Refactorings Recommendation via Commit Message
Analysis

Soumaya Rebai?, Marouane Kessentini®, Vahid Alizadeh®, Oussama Ben
Sghaier®, Rick Kazman®

¢ University of Michigan, Dearborn, Michigan, USA
b University of Hawaii

Abstract

Context: The purpose of software restructuring, or refactoring, is to improve
software quality and developer productivity. Objective: Prior studies have
relied mainly on static and dynamic analysis of code to detect and recommend
refactoring opportunities, such as code smells. Once identified, these smells
are fixed by applying refactorings which then improve a set of quality metrics.
While this approach has value and has shown promising results, many detected
refactoring opportunities may not be related to a developer’s current context
and intention. Recent studies have shown that while developers document their
refactoring intentions, they may miss relevant refactorings aligned with their
rationale. Method: In this paper, we first identify refactoring opportunities by
analyzing developer commit messages and check the quality improvements in
the changed files, then we distill this knowledge into usable context-driven refac-
toring recommendations to complement static and dynamic analysis of code.
Results: The evaluation of our approach, based on six open source projects,
shows that we outperform prior studies that apply refactorings based on static
and dynamic analysis of code alone. Conclusion: This study provides com-
pelling evidence of the value of using the information contained in existing

commit messages to recommend future refactorings.

Email addresses: srebal@umich.edu (Soumaya Rebai), marouane@umich.edu (Marouane
Kessentini), alizadeh.umich.edu (Vahid Alizadeh), oussamaQumich.edu (Oussama Ben
Sghaier), kazman@hawaii.edu (Rick Kazman)

Preprint submitted to Journal of BTEX Templates October 29, 2020

20

25

Keywords:

Commit Message, Refactoring Recommendation, Quality attributes.

1. Introduction

Software restructuring or refactoring [1] is critical to improve software qual-
ity and developer’s productivity, but it can be complex, expensive, and risky. As
projects evolve, developers in a rush to deliver new features frequently postpone
necessary refactorings until a crisis occurs [2]. By that time it often results in de-
graded performance, an inability to support new features, or even a failed system
and significant losses [? 3, 4]. Thus, several studies have been proposed to (semi-
) automate the recommendation of refactorings to help developers improving the
quality of their systems in a more timely fashion [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

While code-level refactoring is widely studied and well supported by tools
[15, 16, 13, 17, 18], it remains a human activity which is hard to fully automate
and requires developer insights. Such insights are important because developers
understand their problem domain intuitively and may have a clear target end-
state in mind for their system. A majority of existing tools and approaches
rely on the use of quality metrics such as coupling, cohesion, and the QMOOD
quality attributes [19] to first identify refactoring opportunities, and then to
recommend refactorings to fix them. Many of the quality issues detected using
structural metrics are known as code smells or antipatterns [20]. However,
recent studies have shown that developers are not primarily interested in fixing
antipatterns when they are performing refactoring [8].

In a recent survey of Alizadeh et al. [17, 21] with several software companies,
84% of interviewees confirmed that most of the automated refactoring tools
recommend hundreds of code-level quality issues and refactorings, but these
tools fail to adequately explain how these refactorings are relevant to a developer
who is combining refactorings with other tasks such as fixing bugs and enhancing
features. This observation is consistent with other studies [22, 23, 24] showing

that refactorings rarely happen in isolation. Without a rigorous understanding

30

35

40

45

50

55

of the rationale for refactoring, recommendation tools may continue to suffer
from a high false-positive rate and limited relevance to developers [25, 26,
27]. However, if a refactoring rationale can be automatically identified, this
can guide refactoring recommendations to be more relevant and less ad hoc.
Recent empirical studies show that while developers document their refactoring
intention, they may miss relevant refactorings aligned with their rationale [25,
24]. One of the main reasons is that manual refactoring is a tedious and time-
consuming task which also explains the tendency of the developers to perform
the minimum possible number of refactorings [17, 28]. Thus, it is critical to
provide developers a semi-automated refactorings support that can understand
their rationale and translate it into actionable refactorings recommendation.

In this paper, we start from the observation that a majority of inconsisten-
cies between documented and applied refactorings were due to poor refactoring
decisions taken manually by developers [25, 24]. Therefore, we think that there
is a need for linking documentation to refactoring recommendations as well as
a need for an automated system that can not only check the consistency of
the developer-created descriptions of refactoring but also recommend further
refactoring to meet their rationale. However, none of the existing studies have
used this knowledge to guide the process of refactoring recommendation. Thus,
we propose a novel approach, called RefCom, to capitalize on this previously
unused resource.

RefCom includes the following steps. First, we filtered a large corpus of com-
mit messages to extract the ones containing quality issues or refactorings based
on a list of 87 keywords which are already defined in the literature [29, 30, 28].
We also used an existing tool, RefactoringMiner [31], to detect the refactor-
ings applied in commits to confirm or extend the ones detected using our set
of keywords. Second, we automatically identified the changed files in these se-
lected commits and detected the impacted code fragments. Third, we checked
the quality improvements in these files to detect the quality attributes that
developers aimed to improve. Finally, we recommended more refactorings to

developers based on the rationale extracted from the commits: the locations of

60

65

70

75

80

85

the intended refactorings and the quality attributes to be improved. Further-
more, our tool will generate warnings to developers if their commit messages
are not matching the manually applied refactorings.

Our ultimate goal is to recommend a set of refactoring solutions that enhance
the improvements described in the commit messages or provide developers bet-
ter ways to refactor their code based on the rationale found in the commits.
RefCom identifies potential inconsistencies between developer intentions and
actual applied refactorings and recommends an additional set of refactorings
that better meet developer intentions and expectations. In fact, the paper vali-
dated the first hypothesis that commit messages document refactorings applied
by developers including their intention by answering the following research ques-

tion:
RQ1: To what extent are refactorings documented in commit messages?

The second hypothesis validated in this paper is the inconsistencies (or incom-
plete refactorings) between documented and applied refactorings in terms of

expected impact/intention via answering the following research question:

RQ2: To what extent do developers accurately document their refactoring and

its rationale?

These observed inconsistencies/gaps (RQ2) along with the fact that refactoring
documentation is available at the commit level (RQ1) are the main motivations
to refine existing refactoring recommendation tools. Thus, we selected our pre-
vious multi-objective refactoring recommendation tool [32] as a case study for

this purpose while answering our following third research question:

RQ3: To what extent can our approach recommend relevant refactorings based

on commit analysis compared to existing refactoring techniques?

However, it is possible to expand the outcomes of RQ1 and RQ2 to build better
refactoring recommendation tools in general. To summarize, our contributions

are not limited to recommending refactorings solutions using a straightforward

90

95

100

105

110

115

multi-objective technique. We believe that RQ1 and RQ2 can advance the
knowledge within the refactoring community. For the first two contributions
RefCom uses NLP and static and dynamic analysis to detect developers’ inten-
tions, the actual refactorings and the quality attributes improvement. For the
third contribution, we used a multi-objective algorithm to recommend refactor-
ing solutions to enhance the applied refactorings (after extracting developer’s
intention) or fix the detected inconsistencies. We validated our approach on
six open source projects containing a large number of commits. Our validation
shows that RefCom outperforms both the actual refactorings applied by devel-
opers in their commits and existing refactoring tools based on antipatterns and
static and dynamic analysis [32, 33]. Thus, the use of the knowledge extracted
from commit messages is critical to better understand developer preferences.

The primary contributions of this paper can be summarized as follows:

1. The paper introduces, for the first time, an approach, RefCom, based on
commit messages to recommend refactorings. Thus, the recommendations
are based on understanding the developers’ intention to refactor the code
from the commit messages rather than fixing antipatterns and improving

the majority of quality metrics.

2. The proposed technique can either: (a) enhance some of the previously
refactored files in the commits by providing better alternatives after ex-
tracting the refactoring rationale; or (b) recommend refactorings to ad-
dress the quality issues mentioned in the commit messages when we did
not find an actual improvement when checked the files before and after

the commit.

3. The paper reports the results of an empirical study on the implementation
of our approach. The obtained manual evaluation results provide evidence
to support the claim that our proposal is more efficient, on average, than
existing refactoring techniques based on a benchmark of 6 open source
systems in terms of the relevance of recommended refactorings especially

for the case of incremental refactorings.

120

125

130

135

140

145

The remainder of this paper is structured as follows. Section 2 presents
the relevant background details. Section 3 describes our approach while the
results obtained from our experiments are presented and discussed in Section 4.
Threats to validity are discussed in Section 5. Section 6 provides an account of
related work. Finally, in Section 7, we summarize our conclusions and present

some ideas for future work.

2. Problem Statement

2.1. Background

Quality attributes. QMOOD is a widely used quality model, based on
the ISO 9126 product quality model [34]. We selected this model because it is
a widely accepted quality model in industry and it has been validated based
on hundreds of industrial projects[34, 35, 36, 37, 17]. Each quality attribute
in QMOOD is defined using a combination of low-level metrics as detailed in
Tables 1 and 2. The QMOOD model has been used in many studies [19, 38, 39]
to estimate the effects of proposed refactoring solutions on software quality.
QMOOD defines six high-level design quality attributes (reusability, flexibility,
understandability, functionality, extendibility, and effectiveness) that can be
calculated using 11 lower-level design metrics.

