
Refactorings Recommendation via Commit Message
Analysis

Soumaya Rebaia, Marouane Kessentinia, Vahid Alizadeha, Oussama Ben
Sghaiera, Rick Kazmanb

aUniversity of Michigan, Dearborn, Michigan, USA
bUniversity of Hawaii

Abstract

Context: The purpose of software restructuring, or refactoring, is to improve

software quality and developer productivity. Objective: Prior studies have

relied mainly on static and dynamic analysis of code to detect and recommend

refactoring opportunities, such as code smells. Once identified, these smells

are fixed by applying refactorings which then improve a set of quality metrics.

While this approach has value and has shown promising results, many detected

refactoring opportunities may not be related to a developer’s current context

and intention. Recent studies have shown that while developers document their

refactoring intentions, they may miss relevant refactorings aligned with their

rationale. Method: In this paper, we first identify refactoring opportunities by

analyzing developer commit messages and check the quality improvements in

the changed files, then we distill this knowledge into usable context-driven refac-

toring recommendations to complement static and dynamic analysis of code.

Results: The evaluation of our approach, based on six open source projects,

shows that we outperform prior studies that apply refactorings based on static

and dynamic analysis of code alone. Conclusion: This study provides com-

pelling evidence of the value of using the information contained in existing

commit messages to recommend future refactorings.

Email addresses: srebal@umich.edu (Soumaya Rebai), marouane@umich.edu (Marouane
Kessentini), alizadeh.umich.edu (Vahid Alizadeh), oussama@umich.edu (Oussama Ben
Sghaier), kazman@hawaii.edu (Rick Kazman)

Preprint submitted to Journal of LATEX Templates October 29, 2020

Keywords:

Commit Message, Refactoring Recommendation, Quality attributes.

1. Introduction

Software restructuring or refactoring [1] is critical to improve software qual-

ity and developer’s productivity, but it can be complex, expensive, and risky. As

projects evolve, developers in a rush to deliver new features frequently postpone

necessary refactorings until a crisis occurs [2]. By that time it often results in de-5

graded performance, an inability to support new features, or even a failed system

and significant losses [? 3, 4]. Thus, several studies have been proposed to (semi-

) automate the recommendation of refactorings to help developers improving the

quality of their systems in a more timely fashion [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

While code-level refactoring is widely studied and well supported by tools10

[15, 16, 13, 17, 18], it remains a human activity which is hard to fully automate

and requires developer insights. Such insights are important because developers

understand their problem domain intuitively and may have a clear target end-

state in mind for their system. A majority of existing tools and approaches

rely on the use of quality metrics such as coupling, cohesion, and the QMOOD15

quality attributes [19] to first identify refactoring opportunities, and then to

recommend refactorings to fix them. Many of the quality issues detected using

structural metrics are known as code smells or antipatterns [20]. However,

recent studies have shown that developers are not primarily interested in fixing

antipatterns when they are performing refactoring [8].20

In a recent survey of Alizadeh et al. [17, 21] with several software companies,

84% of interviewees confirmed that most of the automated refactoring tools

recommend hundreds of code-level quality issues and refactorings, but these

tools fail to adequately explain how these refactorings are relevant to a developer

who is combining refactorings with other tasks such as fixing bugs and enhancing25

features. This observation is consistent with other studies [22, 23, 24] showing

that refactorings rarely happen in isolation. Without a rigorous understanding

2

of the rationale for refactoring, recommendation tools may continue to suffer

from a high false-positive rate and limited relevance to developers [25, 26,

27]. However, if a refactoring rationale can be automatically identified, this30

can guide refactoring recommendations to be more relevant and less ad hoc.

Recent empirical studies show that while developers document their refactoring

intention, they may miss relevant refactorings aligned with their rationale [25,

24]. One of the main reasons is that manual refactoring is a tedious and time-

consuming task which also explains the tendency of the developers to perform35

the minimum possible number of refactorings [17, 28]. Thus, it is critical to

provide developers a semi-automated refactorings support that can understand

their rationale and translate it into actionable refactorings recommendation.

In this paper, we start from the observation that a majority of inconsisten-

cies between documented and applied refactorings were due to poor refactoring40

decisions taken manually by developers [25, 24]. Therefore, we think that there

is a need for linking documentation to refactoring recommendations as well as

a need for an automated system that can not only check the consistency of

the developer-created descriptions of refactoring but also recommend further

refactoring to meet their rationale. However, none of the existing studies have45

used this knowledge to guide the process of refactoring recommendation. Thus,

we propose a novel approach, called RefCom, to capitalize on this previously

unused resource.

