric response in 3D perovskites is known to be20

highly frequency dependent where the low frequency response (≤ 10kHz) is dominated by ion21

motion.16 Therefore, we expect that measurements that sample different parts of the frequency22

response may have a different temporal dependence in response to an external stimuli.23

Here we use time-resolved EFM (tr-EFM),17 phase-kick EFM (pk-EFM),18 broadband local24

dielectric spectroscopy (BLDS),9,19 and dissipation microscopy9,11,20 to probe changes in the25

sample in response to optical irradiation. We show that the transfer function representation of26

SPM used to describe broadband local dielectric spectroscopy and dissipation measurements27
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can be extended to understand the origin of the temporal response measured in time resolved1

tr-EFM and pk-EFM measurements.14 We show that these measurements probe changes in2

sample resistance instead of the commonly assumed capacitance changes in 2D BAPI. We find3

that light-induced conductivity in the 2D BAPI system recovers promptly, in marked contrast to4

the slow, activated recovery observed in the many 3D perovskite systems studied to date.5

2 Experimental Section6

2.1 Scanning probe microscopy7

All experiments were performed under vacuum (5×10−6 mbar) in a custom-built scanning8

Kelvin probe microscope described in detail elsewhere.18 The cantilever used was a Mikro-9

Masch HQ:NSC18/Pt conductive probe. The resonance frequency and quality factor were10

obtained from ringdown measurements and found to be ωc/2π = fc = 60.490kHz and Q =11

28000 respectively at room temperature. The manufacturer’s specified resonance frequency12

and spring constant were fc = 60 to 75kHz and k = 3.5Nm−1. Cantilever motion was detected13

using a fiber interferometer operating at 1490nm (Corning model SMF-28 fiber). The sample14

was illuminated from above with a variable-intensity 405nm diode laser. More experimental15

details regarding the implementation of broadband local dielectric spectroscopy, tr-EFM, and16

pk-EFM can be found in the Supporting Information.17

2.2 Sample preparation18

Thin film of BA2PbI4 was synthesized on ITO adapted from the procedure reported in Ref. 15.19

The film was approximately 500 nm thick. Based on the absorption coefficient, we expect the20

absorption length to be ≈ 150nm which is much shorter than the film thickness. Briefly, pre-21

cursor solution was prepared by dissolving 1.8M butylammonium iodide (BAI) and 0.9M lead22

(II) iodide (PbI2) in 1mL of dimethylformamide (DMF). Perovskite solution was spin coated on23

the ITO substrates at 4000 rpm for 40s (with high acceleration), followed by thermal annealing24
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for 10min at 100◦C. A representative AFM, absorption spectra, and XRD spectra is included in1

the supporting information.2

3 Results3

3.1 Theoretical background4

In this section, we extend our previously developed impedance model for SPM experiments9,14
5

to the situation where the sample properties are time-dependent. Our new model allows us to6

interpret all of our SPM data in a common framework. We explain the key features of this model7

below; a detailed derivation is included in the Supporting Information (S1).8

We investigate the sample’s time-dependent properties in the dark and under illumination9

using SPM experiments. To interpret these experiments, we need to connect the observed10

cantilever amplitude, frequency, and phase back to the sample properties. These observable11

depend on the tip-sample force Fts = C ′
tip(x)q2

t /(2Ctip(x)2) where Ctip is the tip capacitance,12

C ′
tip = dCtip/d x is the derivative of the tip capacitance with respect to the vertical direction,13

x is the cantilever displacement, and qt is the tip charge. (In keeping with the conventional14

notation for one-dimensional harmonic oscillators and to be consistent with the notation used15

in Ref. 14, we represent cantilever displacement with x rather than z, with increasing x cor-16

responding to motion of the cantilever tip away from the sample surface.) The component17

of the tip-sample force evolving in phase with tip motion shifts the cantilever frequency, ∆ fc,18

while the out-of-phase force component causes dissipation, Γs, which in turn changes the can-19

tilever amplitude. Tip charge qt depends on tip capacitance and sample impedance (Eq. S8 and20

Eq. S9). In Refs. 9 and 14, we used an impedance model and perturbation theory to develop21

an accurate steady-state approximation for qt and the cantilever observables. In this model,22

the central quantity that links sample properties to cantilever observables is the transfer func-23

tion H(ω) = Vt
/

Vts. Here Vt is the voltage dropped across the tip-sample gap; Vts is the applied24

external voltage, dropped across both the tip-sample gap and the sample; and ω is a modu-25

6



lation frequency. The tip capacitance Ctip and sample impedance Z (ω) together determine1

the transfer function, H(ω) = (1 + jωCtipZ (ω))−1. The central results of this model are that2

∆ f ∝ Re
[
H(ω0)

]
(Vts−φ)2 and Γs ∝ Im

[
H(ω0)

]
(Vts−φ)2 with ω0 = 2π fc the cantilever frequency3

and φ the surface potential (Eqs. 7 and 8 in Ref. 14). The signal α in the broadband dielectric4

spectroscopy (BLDS) measurement described below can likewise be expressed in terms of the5

transfer function: α ∝ |H(ωm)|2(Vts −φ)2, with ωm the voltage-modulation frequency (Eq. 106

in Ref. 14). These expressions straightforwardly connect sample resistance and capacitance,7

through Z and H , to changes in cantilever frequency, dissipation, and BLDS signal.8

The above description is only appropriate when the sample properties are time-9

independent and the experiment is conducted at steady-state. Yet we are also interested in10

analyzing time-dependent changes in sample properties in response to illumination. For this11

reason, we extend the theoretical treatment to the case where the sample parameters may be12

time-dependent. Assuming the applied voltage or light does not induce oscillations of the tip13

charge at the cantilever frequency, our results for time-independent systems can be extended to14

time-varying systems by replacing the time-independent transfer function H(ω) with the time-15

varying transfer function H(ω, t ) defined below.21 Using these assumptions, we derive a general16

result for the frequency shift in an electric or Kelvin probe probe microscopy experiment17

∆ f (t ) =− fc

4kc

(
C ′′

q +∆C ′′ Re
[
H(ωc , t )

])
(Vt(t )−φ)2 (1)

where fc is the cantilever resonance frequency, kc is the cantilever spring constant, C ′′
q and ∆C ′′

18

are related to the second derivative of the tip capacitance, φ is the surface potential that rep-19

resents internal voltage source, and Vt(t ) is the tip voltage drop calculated under the assump-20

tion that the tip displacement is fixed at zero. Since φ < Vt (Fig. S7), we ignore φ to simplify21

our analysis. This result allows pk-EFM and tr-EFM, experiments that inherently involve time-22

dependent dynamics, to be analyzed using the same framework as the steady state measure-23

ments considered previously with this theory. The applicability of this approximation to the24
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experiments described here is illustrated by the close agreement between numerical simula-1

tions of the cantilever frequency and phase and the analytical approximation developed here2

(Fig. S2 and Fig. S3).3

3.1.1 Transfer function4

In this paper, we model the sample using a parallel resistor Rs and capacitor Cs. If Rs and Cs are5

time-independent, the transfer function H is6

H(ω) = 1+ jωRsCs

1+ jωRs(Cs +Ctip)
= 1+ j g−1ωω−1

fast

1+ jωω−1
fast

(2)

where ωfast(t ) = (RsCtot)−1 is the time-independent frequency and g = Ctot/Cs where Ctot =7

Ctip + Cs is the total capacitance. Ctip is the capacitance between tip and a hypothetical8

ground plane located at the sample surface and Cs is the sample capacitance when the sample9

impedance is modeled as a parallel resistor and a capacitor. The complex-valued transfer func-10

tion in Eq. 2 has a real part which determines the in-phase forces and an imaginary part which11

determines the out-of-phase forces acting on the cantilever. An increase in cantilever dissipa-12

tion is caused by out-of-phase forces acting on the cantilever arising from changes in the value13

of the imaginary part of the transfer function at the cantilever frequency ωc.9
14

