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A  B  S  T  R  A  C  T   

 
The lack of thermal comfort among occupants is a common problem in built  environments. Recent  studies have 

investigated various physiological sensing   and  modeling approaches and  demonstrated more  robust thermal 

comfort prediction than the  Predicted Mean  Vote  and  participatory sensing  methods. However, such  physio- 

logical  sensing   approaches only  work  with  iterative and  passive   Heating, Ventilation, and  Air  Conditioning 

(HVAC) control schemas which can  lead  to problems including uncertainties in setpoint control outcomes and 

interruptions to  building occupants. To  address this  critical limitation, this  paper proposes a  new  paradigm 

named Human Embodied Autonomous Thermostat (HEAT) that  considers human occupants as an embodiment of 

smart and  connected thermostats where physiological measurements in form  of facial  skin  temperature can  be 

used  to directly communicate with  and  control HVAC operations for improved thermal satisfaction and  reduced 

energy use  while   maintaining comfort in  multi-occupancy  spaces. This  paradigm  leverages occupants’ skin 

temperature responses under different thermal environments and  integrates two  types  of  personal models - 

thermal comfort model   and  physiological predictive model   to  determine occupants’ comfort, which can  be 

represented as  the  thermal comfort zone  and  comfort probability. Based  on  these   two  metrics, three HVAC 

strategies are  compared to  demonstrate thermal comfort optimization for  a  group of  occupants. The  result 

suggests different setpoint options as a trade-off between overall comfort and  energy use.  The proposed HEAT 

framework can  conceptually make   wall-mounted physical thermostats  redundant  by  serving as  a  basis  for 

automated environment control based  directly on human measurements to improve personalized human expe- 

rience, well-being, and  building energy efficiency. 

 

 
 

1.   Introduction 

 
Thermal comfort among building occupants is an influential factor in 

human satisfaction, health, and  well-being. Lack of thermally comfort- 

able environments can lead to several  problems including sick building 

syndrome, complaints, absenteeism, and  reduced work  productivity 

[1–4]. However, understanding thermal comfort is a challenging task as 

both  human and  environmental factors  affect  people’s  thermal sensa- 

tions     and    preferences   [5].    This    problem   is    exacerbated   in 

multi-occupancy environments where  thermal comfort  not only evolves 

within   each  occupant but  also  varies   from  one  person   to  another. 

Therefore, static  Heating, Ventilation, and Air Conditioning (HVAC) 

operation strategies recommended by  industry guidelines (e.g.,  ASH- 

RAE) can fail to provide an optimum thermal environment, i.e., an 

environment that  keeps  as many  occupants comfortable as possible,  if 

not all. 

To address  this  research problem, this  paper  proposes  the  Human 

Embodied   Autonomous Thermostat  (HEAT)  framework where   occu- 

pants  act as thermostats carrying their  personal thermal profiles  into a 

shared  space (e.g., offices). This framework allows the thermal envi- 

ronment to be automatically optimized based on the profiles detected in 

the space to improve  overall  satisfaction and wellness  without humans 

interacting with  a physical  thermostat. The proposed framework con- 

sists of two components: (1) thermal comfort  sensing,  which  develops 

personal comfort models to interpret the comfort state of each occupant; 

and  (2) thermal comfort  optimization, which  determines the  optimum 

setpoint for a given group  of occupants. 

The remaining sections  of this  paper  are  organized as follows.  Sec- 

tion  2 reviewed the existing  literature on thermal comfort  sensing  and 

optimization and  highlighted their  limitations. Section  3 summarized 

the objectives of this paper.  Section 4 presented the methodology of the 

HEAT  framework.  Section   5  compared  three   setpoint  optimization 
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strategies using  the  experimental data.  Section  6 discussed  the  results 

and research implications. Finally,  Section  7 concluded the paper. 

 
2.   Background 

 
Existing literature investigated thermal comfort  sensing  approaches 

to understand occupants’ thermal comfort, such as the Predicted Mean 

Vote (PMV) model,  adaptive model,  human participatory sensing,  and 

personal comfort  model.  These  sensing  approaches can  be  applied in 

multi-occupancy spaces to achieve  a real-time evaluation of the overall 

thermal environment. Following the sensing step, various  HVAC control 

strategies can  be implemented to determine the  optimum setpoint for 

improved thermal comfort  and satisfaction. 

 
2.1.   Thermal comfort sensing 

 
Industry standards in  thermal comfort  originated from  the  static 

PMV model  which   was  based  on  the  thermal transfer between the 

human body  and  environments [6].  Later,  De  Dear  and  Brager  [7] 

proposed the adaptive model  and suggested that  occupants’ behavioral 

and psychological adaption in naturally ventilated buildings can lead to 

a wider  range  of acceptable temperature than  the PMV prediction. 

However, these  two classic approaches are unable  to reflect  the 

“personalized” nature of thermal sensation and  preference as they  are 

both  developed from the responses of a large group  of human subjects. 

With the rapid  development of wireless  sensor  network, mobile  de- 

vices,  and  ubiquitous computing, researchers also  explored participa- 

tory sensing approaches, which  assess thermal conditions using 

environmental data  and the corresponding human feedback  (e.g., Refs. 

[8–12]. This is also known  as the “human-in-the-loop” approach which 

brings   occupants’ actual   thermal  sensations into  the  HVAC control 

process. In these approaches, thermal comfort is typically modeled using 

only  environmental parameters. For example, Feldmeier and  Paradiso 

[10] applied linear  discriminant models  to classify  thermal sensations 

based  on room  temperature and  humidity. Daum  et al. [8] developed 

comfort  models  using logistic  regression, which  represents the comfort 

probability at different room  temperatures. Similarly,  Jazizadeh et al. 

[11] developed fuzzy models  to describe  the  comfort  probability as a 

function of  room  temperature.  However, these  participatory  sensing 

approaches  fail  to   consider  the   role   of  human  physiological and 

behavioral factors  in affecting  thermal comfort, which  may result  in a 

less robust comfort prediction [13,14]. For example, the same individual 

with different workloads can have direct opposite thermal preferences in 

the   same   environment.  Also,  these   approaches  rely  on  continuous 

feedback  from  occupants to  rectify  comfort  predictions or  determine 

future  setpoints, which is interruptive in real applications. For a detailed 

discussion  about participatory sensing and its limitations, please refer to 

Li et al. [15]. 

To address  the limitations in the above comfort  sensing approaches, 

personal comfort models which leverage human physiological data have 

gained  much  attention in  recent  years  [14–24,41,42]. This  approach 

maps  real-time human physiological data,  such  as  skin  temperature, 

heat  flux, respiration, and  heart  rate  collected from  the  human body, 

into  a prediction of thermal comfort. In this  paradigm, each  personal 

model  captures the  “individual differences”. In other  words,  personal 

models  only represent the corresponding “training person”  and are not 
intended to extrapolate to other  people  or an “average person”. Studies 
such as Aryal and Becerik-Gerber [16]; Jung et al. [13]; and Li et al. [14] 

suggested that  physiological sensing-based comfort  models  can achieve 

better prediction accuracy than  models  which  only  consider environ- 

mental  data and have the potential to reduce the intrusiveness caused by 

human participation. 