Commits and refactoring. Refactoring documentation has two major
parts: pull requests for “high-level” refactorings [40] and commit messages for
code-level refactorings. The individual commit messages describe refactorings
applied by a developer. A refactoring process typically starts with a new branch.
In this branch, each commit should correspond to a code-level refactoring. After
developers commit all the code-level refactorings (i.e., finish the refactoring
process), developers make a pull request in which they write a description of
the overall refactoring. If the refactorings are accepted, the branch is merged
into the master branch.

Figure 1 shows an example of a commit extracted from an open source

project. The refactorings applied by the developers are summarized in Figure

Table 1: QMOOD metrics description.

Design Metric

Design Property

Description

Design Size in Classes

(DSC)

Design Size

Total number of classes in the design.

Number Of Hierarchies | Hierarchies Total number of ”root” classes in the design

(NOH) (count(MazInheritenceTree (class)=0))

Average Number of An- | Abstraction Average number of classes in the inheritance

cestors (AN A) tree for each class.

Direct Access Metric | Encapsulation Ratio of the number of private and protected

(DAM) attributes to the total number of attributes in a
class.

Direct Class Coupling | Coupling Number of other classes a class relates to, either

(DCC) through a shared attribute or a parameter in a
method.

Cohesion Among Meth- | Cohesion Measure of how related methods are in a class

ods of class (CAMC) in terms of used parameters. It can also be com-
puted by: 1 — LackOfCohesionOfMethods()

Measure Of Aggrega- | Composition Count of number of attributes whose type is user

tion (MOA) defined class(es).

Measure of Functional | Inheritance Ratio of the number of inherited methods per

Abstraction (MFA) the total number of methods within a class.

Number of Polymorphic | Polymorphism Any method that can be used by a class and its

Methods (NOP) descendants. Counts of the number of methods
in a class excluding private, static and final ones.

Class Interface Size | Messaging Number of public methods in class.

(CIS)

Number of Methods | Complexity Number of methods declared in a class.

(NOM)

Table 2: Quality attributes and their equations.

Quality attributes

Definition

Computation

Reusability

A design with low coupling and high cohesion is easily

reused by other designs.

0.25%xCoupling+0.25xCohesion+0.5% Messaging +
0.5 % DesignSize

Flexibility

The degree of allowance of changes in the design.

0.25 * Encapsulation — 0.25 x Coupling + 0.5 %
Composition + 0.5 x Polymorphism

Understandability

The degree of understanding and the easiness of

learning the design implementation details.

0.33 *x Abstraction + 0.33 x Encapsulation — 0.33 x
Coupling+0.33 x* Cohesion — 0.33 % Polymorphism —
0.33 x Complexity — 0.33 * DesignSize

Functionality

Classes with given functions that are publicly stated

in interfaces to be used by others.

0.12 x C'ohesion + 0.22 x Polymorphism + 0.22 %
Messaging + 0.22 % DesignSize +0.22 x Hierarchies

Extendibility

Measurement of a design’s ability to incorporate new

functional requirements.

0.5x Abstraction—0.5xCoupling+0.5x Inheritance+
0.5 x Polymorphism

Effectiveness

Design efficiency in fulfilling the required functional-

ity.

0.2 x Abstraction + 0.2 x FEncapsulation +
0.2 x Composition + 0.2 x Inheritance + 0.2 x
Polymorphism

£ bitronix / btm

@ Watch v
<> Code Issues 19 Pull requests 7 Projects 0 Wik! Insights
Refactored Jthe nio implementation to depend only in the interfaces Jo...
.urnal and JournalRecord.
Becoupled]NioJournalRecord] and flioJournalFileRecord]from each other.
General code cleanup.
Achieved small performance gain of ~1@-20% by the and dependency removal.
¥ master
juergen kellerer committed on 3 May 2011 1 parent 7272475 commit

Showing 12 changed files with 456 additions and 331 deletions.

47 EEEE" btm-nic-journal/src/main/java/bitronix/tm/journal/nio/Niclournal.java

b2 54

yteBuffer;

import java.util.*;

javax.transaction.Status .STATUS_COMMITTING;

tic javax.transaction.Status.STATUS_ROLLING_BACK;

Figure 1: An example commit from the “btm” project.

43 W Star | 326 YFork 112

Browse files

29859890b92d026810665310945239dc 19264831

Unified | Split

View file v

MoveAttribute

private txStatusStrings : byte[][] FROM class
bitronix.tm.journal.nio.NioJournalFileRecord TO class
bitronix.tm.journal.nio.NioJournalRecord

MoveAttribute

private status : int FROM class
bitronix.tm.journal.nio.NioJournalFileRecord TO class
bitronix.tm.journal.nio.NioJournalRecord

MoveMethod
private statusToBytes(status int) : byte[] FROM class

statusToBytes(status int) : byte[] from class
bitronix.tm.journal.nio.NioJournalRecord

bitronix.tm.journal.nio.NioJournalFileRecord TO private

Figure 2: The list of refactorings applied in the commit.

150

155

160

Previous Commit: Actual Commit:
« 7a7247583a8392e796838279cfd7d40784b46909 » « 3a905989b92d0268106e531b945239dc19264831 »

'DAM': '0.9699077964221956', 'DAM': '0.9689816785149457',

'ANA': '0.6171171171171171', 'ANA'": '0.6216216216216216',

'DSC": '222.0", 'DSC": '222.0',

'DCC": '0.6891891891891891', 'DCC": '0.6981981981981982’, (Coupling)
'NOH': '15.0', 'NOH': '16.0',

'"MFA'; '0.13847733430262388", 'MFA': '0.1409798368051264',

'CIS": '6.013513513513513', 'CIS": '5.981981981981982,

'NOM': '7.382882882882883, 'NOM': '7.337837837837838/,

'CAM': '0.26822073220705156/, 'CAM': '0.26864708791372766',

'MOA': '0.35585585585585583', 'MOA": '0.35135135135135137',

'NOP": '6.036036036036036", 'NOP': '5.995495495495495',
'Effectiveness’: '1.6234788279467658', 'Effectiveness': '1.615685996757708',
'Reusability': '113.90151464251122', 'Reusability': '113.88360321341987',
'Functionality': '54.82308738876575", 'Functionality':'55.0272826955947",
‘Understandability":'-77.71074190987667", 'Understandability':-77.68712304761908',
‘Extendibility':'3.0512206491332936", 'Extendibility': '3.029949377862023',
"Flexibility": '3.2661255977541974', "Flexibility': '3.24111929350261'

Figure 3: The quality metric changes in the commit.

2, and the changes in the coupling (DCC) metric can be seen in Figure 3. Of
course, refactoring rarely happen in isolation and most of commits and pull-
requests contain a sequence of refactorings as described in the example Figure

2 that shows a sequence of three refactorings applied in one commit.

2.2. Motivation

The primary motivation for our work emerged from our interactions, as part
of an NSF I-Corps project, with 127 professional developers at 38 medium and
large-size companies including eBay, Amazon, Google, IBM, and others. The
main goal of that study was to identify the challenges associated with current
refactoring tools. These are discussed next.

Understanding the refactoring rationale is a key for relevant rec-
ommendations. Developers lack knowledge of why they should apply the
refactorings recommended by existing tools and are frequently overwhelmed by
hundreds of automatically generated antipatterns to fix and quality attributes
to improve without any indication of their impact on their current context
[41, 42, 32, 18]. While existing refactoring approaches are mainly based on

static and dynamic analyses to find refactoring opportunities [33, 43|, devel-

10

165

170

175

180

185

190

opers may not have the time and motivation to fix every quality issue. For
instance, several developers we interviewed [17, 21, 44] mentioned that they are
reluctant to apply refactorings on files that they do not ”own” or that are not
related to their current tasks. Without understanding and detecting developer
intentions when they choose to refactor their code, refactoring recommendation
techniques will continue to be underutilized [45].

Developers describe and document refactoring opportunities in
commit messages.

While several empirical studies [46, 47] have shown that over 62% of code
reviews discuss maintainability issues to be addressed by refactoring, and only
23% are focused on bug-fixing, most existing work still relies primarily on static
and dynamic analyses to identify refactoring opportunities and to explain the
need for them. During our survey of industrial partners (for three projects) we
found that an average of 38% of quality issues discussed in code reviews and
commit messages could not be detected using existing traditional static and
dynamic analysis tools for code smell detection. As described in Figures 1, 2 and
3, the developer documented their refactoring rationale in terms of improving
the coupling that was detected both in the metrics change and the detected
refactorings in that commit. Thus, a recommendation refactoring tool can use
this information of both the quality attribute to improve and the improved code
location (files) to find more refactorings that may fit with the current intention
of the developer. But none of the existing studies have used commit message
analysis to detect refactoring opportunities or to infer recommendations.