RefCom includes the following steps. First, we filtered a large corpus of com-

mit messages to extract the ones containing quality issues or refactorings based50

on a list of 87 keywords which are already defined in the literature [29, 30, 28].

We also used an existing tool, RefactoringMiner [31], to detect the refactor-

ings applied in commits to confirm or extend the ones detected using our set

of keywords. Second, we automatically identified the changed files in these se-

lected commits and detected the impacted code fragments. Third, we checked55

the quality improvements in these files to detect the quality attributes that

developers aimed to improve. Finally, we recommended more refactorings to

developers based on the rationale extracted from the commits: the locations of

3

the intended refactorings and the quality attributes to be improved. Further-

more, our tool will generate warnings to developers if their commit messages60

are not matching the manually applied refactorings.

Our ultimate goal is to recommend a set of refactoring solutions that enhance

the improvements described in the commit messages or provide developers bet-

ter ways to refactor their code based on the rationale found in the commits.

RefCom identifies potential inconsistencies between developer intentions and65

actual applied refactorings and recommends an additional set of refactorings

that better meet developer intentions and expectations. In fact, the paper vali-

dated the first hypothesis that commit messages document refactorings applied

by developers including their intention by answering the following research ques-

tion:70

RQ1: To what extent are refactorings documented in commit messages?

The second hypothesis validated in this paper is the inconsistencies (or incom-

plete refactorings) between documented and applied refactorings in terms of

expected impact/intention via answering the following research question:

RQ2: To what extent do developers accurately document their refactoring and75

its rationale?

These observed inconsistencies/gaps (RQ2) along with the fact that refactoring

documentation is available at the commit level (RQ1) are the main motivations

to refine existing refactoring recommendation tools. Thus, we selected our pre-

vious multi-objective refactoring recommendation tool [32] as a case study for80

this purpose while answering our following third research question:

RQ3: To what extent can our approach recommend relevant refactorings based

on commit analysis compared to existing refactoring techniques?

However, it is possible to expand the outcomes of RQ1 and RQ2 to build better

refactoring recommendation tools in general. To summarize, our contributions85

are not limited to recommending refactorings solutions using a straightforward

4

multi-objective technique. We believe that RQ1 and RQ2 can advance the

knowledge within the refactoring community. For the first two contributions

RefCom uses NLP and static and dynamic analysis to detect developers’ inten-

tions, the actual refactorings and the quality attributes improvement. For the90

third contribution, we used a multi-objective algorithm to recommend refactor-

ing solutions to enhance the applied refactorings (after extracting developer’s

intention) or fix the detected inconsistencies. We validated our approach on

six open source projects containing a large number of commits. Our validation

shows that RefCom outperforms both the actual refactorings applied by devel-95

opers in their commits and existing refactoring tools based on antipatterns and

static and dynamic analysis [32, 33]. Thus, the use of the knowledge extracted

from commit messages is critical to better understand developer preferences.

The primary contributions of this paper can be summarized as follows:

1. The paper introduces, for the first time, an approach, RefCom, based on100

commit messages to recommend refactorings. Thus, the recommendations

are based on understanding the developers’ intention to refactor the code

from the commit messages rather than fixing antipatterns and improving

the majority of quality metrics.

2. The proposed technique can either: (a) enhance some of the previously105

refactored files in the commits by providing better alternatives after ex-

tracting the refactoring rationale; or (b) recommend refactorings to ad-

dress the quality issues mentioned in the commit messages when we did

not find an actual improvement when checked the files before and after

the commit.110

3. The paper reports the results of an empirical study on the implementation

of our approach. The obtained manual evaluation results provide evidence

to support the claim that our proposal is more efficient, on average, than

existing refactoring techniques based on a benchmark of 6 open source

systems in terms of the relevance of recommended refactorings especially115

for the case of incremental refactorings.

5

The remainder of this paper is structured as follows. Section 2 presents

the relevant background details. Section 3 describes our approach while the

results obtained from our experiments are presented and discussed in Section 4.

Threats to validity are discussed in Section 5. Section 6 provides an account of120

related work. Finally, in Section 7, we summarize our conclusions and present

some ideas for future work.