The situation is considerably more complicated if Rs and/or Cs vary with time, as they do

when the light intensity is changed. In this case, the time-varying response function is

H(ω, t ) = Ctip

Ctot

∫∞

0
exp

[
−

∫t

t−τ
ωfast(t ′)d t ′

]
×

ωfast(t −τ)e− jωτ dτ+ Cs

Ctot
, (3)

where Ctot = Ctip +Cs is the total capacitance, and ωfast(t ) = (RsCtot)−1 is the time-dependent15

frequency at which charge responds.16
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a) b)

Figure 1: a) Bottom: Sample-induced cantilever dissipation over a BAPI film increases promptly when
light is applied (shaded region) and recovers in less than 100ms when light is removed. Top: The corre-
sponding sample conductivity. The dissipation is quantified through ring-down measurements at indicated
light intensities (in mWcm−2). Experimental parameters: Vts =−4V, h = 125nm, λ= 405nm. b) Light-
induced sample dissipation (i.e. sample conductivity) recovers in less than 2ms. Data obtained through
an implementation of tr-EFM with a constant DC bias applied, as described in the text. Experimental
parameters: Ihν = 120mWcm−2, Vts =−6V, h = 200nm, λ= 405nm.

3.2 Dissipation measurements1

We start our investigation by measuring light induced cantilever dissipation. Dissipation tracks2

changes in the sample resistance Rs and sample capacitance Cs when the associated time con-3

stant Rs(Cs +Ctip) is near the cantilever period of ω−1
c which is the case here. In our previous4

report, we showed that changes in dissipation caused by light can take tens to hundreds of5

seconds to recover in 3D perovskite samples.9,11 We perform this measurement by recording6

changes in cantilever ring-down time.9,11 A DC voltage of −4 V is applied before the start of the7

measurement to ensure that any slow process in response to the tip electric field in the dark8

will not interfere with the measurement. Here we see an increased dissipation when the light9

is turned on that goes away within the time resolution of the measurement, ≤ 100ms, at least10

three orders of magnitude faster than the recovery time seen in 3D CsPbBr3 and 3D FAMACs11

films.12
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To better resolve the associated time constant, we turn to an implementation of the tr-EFM1

measurement. The cantilever is allowed to freely ring down and the cantilever oscillation is2

demodulated to obtain the instantaneous cantilever amplitude, phase, and frequency. The3

measurement, shown in Fig. 1b, proceeds as follows. A DC voltage of −6V is applied throughout4

the measurement. This voltage ensures that any slow tip charge equilibration on application of5

the tip electric field does not affect the measurement. The cantilever is allowed to ring down for6

125ms starting at time t = −25ms. At time t = 0s, a 25ms light pulse is initiated. This process7

is repeated for 600 acquisitions and the averaged cantilever amplitude data is divided into 2ms8

bins. The known cantilever frequency and initial amplitude is used to extract cantilever Q for9

each 2ms bin giving a time resolution of 2ms. This time resolution is ∼50 times better than the10

time resolution in Fig. 1a. It is clear from these measurements that the changes in the transfer11

function H(ωc) at the cantilever frequency happen in less than 2ms. Analysis performed with12

1ms bins gave a similar result, albeit with worse SNR, confirming the sub-millisecond time scale13

of the underlying charge dynamics that cause dissipation.14

3.3 Broadband local dielectric spectroscopy15

Broadband local dielectric spectroscopy (BLDS) can be used to monitor changes in the16

impedance of a semiconducting sample over a wide frequency range.9,11 In a BLDS spectrum,17

we plot a voltage normalized frequency shift alpha (α) with units of HzV−2 versus the modula-18

tion frequency of the applied tip-sample voltage (2π fm). We turn to two different implemen-19

tations of broadband local dielectric spectroscopy, i.e. 1) average frequency-shift BLDS and 2)20

amplitude-modulation BLDS, to map out the transfer function over a wide frequency range. In21

the first implementation, described in detail elsewhere,9 we record the average frequency shift22

as a function of applied voltage modulation frequency, with a 1:1 “modulation on” to “modu-23

lation off” duty cycle employed to allow lock-in detection. While the SNR of this measurement24

is relatively low compared to the amplitude-modulation BLDS shown in the proceeding figure,25

this measurement allows us to access the low frequency part of the transfer function below26
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1.5 mW/cm2 

1410 mW/cm2

a) b)

increasing light intensity increasing light intensity

Figure 2: a) Frequency-shift broadband dielectric spectra reveals a large increase in the sample’s low
frequency (< 1000s−1) response when the light intensity is increased. Experimental parameters: Vpp =
6V, h = 125nm. b) High frequency response at indicated illumination intensities resolved by amplitude
modulation broadband local dielectric spectroscopy. Experimental parameters: Vpp = 6V, h = 125nm.

1000 s−1. In Fig. 2, we can see that the transfer function changes in the low frequency region1

are much more obvious than the small changes in the near-cantilever-frequency region. This2

observation is in line with the relatively small dissipation changes measured in Fig. 1b. We note3

that in the dark, the roll off of the transfer function is below the lowest probed frequency here4

(1 s−1).5

To better resolve changes in the high frequency region, we turn to amplitude-modulated6

BLDS, Fig. 2b. Different numerical values of α in Fig. 2a and Fig. 2b are attributed to different7

regions in the sample. This measurement’s lock-in detection scheme allows us to clearly resolve8

changes in the dielectric spectra in the frequency range of kHz to MHz that were not obvious9

in Fig. 2a. In Fig. 2b, we can see that increasing light intensity increases the value of α. To10

describe changes in BLDS spectra, we have previously used an RC electrical model for the11

sample with one resistor and one capacitor. While a simple RC is often not enough to cap-12

ture the full impedance changes in a mixed ionic-electronic conductor,11 it is nevertheless a13

useful starting point to understand physical process causing the changes in the impedance of14
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the sample. In our model, the measured α is proportional to H(ω) which is a function of two1

parameters2

ω−1
fast = Rs(Cs +Ctip) and g =Ctot/Cs. (4)

with ω−1
fast a time constant describing transfer function roll-off. From Eq. 2, the high-frequency3

limit of H(ω) is 1/g , Eq. 4. The high-frequency data in Fig. 2 give g ∼ 2 to 3, indicating that the4

tip capacitance and sample capacitance are of similar size.5

Light-induced changes in the BLDS spectra can be attributed to resistance and/or capac-6

itance. The BLDS spectra show g decreasing slightly with increasing light intensity. Taking7

derivatives, δg = −CtipC−2
s δCs. If Ctip is independent of light intensity, the observed decrease8

in g thus indicates a slight increase in Cs with increasing light intensity. The BLDS spectra also9

show a time constant ω−1
fast decreasing from seconds to milliseconds as light intensity increases10

from 1.5 to 1410 mW cm−2 (and pinned at a near constant value at high light intensity). This11

decrease in time constant requires a decrease in the Rs(Cs +Ctip) product, which can then only12

be explained by a large decrease in Rs with increasing light intensity.13

These conclusions can be visualized with the help of the simulated spectra shown in Fig. 3a.14

As explained in Refs. 9, 11, and 14, the BLDS signal α is proportional to |H(ωm)|2, which is15

dominated by Re
[
H(ωm)

]
at high frequency. In Fig. 3a we plot representative Re

[
H(ωm)

]
versus16

ωm spectra in the dark and under three light-on scenarios: increased Cs, decreased Rs, and both17

changing together. Only the third scenario is qualitatively consistent with the Fig. 2 spectra.18

These conclusions about photoinduced changes in sample capacitance and resistance are19

corroborated by the dissipation data of Fig. 1. The dissipation signal is proportional to9,11,14
20

Im
[
H(ωc)

]
, the imaginary part of the transfer function H evaluated at the cantilever frequency21

ωc. In Fig. 3b we plot representative Im
[
H

]
spectra for the four scenarios, with the cantilever22

frequency ωc = 2π fc indicated by a dotted vertical line and the value of the transfer function23

near ωc indicated by gray shading. Here either the second or third light-on scenario are con-24

sistent with the observed increase in dissipation with increasing light intensity. The observed25

dissipation unconditionally requires a decrease in Rs with increasing light intensity.26
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Figure 3: (a) Real and (b) imaginary part of the Eq. 2 transfer function plotted for the following cases:
(i) sample in the dark and under illumination with (ii) increased sample capacitance (↑Cs), (iii) decreased
sample resistance (↓ Rs), and (iv) increased sample capacitance and decreased sample resistance (↓ Rs,
↑Cs). To mimic an increase in Cs, the value of g in Eq. 2 was decreased from 2.5 to 2.0. The cantilever
frequency ωc is indicated as a dashed vertical line. The sample-induced frequency shift is proportional
to Re H(ωc), (a), while sample-induced dissipation is proportional to Im H(ωc), (b). The gray zone
highlights the region in (b) that determines Im H(ωc).