Among  various  human physiological signals,  skin temperature has 

been widely adopted in existing literature as it is directly associated with 

thermoregulatory behaviors of the  human body  (e.g.,  vasodilation and 

vasoconstriction) under  thermal stimuli.  In practice, skin temperature 

can   be  collected  from   contact  thermocouples  [17,25],  contact-less 

infrared thermometers [16,19], and  thermal cameras  [15,16,26]. 

Typical  body  parts  for  skin  temperature measurement include  wrists 

[14,16,24],   hands    [17,25],   and    faces    [15,19,26].   Particularly, 

non-intrusive approaches have been proposed for comfort  sensing using 

facial  thermography collected from  low-cost  thermal cameras  [15,23, 

27].   For  details   about   the  instruments and  measurement  accuracy, 

please  refer to Ref. [15]. 

 
2.2.   Thermal comfort optimization 

 
Once the overall thermal comfort in a built environment is evaluated, 

a  closely  related question may  arise,  which  is,  how  to  adjust  HVAC 

settings  to optimize the  overall  thermal comfort  and  satisfaction? This 

question has been investigated in existing  literature such as Daum et al. 

[8]; Deng and Chen [18]; Erickson  and Cerpa [9]; Feldmeier and Para- 

diso [10]; Jazizadeh et al. [11]; Jung  and Jazizadeh [28]; Li et al. [14]; 

and  Purdon  et al. [12]. The main  strategy adopted in these  studies  is 

adjusting thermostat setpoints to  increase  or decrease room  tempera- 

ture.  This is because  room temperature directly and significantly affects 

the perceived thermal comfort compared to other environmental factors, 

such as relative humidity, and can be easily controlled by the thermostat 

[29]. Also, studies  observed that  variations in relative humidity are  a 

byproduct  of  setpoint  adjustment  in  real   operational  environments 

where  relative humidity shows  a negative correlation with  room  tem- 

perature [13,23]. Moreover,   room  temperature can  be  measured by 

regular   temperature   sensors,    which    are    low-cost    compared  to 

black-globe thermometers for  mean  radiant temperature. As a result, 

only  room  temperature setpoint is considered as a control  variable in 

many  HVAC strategies. 

In general, existing  studies  that  aim to optimize the setpoint for 

improved thermal comfort can be summarized into two categories: (1) a 

passive and iterative control  process  which  implements a corrective 

temperature in each  step;  and  (2)  a closed-form optimization that  at- 

tempts  to achieve  the optimum setpoint in one step. 

Studies  in  the  former  category typically leverage the  feedback  or 

thermal vote  from  occupants over  time.  For  example, Erickson  and 

Cerpa [9] calculated the corrective temperature using the PMV model to 

offset discomfort votes received in each decision cycle, which is set at 10 

min.  This corrective temperature then  updated the  current setpoint to 

provide additional heating or  cooling  to  restore   a  thermally neutral 

state.  Purdon  et al. [12] also leveraged this voting  mechanism (e.g., -1 

for cooler,  1 for warmer) where  the net vote, i.e., the sum of votes from 

all occupants, was calculated in each cycle. The room temperature will 

decrease by a fixed step of 1 �C for a negative net vote, which indicates a 

lower  temperature is preferred, and  vice versa.  In Li et al. [14]; occu- 

pants’ personal comfort  models  were applied in the HVAC control  loop 

to update the  setpoint. If a negative or positive  net  thermal vote  was 

collected in a decision  cycle (i.e., every  30 min),  the control  algorithm 
will evaluate the new setpoint (i.e., previous setpoint �1 � C) using each 

occupant’s  comfort   model.   A corrective temperature  will  be  imple- 

mented if more  occupants were  predicted comfortable under  the  new 

setpoint. As discussed  in these three  example  studies,  this HVAC control 

schema  is an iterative process as continuous corrective steps are needed 

when  occupants provide new thermal votes.  This is also a passive  pro- 

cess as it is unable  to proactively determine the optimum setpoint for the 

future.  As a result, this schema can lead to longer discomfort time due to 

its trial-and-error nature and also make the setpoints oscillate over time, 

which  may lead to energy  waste. 

Another   category  of  HVAC control   strategy  uses  environmental 

factor-based comfort  models  to find a closed-form solution for the  op- 

timum   setpoint [28,30].  In  this  schema,   as  comfort  models  directly 

associate room  temperature with  thermal comfort, a closed-form solu- 

tion,  which  outputs the  optimum setpoint that  maximizes an objective 

function (e.g.,  the  number of comfortable occupants), can  be directly 

obtained [8,11,28]. For example, Jung  and  Jazizadeh [28] compared 
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three  HVAC control  strategies in determining the optimum setpoint. In 

this study,  personal comfort  models,  which  measure the  probability of 

being comfortable (i.e., comfort  probability) as a function of room 

temperature, are  developed using  the  Gaussian   distribution. Specif- 

ically,  this study  introduced the concept  of thermal sensitivity, i.e., the 

increased or decreased comfort probability caused by variations in room 

temperature. Using  this  metric,   the  optimum setpoint  is  chosen   to 

maximize the  sum  of comfort  probability of all occupants. This study 

provides useful  insights  into  the  HVAC control  by addressing the  opti- 

mization problem in a probabilistic view and  considering the  different 

thermal sensitivities to hot and cold stimuli. 

However, the  one-step HVAC optimization strategies such  as Jung 

and Jazizadeh [28] cannot  directly integrate with human physiological 

sensing-based comfort  models.  In this case, a major challenge should  be 

addressed - the uncertainties in occupants’ thermal comfort under a new 

setpoint, which  result  from the unknown effect of updated thermal en- 

vironments on human physiological parameters. For example, in a sce- 

nario  where  skin temperature is used  for comfort  prediction, personal 

comfort  models  can continuously predict the  thermal preference or its 

probability as long as a new skin temperature measurement is collected. 

If these  models  predict “occupants prefer  warmer” and  the  setpoint is 

increased by a fixed  step  (e.g.,  1 � C) accordingly, it is unknown how 

much  people’s  skin temperature will be affected  by this adjustment, 

resulting in uncertainties in setpoint control  outcomes. In other  words, 

physiological sensing-based comfort  models  enable  evaluations of cur- 

rent   comfort   state   but   cannot   make   predictions  about   the   future. 

Therefore, it only  works  with  the  iterative and  passive  HVAC control 

strategy introduced above. 