Developers may not manually find the best refactoring strategy
meeting their needs. Developers need documentation to comprehend refac-
toring and understand quality changes for code reviews, and to assess technical
debt. We found that 46% of the commits in JHotDraw, Xerces, and three
projects of one of our industrial partners, eBay, were related to refactoring, as
detected using RefactoringMiner [31]. However, 39% of the documentation of
their pull-request descriptions or commit messages was inconsistent with the

actual quality changes observed in the systems after refactoring. We found

11

Filter the commits Calculate quality
H based on a list of attributes after
GItHUb ‘ keywords ‘ refactoring
‘ Extract the list of ‘ Refactoring

commits ‘ related commits

Detect the applied
refactorings in each
commit using RefMiner classes

Detectmodified files || 5%
and extract affected \E J’

N

RefactoringMiner

genetic
algorithm

Check the relevance of Rl‘:f‘;‘("‘:""l‘['l":" Detectimproved
the refactorings S quality attributes

(RefCom)

Figure 4: Approach Overview: RefCom.

that a majority of the inconsistencies in these projects was attributable to poor
105 refactoring decisions taken manually by developers rather than to wrong docu-
mentation. Thus we need to link documentation with refactoring recommenda-
tions and we need an automated system that can check the consistency of the
developer-created descriptions of refactorings and which can also recommend

further refactorings for quality changes.

20 3. RefCom: Commit-Based Refactoring Recommendations

Operation Source/entity Target entity

Move Method | ctrl.booking. BookingController:handleLodgingViewEvent (java.awt.event. ActionEvent):void | ctrl.booking. LodgingModel

Extract Class | ctrl.booking.SelectionModel:: -flightList+ addFlight():void-+clearFlight():void ctrl.booking.FlightList

Move Method | ctrl.booking.BookingController::createBookings():void ctrl.CoreModel

Table 3: An example of a solution: sequence of refactorings recommended by RefCom

Figure 4 gives an overview of our RefCom approach consisting of three main
components: the extraction of refactoring-related commits, the identification of
refactoring rationale from commits (where and why developers applied refactor-
ings) and the recommendation of refactorings based on the extracted rationale

2s from the commits to address the identified quality issues and meet the devel-

oper’s intention. We describe, in the following, these three main components.

12

Algorithm 1 Commit-based multi-objective refactoring

1: Input
2: Sys: system to evaluate, Pt: parent population, Files: detected files from the
commits analysis, Quality Attributes: detected quality attributes to improve from

the commits analysis

3: Output

4: Py

5: Begin

6: /* Test if any user interaction occurred in the previous iteration */
70 Sy 0,0+ 1;

8: Q¢ < Variation(P);

9: Ry +— PLUQy;

10: P, « evaluate(P;, Cy, Sys);

11: (F1, Fa,...) + NonDominatedSort(Ry);

12: repeat

13: St < S¢ U Fy;

14: i+ i+1

15: until (|S;| > N)

16: F; + Fj; > //Last front to be included
17: if |S;| = N then

18: Py < Sy

19: else

20: P+ UZVFy;

21: /*Number of points to be chosen from F;*/
22: K < N — |Pp1];

23: /*Crowding distance of points in F1 */

24: Crowding — Distance — Assignment(F});

25: Quick — Sort(Fy);

26: /*Choose K solutions with largest distance*/
27: Piy1 < Piyq1 U Select(F, k);

28: end if

29: if CommitsAnalysis + TRUE then

30:

31: /* Select and rank the best front */

32: Filter — Solution(F1, Files, Quality attributes);
33: Recommend — Solution(C‘ommit)l3

34: end if

35: End

210

215

220

225

230

235

8.1. Refactoring Related Commit Extraction

The first step of our approach is to filter the set of commits of a project
by keeping only those related to refactorings. This filtering step will help con-
structing a set of commits that are related to refactoring. First, we created a set
of 87 keywords via combining different predefined refactoring related keywords
from previous work [48, 28, 29]. Thus, the input for the keyword extraction step
is the set of commits along with the list of keywords and the output is a filtered
set of refactoring related commits. The full list of considered keywords can be
found in the website appendix [49]. Second, we used the latest version of Refac-
toringMiner [31], which supports 38 types of refactoring, to identify the actual
refactorings applied between commits by the developers. We selected Refactor-
ingMiner based on the high precision and recall score of over 90%, as reported
in their study. Third, we calculated the QMOOD quality attributes of each
commit to check whether there were improvements in the quality between com-
mits (which would suggest that a set of refactorings had taken place). Qmood
improvement evaluation step takes as an input a set of commits and outputs a
filtered set of commits that contain observed actual improvements in at least
one of the qmood quality attributes.

The refactoring related commits are the union of the results of the Refactor-
ingMiner detection, keywords extraction and QMOOD improvement evaluation.
We decided to unify the data from these sources for the following reasons: (1)
RefactoringMiner can help to identify the applied refactorings even if they did
not improve quality metrics or they were not documented, (2) the keywords
extraction can help to detect commits related to refactorings even there were no
refactorings detected by RefactoringMiner or no observed quality improvements
(inconsistencies detection), and (3) the QMOOD improvements can help not
only in identifying commits related to refactoring even if they were not doc-
umented in the commits but also in understanding the impact of the applied
refactorings. Additionally, we determined that the combination of the keywords,
quality changes, and RefactoringMiner is sufficient to filter the commits since

we have also manually inspected some of them as well. In fact, we selected the

14

240

245

250

255

260

265

commits that are identified by only one of the three strategies (RefactoringMin-
der, QMOOD improvements or keywords). We considered commits that are
confirmed by at least two out of these three strategies as having already a very
high probability to be related to refactorings. Thus, we inspected manually all
the commits that are only detected with exclusively one of the three strategies.
The total number of commits in that category are around 23% (319 commits).

RefactoringMiner can detect non-documented refactorings in the commit
messages, and the use of the keywords is useful to identify the claims and inten-
tions of developers which may not be translated into actual refactorings. The
automated check of quality changes can also help to identify refactoring-related
commits and check if the developers actually addressed the quality issues de-
scribed in the commit messages. To summarize, the documented refactorings
are in general the ones that are described in the commit messages and eventually
could be detected using the keywords. Furthermore, we are able to detect the
refactorings related commits using both RefactoringMinder and the QMOOD
improvements. In fact, these refactorings related commits may not be described
in the commits message but they are detected because they contained identified

refactorings or they improved the quality.

8.2. Identifying Refactoring Rationale from Commits

Identifying refactoring rationale has two parts. The first part is the detection
of the files that are refactored by developers in a commit. The second part is
the identification of changes in the QMOOD quality attributes then comparing
these changes with the information in the commit message.

For the first part, we used the GitHub API to identify the changed files in
each commit. In the second part, we compared the QMOOD quality attribute
values before and after the commit to capture the actual quality changes for
each file. Once the changed files and quality attributes were identified, we
checked if the developers intended to actually improve these files and quality
attributes. In fact, we preprocessed the commit messages and we used the

names of code elements in the changed files and the changed quality metrics as

15

270

275

280

285

290

295

keywords to match with words in the commit message. Once the refactoring
rationale is automatically detected using this procedure, we continue with the
next step to find better refactoring recommendations that can fully meet the
developer’s intentions and expectations. In case that no quality changes were
identified at all then a warning will be generated to developers that the manually
applied refactorings are not addressing the quality issues described in his commit

message.

3.8. Refactoring Recommendations

After the identification of the refactoring rationale from the history of com-
mits as described in the previous step, we adopted an existing multi-objective
algorithm for refactoring [32] to search for relevant refactoring solutions im-
proving both the detected files and changed quality attributes. A refactoring
solution, as shown in Table 3, consists of a sequence of n refactoring operations
involving one or multiple source code elements of the system to refactor. For ev-
ery refactoring, pre- and post-conditions are specified to ensure the feasibility of
the operation [50]. We selected multi-objective algorithm adaptation due to the
conflicting quality attributes that are considered in this study. In fact, our adap-
tation of multi-objective algorithm takes as objectives the 6 QMOOD quality
attributes. Furthermore, multi-objective search has the advantage of generating
a diverse set of solutions, thus we can filter the recommendations automatically
based on the preferred files and quality attributes of the developer (extracted
from the commits as described in the previous step) without the need to run
the refactoring recommendation algorithm multiple times. For instance, if the
refactoring rationale extracted from commits focused on improving both un-
derstandability and reusability in specific Class A and Class B, we execute our
multi-objective algorithm using all the 6 quality attributes then we filter the
Pareto front based on the two main criteria that are contained in the extracted
refactoring rationale. First, we make sure that the selected solution is the one
that provides the highest improvement in the quality attributes extracted from

the commits during our analysis step (e.g. understandability and reusability).

16

300

305

310

315

320

Second, the optimal solution should also refactor the detected changed files in
the commits (e.g. Class A, Class B.