We note that the numerical value of the time constant ω−1
fast deduced from the BLDS spectra1

will depend on both sample capacitance and tip capacitance and this value may not represent2

the “life time” of carrier generation or recombination in the sample. Nevertheless, changes in3

this time constant can be directly related to changes in sample conductivity.4

4 tr-EFM and pk-EFM5

Frequency shift (e.g. tr-EFM and FF-tr-EFM)17,22,23 and phase shift methods (pk-EFM)14,18 have6

been the recent focus of high temporal resolution SPM measurements and have shown the7
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Figure 4: The light-induced frequency shift is determined by the sample bias time t in the dark. tr-
EFM traces with different bias time before the illumination period (shaded region). See Fig. S4 for
the associated experimental timing diagram. Experimental parameters: Ihν = 120mWcm−2, Vts = 6V,
h = 200nm, and λ= 405nm.

ability to achieve time resolution down to 1% of the cantilever cycle.18 To date, the origin of1

the observed frequency shift and the accompanying phase shift has been attributed solely to2

changes in sample capacitance.18,23 Here we show that light-induced changes in sample con-3

ductivity better explain the data in samples having an appreciable impedance, such as our lead4

halide perovskites.5

We performed tr-EFM experiments in which the sample was biased for a time t in the dark6

before light was applied. In Fig. 4 we show tr-EFM traces of cantilever frequency versus time for7

different values of the delay time (t ) between the start of the voltage pulse and the start of the8

light pulse. For a short delay t such as 2ms, we see an 8Hz light-induced frequency shift with9

a fast component happening on the ≈ 100µs time-scale and a slow component evolving on the10

millisecond timescale. With increasing delay t , both the fast and slow components decrease11

in magnitude so that for t = 1000ms, the light-induced frequency shift is 4 Hz (observation 1).12
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When the light is turned off at 5 ms, most of the light-induced frequency shift is retained (obser-1

vation 2). In Fig. S5, we show the full trace of the tr-EFM measurement for t = 1s. These two2

key observations cannot be easily explained in terms of a photocapacitance, since photocapac-3

itance should not depend on the delay t and should revert back to the original dark capacitance4

when the light is turned off.5

What is the physical explanation for the finding that sample bias in the dark strongly affects6

the subsequent light-induced frequency shift? The key insight from Eq. 1 is that the frequency7

shift depends on both Re[H(ωc, t )], the time-varying transfer function evaluated at the can-8

tilever resonance frequency, and the time-dependent tip charge qt or tip voltage Vt = qt/Ctip.9

From Fig. 2, we know Re[H(ωc)] increases with light because the sample conductivity increases.10

This increase in sample conductivity explains the two key observations from Fig. 4 once we11

properly recognize the role of the tip voltage drop Vt.12

In the Fig. 4 tr-EFM experiment, a tip-sample voltage on the order of 5 to 10V was applied13

before the light was turned on. The circuit schematics in Fig. 5(a,b) show the modeled tip14

voltage Vt(t ) when Cs =Ctip (g = 2). When the tip-sample bias is applied, equal charges build up15

on both capacitors and the voltage drop across the tip capacitor is Vt =VtsCs/(Cs+Ctip) (Fig. 5a).16

The sample capacitor discharges with an RC time constant Rs(Ctip +Cs) until eventually all of17

the applied tip-sample voltage drops across the tip capacitor: Vt = Vts (Fig. 5b). In the dark the18

sample is very resistive so it can take seconds for this equilibrium condition to be reached. If the19

light is turned on before the tip is fully charged, the increased sample conductivity (decrease in20

sample resistance Rs) causes the tip to charge more quickly, increasing Vt and therefore causing21

a larger light-induced frequency shift.22

Figure 5(c,d) shows a simulation to illustrate how this tip charging explains the data of Fig. 4.23

It was assumed the sample resistance Rs decreases when the light is turned on. The evolution of24

tip position x and tip and sample charge are described by a set of coupled differential equations25

(see SI Section S3 and Fig. S1 for details). Fig. 5(c,d) shows the frequency shift calculated numer-26

ically from x(t ) (points) and analytically from Eq. 1 (curves). The four traces show increasing27
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initial tip voltages that correspond to the increasing bias times in Fig. 4. With reasonable values1

of sample resistance in the dark, sample resistance in the light, sample capacitance, and tip2

capacitance, the numerical simulations and Eq. 1 do an excellent job qualitatively reproducing3

observation 1; the closer the initial tip voltage Vt is to its steady-state value Vt = Vts = 10V, the4

smaller the magnitude of the observed frequency shift. The slow component of the frequency5

shift in Fig. 4 can be explained by the millisecond-scale RC time apparent in the BLDS spectra6

under steady-state illumination. To corroborate this hypothesis, we tracked changes in α at7

ωm = 1257s−1 (1/ωm = 0.8ms) in real time when the light was turned on (Fig. S6; temporal res-8

olution is limited to 1s by the finite amplitude-modulation frequency and associated lock-in9

measurement). The dielectric response changes in ≤ 1s, consistent with the timescales seen in10

Fig. 4.11

The retention of light-induced frequency shift in the dark (observation 2) can also be12

explained by carefully considering the evolution of the tip voltage Vt. When the light is turned13

off, the tip does not discharge, since Vt =Vts is the equilibrium state in both the light and dark.14

Therefore any frequency shift caused by an increase in Vt is retained even after the light is turned15

off. This explains why the change in ∆ f when the light is turned off in Fig. 4 is relatively small16

no matter how long the initial pre-bias time was. Any decrease in frequency shift when the light17

is turned off is attributed to changes in Re H(ωc, t ) (Eq. 1), since only changes in Re H(ωc, t ) are18

reversed when the light turns off.19

The SI Section S3 analysis reveals that the frequency-shift dynamics are greatly simplified20

if the tip charge, i.e. Vt, has reached steady state before light is applied. We can achieve the21

steady-state condition by applying a DC voltage for an extended period of time before begin-22

ning the measurement (Fig. 6). Pre-biasing the sample with constant applied voltage for 5 min-23

utes before the measurement and keeping the bias always on during the measurement keeps24

the tip charged (Vt =Vts); therefore, all observed frequency shifts reflect changes in the transfer25

function at the cantilever frequency Re[H(ωc, t )].26

For Vts = 5V and −5V, the light induced frequency changes are essentially identical, with27

16
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Figure 5: The effect of the initial tip voltage on frequency-shift transients. (a) The model circuit used
in this simulation. After the tip-sample voltage Vts is applied, charge builds up on the tip capacitor
and sample capacitor. (b) Eventually, the sample capacitor discharges and Vt = Vts. (c) Frequency
shift versus time calculated by numerical simulation (points) and the Eq. 1 analytical approximation
(lines) for different initial tip voltages Vt(t0) = q (0)

t (t0)/Ctip = 7,8,9,10V. (d) The data of (c), shifted so
∆ f (t = 0) = 0 for each trace to more easily compare with Fig. 4. All traces were smoothed by averaging
the frequency shift over a single period twice. Simulation parameters: Rdark = 1×107 MΩ; Rlight =
1×104 MΩ; τL = 10 µs; Vt(t0) = 7, 8, 9 and 10V (blue, orange, green, red); Cs = 0.05 fF; Ctip = 0.1 fF;
C ′

tip = −28 fF nm−1; fc = 62.5kHz; kc = 3.5Nm−1; Q = 26000, A0 = 50nm; A0 = 50nm; t0 = −200µs;
φ0 = 0 (see SI Section S3).