Fig. 1 illustrates this problem using  an example  environment occu- 

pied by three  occupants (denoted as id1, id2, and id3). In this example, 

the  setpoint is initially set at 24 � C at time  t. Occupants’  physiological 

control  (the  majority now feel comfortable), and  an overshoot control 

(the  majority start  to prefer  cooler).  If either  the  insignificant or over- 

shoot  outcome occurs,  then  an additional adjustment has to be imple- 

mented by using  the  current physiological data  at  time  t þ 1, and  its 

corresponding impact  is unknown until  time t þ 2. 

Also, existing  optimization strategies typically associate each  occu- 

pant  with  a single and  fixed comfort  zone (e.g.,  occupant #1 is always 

comfortable when  room  temperature is between 23 and  26 � C) [8,11, 

28],  which  fails to acknowledge the  same occupant can have  different 

comfort  zones  as  his/her  physiological states  change   over  time  (see 

Fig. 2).  A promising approach to  address  this  limitation is to  include 

human factors to indicate an occupant’s current physiological state [14], 

and  then  determine the  optimum setpoint based  on the  comfort  zone 

associated with  the identified state. 

Therefore, to address  the limitations in existing studies and achieve a 

proactive HVAC control, it is important to consider human physiological 

data and also understand the impact  of room temperature variations (or 

other  environmental variables if applicable) on physiological parame- 

ters in the personal comfort  model.  To this end,  this paper  presents an 

approach  to  predict  occupants’ future   physiological responses and 

demonstrates its integration with personal comfort  models to determine 

optimum setpoints. The objectives of this  paper  and  the  methodology 

are presented as follows. 

 
3.   Objectives 

 
This study leverages the merits  of physiological comfort  sensing and 

fills an  important research gap  that  prevents its integration in HVAC 

control  strategies. The resulting HEAT framework can achieve  a robust 

thermal comfort  prediction through physiological sensing  and  proac- 

tively  determine the  optimum setpoint  of  multi-occupancy environ- 

data  at time t are collected (denoted as Tt
 

t 
id2 

t 
id3 

), and predictions ments.  The specific objectives of this paper  include: 

show that  two of them  prefer  a warmer environment and one prefers  a 

cooler  environment. As a result,  the system  decides  to increase  the set- 

point by 1 � C, which will be implemented at time t þ 1. However, as the 

impact  of this adjustment on the physiological parameter is unknown at 

time  t, the  system  has  no knowledge about  occupants’ future  physio- 

logical  conditions at time  t þ 1 (denoted as Ttþ1 , Ttþ1 , Ttþ1 ), and  thus 

 

�  Demonstrate how  to integrate physiological predictive models  and 

personal comfort  models  to evaluate an occupant’s comfort  (i.e., 

thermal comfort  zone or comfort  probability) under  a new setpoint, 

particularly when  the physiological sensing  is adopted. 

�  Develop   a  modeling approach  to  interpret  human  physiological 
id1 id2 id3 

fails to predict future  thermal comfort  states  that  will result  from  this 

adjustment. Therefore, three  possible  outcomes of this adjustment (i.e., 

increase  the setpoint by 1 � C) can be encountered at time tþ 1 including 

an insignificant control  (the  majority still prefer  warmer), a promising 

states  (e.g., skin temperature) under  different environmental condi- 

tions (e.g., room temperature). 

 

 

 
 

Fig.  1.  The HVAC control steps  when using  physiological sensing-based models. 
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Fig.  2.  Determining an  occupant’s thermal comfort zone  based  on physiological states. 

 
�  Demonstrate how  HVAC control   strategies can  optimize thermal 

comfort  and energy  consumption in a multi-occupancy environment 

using each occupant’s thermal comfort zone and comfort probability. 

 
4.   Methodology 

is a possible  control  strategy and  the  projected skin  temperature  Tskin 

under  this new setpoint (Eq. (2)). By chaining these two models f and g, 

an occupant’s thermal comfort  under  a new  setpoint can be predicted 

with  physiological sensing  as an  intermediate step  (Eq. (3)).  The  ap- 

proaches to develop  each  model  are presented in the following 

subsections. 

This paper  uses facial skin temperature and room temperature as the 

human physiological parameter and  environmental parameter, respec- 

 

f : Tskin →TC; (1) 

tively, to demonstrate the HEAT framework. Fig. 3 shows an overview  of 

the framework, which  can be decomposed into two steps including (1) 

occupants’ thermal comfort  prediction using facial skin temperature, i. 

e., the “sensing” step; and (2) determination of optimum setpoints based 
on  the  overall  comfort  prediction, i.e.,  the  “optimization” step.  The 
former  sensing  step  can  be  represented by a model  f  which  maps  an 

occupant’s skin temperature Tskin  into his/her thermal comfort  state TC 

(Eq. (1)),  which  can  be a regression (e.g.,  thermal sensation with  nu- 

merical  scales),  classification (e.g., thermal preference with  categorical 

scales), or a probability distribution (e.g., probability of being 

comfortable). The model  g, on the  other  hand,  is the  missing  physio- 

logical predictive component that  bridges  the new setpoint Troom  which 

g : Troom →Tskin ; (2) 

f ðgÞ : Troom →TC; (3) 

 
4.1.   Personal thermal comfort models 

 
Thermal comfort prediction is typically considered as a classification 

problem, which  predicts an occupant’s thermal sensation or preference 

at different conditions. As a result,  personal comfort  models (i.e., model 

f ) can  be trained using  various  classification algorithms including the 

Random  Forest  (RF), Support  Vector  Machine  (SVM), Logistic Regres- 

sion  (LR), and  Classification Tree  (Ctree)  [8,13,14,17,31–34].  Among 

 

 
 

Fig.  3.  An overview of the  HEAT framework for thermal comfort sensing  and  optimization. 
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these  approaches, studies  such  as  Li et  al.  [32] and  Kim et  al.  [31] 

suggested that  the RF algorithm generally produces better comfort 

prediction accuracy than  others.  RF trains  a collection of bagged  deci- 

sion trees using a random subset of features on each split and is robust  to 

outliers  and  high dimensional datasets. However, one major  drawback 

of  RF is  the  low  interpretability [35].  On  the  other   hand,   thermal 

comfort  can also be represented in a probabilistic distribution using LR, 

Fuzzy Logic models, or Bayesian Networks  when the number of features 

is small [8,11,28–30] and  [36]. This approach offers significant model 

interpretability as changes  in thermal comfort  probability, which  is a 

useful  metric  to determine the  optimum setpoint, can be easily associ- 

ated with variations in features (e.g., room temperature). As a result, this 

paper  adopts  LR to develop  personal comfort  models.  However, other 

modeling approaches are also feasible and do not limit the implications 

of the results  presented in this paper. 

LR uses a logistic function to predict the probability (p) that an event 

happens. The basic form of LR is shown in Eq. (4) where  the log-odds of 

nose, ear or average across face skin temperature). 