For more details about the multi-objective refactoring algorithm, the reader
can refer to [32].

The adopted multi-objective refactoring tool is based on the non-dominated
sorting genetic algorithm (NSGA-II) [51] to find a trade-off between the six
QMOOD quality attributes. A multi-objective optimization problem can be

formulated as follow :

Minimize F(z) = (fi(x), fo(2), ..., fur(x)),
Subject to x €S,

S ={x € R™: h(zx)=0,g(x)>0};

where S is the set of inequality and equality constraints and the functions f;
are objective or fitness functions. In multi-objective optimization, the quality
of a solution is recognized by dominance. The set of feasible solutions that are
not dominated by any other solution is called Pareto-optimal or Non-dominated
solution set.

NSGA-II is a multi-objective evolutionary algorithm operating on a popula-
tion of candidate solutions which are evolved toward the Pareto-optimal solution
set. As described in Algorithm 1, the first iteration of the process begins with
the complete execution of NSGA-IT adapted to our refactoring recommenda-
tion problem based on the fitness functions representing each of the quality
attributes. In the beginning, a random population of encoded refactoring so-
lutions, Py, is generated as the initial parent population. Then, the children
population, @, is created from the initial population using crossover and mu-
tation. Parent and children populations are combined to form Ry. Finally, a
subset of solutions is selected from Ry based on the crowding distance and dom-
ination rules. This selection is based on elitism which means keeping the best
solutions from the parent and child population. Elitism does not allow an al-

ready discovered non-dominated solution to be removed. After the identification

17

325

330

335

340

345

350

of the non-dominated refactoring solutions, we apply a filter on them consist-
ing of the detected changed files from the commit(s) and the desired quality
attributes, also extracted from the commit(s). These identified refactorings are

assigned to each of the commits that have been modified by the developers.

8.4. Running Example

To demonstrate a practical example of our proposed approach, we analyzed
a real-world software repository on GitHub. For this purpose, we executed our
tool on a repository called ”Inception_D”. This project provides a semantic
annotation platform offering intelligent annotation assistance and knowledge
management. It is a large project including over 5000 commits.

As a first step of our approach, we analyzed and filtered the commits of the
mentioned repository and we extracted the refactoring-related commits. Fig-
ure 5 represents the commit where the developer(s) documented the changes as
” Refactor PredictionTask.java for increased reusability”. 1t is clear from the
developer’s documentation that his intention was to improve the reusability of
that class. This information helped in identifying the refactoring rationale. Our
refactoring recommendation component takes as an input the modified classes
which is, in this commit, ”PredictionTask.java” and ”Reusability” as a quality
attribute to improve. Figure 7 shows the list of refactorings that were recom-
mended by our tool to enhance/extend the developer’s list of applied refactoring
as shown in Figure 6. Three out of the four recommended refactoring solutions
contained the specific modified file as a parameter. To show the usefulness and
the impact of our recommended solutions, RefCom generates charts for com-
paraison between the before developer’s changes, the after developer’s changes
and the after RefCom refactorings values of each QMOOD quality attributes.
Figure 8 highlights that RefCom clearly provided much better alternatives than
the actual manual refactorings applied by the developer. For instance, the
reusability attribute was significantly improved—almost 15 times more than

the improvement introduced by the developer’s changes.

18

DeepikaBadampudi / INCEpTION_D

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Security Insights

Fix for #1033 : Refactor PredictionTask java for increased reusability
P master inception-app-0.1.0 ... inception-app-0.9.0

chaitraliagashe committed on Mar 20
Showing 4 changed files with 566 additions and 561 deletions.

» 385 ...main/java/de/tudarmstadt/ukp/inception/active/learning/sidebar/ActivelearningSidebar.java E—

» 48 ...n/java/de/tudarmstadt/ukp/inception/recommendation/render/RecommendationSpanRenderer.java ﬁ-

» 372 ...ation/src/main/java/de/tudarmstadt/ukp/inception/recommendation/tasks/PredictionTask.java E—

» 322 ...dation/src/main/java/de/tudarmstadt/ukp/inception/recommendation/util/PredictionUtil.java E—

Figure 5: The analyzed commit message from ”Inception_D”

4. Evaluation

4.1. Research Questions

355 To validate our proposed approach, we defined the following three research

questions:

e RQ1. To what extent are refactorings documented in commit messages?

e RQ2. To what extent do developers accurately document their refactoring

and its rationale?

360 e RQ3. To what extent can our approach recommend relevant refactorings

based on commit analysis compared to existing refactoring techniques?

While the first research question will validate our first hypothesis about de-
velopers document their refactoring rationale in commit messages, the second

research question will validate the second hypothesis that developers spend the

19

Move Attribute private NO_SCORE : double
FROM class de.tudarmstadt.ukp.inception.recommendation.tasks.PredictionTask
TO class de.tudarmstadt.ukp.inception.recommendation.util. PredictionUtil

Move Method private extractSuggestions(aUser User, aCas CAS, predictionType Type,
predictedFeature Feature, aScoreFeature Optional<Feature>, aDocument
SourceDocument, aRecommender Recommender) : List<AnnotationSuggestion>

FROM class de.tudarmstadt.ukp.inception.recommendation.tasks.PredictionTask

TO class de.tudarmstadt.ukp.inception.recommendation.util.PredictionUtil

Move Method private removePredictions(aCas CAS, aPredictionType Type) : void
FROM class de.tudarmstadt.ukp.inception.recommendation.tasks.PredictionTask
TO class de.tudarmstadt.ukp.inception.recommendation.util.PredictionUtil

Move Method public calculateVisibility(aLlearningRecordService
LearningRecordService, aAnnotationService AnnotationSchemaService, aCas CAS, allser
String, alLayer AnnotationLayer, aRecommendations Collection<SuggestionGroup=,
aWindowBegin int, aWindowEnd int) : void

FROM class de.tudarmstadt.ukp.inception.recommendation.tasks.PredictionTask

TO class de.tudarmstadt.ukp.inception.recommendation.util.PredictionUtil

Move Method private hideSuggestionsRejectedOrWithoutLabel(aSuggestion
AnnotationSuggestion, aRecordedRecommendations List<LearningRecord>) : void
FROM class de.tudarmstadt.ukp.inception.recommendation.tasks.PredictionTask
TO class de.tudarmstadt.ukp.inception.recommendation.util.PredictionUtil

Figure 6: The manual refactoring applied by the developer in the commit

Actions Refactoring

M aecept | rojoct ExtractC
A accept) roject
ZZ accept | reject DecreaseFie

T cccept) roject

1dtukpinceptionrecommendationtasks PredictionTask; 2]annoServiceldocumentService| {run])
—

nendation.

tio

tadtukping etudarmstadtukp.ince; duling Tasklclonecas])

commendationtasks PredictionTask:{recommendationServ)

rity{de tudarmstadtukpin:

detuda

ommendationimisstringmatchstring

gRecommender.SampleTokenspanLabelStatsSp.

Figure 7: The List of refactorings recommended by RefCom

20

365

370

375

380

Report

Reusability Bar Charts. Extendibility Bar Charts Flexibilty Bar Charts

oo wacoing [y p—
‘ o
— - 05 - - — o5 I E— -
p— Fadin

Eroct

Functionality Bar Charts Effectiveness Bar Charts (NEGATIVE) Understandability Bar Charts

e N e riclring) s N o N rfsctong s e oo

o N n

> o

06 - — s - . 05 —— — -
Funcians Reusatit Uncersaniaiy

Figure 8: QMOOD quality before and after the commits comparing the manual refactorings
and RefCom

minimum of manual refactorings effort to fix the identified quality issues, thus
there are inconsistencies (or incomplete refactorings) between documented and
applied refactorings in terms of expected impact/intention. The third question
will evaluate the relevance of the recommended refactorings after integrating
the two above insights into our refactoring tool to make actionable recommen-

dations. A demo of our refactoring tool, Refcom, can be found in [49].

4.2. Ezxperimental setting

To address the research questions, we analyzed the six open source systems
in Table 4. Atomix is a fault-tolerant distributed coordination framework. Btm
is a distributed and complete implementation of the JTA 1.1 API. Jgrapht is a
graph library that provides mathematical graph-theory objects and algorithms.
JSAT is a set of algorithms for pre-processing, classification, regression, and
clustering with support for multi-threaded execution. Pac4j is a security engine.
Tablesaw includes a data-frame, an embedded column store, and hundreds of
methods to transform, summarize, or filter data. We selected these projects
because of their size, number of commits, and applied refactorings.

To answer RQ1, we computed the ratio of the number of refactoring re-
lated commits to the total number of commits. Then, we counted the number
of documented refactorings among these identified refactoring related commits.

Documented refactorings are the commit messages that contain documentation

21

385

390

395

400

405

Table 4: Summary of the evaluated systems.