similar rise and fall time on the order of ≈ 100µs. The insensitivity of the frequency shift, rise1

time, and fall time to the sign of the applied tip-sample voltage rules out any effects on the2

measurement due to surface potential changes. When the light is turned off at t = 25ms, the3

frequency shift reverts to the dark value, unlike in Fig. 4. This observation is consistent with4

Eq. 1 when Vt is constant—the light-induced changes in Re[H(ωc)] are fully reversible. Con-5

sidered together, the data of Fig. 1b and Fig. 6d allow us to conclude that the transfer function6

at ωc, determining the light-induced frequency shift and dissipation, is evolving on the 100µs7

timescale.8

To better resolve this time constant, we carried out a pk-EFM experiment in which the9

17



a)

b)

c)

d)

Figure 6: Light-induced changes in cantilever frequency likewise occur promptly. tr-EFM frequency shift
signals with a DC bias of ± 5V. (a) The tip-sample voltage is applied continuously. (b) Light is switched
on at time t = 0ms and switched off at t = 25ms. (c) Light induced frequency shift measured for Vts =
± 5V. (d) Zoom-in of the +5V trace. Solid (green) lines are a fit to a single exponential, with light-
on and light-off time constants indicated. Experimental parameters: Ihν = 120mWcm−2, h = 200nm,
λ= 405nm.

applied tip-sample voltage is applied continuously except during a∼2ms time period before the1

end of light pulse. This short time without applied bias is necessary to measure cantilever phase2

changes during the pulse time tp arising from time-dependent sample conductivity. From a plot3

of the measured phase shift versus pulse time, we deduce a time-constant of (70±16)µs.4

5 Discussion5

The steady-state impedance spectra and photoconductivity dynamics of the 2D lead-halid per-6

ovskite (C4H9NH3)2PbI4 observed using electrical scanned-probe measurements are qualita-7

tively different from those found in the 3D lead-halide perovskite CsBrBr3
9 and the state-of-8

18



a)

b)

c)

Figure 7: pK-EFM measures a photoconductivity rise time of τon = 70µs. Timing diagram of applied (a)
tip voltage and (b) light, with tp the duration of voltage- and light-pulse overlap. (c) Measured cantilever
phase shift ∆φ versus pulse time tp. Inset: Short tp data. The solid line is a fit to ∆φ=∆ωss(tp −τon +
τone−tp/τon ), Eq. 19 in Ref. 18, with ∆ωss the steady-state light-induced cantilever frequency shift and
τon = 70±16µs the photoconductivity rise time. Experimental parameters: Ihν = 120mWcm−2, Vts = 7V,
h = 200nm, λ= 405nm.

the-art FAMACs alloy.11
1

In Ref. 11 we used Maier’s transmission-line treatment of impedance spectroscopy24,25 to2

show that in a mixed electronic-ionic conductor, for reasonable assumptions about size of the3

electronic and ionic conductivities, the scanned-probe broadband local dielectric spectroscopy4

(BLDS) experiment of Fig. 2 measures the total sample conductivity. Modeling the sample as a5

parallel resistor-capacitor circuit and assuming Ctip ≥Cs, which is approximately valid here, the6

associated rolloff frequency depends on sample resistance and is largely independent of sample7

capacitance. In this limit, the rolloff frequency is given by ωfast ≈ Aσs
/

LCtip with A the sample8

area under the tip, L the sample thickness, Ctip the tip-sample capacitance, and σs =σeon+σion9

the electronic plus ionic conductivity of the sample. Since values of A, L, and Ctip used in the10

Fig. 2 BLDS experiment on (C4H9NH3)2PbI4 are similar to values used in related experiments on11

19



CsPbBr3,9 σs ∝ωfast, and we can draw qualitative conclusions about the samples’ conductivity1

by comparing the measured BLDS spectra and rolloff frequency in the two samples.2

In CsPbBr3, the impedance spectrum showed two distinct rolloffs9 — one below 1 Hz,3

attributed in the dielectric spectroscopy literature to ionic motion, and a second rolloff that4

varied from 1×101 Hz in the dark to above 1×105 Hz at 1000 mW cm−2. The second rolloff5

frequency, and hence the associated σs, had a nearly square root dependence on illumina-6

tion intensity, as one would expect for free carriers, and yet the conductivity exhibited a slow,7

activated recovery consistent with ion or vacancy motion. We subsequently proposed11 that8

these contradictory observations could be rationalized by considering that photoexcitation9

can create interstitial iodine atoms and mobile iodine vacancies:26 in Kröger-Vink notation,10

Ix
I

hν−−→ Ix
I
+h•+e′ −−*)−− Ix

i
+V•

I
+e′. The scanned-probe BLDS experiment measures the total con-11

ductivity and would therefore be sensitive to both V•
I

and e′. In this view, the circa 10 s to 100 s12

conductivity recovery observed in CsPbBr3
9 and the FAMACs alloy11 is measuring the slow, acti-13

vated return to equilibrium of photogenerated halide vacancies and their geminate electrons.14

In (C4H9NH3)2PbI4, in contrast, only one rolloff was apparent in the BLDS spectrum and15

the associated cutoff frequency varied from ≤ 1Hz in the dark to 103 Hz at 1000 mW cm−2. Com-16

pared to the CsBrBr3 film, the total conductivity of (C4H9NH3)2PbI4 is 100-fold smaller under17

illumination and saturates at high illumination intensity. We can make a rough estimate of the18

sample’s dark conductivity using σs = LCtipωfast
/

A with ωfast = 1Hz. The sample thickness is19

L = 500nm and we estimate Ctip = 1×10−16 F and A = π(h/2)2, with h = 150nm the tip-sample20

separation. Using these parameters, we obtain σs = 4×10−13 Scm−1, in reasonable agreement21

with the dark conductivity of 1×10−13 Scm−1 measured for a single crystal of the 2D perovskite22

(PEA)2PbI4.27
23

In (C4H9NH3)2PbI4 the photoconductivity rise time τon (Figs. 6 and 7) and decay time τoff24

(Fig. 6) are 70µs and 285µs, respectively. The τon and τoff times measured here are ∼105 faster25

than the conductivity decay times seen in multiple 3D lead-halide perovskites9,11 but ∼104
26

slower than the 10 ns electron-hole recombination times observed for (C4H9NH3)2PbI4 using27

20



time-resolved microwave conductivity.28 The τon = (70±16)µs measured here using pk-EFM1

is in good agreement with the cantilever-frequency equilibration time of 85µs measured near2

grain centers in (C4H9NH3)2PbI4 by Giridharagopal, Ginger, and coworkers using FF-tr-EFM.15
3

In Ref. 15, spatial variations in signal were discussed in terms of ionic and electronic carrier4

transport, yet in the usual description of tr-EFM the frequency-shift signal, expressed in terms5

of a time-dependent tip-sample capacitance, has no overt connection to such transport pro-6

cesses. Building on prior work, here we provide that missing theoretical connection. In Ref. 147

we showed, for a sample described by a parallel resistor-capacitor circuit, that the frequency8

shift and dissipation probe the real and imaginary parts, respectively, of the Eq. 2 transfer func-9

tion H(ω). The BLDS spectra of Fig. 2 and the qualitative changes in H(ω), frequency shift,10

and dissipation sketched in Fig. 3 reveal that the frequency shift observed by FF-tr-EFM and11

pk-EFM in (C4H9NH3)2PbI4 is dominated by sample resistance, not capacitance. Motivated by12

this observation, here we extended our Ref. 14 treatment of transient electric force microscope13

experiments to include a time-dependent sample resistance (i.e., conductivity). This finding14

shows that pk-EFM data can in principle be directly compared to time-dependent microwave15

conductivity measurements. Since pk-EFM (and FF-tr-EFM) is sensitive to both time depen-16

dent capacitance and resistance, future time-resolved EFM studies should include measure-17

ments of BLDS spectra versus light intensity in order to establish whether Cs or Rs is dominating18

the sample’s response. Because ωfast ¿ ωc here, the sample’s changing conductivity has only19

a small effect on the cantilever frequency and dissipation here; imaging spatial variations in20