For each  subject,  we  collected 180  data  points  during  the  experi- 

ment.  It is worth  noting  that  for personal comfort  models,  the  sample 

size which affects model robustness is the number of data points of each 

subject,  i.e.,  the  number of feedback  or thermal votes  collected from 

each subject,  rather than  the total  number of subjects.  Fig. 5 shows the 

thermal votes of subjects and their  corresponding cheek temperature. In 

this figure,  “þ1” denotes uncomfortably cold (i.e., prefer  warmer), “0” 
denotes being  comfortable, and  “-1” denotes uncomfortably hot  (i.e., 

prefer  cooler).  It can be observed that  subjects  generally feel cold when 

their  cheek  temperature is low, and  vice versa.  However, a few excep- 

tions exist in subjects  6, 7 and 8 where  the cheek temperature has some 

“vacuum  regions”. For example, for subject  6, the  cheek  temperature 

between 31 and 32 � C is not observed. This is because the dataset of each 

subject  consists  of three  scenarios  (i.e.,  heating, cooling,  and  steady- 

state).   Despite   similar   skin  temperature  and   thermal  vote  patterns 

exist  in  each  individual scenario, the  skin  temperature might  not  be 
� � 

continuous in its full range  when  data  from  three  scenarios  are  com- 
an event, log 

  p   
1-p 

, is modeled as a linear combination of input variables  

bined.  This observation can  be caused  by breaks  between two  experi- 

x’s, and coefficients β’s are estimated from the input data. LR is typically 

used  to predict a binary  class (e.g.,  an  event  happens or not)  and  an 

event is typically classified as 1 (an event happens) if the probability p is 

greater than  a pre-specified threshold, e.g., 0.5 [37]. 

mental  scenarios  (heating to cooling)  when  subjects’ skin temperature 

changes  significantly. This situation can cause problems when  using LR 

for comfort  profiling,  which  will be discussed  later  in this section. 

Based on the data  presented in Fig. 5, personal comfort  models  can 

 
log 

�   
p  

�
 

1 - p 

 

¼ β0 þ β1 ⋅ x1 þ … þ βn ⋅xn ; (4) 

be  developed using  LR. As shown  in Fig. 6,  the  green,  blue,  and  red 

curves  represent a subject’s  probability of being  comfortable, uncom- 

fortably   cold,  and  uncomfortably hot  respectively at  different cheek 

LR can  also be generalized to predict events  with  multiple classes, 

which is also known as the multinomial logistic regression. In this paper, 

the input  variable is occupants’ facial skin temperature, and the output 

variable is the  corresponding thermal comfort  which  has  three  cate- 

gorical  values  including uncomfortably hot,  comfortable, and  uncom- 

fortably  cold. 

To  develop   personal  comfort   models,   we  used  the  FLIR Lepton 

thermal camera  to  continuously measure occupants’ facial  skin  tem- 

perature from six regions  (i.e., forehead, cheeks,  nose, mouth, ears, and 

neck) [15]. FLIR Lepton is a low-cost factory  calibrated thermal camera 

[38]. Details  about  this  camera  and  its  radiometric accuracy can  be 

found  in Li et al. [15] and  Aryal and  Becerik-Gerber [16]. The experi- 

mental  protocol consists  of three  scenarios, i.e.,  heating, cooling,  and 

steady-state  conditions (see  Fig.  4).  Occupants’  thermal votes  were 

recorded  using   a  three-point  thermal  preference  scale  (i.e.,   prefer 

warmer, cooler,  or neutral) every  three  minutes in each  scenario. This 

three-point scale  has  been  widely  used  in  literature to  represent the 

ground-truth responses for training personal models  [15,16,28]. In this 

paper,  data  from ten participants are used to demonstrate the proposed 

HEAT framework. All participants are university students aged between 

22 and 27 and were healthy at the time of the experiment. The testbed is 

a student research office which does not have a window. The thermostat 

in the testbed can adjust  the room temperature between 22 and 28 � C. 

For more  details  about  the  experiment setup,  subject  recruitment, and 

protocols, please  refer to Li et al. [15]. 

In this paper,  cheek skin temperature is adopted as an example  input 

variable of personal comfort  models  as it is found  to be indicative of 

thermal comfort  in  previous experiments [15].  However, other  skin 

temperature features can  also  be  used  to  develop  these  models  (e.g., 

temperatures. In this probabilistic representation, a subject  is predicted 

as comfortable if the comfort  probability is greater than  the probability 

at the other  two conditions. For example, Id 1 has an approximately 0.5 

probability of feeling  comfortable when  his/her cheek  temperature  is 

33  � C, which  is higher  than  the  probabilities of uncomfortably cold 

(probability < 0.4)  and  hot (probability < 0.2).  Therefore, Id 1 is pre- 

dicted  as comfortable at this cheek temperature. Accordingly, the range 

of cheek  temperature associated with  the comfortable state  is obtained 

(highlighted in a yellow  region). As shown  in Fig. 6, subjects  can have 

different comfort  ranges  of cheek  temperature. For example, subjects  3 

and 8 have a much wider range than subject 4, which indicates they may 

have a higher  tolerance over the variations in room temperature. After 

developing each  subject’s  personal comfort  model,  ten-fold  cross-vali- 

dation   is performed to  obtain   the  classification accuracy (3  possible 

categories). The  result  is shown  in  Table  1.  If the  ground truth data 

(collected from  occupants’ feedback  during  the  data  collection phase) 

show  this  person  to  be  indeed  comfortable when  his/her cheek  tem- 

perature is 33 � C, then this prediction is correct. The sum total of correct 

predictions divided  by the  total  number of predictions made  for  this 

individual determines the prediction accuracy shown  in the table. 

As shown in Table 1, personal comfort models for subjects  5, 7 and 8 

have  low classification accuracy. We have  the  following  observations: 

comfort models for subjects 6 and 7 do not indicate a comfort range and 

subject  8 does not have a lower bound  (see Fig. 6). This scenario  results 

from the  discontinuous cheek  temperature data  discussed  above.  A so- 

lution  to this problem is to use the skin temperature of other  facial  re- 

gions in comfort profiling.  For example, Fig. 7 shows subject 8’s comfort 

models using six different facial regions.  It can be seen that both ear and 

neck models  indicate a comfort  range,  which  can be used to substitute 

 

 

 
 

Fig.  4.  Experiment Protocol in Li et al. [15]. 
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Fig. 5.  Thermal votes  of each  subject and  the  corresponding cheek  temperatures. 

 
the cheek  region.  For subject  5, due to the imbalanced feedback  which 

has fewer comfort  votes than  discomfort votes, as well as the significant 

overlap  between cheek temperatures in different comfort conditions, the 

probability of being comfortable is always lower than  the other  two 

conditions. In other  words,  the LR model  with  a single input  feature is 

not suitable for this particular subject, and more complex models such as 

ensemble models  (e.g., Random  Forest,  XGBoost) may be considered. 
 