‘ N ‘ Project Name ‘ LOC ‘ Number of Classes ‘ Total Commits ‘ Refactoring related commits | Total number of refactorings

1 atomix 182280 1459 4237 343 12909
2 btm 34232 187 975 150 522
3 jerapht 158665 526 2902 204 2202
4 JSAT 182267 436 1561 236 1457
5

6

pacdj 31916 302 2282 127 3130
tablesaw 52837 224 1930 327 3143

about refactoring. These documented refactorings are detected using keywords.
However, refactoring related commits are the commits found after the union of
the results of RefactoringMiner [31] detection, keywords extraction (same list of
keywords previously mentioned) and the observed quality attribute changes be-
tween commits detected using our dedicated parser. A commit can be considered

as a

‘refactoring related commit” , while it does not contain refactoring docu-
mentation (in the commit message) because it may contain either refactorings
detected by RefactoringMiner or included quality improvements (when compar-
ing before/after refactoring). In addition to evaluate the number of refactoring
related commits and documented refactorings, we have also evaluated the main
quality attributes that are documented in refactoring related commits to under-
stand the most important ones that developers document. The detection of the
documented quality attributes is carried out by searching for quality attributes
names and their roots in the commit messages. Finally, we investigated the
number of commits that introduce significant changes in the quality attributes,
but which developers did not document.

To answer RQ2, we checked all the quality attributes by analyzing the code,
and not only the ones claimed/documented by developers in their commits.
There are two main reasons for checking all the quality attributes improvement.
First, it helped identifying the refactoring related commits that contain doc-
umented quality attributes but there were no actual observed improvement of
the quality attributes before and after the commit. Second, checking all the
quality attributes improvement helps detecting the commit that does not claim

a quality attribute but still is related to refactoring. In fact, we have used Refac-

22

410

415

420

425

430

435

toringMiner [31] and our tool for code analysis to detect the situations where
quality attributes changes and applied refactorings were not documented. These
are opportunities for refactoring solutions that better address these quality at-
tributes.

To answer RQ3, we used the outcomes of the two prior research questions
to identify developer refactoring rationale per commit: what files did they want
to refactor? And what quality attributes did they want to improve? Then, we
used that rationale to guide and filter the refactoring recommendations gen-
erated using our approach based on multi-objective search. We compared the
automated refactorings using RefCom to the manual refactorings applied by
the developers in the commits in terms of quality improvements. Then, we
compared the recommended refactorings to two existing studies [33, 32] using
a relevance measure. The relevance of the refactorings is defined as the num-
ber of refactoring recommendations accepted by developers participating in our
experiments divided by the total number of recommended refactorings.

We asked 24 developers to evaluate the meaningfulness of the refactorings
recommended by Refcom and by the approach of Ouni [32] and JDeodorant [33]
for pull-requests on the six subject systems. We followed a random order of
the three tools when the results were manually inspected. All the experimental
techniques generate sequences of refactoring operations that make sense when
considered together rather than when looking at them in isolation. However,
it is not an option to ask a developer to assess the meaningfulness of all the
refactoring operations generated for a given system. For this reason, we started
by filtering for each system the sequences of refactoring operations impacting
the files of a set of pull-requests to make a fair comparison between both tools.
Then, the developers manually evaluated the outcomes of both tools for the
commits of each pull-request.

Each participant was then asked to assess the meaningfulness of the se-
quences of refactoring operations. We made sure that each participant only
evaluated refactoring sequences recommended by the three competitive tech-

niques on one system. The rationale for such a choice is that an external de-

23

440

445

450

455

460

465

veloper would need time to acquire system knowledge by inspecting its code,
and we did not want participants to have to comprehend the code from multiple
systems since this would introduce a training effect in our study.

To support such a complex experimental design, we built a Java Web-app
that automatically assigns the refactored pull-requests to be evaluated to the
developers. The Web-app showed each participant one sequence of refactoring
operations on a single page, providing the developer with (i) the list of refac-
torings (move method m; to class C;, then push down field fi to subclass C;
), (ii) the code of the classes impacted by the sequence of refactorings, and (iii)
the complete code of the system subject of the refactoring with the generated
refactoring sequence. The web page showing the refactoring sequence asked par-
ticipants the question Would you apply the proposed refactorings? with a choice
between no (the refactoring sequence is not meaningful), or yes (the refactoring
sequence is meaningful and should be implemented). Moreover, participants
were optionally allowed to leave a comment justifying their assessment. The

Web-app was also in charge of:

Balancing the evaluations per system. We made sure that each system re-
ceived roughly the same number of participants evaluating the different refac-
tored pull-requests/commits (files associated/modified by these pull-requests)

by the three approaches.

Keeping track of the time spent by participants in the evaluation of each
refactoring sequence/pull-request. The time spent by participants was counted
in seconds since the moment the Web-app showed the refactoring on the screen
to the moment in which the participant submitted their assessment. This fea-
ture was done to remove participants from our data set who did not spend a
reasonable amount of time in evaluating the refactorings. We consider less than
90 seconds a reasonable threshold to remove noise (we removed all evaluation
sessions in which the participant spent less than 90 seconds in analyzing a single

refactoring sequence).

Collecting demographic information about the participants. We asked their

24

470

475

480

485

490

Table 5: Participants involved to answer RQ3.

System #Partic. Avg. Prog. Avg. Java Avg. Refact.

Experience Experience Exp.(1-5)
atomix 4 9 9 4.0 (high)
btm 4 8 7 3.5 (medium)
jgrapht 4 10 9 3.8 (medium)
JSAT 4 9 7 3.5 (high)
pac4j 4 7.5 7 4.5 (very high)
tablesaw 4 9 9 3.5 (high)

programming experience (in years) overall and in Java, and a self-assessment of
their refactoring experience (from very low to very high). All of the participants
were hired based on our current and previous extensive industry collaborations
on refactoring. Despite that we contacted open source developers, we did not
receive from them a timely response or did not answer at all which is a common
challenge and threat in human studies within software engineering research [52].
We made sure that all the selected participants from industry are experienced

in refactoring and used before these open source systems/libraries.

Table 5 shows the participants involved in our study and how they were
distributed in the evaluation of the refactoring sequences generated for the six

systems.

4.3. Results

Results for RQ1. Since our work is based on the assumption that devel-
opers write commit messages to document some of the applied refactorings, we
identified first the commits related to refactorings then we checked those that
documented the applied refactorings in the commit messages.

Table 6 summarizes our findings. It is clear that all the six open source
projects have extensive refactorings applied in previous commits: an average of
over 30% of all commits. The Atomix system has the highest number of com-
mits related to refactoring. We found that 211 commit messages documented
the applied refactorings, which is more than 60% of commits containing refac-
torings. The same observation can be applied to the remaining systems. While

developers extensively apply refactorings, they may not document all of them.

25

495

500

505

510

515

Still there are enough commits including refactoring documentation to identify

further opportunities for refactoring.

Project Total number of commits Commits related | Docuented commits related | Commits identified Commits identified
to refactoring to refactoring with RefacotoringMiner | with Quality Improvements

atomix 4237 343 211 233 174

btm 975 150 52 55 46

jgraphft | 2902 204 107 87 40

jsat 1561 236 113 58 65

pacdj 2282 127 84 65 33

tablesaw | 1930 327 159 116 63

Table 6: An overview of the documented commits related to refactoring on the six open source

systems.

We also investigated the main quality attributes of QMOOD that were docu-
mented by developers in the commit messages when refactorings were applied to
improve those attributes. As described in Figure 9, we found understandability
to be the most common quality documented by developers in commit messages.
In 4 of the 6 open source systems it is the most common quality attribute doc-
umented by developers. For instance, the developers mentioned the rationale
of understandability in messages in 53% of the commits improving the Atomix
system. Reusability is the second most documented rationale, on average, in
the six systems. It is also normal that developers document the rationale of the
refactorings in combination with the features that were modified (functionality).

To conclude, we found that developers do document refactorings and they
extensively apply refactorings over the commits of all six open source systems.
Our results show that developers mention quality attributes as a rationale for
their refactorings in over 50% of commits related to refactoring that are docu-
mented, which is enough to find opportunities for enhanced refactorings.

Results for RQ2. Figure 10 shows that developers are documenting their
intention to refactor the code to address quality issues in the commit messages;
however we did not find any quality improvements when we analyzed the quality
changes in the files of these commits. For the Btm system, we found that only
32 out of 149 commits related to refactoring have actual quality changes. Only

60 out 236 commits related to refactorings have actual quality changes despite

26

520

525

530

0.6

0.5
0.4
0.3
0.2
0wl
]
atomi btm jgrapht JEAT pacdi tablessw

m Effectivenes m Extendibility m Flexibility

Functionality B Reusability B Understandability

Figure 9: The percentage of documented quality attributes per system among the commits

improving the quality attributes.

developers commenting on applying refactorings in their commit messages.

It is clear that developers highlight their intention to refactor the code with
its rationale; however no actual quality improvements have been observed in
many commits. This conclusion is one of the main motivations for RQ3.