(C4H9NH3)2PbI4’s steady-state photoconductivity would be better accomplished using a BLDS21

signal (ωm ∼ 100Hz to 1000 Hz) than a frequency or dissipation signal.22

While the electronic and ionic conductivity of (C6H10N2)PbI4 in the dark has been measured23

previously,6 there is little precedent beyond Ref. 15 for observing a circa 100µs conductivity24

rise time and decay time following optical irradiation for a 2D lead-halide perovskite. There25

are two general explanations for such a conductivity-relaxation time. For photogenerated elec-26

tronic carriers to equilibrate this slowly would require trapping; hole trapping at acceptor-type27

21



iodine vacancies is plausible,27 as is localization at iodine edge states.29 In the case of ionic1

conductivity, the rise and decay could be due to a dependence of ionic conductivity on the con-2

centration of (decaying, trapped) electrons and holes. Alternatively, we could be observing the3

formation and relaxation of photogenerated vacancies; in this case we would have to explain4

why the formation and relaxation rate is 105 times faster than in 3D perovskites. In support of5

this conjecture, Wang et al. found the light-on and light-off transient time for a single-crystal6

photodetector of BAPI to be 103 larger than for a 3D perovskite.30 The fast rise time is puzzling,7

because we would expect the vacancy formation energy to be high in our 2D perovskite based8

on the comparatively low dark conductivity seen in related systems.27 Fast relaxation is more9

feasible because of the reduced out-of-plane ion motion expected from the insulating organic10

layers; the associate barrier to diffusion would keep the product interstitial halide physically11

close to the vacancy and ready for the back reaction. Considering all these observations, we12

see little clear evidence of light-induced vacancy formation in BAPI, in contrast with the 3D13

perovskites.9,11
14

6 Conclusion15

We have shown that the transfer function representation of SPM used to describe broadband16

local dielectric spectroscopy and dissipation measurements can be extended to write the tem-17

poral response measured in tr-EFM and pk-EFM in terms of sample resistance Rs.14 We have18

established experimentally using a range of steady-state and time-resolved studies that elec-19

trical scanned probe measurements in BAPI are primarily observing changes in sample resis-20

tance and not capacitance. We find, surprisingly, that light-induced conductivity in the 2D BAPI21

system recovers 105 faster than in many 3D perovskite systems studied to date.9,11
22

SUPPORTING INFORMATION AVAILABLE The Supporting Information contains:23

theoretical derivation for Eq. 1; numerical simulations for frequency and phase shift in tr-24

EFM and pk-EFM for variety of experimental conditions;31 timing diagram for Fig. 4; dielectric25

22



response at ωm = 1257s−1; absorbance spectra; XRD; AFM topography image; surface potential1

at selected light intensities.2
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S1. THEORY: DERIVATION OF EQ. 1

To derive Eq. 1, we start from the equation for the phase shift ∆φ induced by the tip-sample

force Fts [1],

∆φ=− fc

kc A2
0

∫t

0
Fts(t ′)x(t ′)d t ′, (S1)

where fc is the cantilever resonance frequency, kc is the cantilever spring constant, A0 is the

cantilever’s initial amplitude at t = 0, and x(t ) is the cantilever’s displacement versus time. Fol-

lowing the theory introduced in Ref. 2, the tip-sample force, tip-sample charge, and cantilever

displacement are approximated using perturbation theory. We use the notation x(0) to repre-

sent the zeroth-order approximation for x(t ). From Ref. 2, the zeroth order tip-sample force

is

F (0)
ts (t ) = 1

2
C ′

tip

[
q (0)

t (t )
]2

C 2
tip

= 1

2
C ′

tipVt(t )2

where q (0)(t ) is the zeroth order tip voltage and Vt is the zeroth order tip voltage

Vt =
q (0)

t (t )

Ctip
. (S2)

The zeroth order tip-sample force only causes a phase shift if V 2
t contains significant content at

the cantilever frequency ωc. For now, we assume that V 2
t varies slowly enough that it does not

cause a phase shift.

The first-order tip-sample force F (1)
ts describes the oscillating forces caused by the oscillating

tip. These oscillating forces cause the frequency shift in most KPFM experiments. In the per-

turbation theory approximation, the first-order tip-sample force is

F (1)
ts =

C ′′
q q (0)

t q (0)
t x(0)

2C 2
tip

+
C ′

tipq (0)
t q (1)

t

C 2
tip

(S3)

where the capacitance derivative C ′′
q is

C ′′
q =C ′′

tip −2(C ′
tip)2/Ctip. (S4)

The two terms of Eq. S3 describe the two possible causes of the oscillating tip-sample force. In

the first term, the cause is oscillations in the tip-sample energy arising from the oscillating tip

displacement (at constant charge). In the second term, the cause is the oscillating charge that

S2



flows in response to the oscillating tip displacement. The resulting phase shift is obtained by

substituting back into Eq. S1

∆φ=− fc

kc A2
0

∫t

0

C ′′
q q (0)

t q (0)
t x(0)

2C 2
tip

+
C ′

tipq (0)
t q (1)

t

C 2
tip

x(t ′)d t ′.

We approximate x(t ) by its zeroth-order approximation x(0)(t ). In these experiments, the can-

tilever is excited at its resonance frequency so x(0)(t ) = A0 cos(ωct +φ0). For simplicity, we take

the initial cantilever phase to be φ0 = 0; none of the conclusions below depend on this assump-

tion. After plugging in for x(t ), the phase shift simplifies to

∆φ=− fc

kc

∫t

0

C ′′
q q (0)

t q (0)
t

2C 2
tip

cos2(ωct ′)d t ′︸ ︷︷ ︸
constant charge term

− fc

kc A0

∫t

0

C ′
tipq (0)

t q (1)
t

C 2
tip

cos(ωct ′)d t ′︸ ︷︷ ︸
oscillating charge term

. (S5)

To determine the cantilever phase shift during these experiments, we consider the two terms

in Eq. S5 individually. The first term (∆φconst) describes the phase shift caused by the tip oscil-

lating at constant charge. The second term (∆φosc) describes an additional phase shift caused

by the tip charge oscillating along with the oscillating tip displacement. Using the definition of

Vt (Eq. S2) and the trigonometric identity for cos2 θ, the first term simplifies to

∆φconst =− fc

4kc
C ′′

q

∫t

0
Vt(t ′)2 +Vt(t ′)2 cos(2ωct )︸ ︷︷ ︸d t ′. (S6)

If Vt(t ) varies slowly, the under-braced term integrates to zero over each cantilever oscillation

period. In this case, the overall frequency shift ∆ f = d∆φ/d t caused by the first term is

∆ fconst(t ) =− fc

4kc
C ′′

qVt(t )2.

For the second term, we take the same basic approach. The second term simplifies to

∆φosc =−
fcC ′

tip

kc A0Ctip

∫t

0
Vtq (1)

t cos(ωct ′)d t ′ (S7)

We need the first-order tip-charge q (1)
t . In the time-independent case, this was given by

q (1)
t =Ctip h ∗Vx =Ctip

∫t

t0

h(t − t ′)Vx(t ′)d t ′, (S8)

where h is the impulse response function between the applied tip-sample voltage Vts(t ) and

the voltage that drops across the tip capacitor Vt = q (0)
t /Ctip, ∗ denotes convolution, and Vx is
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the oscillating voltage induced by the oscillating tip displacement, Vx =C ′
tipq (0)

t x(0)/C 2
tip. In the

time-dependent case, the convolution integral is replaced by the generalized convolution

q (1)
t =Ctip

∫t

t0

h(t , t ′)Vx(t ′)d t ′.