 
4.2.   Physiological predictive models 

 
The  physiological predictive  model   (i.e.,   model   g)  predicts the 

resulting skin  temperature (or  other  physiological parameters) under 

different room temperatures, which enables  personal comfort  models to 

evaluate the  impact  of a new  setpoint before  implementation. In this 

model,  the  output variable skin  temperature is  affected  by  multiple 

factors,  such as room  temperature (i.e.,  the  direct  input  variable of in- 

terest), personal variations (i.e., skin temperature variations across 

different subjects), and  the  conditioning mode  (i.e.,  under  heating or 

cooling states)  due to subjects’ different thermal sensitivities to hot and 

cold stress. 

The  linear   mixed  model  (LMM), also  known   as  the  hierarchical 

model, is adopted to develop physiological predictive models. Unlike the 

ordinary linear  regression, LMM not only considers variations that  are 

explained by input  variables of interest, i.e., the  fixed effects,  but  also 

accounts for variations resulted from  random samples  from  the  popu- 

lation,  which  are  called  random effects.  A matrix  form  of the  LMM is 

shown  in Eq. (5). 

y ¼ Xβ þ Zu þ ε;                                                                                   (5) 

 
with 
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Fig. 6.  Personal Comfort Model for Each Subject  (yellow region denotes the range of cheek  temperature when a subject feels comfortable). (For interpretation of the 

references to colour in this  figure  legend, the  reader is referred to the  Web version of this  article.) 

 
 

Table  1 

Prediction accuracy of personal comfort models. 
 

Id 1 2 3 4 5 6 7 8 9 10 

Accuracy 0.70 0.78 0.70 0.81 0.41 0.78 0.51 0.58 0.66 0.81 

 
u N ð0; GÞ; 

 
where  y is a vector of responses, β is the unknown vector of fixed effects, 

u is the unknown vector  of random effects which  is assumed to follow a 

Gaussian  distribution, X and Z are the design  matrices, respectively, 

corresponding to β and u, ε is a vector  of error  terms,  G is the variance- 

covariance matrix  of random effects. 

In statistical studies,  human subjects  are often used as a random ef- 

fect as introducing this term accounts for individual differences between 

subjects  [39]. In this  paper,  LMM lies between the  ordinary linear 

regression, which uses aggregated sample data to train a single model (i. 

e.,  assuming each  data  point  is independent and  develop  one  model 

using all subjects’ data)  and  the fully personalized model,  which  sepa- 

rately develops  a model for each subject only using personal data.  In the 

former case, the subject-to-subject heterogeneity is ignored and only the 

common  patterns are captured. For the latter, on the other  hand,  one’s 

personalized model  does  not  use the  information from  other  subjects, 
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Fig. 7.  Thermal comfort models for subject 8 using  different facial  regions. 

 
which  can lead to less robust  models  if each subject  has a small sample 

size.  LMM addresses these  two  problems by acknowledging both  dif- 

ferences  and commonalities among  subjects  [39]. As a result,  for phys- 

iological    predictive  models,    LMM  is   adopted  as   subjects    share 

similarities in skin temperature variations under  heating or cooling 

scenarios; while for the thermal comfort prediction, personal models are 

developed as thermal votes are subjective which  may vary significantly 

across subjects. 

The LMM models  are developed using  the  R package  (version  1.2). 

Subjects’ cheek temperature from heating and cooling scenarios  is used 

to train physiological predictive models as the skin temperature in these 

two  scenarios   changes   with  the  room  temperature. Considering the 

aforementioned observations, we build  the  LMM for skin temperature 

prediction where  human subjects  are considered as a random effect, as 

follows. 

yij ¼ β0 þ β1 ⋅Rij  þ β2 ⋅Sij  þ β3 ⋅Rij Sij  þ b0 þ b1 ⋅Rij  þ b2 ⋅Rij Sij  þ εij ;       (6) 

 

where  yij  is the ith  subject’s  corresponding jth  skin temperature mea- 

surement at a new setpoint Rij ; and Sij is the conditioning mode which is 

a binary  variable (1 for cooling, 0 for heating) when the measurement is 

collected. The coefficients β0 to β3 represent the fixed effects to quantify 

the common pattern among multiple subjects, whereas b0 to b2 represent 

the  random effects.  Note that  we include  the  interaction term  Rij Sij  to 

account for different slopes in response to the room temperature change. 

We add  random effects  to both  slopes  and  intercepts in order  to fully 

characterize the heterogeneity on how each subject’s  skin temperature 

responds to the room temperature and its change. 

Fig. 8 shows  the  physiological predictive models  for cheek  temper- 

ature  in cooling  and  heating scenarios, respectively. It is worth  noting 

that the models will look different if a different facial region is chosen. In 

this case, the proposed methods (Logistic Regression  and  Linear Mixed 

Model)  can still be applied using data  collected for the facial region  of 

choice.  In Fig. 8, The slope and  intercept for each  subject’s  model  are 

presented in figure  legends  where  two  decimal  places  are  kept.  How- 

ever,  this  does  not  mean  the  skin temperature is measured at 0.01  �C 

level by the thermal camera. As subjects 5 to 8’s comfort models are less 

indicative  (discussed  in  Section   4.1),   physiological  models   of  the 

remaining six subjects  are  retained in  this  figure.  The  RMSE of skin 

temperature prediction is 0.14  � C. The summary of fixed and  random 

effects is presented in Table 2 and Table 3. 

We make two major  observations. First, subjects  have different skin 

temperature  responses to  setpoint changes. For example, subject  3 is 

most susceptible to cold stress and  will decrease cheek  temperature by 

0.35 � C for every 1 � C drop in room temperature; while subjects  1 and 9 

have  a smaller  temperature gradient of 0.19  � C. This result  echoes  the 

need  for personalized prediction models.  Second,  as indicated by the 

slopes,   the  skin  temperature  sensitivity is  different  in  cooling   and 

heating scenarios  even  for the  same  subject.  From our  data,  skin tem- 

perature changes  more rapidly  when the room is cooling down as larger 

gradients are observed. This observation suggests that  skin temperature 

varies in a smaller  range in the heating scenario, which might be caused 

by  the  slower  response time  of  HVAC systems  in  the  testbed [15]. 

However, it should  be noted  that  physiological models  are only defined 

when  the room temperature is between 22 and 28 � C (i.e., the range  of 

room temperature in the experiment). These models  may not be 

extrapolated to room temperature which  is outside  of this range. 

 
5.   Thermal  comfort optimization strategies 

 
As personal comfort  models and physiological predictive models are 

developed,  chaining  them   enables   the   prediction  of  each   subject’s 

thermal comfort  including (1) thermal comfort  zone,  i.e., the  range  of 

temperature setpoints that  keeps a subject  comfortable; and (2) thermal 

comfort  probability, i.e., the probability distribution of a subject  feeling 

comfortable across  the  feasible  setpoints. Based on these  two  metrics, 

three  comfort  optimization strategies are proposed below. 
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Fig.  8.  Linear  Mixed  Models  for Cheek  Temperature in the  Cooling  and  Heating Scenarios (left:  cooling  scenario11; right: heating scenario). 