Results for RQ3. After validating the two hypotheses of the previous re-
search questions, we implemented our Refcom tool for improving the QMOQOD
quality attributes by integrating a filter to guide the refactoring recommen-
dations based on rationale identified in the previous research questions (what
quality attributes and which files do developers want to improve?). Figure 9
shows that developers documented refactorings with the intention of improving
all the 6 quality attributes but with different levels of frequency. For instance,
it is clear that developers focused on improving both understandability and
reusability in project atomix. Thus, we executed our multi-objective algorithm
using all the 6 quality attributes then we filter the Pareto front based on the two
main criteria that are contained in the extracted refactoring rationale. First,
we make sure that the selected solution is the one that provides the highest

improvement in the quality attributes extracted from the commits during our

27

535

540

545

550

350

200
| I I I

atomix btm jgraphft jsa& pack4j tablesaw

=
=]
=1

wn
=1

m Documented refactoring commits m #of documented refactoring commits with obserbed quality changes

Figure 10: Missed documented refactoring opportunities in the 6 systems.

analysis step (e.g. understandability and reusability in project atomix). Second,
the optimal solution should also refactor the detected changed files in the com-
mits. We compared our results with two existing refactoring tools. Ouni [32]
proposed a multi-objective refactoring formulation based on NSGA-II that gen-
erates a solution to maximize the design coherence and refactoring reuse from
previous releases. JDeodorant [33] is an Eclipse plugin to detect bad smells and
apply refactorings.

Figure 11 highlights the out-performance of RefCom compared to the tools of
Ouni et al. [32] and JDeodorant [33]. In fact, most refactorings recommended by
our approach are relevant, and all of them were successfully applied for the case
Atomix system on the expected files and achieved high-quality improvements,
based on the feedback from the participants.

By looking at the comments left by participants when justifying their assess-
ments, thirteen out of the twenty four developers highlighted in their comments
about the refactoring sequences that they found the refactorings relevant be-
cause they are completing the effort started by the submitter of the developer
as described in the commit messages. For example, one of the developers wrote

in a comment: “I found these refactorings really improving the reusability of

28

555

560

565

100

atom jgraphft packdj tablesaw

[= T B =, B = R |
o o o Qo o Qo

m Relevance-RefCom m Redlevance-0uni et al. m Relevance-Jdeodorant

Figure 11: The relevance of the recommended refactorings by RefCom compared to existing

refactoring approaches.

this class which is the main intention of the developer but he just applied couple
of move methods. I found the tool recommendation even better to improve the
reusability.”. We found this comment as important qualitative evidence of only
the value of RefCom in terms of analyzing the recently closed pull-requests to
identify changed files and fix the identified quality issues in these files.

Thus RefCom provided relevant refactoring recommendations based on the
commit analysis, outperforming existing approaches to recommend refactor-

ings.

5. Threats to Validity

We discuss in this section the different threats related to our experiments.

The threats to internal validity can be related to the list of keywords that we
used to identify the commits where developers documented refactorings. How-
ever, the impact of this threat was limited by considering the use of Refactoring-
Miner to identify the actual refactorings applied by developers. The parameters

tuning of the optimization algorithm used in our experiments may create an

29

570

575

580

585

590

internal threat that needs to be evaluated in future work since the parameter
values used in our experiments were found by trial and error.

Construct validity is concerned with the relationship between theory and
what is observed. We have used the QMOOD quality attributes to capture
the quality changes between commits. While the QMOOD model is already
empirically validated by existing studies [53], it is possible that some quality
changes may not be detected using QMOQOD.

External validity refers to the generalizability of our findings. We performed
our experiments on 6 open-source systems belonging to different domains. How-
ever, we cannot assert that our results can be generalized to other applications
and other developers. Moreover, we found that only 32 out of 149 commits
related to refactoring have actual quality changes which limits the generaliz-
ability of our findings and requires more experiments. Another threat could be
the number of subjects (24 developers) used for validation. Future replications

of this study are necessary to confirm our findings.

6. Related Work

6.1. Detection Refactoring Opportunities

Several approaches have been proposed to automatically detect design flaws
(anti-patterns, code smells) [54, 55, 56, 57, 58, 59, 60, 61, 62, 63]. We only
discuss a few representative works and refer the interested reader to the recent
survey by Sharma and Spinellis [64] for a complete overview.

Marinescu [7] proposes a metric-based mechanism to capture deviations from
good design principles and heuristics, called “detection strategies”. Such strate-
gies are based on the identification of symptoms characterizing a particular smell
and metrics for measuring such symptoms.

Moha et al. [65] exploit a similar idea in their DECOR, approach, proposing
a Domain-Specific Language (DSL) for specifying smells using high-level ab-
stractions. Four design smells are identified by DECOR, namely Blob, Swiss
Army Knife, Functional Decomposition, and Spaghetti Code.

30

595

600

605

610

615

620

Design flaw detection can also be formulated as an optimization problem,
as pointed out by Kessentini et al. [37]. They present a cooperative parallel
search-based approach for identifying code smell instances. The idea here is
that many evolutionary algorithms are executed in parallel to solve a common
goal (the detection of code smells). The empirical evaluation reported in the
paper shows the high accuracy of the proposed approach (recall and precision
higher than 85%).

Besides metrics exploiting structural information extracted from the code,
Palomba et al. [66] provide evidence that historical data can be successfully
exploited to identify code smells; not only smells that are intrinsically charac-
terized by their evolution across the program history but also smells such as
Blob and Feature Envy.

Despite the extensive studies on the detection of refactoring opportunities
[64, 67], none of them considered the use of commit messages to understand
developer intentions during refactoring and the type of quality issues they want
to address. The main assumption of most of these approaches is that developers
want to fix code smells and antipatterns. However, we found that developers
largely did not use terms related to antipatterns or code smells when describing

and documenting refactoring opportunities in practice.

6.2. Refactoring Recommendation

Much effort has been devoted to the definition of approaches supporting
refactoring. One representative example is JDeodorant, the tool proposed by
Tsantalis and Chatzigeorgiou [68]. We point the interested reader to the survey
by Bavota et al. [69] for an overview of approaches supporting code refactoring.

O’Keeffe and Cinnéide [70] presented the idea of formulating the refactor-
ing task as a search problem in the space of alternative designs, generated by
applying a set of refactoring operations. Such a search is guided by a quality
evaluation function based on eleven object-oriented design metrics that reflect
refactoring goals. Harman and Tratt [71] were the first to introduce the concept

of Pareto optimality to search-based refactoring. They used it to combine two

31

625

630

635

640

645

650

metrics, namely CBO (Coupling Between Objects) and SDMPC (Standard De-
viation of Methods Per Class), into a fitness function and showed its superior
performance as compared to a mono-objective technique [71].

The two aforementioned works [70, 71] paved the way to several search-based
approaches aimed at recommending refactoring operations [72, 73, 74, 75, 42,
32]. A representative example of these techniques is the recent work by Ouni
et al. [32], who propose a multi-criteria code refactoring approach aimed at
optimizing five objectives: (i) minimizing the number of code smells; (ii) min-
imizing the refactoring cost (the number of recommended refactorings); (iii)
preserving the design semantics (meaning considering textual information em-
bedded in code identifiers and comments in the refactoring recommendation);
and (iv) maximizing the consistency with code changes performed over the sys-
tem’s change history.

Murphy-Hill et al. [8] show that semi-automated tools for refactorings have
been underutilized. In fact, fully automatic refactoring usually does not lead
to the desired architecture and thus a designer’s feedback should be included.
Other studies also highlighted that developers are mainly interested in incremen-
tal refactoring and they are combining regular code changes such as bug-fixing
with refactoring [18]. We proposed, in this paper, another perception to the way
that refactorings can be recommended by extracting relevant information from
commit messages and providing better suggestions to refactor the files related

to the interests of the developers.

6.3. Empirical Studies on Refactoring

Empirical studies on software refactoring mainly aim at investigating the
refactoring habits of software developers and the relationship between refactor-
ing and code quality.

Murphy-Hill et al. [41] investigated how developers perform refactorings.
Examples of the exploited datasets are usage data from 41 developers using the
Eclipse environment and information extracted from versioning systems. Among

their findings they show that developers often perform floss refactoring, namely

32

655

660

665

670

675

680

they interleave refactoring with other programming activities, confirming that
refactoring is rarely performed in isolation. Kim et al. [28] present a survey
of software refactoring with 328 Microsoft engineers. To investigate when and
how they refactor code and developer perception of the benefits, risks, and
challenges of refactoring. They show that the major risk factor perceived by
developers is the introduction of bugs and one of the main benefits they expect
is to have fewer bugs in the future, thus indicating the usefulness of refactoring
for code components exhibiting high fault-proneness. A recent empirical study
[76] shows that developers have a misperception of quality metrics, as compared
to terms used in academia, when documenting refactorings which motivates our
work where we look at the actual metric changes rather than just the term in

the commit messages, when recommending refactorings.