The time-varying impulse response function h(t , t ′) describes the response at time t to an

impulse applied at a time t ′. Substituting in for Vx , we obtain

q (1)
t =

∫t

t0

h(t , t ′)
q (0)

t (t ′)
Ctip

C ′
tip x(0)(t ′)d t ′.

Substituting in for x(0) and simplifying gives

q (1)
t = A0C ′

tip

∫t

t0

h(t , t ′)Vt(t ′)cos(ωct ′)d t ′. (S9)

In the experiments we consider, the spectral content of Vt will be concentrated at low frequen-

cies. Looking back to Eq. S7, the integral will only have non-zero values over a cantilever period

when the response is in phase with the oscillating position. Therefore, to a good approximation,

we need the component of the oscillating tip charge at the cantilever frequency ωc. Since the

spectral content of Vt is concentrated at low frequencies, this will be given by the time-varying

response function H(ωc, t )

q (1)
t ≈ A0C ′

tipVt(t )
[
Re

[
H(ωc, t )

]
cos(ωct )− Im

[
H(ωc, t )

]
sin(ωct )

]
(S10)

Substituting this equation for q (1)
t into Eq. S7, we obtain

∆φosc =−
fc(C ′

tip)2

kcCtip

∫t

0
Vt(t ′)2 [

cos2(ωct ′)Re
[
H(ωc, t ′)

]+ sin(ωct ′)cos(ωct ′) Im
[
H(ωc, t ′)

]]
d t ′

Simplifying using the double angle formulas and the definition ∆C ′′ = 2(C ′
tip)2/Ctip,

∆φosc =− fc∆C ′′

4kc

∫t

0
Vt(t ′)2

[
Re

[
H(ωc, t ′)

]︸ ︷︷ ︸+cos(2ωct ′)Re
[
H(ωc, t ′)

]
+ sin(2ωct ′) Im

[
H(ωc, t ′)

]]
d t ′. (S11)

If V 2
t varies slowly and H(ωc, t ) is linear within each cantilever period, then only the under-

braced term contributes to the integral over a cantilever oscillation period. In this case, the

frequency shift ∆ f = d∆φ/d t is

∆ fosc(t ) =− fc∆C ′′

4kc
Vt(t )2 Re

[
H(ωc, t )

]
.
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Adding the two terms, we obtain the overall frequency shift given in Eq. 1:

∆ f (t ) =− fc

4kc

(
C ′′

q +∆C ′′ Re
[
H(ωc, t )

])
Vt(t )2.

The zeroth order tip voltage Vt(t ) is

Vt(t ) =
∫t

t0

h(t , t ′)Vts(t ′)d t ′. (S12)

The two key approximations made in this derivation were (1) Vt and V 2
t do not have signifi-

cant spectral content at the cantilever resonance frequency ωc and (2) the real and imaginary

components of H(ωc, t ) are linear over each cantilever period.

S2. DETERMINING THE TIME-VARYING RESPONSE FUNCTION

The time-varying response function is the Fourier transform of the modified time-varying

impulse response h̄(t ,τ), where τ= t − t ′ is the delay between the time t at which the response

is measured and the time t ′ at which the impulse was applied. The modified time-varying

impulse response is

h̄(t ,τ) = h(t , t −τ) (S13)

and the Fourier transform is

H(ω, t ) =
∫∞

−∞
h̄(t ,τ)e− jωτ dτ

Next we describe how H(ωc, t ) can be calculated for the single parallel sample resistance and

capacitance model used in the text (Rs ËCs, circuit shown in Fig. S1a).

In this case, the differential equations describing the evolution of the tip charge qt can be

expressed in terms of qR , where q̇R is the current through the sample resistance Rs. The state

variable qR is described by the differential equation

q̇R =−ωfast(t )qR +Ctipωfast(t )Vts(t ) (S14)

where ωfast(t ) = (
Rs(t )(Cs +Ctip)

)−1. To zeroth order, the dependence of the tip capacitance on

distance is negligible and the system is linear. The system is time-varying through the time-

dependence of the resistance Rs. The tip charge and tip voltage are

qt =
(

Ctip

Ctip +Cs

)
qR +

(
CtipCs

Ctip +Cs

)
Vts(t ) (S15)

Vt =
(

1

Ctip +Cs

)
qR +

(
Cs

Ctip +Cs

)
Vts(t ) (S16)
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The propagator (or state transition matrix) Φ describes the evolution of the state variable, with

qR (t ) =Φ(t , t0)qR (t0) in the absence of a voltage input. For this system, the propagator is

Φ(t , t ′) = e−∫t
t ′ ωfast(θ)dθ. (S17)

The time-varying impulse response1 gives the response of the tip voltage at a time t to a voltage

input applied at time t ′

h(t , t ′) =
(

Ctip

Cs +Ctip

)
ωfast(t ′)Φ(t , t ′)u(t − t ′)+

(
Cs

Cs +Ctip

)
δ(t − t ′),

where u(t ) is the Heaviside step function (u(t ) = 0 for t < 0, u(t ) = 1 for t > 0) and δ(t ) is the

Dirac delta function. The modified time varying impulse response is given by defining the delay

τ= t − t ′,

h̄(t ,τ) =
(

Ctip

Cs +Ctip

)
ωfast(t −τ)Φ(t , t −τ)u(τ)+

(
Cs

Cs +Ctip

)
δ(τ).

The sought-after time-varying frequency response is the Fourier transform of h̄ with respect to

τ2

H(ω, t ) =
∫∞

−∞

[(
Ctip

Cs +Ctip

)
ωfast(t −τ)Φ(t , t −τ)u(τ)+

(
Cs

Cs +Ctip

)
δ(τ)

]
e− jωτ dτ,

=
∫∞

0

(
Ctip

Cs +Ctip

)
ωfast(t −τ)Φ(t , t −τ)e− jωτ dτ+

∫∞

−∞

(
Cs

Cs +Ctip

)
δ(τ)e− jωτdτ.

Simplifying the second integral and substituting the expression for Φ from Eq. S17, we obtain

Eq. 3. In words, H(ω, t ) gives the response of Vt to an applied external voltage e jωt . In the limit

that ωfast is constant, H(ω, t ) becomes time-independent and reduces to H(ω) given by Eq. 2.

S3. TR-EFM AND PK-EFM SIMULATIONS

The approximation for ∆ f given by Eq. 1 was compared against the results of numerical

simulations of the cantilever’s dynamics for tr-EFM and pk-EFM experiments. To simulate a

tr-EFM or pk-EFM experiment in which the light is turned on at t = 0, the sample resistance

was taken to respond to light with a time constant τL,

Rs(t ) =


Rdark t ≤ 0

Rdark + (Rlight −Rdark)(1−e−t/τL ) t > 0,
(S18)

1 From Kailath Ch. 9, Eq. 23 [3], h(t , t ′) =C (t )Φ(t , t ′)B(t ′)+D(t )δ(t−t ′), where B , C , D have their usual definitions

for state space representations.
2 From Shmaliy Eq. 6.31 [4], H(ω, t ) = H̄(ω, t ).
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where Rdark is the sample’s dark resistance and Rlight is the sample’s final resistance after the

light has been on for a long time.

To simulate a tr-EFM experiment, the tip-sample voltage was left constant Vts(t ) = V . To

simulate a pk-EFM experiment, the tip-sample voltage Vts was stepped back to zero after a

time tp

Vts(t ) =


V t ≤ tp

0 t > tp.
(S19)

In our simulations, the tip-sample voltage was always V = 10V.