 
 

Table  2 

stimates of the  fixed effects. 
y  

Fixed  effects Estimate  Std.  Error t value 
 

Intercept 26.62 0.64 41.31 

Rij  0.21 0.02 11.52 

Sij  -0.32 0.16 -2.00 

Rij Sij  0.03 0.02 1.70 

 
Correlation Intercept  Rt  St 

Rij  -0.690 

Sij  -0.115 0.162 

Rij Sij  0.051 -0.311 -0.368 

environment, Probi ðTÞ is the thermal comfort probability of subject i at a 

given setpoint T. Similar to strategy 1, the optimum setpoint depends on 

seasons  if there  is a tie in average thermal comfort  probability. 

 
Strategy  3:  The  optimum setpoint  should   maximize the  average 

thermal comfort  probability in strategy 2 with constraints in the 

HVAC energy  consumption, as shown  in Eq. (9).  We use the  ther- 

mostat  setpoint as a proxy of the energy  consumption. 

Setpoint*   ¼ argmaxfαComfort  score - ð1 - αÞEnergy  score g (9) 
T   2  R*

 

 
with 

P 
Probi ðT Þ

 
Comfort score ¼ i 

max 
P 

Probi ðT Þ 
 

Table  3 

Estimates of the  random effects. 

T 2 R*
 

�
Rbase  - T 

� 

Energy score ¼ 
� �

 
Groups Name  Std.  Dev. 

 
Subject Intercept 2.11 

Rij  0.06 

Rij Sij  0.05 

Residual 0.16 

 
 

Strategy 1: The optimum setpoint should maximize the percentage of 

comfortable occupants in the environment, as shown  in Eq. (7): 

Setpoint*   ¼ argmax 
1 X

Comfort ðT Þ (7)
 

� Ru - Rl   
� 

 
where  α is the  weight  of thermal comfort  which  ranges  from 0 to 1. A 

larger  α implies  more  weight  is given  to thermal comfort  than  energy 
consumption. If α ¼ 1, strategy 3 only focuses  on maximizing thermal 

comfort, which  will yield  the  same  setpoint as strategy 2. On the  con- 
trary,  if α ¼ 0,  strategy 3  focuses  on  making  most  of the  occupants 

comfortable with the least energy  use, which will choose the setpoint in 

t  that is close to the baseline  setpoint Rbase . By tuning  α, a trade-off  can 

be found  between thermal comfort  and energy  consumption. Ru  and Rl 

�
 

T   2  Rt    n  
i 

are the upper  and lower bound  of the feasible setpoints, which are 28   C 

and  22  � C in this  paper,  respectively. j⋅j is the  absolute value.  In this 

where  Setpoint*  is the optimum setpoint selected  by this strategy, Rt  is a paper,  we assumed 22 � C and 28 � C as the baseline  setpoints for heating 

set  of  feasible  setpoints in  a  multi-occupancy environment, n  is  the 
number of occupants, Comforti ðTÞ is a binary thermal comfort prediction 

for subject  i, which  is 1 if subject  i is comfortable at a given setpoint T, 

and 0 otherwise. If multiple peaks exist, the optimum setpoint is chosen 

based  on  seasons,  i.e.,  a higher  setpoint for cooling  seasons  and  vice 

versa for heating seasons. 

 
Strategy 2: If there  are multiple peaks in the results  of strategy 1, the 

optimum setpoint should also maximize the average thermal comfort 

probability in the environment, as shown  in Eq. (8): 

Setpoint*   ¼ argmax 
1 X

Prob ðTÞ                                                             (8) 

T   2  R*   n  
i 

 
where  R*  is the selections of strategy 1, i.e., the range  of setpoints that 

can   keep   most   of  the   subjects   comfortable  in  a  multi-occupancy 

and  cooling  seasons,  respectively, to represent the  lowest  energy  con- 

sumption  scenarios.  Other   baseline   setpoints  can  be  chosen   by  re- 
searchers for  different climate  zones.  jRbase - Tj denotes the  distance 

between the baseline setpoint and a candidate setpoint. Setpoints further 

away  from  the  baseline  indicate more  energy  use  because  additional 

cooling  or heating is needed. 

The following  sections  demonstrate these  three  thermal comfort 

optimization strategies using subjects’ data  discussed  in Section  4. 

 
 
5.1.   Thermal comfort optimization using strategy 1 

 
To determine the  optimum setpoint, we assume  the  room  tempera- 

ture is originally set at 25 �C according to conventional settings (which is 

the median of our experimental temperature between 22 � C and 28 � C) 

in  a  multi-occupancy environment.  All  feasible   setpoints  are   then 

searched from 25 �C to 28 � C (i.e., heating scenario) and from 25 � C to 
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22 � C (i.e., cooling scenario) at a step size of 0.1 � C. Although the actual 

HVAC systems may not allow a 0.1 � C adjustment, this assumption does 

not lose implications in real applications as thermal environments at two 

adjacent integer setpoints can be compared to choose  the optimum and 

feasible  setpoint. 

When applying strategy 1, the thermal comfort  zone of each subject 

is calculated, which  is denoted as the  horizontal bar  in Fig. 9. In this 

figure,  each  subject’s  comfort  zone  is determined by first  finding  the 

corresponding skin  temperature at  a given  setpoint using  the  physio- 

logical predictive model and then  evaluating the thermal comfort  states 

(i.e., uncomfortably hot, comfortable, and uncomfortably cold) through 

the  personal comfort  model.  If the  probability of being  comfortable is 

the highest, this setpoint is added  to the subject’s  comfort zone. Once all 

subjects’  comfort  zones  are  identified, the  optimum setpoint will  be 
selected  to pass as many comfort  zones as possible in a multi-occupancy 

environment. As shown  in Fig. 9, for the six subjects  in our experiment, 

25.3 � C and 25.4 �C are selected  as all subjects  are comfortable at these 

two setpoints. 

 
5.2.   Thermal comfort optimization using strategy 2 

 
For strategy 2, thermal comfort  probabilities (i.e., the probability of 

being comfortable) are calculated in addition to thermal comfort  zones. 

Thermal comfort  probabilities are denoted as bell curves in Fig. 10. The 

average comfort  probability can  be obtained by averaging the  proba- 

bility distributions of all subjects (denoted in the black dash-dotted line). 

As strategy 1 suggests  both 25.3 � C and 25.4 � C (i.e., R* ) yield the same 

number of comfortable subjects,  the  average comfort  probabilities at 

these  two  setpoints are  then  compared. As setpoint 25.4  � C yields  a 

higher  average comfort  probability than  25.3  � C, it is selected  as the 

optimum setpoint for these  six subjects. 