7. Conclusion

We presented a first attempt to recommend refactorings by analyzing com-
mit messages. The salient feature of the proposed RefCom approach is its
ability to capture developers need, from their commit messages, and propose
to them refactorings to enhance their changes to better address quality issues.
To evaluate the effectiveness of our technique, we applied it to six open-source
projects and compared it with state-of-the-art approaches that rely on static
and dynamic analysis. Our results show promising evidence on the usefulness
of the proposed commit-based refactoring approach.

Future work will involve validating our technique with additional refactor-
ing types, programming languages and a more extensive set of projects and
commits to investigate the general applicability of the proposed methodology.
We will also check the relevance of integrating commit messages in finding and
recommending refactoring opportunities then fixing them based on different

refactoring recommendations tools beyond our previous work.

33

685

690

695

700

705

References

1]

M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-
Wesley Longman Publishing Co., Inc., 1999 (1999).

M. Feathers, Working Effectively with Legacy Code: WORK EFFECT
LEG CODE _pl, Prentice Hall Professional, 2004 (2004).

R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
A. Shapochka, A case study in locating the architectural roots of tech-
nical debt, in: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 2, IEEE, 2015, pp. 179-188 (2015).

J. Carriere, R. Kazman, I. Ozkaya, A cost-benefit framework for making
architectural decisions in a business context, in: 2010 ACM/IEEE 32nd
International Conference on Software Engineering, Vol. 2, IEEE, 2010, pp.
149-157 (2010).

M. Kim, M. Gee, A. Loh, N. Rachatasumrit, Ref-finder: a refactoring
reconstruction tool based on logic query templates, in: Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering, ACM, 2010, pp. 371-372 (2010).

D. Batory, J. N. Sarvela, A. Rauschmayer, Scaling step-wise refinement,

IEEE Transactions on Software Engineering 30 (6) (2004) 355-371 (2004).

R. Marinescu, Detection strategies: Metrics-based rules for detecting design
flaws, in: 20th IEEE International Conference on Software Maintenance,

2004. Proceedings., IEEE, 2004, pp. 350-359 (2004).

E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know
it, IEEE Transactions on Software Engineering 38 (1) (2012) 5-18 (2012).

D. Dig, C. Comertoglu, D. Marinov, R. Johnson, Automated detection of
refactorings in evolving components, in: European Conference on Object-

Oriented Programming, Springer, 2006, pp. 404-428 (2006).

34

710

715

720

725

730

735

[10]

[15]

[16]

[17]

J. Kim, D. Batory, D. Dig, M. Azanza, Improving refactoring speed by 10x,
in: 2016 IEEE/ACM 38th International Conference on Software Engineer-
ing (ICSE), IEEE, 2016, pp. 1145-1156 (2016).

A. Ouni, M. Kessentini, H. Sahraoui, M. Boukadoum, Maintainability de-
fects detection and correction: a multi-objective approach, Automated

Software Engineering 20 (1) (2013) 47-79 (2013).

M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, M. o) Cinnéide, Rec-
ommendation system for software refactoring using innovization and in-
teractive dynamic optimization, in: Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, ACM, 2014,

pp. 331-336 (2014).

B. Du Bois, S. Demeyer, J. Verelst, Refactoring-improving coupling and co-
hesion of existing code, in: 11th working conference on reverse engineering,

IEEE, 2004, pp. 144-151 (2004).

A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, K. Deb, Multi-criteria
code refactoring using search-based software engineering: An industrial
case study, ACM Transactions on Software Engineering and Methodology
(TOSEM) 25 (3) (2016) 23 (2016).

I. H. Moghadam, M. O Cinnéide, Code-imp: a tool for automated search-
based refactoring, in: Proceedings of the 4th Workshop on Refactoring
Tools, ACM, 2011, pp. 41-44 (2011).

Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, S. Yang, Refactoring
android java code for on-demand computation offloading, in: ACM Sigplan

Notices, Vol. 47, ACM, 2012, pp. 233-248 (2012).

V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni, Y. Cai,
An interactive and dynamic search-based approach to software refactoring

recommendations, IEEE Transactions on Software Engineering (2018).

35

745

750

755

760

[18]

[22]

23]

[25]

V. Alizadeh, M. Kessentini, Reducing interactive refactoring effort via
clustering-based multi-objective search, in: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, ACM, 2018, pp. 464-474 (2018).

M. O’Keeffe, M. O. Cinnéide, Search-based refactoring for software main-

tenance, Journal of Systems and Software 81 (4) (2008) 502-516 (2008).

W. Brown, R. Malveau, S. McCormick, T. Mowbray, AntiPatterns: Refac-
toring Software, Architectures, and Projects in Crisis, Wiley, 1998 (1998).

V. Alizadeh, M. Kessentini, Reducing interactive refactoring effort via
clustering-based multi-objective search, in: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, ASE 2018, ACM, New York, NY, USA, 2018, pp. 464-474 (2018).
doi:10.1145/3238147.3238217.

URL http://doi.acm.org/10.1145/3238147.3238217

Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, W. Zhao, Interactive and
guided architectural refactoring with search-based recommendation, in:

Proc. 24th.

G. B. V. A. Jeffrey Yackley, Marouane Kessentini, B. Maxim, Simultaneous
refactoring and regression testing: A multi-tasking approach, in: Proceed-
ings of the 19th IEEE International Working Conference on Source Code
Analysis and Manipulation SCAM2019, 2019, p. 12 pages (2019).

V. A. M. K. Soumaya Rebai, Ousaama Ben Sghaier, M. Chater, Interactive
refactoring documentation bot, in: Proceedings of the 19th IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation

SCAM2019, 2019, p. 12 pages (2019).

J. Pantiuchina, M. Lanza, G. Bavota, Improving code: The (mis) percep-

tion of quality metrics, in: 2018 IEEE International Conference on Software

36

http://doi.acm.org/10.1145/3238147.3238217
http://doi.acm.org/10.1145/3238147.3238217
http://doi.acm.org/10.1145/3238147.3238217
https://doi.org/10.1145/3238147.3238217
http://doi.acm.org/10.1145/3238147.3238217
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017

765

770

775

780

785

[28]

[30]

[31]

Maintenance and Evolution, ICSME 2018, Madrid, Spain, September 23-
29, 2018, 2018, pp. 80-91 (2018). doi:10.1109/ICSME.2018.00017.
URL https://doi.org/10.1109/ICSME.2018.00017

E. Murphy-Hill, A. P. Black, Refactoring tools: Fitness for purpose, IEEE
Software 25 (5) (2008) 38-44 (2008).

G. Bavota, B. D. Carluccio, A. D. Lucia, M. D. Penta, R. Oliveto,
O. Strollo, When does a refactoring induce bugs? an empirical study, in:
12th IEEE International Working Conference on Source Code Analysis and
Manipulation, SCAM, 2012, pp. 104-113 (2012).

M. Kim, T. Zimmermann, N. Nagappan, An empirical study of refactor-
ingchallenges and benefits at microsoft, Software Engineering, IEEE Trans-

actions on 40 (7) (2014) 633-649 (July 2014).

E. A. AlOmar, M. W. Mkaouer, A. Ouni, Can refactoring be self-affirmed?:
An exploratory study on how developers document their refactoring activi-
ties in commit messages, in: Proceedings of the 3rd International Workshop
on Refactoring, IWOR ’19, IEEE Press, Piscataway, NJ, USA, 2019, pp.
51-58 (2019). doi:10.1109/IWoR.2019.00017.

URL https://doi.org/10.1109/IWoR.2019.00017

G. Soares, R. Gheyi, T. Massoni, Automated behavioral testing of refac-
toring engines, IEEE Transactions on Software Engineering 39 (2) (2013)
147-162 (2013).

N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, D. Dig, Accu-
rate and efficient refactoring detection in commit history, in: Proceedings
of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 483-494 (2018).
doi:10.1145/3180155.3180206.

URL https://doi.org/10.1145/3180155.3180206

37

https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206

790

795

800

805

810

815

[32]

[34]

[36]

[37]

[39]

A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, K. Deb, Multi-criteria
code refactoring using search-based software engineering: an industrial
case study, ACM Transactions on Software Engineering and Methodology
(TOSEM) 25 (3) (2016) 23 (2016).

M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou, Jdeodorant: iden-
tification and application of extract class refactorings, in: 33rd Interna-
tional Conference on Software Engineering (ICSE), 2011, pp. 1037-1039
(2011).

J. Bansiya, C. G. Davis, A hierarchical model for object-oriented de-
sign quality assessment, IEEE Transactions on software engineering 28 (1)

(2002) 4-17 (2002).

M. O’Keeffe, M. O. Cinnéide, Search-based refactoring: An empirical study,
Journal of Software Maintenance and Evolution 20 (5) (2008) 345-364
(2008).

M. O Cinnéide, L. Tratt, M. Harman, S. Counsell, I. Hemati Moghadam,
Experimental assessment of software metrics using automated refactoring,
in: International Symposium on Empirical Software Engineering and Mea-

surement (ESEM), 2012, pp. 49-58 (2012).

W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, A. Ouni, A coop-
erative parallel search-based software engineering approach for code-smells
detection, IEEE Transactions on Software Engineering 40 (9) (2014) 841-
861 (2014).