In Eq. 1, the two factors that affect the frequency shift are the zeroth order tip voltage Vt

and the time-varying transfer function H(ωc, t ) at the cantilever frequency ωc. Figure S1 illus-

trates the effect of each factor for a sample where the light decreases the sample resistance from

Rdark = 100GΩ to Rlight = 10MΩ with an exponential risetime of τL = 10µs. These values were

chosen to clearly illustrate how each factor affects the frequency shift.

The experiment begins when the applied voltage Vts is switched from 0 to 10 V. Initially,

equal charges build up on both capacitors and the voltage drop across the tip capacitor is

Vt = VtsCs/(Cs +Ctip) (Fig. S1a). The sample capacitor discharges with an RC time constant

Rdark(Ctip+Cs) = 1.1ms, so that eventually, all of the applied voltage drops across the tip capac-

itor (Fig. S1b). When the light is turned on, the sample resistance Rs decreases by 6 orders of

magnitude, decreasing the RC time constant from 1.1 ms to 1.1 ns.

Dramatic differences in the frequency shift are observed depending on when the light is

turned on. Fig. S1c shows the tip voltage versus time after the light is turned on (t = 0) when the

tip is only partially charged (blue), and, for comparison, when the tip is fully charged (orange).

If the tip is only partially charged, the light-induced decrease in sample resistance speeds up

the charging of the tip capacitor—the tip charges fully in 200µs compared to the 3 ms it would

take in the dark. If allowed to charge fully before turning on the light, Vt remains constant

(orange).

Figure S1d shows the resulting frequency shift versus time signal calculated from numerical

simulations (points) and approximated using Eq. 1 (lines). According to Eq. 1, the frequency

shift ∆ f is proportional to V 2
t , so the blue trace and circles show an increase in frequency shift

from t = 0 to 200µs as the tip charges. The messy oscillations in the numerically simulated

frequency-shift transient (blue circles) occur because the tip charge and dc displacement are
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changing rapidly on the timescale of the cantilever period, so the cantilever frequency shift is

poorly defined during these periods. The phase shift is still well-defined, however, and Fig. S1d

shows that Eq. 1 accurately captures the numerically simulated phase shift remarkably well.

The increase in frequency shift after 200 us is caused by an increase in the time-varying

transfer function at the cantilever frequency (H(ωc, t )). Physically, as the circuit’s RC time con-

stant drops below the cantilever’s inverse resonance frequency ω−
c 1 = 2.5µs, more of the tip

charge is able to oscillate on and off the tip during motion, so that the oscillating force in-

phase with the tip displacement increases. The predicted frequency and phase shift agrees

closely with the numerical simulations.

All of these light and bias-dependent effects can be understood using the time-varying

transfer function H(ω, t ). Fig. S1f plots the real part of H versus angular frequency at 40µs

intervals after the light is turned on at t = 0. Over the first 160µs after the light is turned

on, the main effect of the reduced sample resistance is an increase in H at frequencies well

below the cantilever frequency ωc. This low-frequency response can affect the frequency shift

through the tip voltage Vt, which is the generalized convolution of the time-varying impulse

response function and the applied tip-sample voltage (Eq. S12). Notice that the increase in H

at low-frequencies has no effect if all of the tip-sample voltage is already dropping across the

tip, as for the orange traces in Fig. S1(c,d). In this case, light-induced frequency shifts can be

attributed to changes in Re H(ωc, t ) alone. The experimental data of Fig. 4 shows this same

dependence of the light-induced frequency shift on the initial tip charge.

While the effect of the increase in H at low-frequencies depends on the initial tip charge, a

change in Re H(ωc, t ) directly affects the cantilever frequency shift. Between 160µs and 280µs,

the real part of the transfer function Re H(ωc, t ) increases dramatically at the cantilever fre-

quency (Fig. S1a). The cantilever frequency shift (Fig. S1c) increases further as a result.

Simulations were performed for a wide variety of experimental parameters, designed to

cover regimes where each factor (Vt and Re H(ωc, t )) influences the frequency shift. For sample

tr-EFM experiments, Figure S2 shows that Eq. 1 is a good approximation of the cantilever fre-

quency shift.

To assess pk-EFM experiments, the measured and predicted phase shifts were compared for

1080 simulated experiments. Figure S3 shows that over a wide variety of sample and cantilever

parameters, the predicted and measured phase shift in pk-EFM experiments agreed closely.

The residuals r =∆φsimulated−∆φpredicted had a mean and standard deviation of 0.027mcyc and
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0.049mcyc respectively. The maximum residual was 0.20mcyc.

S3A. Numerical simulations

The numerical simulations used to generate Figs. S2– S3 were performed in Python. The

code for these simulations is publicly available [9]. The coupled first-order ordinary differential

equations that described the cantilever dynamics are

ẋ = v (S20a)

v̇ =−ω2
cx − ωc

Q
v +

C ′
tip(x)

2mCtip(x)2
q2

t (S20b)

q̇R =− 1

Rs(t )(Ctip(x)+Cs)
qR + Ctip(x)

Rs(t )(Ctip(x)+Cs)
Vts(t ). (S20c)

where v is the cantilever velocity. For convenient comparison to the model developed above,

the zeroth order charge was also computed using

q̇ (0)
R =− 1

Rs(t )(C +Cs)
q (0)

R + C

Rs(t )(C +Cs)
Vts(t ), (S21)

where C = Ctip(0). The tip capacitance and its derivatives were given by Ctip(x) = C +C ′x +
C ′′x2/2. In Eq. S20b, the tip charge qt was calculated using Eq. S15. The numerical inte-

gration was performed in Python using Scipy’s odeint function, storing the state vector y =
(x v qR q (0)

R )T every 1µs.

The initial state vector for the cantilever was

y0 =


x

v

qR

q (0)
R

=


A0 cos(ωct0 +φ0)

A0ωc sin(ωct0 +φ0)

βCV

βCV

 ,

where A0 is the cantilever’s initial amplitude, φ0 is the cantilever’s initial phase, t0 = −100µs

is the initial time the numerical integration was started, β is the initial fraction of the tip

sample voltage that drops across the tip capacitor, and the applied tip-sample voltage V = 10V

(Eq. S19).

The output of the numerical integration was used to determine the cantilever’s amplitude,

phase, and frequency. The cantilever amplitude A = |z| and phase φ = arg z were calculated

using the complex number

z = (x −xeq)− j v/ωc. (S22)
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where xeq =C ′
tipV 2

ts/(2kc). The amplitude and phase data were filtered by averaging over a single

cantilever period (16 data points). The frequency shift was calculated by numerically differ-

entiating the filtered phase shift (using second order central differences via numpy’s gradient

function).

To compare the impedance theory approximation to the numerical integration, the zeroth

order tip voltage Vt and the time-varying frequency response H(ω, t ) must be known. The

zeroth order tip voltage was calculated using Eq. S16 with qR = q (0)
R . To approximate H(ω, t ), the

double integral of Eq. 3 was broken into pieces depending on the value of t and ωfast(t ). When

ωfast ¿ ωc, the necessary integral is oscillatory and decays slowly which makes converging a

numerical approximation difficult. In this case, the integrand was sampled at points equally

spaced through the cantilever cycle (160 points per cycle) and Simpson’s rule was used to com-

pute the value of the integral.