 
5.3.   Thermal comfort optimization using strategy 3 

 
For strategy 3, two  components, including a comfort  score  and  an 

energy  score, need  to be calculated. The comfort  score (Comfort  score), 

which  ranges  from 0 to 1, is the overall  comfort  probability at a given 

setpoint over the highest  comfort  probability achieved in range  R* . The 

energy  score (Energy score), which  also ranges  from 0 to 1, is the abso- 

 

 
 

Fig. 9.  Optimum Setpoint Selection Using Strategy 1 (maximize the  number of 

comfortable occupants). 

 
 
 

 
1   The x-axis is reversed to represent the  decreasing room  temperature. 

 

 
 
Fig.  10.   Optimum Setpoint Selection Using  Strategy 2 (maximize the  average 

comfort probability when multiple setpoints yield  the  same  number of 

comfortable occupants). 

 
lute value  of the setpoint deviation from the baseline  over the range  of 

possible  setpoints. 

As R*  for the six subjects  only includes  two possible  setpoints in the 

previous example  (i.e., 25.3  and  25.4  � C), we used three  subjects  (sub- 

jects 1, 2, and 3) to demonstrate strategy 3 as a wider common  comfort 

zone can be obtained. Fig. 11 shows  the  comfort  zone (i.e.,  R*  2 ½24:2; 

26:4�, denoted in yellow) and comfort probability of these three example 

subjects. 

Using  strategy 1, any  setpoint within  the  comfort  zone  R*  can  be 

selected  as these  three  subjects  are all comfortable in this range.  More 

specifically, the lower bound  24.2 � C is optimum in heating seasons due 

to its lower  HVAC energy  consumption, and vice versa for cooling  sea- 

sons. When using strategy 2, setpoint 25.5  � C is selected  as it achieves 

the highest  average comfort  probability. 

For strategy 3, assuming in heating seasons,  the  comfort  score  and 

energy score at different setpoints in R* are calculated, which are shown 

in Table 4. Only setpoints between 24.2 � C and 25.5 � C are presented as 

setpoints higher  than  25.5  � C will reduce  the  average comfort  proba- 

bility while increasing the energy use. The weighted sum (denoted as S) 

of comfort  score and energy  score for three  example  α values  (i.e., α ¼ 

 
 

 
 

Fig.  11.   The thermal comfort zone  and  probability for subjects 1, 2, and  3. 
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R* 24.2 24.3 24.4 24.5 24.6 24.7 24.8 24.9 25.0 25.1 25.2 25.3 25.4 25.5 

S ðα ¼ 0:3Þ .01 .00 .00 -.01 -.02 -.03 -.04 -.04 -.06 -.07 -.08 -.09 -.10 -.11 

S ðα  ¼ 0:5Þ .26 .26 .26 .26 .25 .26 .25 .25 .24 .23 .23 .22 .22 .21 

S ðα  ¼ 0:7Þ .51 .52 .52 .53 .53 .54 .54 .54 .54 .53 .53 .53 .53 .53 

 

R*
 

P
Probi ðR*

 

R*
 

Rbase - R*
 

P
Probi ðR*

 

t 

t 

t 

t 

Rbase - R*
 

t 

 
Table  4 

The comfort score  and  energy score  at different setpoints for a multi-occupancy 

environment with  subjects 1, 2, and  3. 

t 
24.2 24.3 24.4 24.5 24.6 24.7 24.8 

t Þ= n  0.51 0.52 0.53 0.54 0.55 0.56 0.56 

implications in  shared   environments, such  as  conference rooms  and 

offices where  an optimum setpoint can  be found  given  different com- 

binations of thermal profiles  (i.e.,  personal comfort  models  and  physi- 

ological   predictive  models).  For  occupants  who  are  outside   of  the 

common  comfort zones, adaptive behaviors (e.g., putting on a jacket)  or 

personal devices  (e.g.,  portable heater) can be adopted to restore  per- 
i 

Comfort_score (1)  0.88 0.90 0.92 0.93 0.94 0.96 0.97 

t  
-2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8 

Energy  score (2)  0.37 0.38 0.40 0.42 0.43 0.45 0.47 

 
t 

24.9 25.0 25.1 25.2 25.3 25.4 25.5 

t Þ= n  0.57 0.57 0.57 0.58 0.58 0.58 0.58 

sonal  comfort  without affecting  others.  Thermal profiles  developed in 

this paper  can also be carried by occupants as they move around places. 

For example, thermal profiles  saved  in smartphones can  be  retrieved 

when occupants scan a QR code upon entering a room or connecting to a 

nearby  Wifi router [14]. Motion  sensors  or thermal cameras  can  also 

determine the  presence of occupants if they  have  dedicated working 
i 

Comfort   score (1)  0.98 0.98 0.98 0.99 0.99 1.00 1.00 

t  
-2.9 -3 -3.1 -3.2 -3.3 -3.4 -3.5 

Energy  score (2)  0.48 0.50 0.52 0.53 0.55 0.57 0.58 

 
Note:  The scores  are  rounded to two decimal places. 

 
0.3, 0.5, and 0.7) are presented in Table 5. The results  suggest that  24.2 
� C, 24.2  �C and  24.7  � C are the  optimum setpoints when  the  weight  α 

equals  0.3, 0.5 and 0.7, respectively. 

 
6.   Discussion 

 
In Section  4, personal comfort  models  and  physiological predictive 

models  are  developed using  multinomial logistic  regression and  linear 

mixed  model,  respectively. However, as explained earlier, the main 

contribution of this paper  is the  HEAT framework that  consists  of per- 

sonal  thermal comfort  sensing  and  optimization to address  the  limita- 

tions  in physiological sensing-based HVAC control  methods. These two 

models,  which  form  a subject’s  thermal profile,  can  be substituted by 

other  modeling approaches. For example, personal comfort  models  can 

also be developed using multinomial mixed-effects logistic regression or 

Random  Forest. 

Section  5 demonstrates the  optimum setpoint selection using  three 

different strategies considering occupants’ thermal comfort  and  HVAC 

energy consumption. Specifically, optimum setpoints in strategies 2 and 

3 come from the candidate range  R*  determined by strategy 1. In other 

words, optimum setpoints in all strategies will always be selected  on the 

premise  that  most of the subjects  will feel comfortable. However, if the 

domain  of strategy 2 is the full operational range of 22 � C–28 � C instead 

of the narrowed range  R* , setpoints associated with the highest  average 

comfort   probability  may   not   yield   the   largest   possible   number  of 

comfortable occupants. This scenario  is illustrated in Fig. 12 where  two 

subjects   share   the  same  environment. The  overlap   of  two  subjects’ 

comfort   zones,  i.e.,  the  common   comfort   zone  (denoted in  yellow), 

represents R* .  The  result  shows  that   setpoints corresponding to  the 

highest  average comfort  probability, in these two scenarios, are outside 

of R* . In this case, subject 4 no longer feels comfortable even though the 

average comfort  probability is maximized. 