A. C. Jensen, B. H. Cheng, On the use of genetic programming for auto-
mated refactoring and the introduction of design patterns, in: Proceedings
of the 12th annual conference on Genetic and evolutionary computation,

ACM, 2010, pp. 1341-1348 (2010).

S. Lee, G. Bae, H. S. Chae, D.-H. Bae, Y. R. Kwon, Automated scheduling

38

820

825

830

835

840

[45]

[46]

[47]

for clone-based refactoring using a competent ga, Software: Practice and

Experience 41 (5) (2011) 521-550 (2011).

R. Khatchadourian, H. Masuhara, Automated refactoring of legacy java
software to default methods, in: Proceedings of the 39th International

Conference on Software Engineering, IEEE Press, 2017, pp. 82-93 (2017).

E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know
it, IEEE Transactions on Software Engineering (TSE) 38 (1) (2011) 5-18
(2011).

W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,
A. Ouni, Many-objective software remodularization using nsga-iii, ACM
Transactions on Software Engineering and Methodology (TOSEM) 24 (3)
(2015) 17:1-17:45 (2015).

A. Alali, H. Kagdi, J. I. Maletic, What’s a typical commit? a characteriza-
tion of open source software repositories, in: Proc. 16th, 2008, pp. 182-191
(Jun. 2008).

H. F. Vahid Alizadeh, M. Kessentini, Less is more: From multi-objective to
mono-objective refactoring via developers knowledge extraction, in: Pro-
ceedings of the 19th IEEE International Working Conference on Source
Code Analysis and Manipulation SCAM2019, 2019, p. 12 pages (2019).

A. Bachmann, C. Bird, F. Rahman, P. Devanbu, A. Bernstein, The missing
links: Bugs and bug-fix commits, in: Proc. 16th, 2010 (Nov. 2010).

A. Bosu, J. C. Carver, C. Bird, J. Orbeck, C. Chockley, Process aspects and
social dynamics of contemporary code review: Insights from open source
development and industrial practice at microsoft, IEEE Transactions on

Software Engineering 43 (1) (2017) 56-75 (2017).

M. Beller, A. Bacchelli, A. Zaidman, E. Juergens, Modern code reviews in

open-source projects: Which problems do they fix?, in: Proceedings of the

39

845

850

855

860

865

870

[54]

11th working conference on mining software repositories, ACM, 2014, pp.

202-211 (2014).

E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know
it, IEEE Transactions on Software Engineering 38 (1) (2011) 5-18 (2011).

Recommending Rfactorings via Commit Message Analyis.

URL https://sites.google.com/view/istrefcom

M. Fowler, Refactoring: Improving the Design of Existing Code, 1999 (Jul.
1999).

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-
objective genetic algorithm: Nsga-ii, IEEE transactions on evolutionary

computation 6 (2) (2002) 182-197 (2002).

A.J. Ko, T. D. Latoza, M. M. Burnett, A practical guide to controlled ex-
periments of software engineering tools with human participants, Empirical

Software Engineering 20 (1) (2015) 110-141 (2015).

O. Baysal, R. Holmes, A qualitative study of mozilla’s process management
practices, David R. Cheriton School of Computer Science, University of

Waterloo, Waterloo, Canada, Tech. Rep. CS-2012-10 (2012).

A. Ghannem, M. Kessentini, G. El Boussaidi, Detecting model refactoring
opportunities using heuristic search, in: Proceedings of the 2011 Conference
of the Center for Advanced Studies on Collaborative Research, 2011, pp.
175-187 (2011).

M. Kessentini, P. Langer, M. Wimmer, Searching models, modeling search:
On the synergies of sbse and mde, in: 2013 1st International Workshop on
Combining Modelling and Search-Based Software Engineering (CMSBSE),
IEEE, 2013, pp. 51-54 (2013).

M. Kessentini, R. Mahaouachi, K. Ghedira, What you like in design use to
correct bad-smells, Software Quality Journal 21 (4) (2013) 551-571 (2013).

40

https://sites.google.com/view/istrefcom
https://sites.google.com/view/istrefcom

875

880

885

890

895

[57]

[60]

[61]

[62]

A. Ghannem, G. El Boussaidi, M. Kessentini, Model refactoring using ex-
amples: a search-based approach, Journal of Software: Evolution and Pro-

cess 26 (7) (2014) 692-713 (2014).

A. Ouni, M. Kessentini, S. Bechikh, H. Sahraoui, Prioritizing code-smells
correction tasks using chemical reaction optimization, Software Quality

Journal 23 (2) (2015) 323-361 (2015).

M. Kessentini, A. Ouni, P. Langer, M. Wimmer, S. Bechikh, Search-based
metamodel matching with structural and syntactic measures, Journal of

Systems and Software 97 (2014) 1-14 (2014).

B. Amal, M. Kessentini, S. Bechikh, J. Dea, L. B. Said, On the use of ma-
chine learning and search-based software engineering for ill-defined fitness
function: a case study on software refactoring, in: International Sympo-
sium on Search Based Software Engineering, Springer, Cham, 2014, pp.
31-45 (2014).

A. Ghannem, G. El Boussaidi, M. Kessentini, On the use of design de-
fect examples to detect model refactoring opportunities, Software Quality

Journal 24 (4) (2016) 947-965 (2016).

H. Wang, M. Kessentini, A. Ouni, Bi-level identification of web ser-
vice defects, in: International Conference on Service-Oriented Computing,

Springer, 2016, pp. 352-368 (2016).

A. Ouni, M. Kessentini, M. 0 Cinnéide, H. Sahraoui, K. Deb, K. Inoue,
More: A multi-objective refactoring recommendation approach to introduc-
ing design patterns and fixing code smells, Journal of Software: Evolution

and Process 29 (5) (2017).

T. Sharma, D. Spinellis, A survey on software smells, Journal of Systems

and Software 138 (2018) 158 — 173 (2018).

41

900

905

910

915

920

[65]

[68]

[70]

N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F. L. Meur, Decor: A method
for the specification and detection of code and design smells, IEEE Trans-

actions on Software Engineering 36 (1) (2010) 20-36 (2010).

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, A. De Lu-
cia, Mining version histories for detecting code smells, IEEE Transactions

on Software Engineering 41 (5) (2015) 462-489 (2015).

M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Oz Cinnezlde, K. Deb,
On the use of many quality attributes for software refactoring: A
many-objective search-based software engineering approach, Empirical
Softw. Engg. 21 (6) (2016) 2503-2545 (Dec. 2016). doi:10.1007/
s10664-015-9414-4.

URL https://doi.org/10.1007/s10664-015-9414-4

N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring
opportunities, IEEE Transactions on Software Engineering 35 (3) (2009)
347-367 (2009).

G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, Recommending refactor-
ing operations in large software systems, in: M. P. Robillard, W. Maalej,
R. J. Walker, T. Zimmermann (Eds.), Recommendation Systems in Soft-

ware Engineering, Springer Berlin Heidelberg, 2014, pp. 387-419 (2014).

M. O’Keeffe, M. 0 Cinnéide, A stochastic approach to automated de-
sign improvement, in: International Conference on Principles and practice
of programming in Java, Computer Science Press, Inc., 2003, pp. 59-62
(2003).

M. Harman, L. Tratt, Pareto optimal search based refactoring at the design
level, in: 9th annual conference on Genetic and evolutionary computation,

2007, pp. 1106-1113 (2007).

O. Seng, J. Stammel, D. Burkhart, Search-based determination of refac-

torings for improving the class structure of object-oriented systems, in:

42

https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4

925

935

940

International conference on Genetic and evolutionary computation, ACM,

2006, pp. 1909-1916 (2006).

M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, A. Ouni, De-
sign defects detection and correction by example, in: International Confer-

ence on Program Comprehension (ICPC), IEEE, 2011, pp. 81-90 (2011).

A. Ouni, M. Kessentini, H. Sahraoui, Search-based refactoring using
recorded code changes, in: Proceedings of the 17th European Conference

on Software Maintenance and Reengineering (CSMR, 2013), pp. 221-230.

M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, M. o) Cinnéide, Rec-
ommendation system for software refactoring using innovization and in-
teractive dynamic optimization, in: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering (ASE 2014),

pp. 331-336.

P. W. McBurney, S. Jiang, M. Kessentini, N. A. Kraft, A. Armaly, M. W.
Mkaouer, C. McMillan, Towards prioritizing documentation effort, IEEE
Transactions on Software Engineering 44 (9) (2018) 897-913 (2018).

43

	Introduction
	Problem Statement
	Background
	Motivation

	RefCom: Commit-Based Refactoring Recommendations
	Refactoring Related Commit Extraction
	Identifying Refactoring Rationale from Commits
	Refactoring Recommendations
	Running Example

	Evaluation
	Research Questions
	Experimental setting
	Results

	Threats to Validity
	Related Work
	Detection Refactoring Opportunities
	Refactoring Recommendation
	Empirical Studies on Refactoring

	Conclusion