S4. SCANNING PROBE MICROSCOPY

The scanning probe microscopy set up used to perform different measurements here has

been described in our previous reports [5]. Cantilever motion was detected using a fiber

interferometer operating at 1490 nm (Corning SMF-28 fiber). The laser diode’s (QPhotonics

laser diode QFLD1490-1490-5S) dc current was set using a precision current source (ILX Light-

wave LDX-3620), and the current was modulated at radio frequencies using the input on the

laser diode mount (ILX Lightwave LDM 4984, temperature-controlled with ILX Lightwave LDT-

5910B). The interferometer light was detected with a 200-kHz bandwidth photodetector (New

Focus model 2011, built-in high-pass filter set to 200 kHz) and digitized at 1 MHz (National

Instruments, PCI-6259). The cantilever was driven using a commercial PLL cantilever con-

troller (RHK Technology, PLLPro2 Universal AFM controller) with PLL feedback loop integral

gain I = 2.5 Hz, proportional gain P = −5 ° Hz. The sample was illuminated from above with a

fiber-coupled 405nm laser (Thorlabs model LP405-SF10, held at 25◦C with a Thorlabs model

TED200C temperature controller). The laser current was controlled using the external modula-

tion input of the laser’s current controller (Thorlabs model LDC202, 200kHz bandwidth). The

light was coupled to the sample through a multimode, 50µm diameter core, 0.22 NA optical

fiber (Thorlabs model FG050LGA). The intensity at sample surface was calculated based on an

estimated spot size of ≈ 0.26 mm2
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Implementation of broad band local dielectric spectroscopy has been described previously

in Refs. 6 and 7. The procedure is reproduced below for reference. For amplitude modulation

BLDS (Fig. 2b), we applied a time-dependent voltage to the cantilever tip :

Vm(t ) =Vpp

(
1

2
+ 1

2
cos(2π famt )

)
cos(2π fmt ). (S23)

In the experiments reported in the manuscript, fm = 200Hz to 1.5MHz, fam = 45Hz, and the

amplitude was set to Vpp = 6V. The time-dependent voltage in Equation S23 was generated

using a digital signal generator (Keysight 33600). The cantilever frequency shift was mea-

sured in real time using a phase-locked loop (PLL; RHK Technology, model PLLPro2 Universal

AFM controller), the output of which was fed into a lock-in amplifier (LIA; Stanford Research

Systems, model 830). The LIA time constant and filter bandwidth were 300ms and 6dB/oct,

respectively. At each stepped value of fm, a wait time of 1500ms was employed, after which

frequency-shift data were recorded for an integer number of frequency cycles corresponding

to ≈ 2sec of data acquisition at each fm. The measurable ∆ fBLDS primarily probes the response

at ωm (Eq. S24).

∆ fBLDS(ωm) =− fcV 2
m

16k

[
C ′′

q +∆C ′′ Re
(
Ĥ(ωm +ωc)+ Ĥ(ωm −ωc)

)]|Ĥ(ωm)|2 (S24)

∆ fBLDS is related to the plotted voltage-normalized frequency shift α by Eq. S25.

α= ∆ fBLDS(ωm)

V 2
m

. (S25)

The ∆ fBLDS frequency-shift signal was obtained from the LIA outputs as follows. From the (real)

in-phase and out-of-phase voltage signals VX and VY , respectively, a single (complex signal) in

hertz was calculated using the formula

ZHz =
(
Vx + j Vy

) S

10
×p

2×20
Hz

V
(S26)

From ZHz we calculate α

α= 4|ZHz|
V 2

pp
=

8
p

2S
√

V 2
x +V 2

y

V 2
pp

. (S27)

In frequency shift BLDS (Fig. 2a) described in Ref. 7, the applied waveform is not amplitude

modulated at 45 Hz and instead an equal period ON/OFF amplitude-modulating is applied.

The resultant frequency shift is calculated by software demodulation of the cantilever response

by subtracting the average frequency shift during the ON period from the OFF period.
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S4A. tr-EFM and pk-EFM

Implementation and data work up details for tr-EFM and pk-EFM have been extensively

described in Ref. 5 and Ref. 8 and is reproduced briefly below for reference. A commercial

pulse and delay generator (Berkeley Nucleonics, BNC565) was used to generate tip voltage and

light modulation pulses, as well as to turn off the cantilever drive voltage. The PLLPro2 gen-

erated the cantilever drive voltage and also output a 1 V, phase-shifted sine wave copy of the

cantilever oscillation, generated by an internal lock-in amplifier coupled to the phase-locked

loop. A home built gated cantilever clock circuit converted this 1 V phase-shifted sine wave to

a square wave, which was used as a clock for timing tip voltage and light pulses. A 5 V digital

signal output by the National Instruments PCI-6259 gates the clock, controlling the start of the

experiment. The BNC565 was used to trigger all signals relative to the cantilever clock. Can-

tilever drive was switched off (2 ms to 10 ms) before the start of light pulse. The raw cantilever

oscillation data (digitized at 1 MHz) was saved along with counter timings (PCI-6259, 80-MHz

counter) indicating the precise starting time of the light pulse (synchronized to the cantilever

oscillation), allowing the start of the light pulse to be determined to within 12.5 ns. Along with

each pk-EFM phase shift data point, a control data point, identical except without turning on

the light, was collected.
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FIG. S1. Frequency shift and time-varying transfer function versus time for a representative pk-EFM

experiment. (a) The model circuit used in this simulation. After the tip-sample voltage is applied, charge

builds up on the tip and sample capacitors. (b) Eventually, the sample capacitor discharges and Vt =
Vts. The (c) negative zeroth order tip voltage −Vt, (d) frequency shift, and (e) phase shift calculated

using numerical simulations (points) and analytically using Eq. 1 (line). For (c)–(e), Vt(t0) = 7V (blue

circles), 10 V (orange triangles). (f) The time-varying response function H(ω, t ) shown at times t = 0,

40, 80, . . . , 280µs. Constant experimental parameters: Rdark = 10TΩ, Rlight = 10MΩ, τL = 40µs, kc =
3.5Nm−1, fc = 62kHz, Q = 26000, Ctip = 1×10−4 pF, C ′

tip = −2.8×10−5 pFµm−1, Cs = 1×10−5 pF, C ′′
tip =

6.77×10−5 pFµm−2, Vts = 10V, t0 =−200µs.
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FIG. S2. Frequency shift versus time for representative simulated EFM experiments. For different light-

induced time constants τL (Eq. S18), points show the frequency shift calculated from numerical inte-

gration of Eq. S20 and dashed lines show the results calculated using the approximation in Eq. 1. For

each trace, the following experimental parameters were held constant: fc = 62.5kHz, kc = 3.5Nm−1,

Q = 26000, A0 = 50nm, φ0 = π, t0 = −100µs, Rdark = 100GΩ, Rlight = 10MΩ, Cs = 0, Ctip = 1×10−4 pF,

C ′′
q = 52.1pFnm−2, ∆C ′′ = 15.7pFnm−2, Vt(t0) = 10V, Vts = 10V.
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FIG. S3. Simulated phase shift agrees closely with predicted phase shift in pk-EFM experiments. Experi-

mental parameters: Rdark = 1×105, 1×107, 1×108 MΩ; Rlight = 10MΩ; τL = 10, 20, 40, 80, 160µs; Vt(t0) =
7, 10 V; tp = 48, 96, 192, 384µs; Cs = 0.01, 0.04, 0.1 fF; C ′

tip = −28, −35, −49.5 fF nm−1; Ctip = 0.1 fF;

fc = 62.5kHz; kc = 3.5Nm−1; Q = 26000, A0 = 50nm; A0 = 50nm; t0 =−200µs; φ0 = 0.
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FIG. S4. Timing diagram for voltage and light pulse used in Fig. 4 experiments. Bias time in dark t is

varied from −2 ms to −1000 ms.
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tip voltage (0 to 6 V)

slow charging

FIG. S5. tr-EFM frequency shift for tp = 1 s shown in Fig. 4. Additional frequency shift due to slow

charging is apparent in the measured frequency shift after the tip voltage Vts is changed to 6 V even after

several hundred millisecond wait.
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FIG. S6. Dielectric response at ωm = 1257 s−1 for a period of illumination at two different light intensities.

Dielectric response measured by α increases and decreases within the time resolution of the measure-

ment (≈ 1 s). Light was turned at time t = 20 s and turned off at time t = 52 s. Experimental parameters:

Vts = 6V, h = 200nm.
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FIG. S7. Surface potential measured through frequency voltage parabolas at selected light intensities.
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FIG. S8. Absorbance spectra of BA2PbI4.
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FIG. S9. AFM topography image of the perovskite film.
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FIG. S10. XRD spectra of the perovskite film.
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