The  optimum setpoints can  be  updated based  on  the  presence  of 

subjects.  For example, as shown  in Fig. 13,  the  optimum setpoint for 

subjects 1 and 2 is 24.9 � C. If subject 3 joins, the setpoint should increase 

to 25.5  � C to accommodate the newcomer’s preference for warm  envi- 

ronments without  reducing the  overall   comfort. This  approach  has 

areas  [26]. For  new  occupants who  do  not  have  pre-trained thermal 

profiles,  template profiles  or profiles  of similar  occupants (e.g.,  occu- 

pants  with  similar  age and  weight) can be used as a starting point  and 

updated using personal data [8,40]. Specifically, Daum et al. [8] showed 

that  template comfort  models  can converge  to over 70% of actual  per- 

sonal models  with  twenty  thermal votes. 

As subjects’  skin  temperature has  different sensitivities in heating 

and cooling scenarios, thermal comfort  zones and comfort  probabilities 

can be slightly  different when  the  room  is preset  at a low temperature 

versus a high temperature, assuming subjects  achieved the steady-state 

conditions in both  cases.  This scenario  is demonstrated in Fig. 14 and 

Fig. 15, which  show the differences in thermal comfort  zones and 

probabilities when  room temperature starts  from the high or low base- 

line setpoints, especially for subjects  1 and 4 whose  comfort  zones and 

probabilities can shift by over 1 �C. These differences are mainly caused 

by the psychological perception in which the reference temperature that 

people  compare with  has  changed in the  transient environment. Sub- 

jects’ evaluation of thermal sensation is relative to their  initial  thermal 

states   at  the   high   or  low  setpoints  instead  of  the   absolute  room 

temperature. 

It is worth  noting  that  this paper  is not  meant  to suggest  a specific 

setpoint for buildings like industry standards as the optimum setpoints 

can be different for other human subjects, built environments and HVAC 

systems,  seasons,  locations, etc.  However, the  proposed HEAT frame- 

work  can  be  adopted by researchers and  HVAC engineers to  develop 

their   own  thermal profiles  and  determine the  optimum setpoint in 

different research settings. 

Three limitations of this study  should  be acknowledged. First, when 

modeling personal comfort, the environmental parameter includes  only 

air temperature as it is directly controlled by HVAC systems.  However, 

other  factors,  such as radiant temperature and air velocity,  can also be 

measured and applied in the comfort  sensing and control  loop. Second, 

in the experiment, the skin temperature data  are collected from seden- 

tary  subjects  who  have  a low workload level.  As a result,  the  physio- 

logical predictive model may not be valid when extrapolated to subjects 

in high workload or metabolic rate  situations. In future  studies,  if sub- 

jects’  skin   temperature  data   at   different workload conditions are 

collected following  similar  methods explained in  this  study,  the  pro- 

posed  approach can  not  only  select  the  optimum setpoint for a given 

group  of people,  but also dynamically determine the setpoint over time 

according to  subjects’  workload. Third,  strategy 3  needs  further in- 

vestigations  in  shoulder  seasons   as  cooling   and   heating  can   have 

different energy  consumption, which  affects the energy  score. 

 
 

Table  5 

Optimum setpoint selection using  strategy 3 for a multi-occupancy environment with  subjects 1, 2, and  3 (for α ¼ 0.3,  0.5,  and  0.7). 

 
t 

 
 
 
 
 

Note:  The bold  number is the  highest weighted score  for each  α value, the  corresponding R* is the  optimum setpoint. 
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Fig. 12.   The Comfort Zone  and  Probability for a Shared Room  with  Two Example Subjects (left:  subjects 4 and  10; right: subjects 3 and  4). 

 
 

 
 

Fig. 13.   The Comfort Zone  and  Probability for a Shared Room  When  a New Subject  Joins  (left:  subjects 1 and  2; right: subject 3 joins). 

 
 

 
 

Fig.  14.   Optimum Setpoint Selection Using  Strategy 1  When  Room  Temperature Starts  from  the  Baseline  (left:  start  from  a  high  setpoint; right: start  from  a 

low setpoint). 

 
Our future  study will validate the comfort and energy implications of 

the proposed framework on the operation of an HVAC system inside the 

built environment and improve  control  strategies using field data.  Such 

evaluation studies   will  look  at  the  impact   of  climate   zone  control, 

response time of HVAC systems, and effect of seasonal changes  (heating 

versus  cooling).  We will capitalize on the research insights  and  knowl- 

edge obtained from Li et al. [14] where a smartphone app-based comfort 

optimization framework was  developed and  deployed in a real  office 

environment. The HVAC system  was controlled by a smart  thermostat 

through cloud application programming interface (API) and group 

thermal satisfaction was evaluated through simulation. In Li et al. [15] 

and  Li et al. [23]; the  challenges associated with  the  installation of a 

single thermal camera  and multiple camera  networks (e.g., viewing 

distances, angles,  and measurement accuracy) in the built  environment 

were discussed, respectively. 

 
7.   Conclusions 

 
This paper  proposes  the Human  Embodied  Autonomous Thermostat 

(HEAT) framework which  leverages human occupants as an  embodi- 

ment   of  smart   and   connected  thermostats  to  optimize  occupancy- 

focused   HVAC operations for  improved overall   thermal  satisfaction 

and reduced energy  use while maintaining comfort  in multi-occupancy 

spaces.   The  proposed  framework  consists   of  a  sensing   step   which 
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Fig.  15.   Optimum Setpoint Selection Using  Strategy 2  When  Room  Temperature Starts  from  the  Baseline  (left:  start  from  a  high  setpoint; right: start  from  a 

low setpoint). 

 
predicts occupants’ thermal comfort  using  human physiological data, 

and an optimization step which  determines the optimum setpoint for a 

multi-occupancy environment considering comfort  and  energy  use. To 

this  end,  the  proposed framework integrates personal comfort  models 

and  physiological predictive models  to evaluate each  occupant’s ther- 

mal comfort at different setpoints. Thermal comfort  in this paper  can be 

represented in two forms, i.e., thermal comfort  zone and comfort 

probability. Based on these  two metrics,  three  HVAC control  strategies, 

which  leverage (1) thermal comfort  zone; (2) thermal comfort  zone and 

probability, and (3) thermal comfort  zone, probability, and energy  use, 

are compared to demonstrate the setpoint selection for a group  of 

occupants. 

This paper  provides insights  into  proactively determining the  opti- 

mum setpoint in physiological sensing-based HVAC control  and has the 

merits of reducing discomfort time and oscillation of setpoints. After the 

initial  setpoint optimization using  the  proposed framework, if physio- 

logical  sensing  or  thermal votes  from  occupants indicate that  further 

setpoint adjustments are needed, the setpoint can be updated following 

the human-in-the-loop schema introduced in Section 2.2 to fine-tune the 

thermal environment. The proposed HEAT framework that  couples  the 

physiological sensing and setpoint optimization can serve as a basis for 

automated environment control  to improve  human experience, well- 

being,  and building energy  efficiency. 
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