2. Problem Statement

2.1. Background

Quality attributes. QMOOD is a widely used quality model, based on125

the ISO 9126 product quality model [34]. We selected this model because it is

a widely accepted quality model in industry and it has been validated based

on hundreds of industrial projects[34, 35, 36, 37, 17]. Each quality attribute

in QMOOD is defined using a combination of low-level metrics as detailed in

Tables 1 and 2. The QMOOD model has been used in many studies [19, 38, 39]130

to estimate the effects of proposed refactoring solutions on software quality.

QMOOD defines six high-level design quality attributes (reusability, flexibility,

understandability, functionality, extendibility, and effectiveness) that can be

calculated using 11 lower-level design metrics.

Commits and refactoring. Refactoring documentation has two major135

parts: pull requests for “high-level” refactorings [40] and commit messages for

code-level refactorings. The individual commit messages describe refactorings

applied by a developer. A refactoring process typically starts with a new branch.

In this branch, each commit should correspond to a code-level refactoring. After

developers commit all the code-level refactorings (i.e., finish the refactoring140

process), developers make a pull request in which they write a description of

the overall refactoring. If the refactorings are accepted, the branch is merged

into the master branch.

Figure 1 shows an example of a commit extracted from an open source

project. The refactorings applied by the developers are summarized in Figure145

6

Table 1: QMOOD metrics description.

Design Metric Design Property Description

Design Size in Classes

(DSC)

Design Size Total number of classes in the design.

Number Of Hierarchies

(NOH)

Hierarchies Total number of ”root” classes in the design

(count(MaxInheritenceTree (class)=0))

Average Number of An-

cestors (ANA)

Abstraction Average number of classes in the inheritance

tree for each class.

Direct Access Metric

(DAM)

Encapsulation Ratio of the number of private and protected

attributes to the total number of attributes in a

class.

Direct Class Coupling

(DCC)

Coupling Number of other classes a class relates to, either

through a shared attribute or a parameter in a

method.

Cohesion Among Meth-

ods of class (CAMC)

Cohesion Measure of how related methods are in a class

in terms of used parameters. It can also be com-

puted by: 1 − LackOfCohesionOfMethods()

Measure Of Aggrega-

tion (MOA)

Composition Count of number of attributes whose type is user

defined class(es).

Measure of Functional

Abstraction (MFA)

Inheritance Ratio of the number of inherited methods per

the total number of methods within a class.

Number of Polymorphic

Methods (NOP)

Polymorphism Any method that can be used by a class and its

descendants. Counts of the number of methods

in a class excluding private, static and final ones.

Class Interface Size

(CIS)

Messaging Number of public methods in class.

Number of Methods

(NOM)

Complexity Number of methods declared in a class.

7

Table 2: Quality attributes and their equations.

Quality attributes
Definition

Computation

Reusability
A design with low coupling and high cohesion is easily

reused by other designs.

0.25∗Coupling+0.25∗Cohesion+0.5∗Messaging+

0.5 ∗DesignSize

Flexibility
The degree of allowance of changes in the design.

0.25 ∗ Encapsulation − 0.25 ∗ Coupling + 0.5 ∗

Composition + 0.5 ∗ Polymorphism

Understandability
The degree of understanding and the easiness of

learning the design implementation details.

0.33 ∗ Abstraction + 0.33 ∗ Encapsulation − 0.33 ∗

Coupling+0.33∗Cohesion−0.33∗Polymorphism−

0.33 ∗ Complexity − 0.33 ∗DesignSize

Functionality
Classes with given functions that are publicly stated

in interfaces to be used by others.

0.12 ∗ Cohesion + 0.22 ∗ Polymorphism + 0.22 ∗

Messaging+0.22∗DesignSize+0.22∗Hierarchies

Extendibility
Measurement of a design’s ability to incorporate new

functional requirements.

0.5∗Abstraction−0.5∗Coupling+0.5∗Inheritance+

0.5 ∗ Polymorphism

Effectiveness
Design efficiency in fulfilling the required functional-

ity.

0.2 ∗ Abstraction + 0.2 ∗ Encapsulation +

0.2 ∗ Composition + 0.2 ∗ Inheritance + 0.2 ∗

Polymorphism

8

Figure 1: An example commit from the “btm” project.

Figure 2: The list of refactorings applied in the commit.

9

Figure 3: The quality metric changes in the commit.

2, and the changes in the coupling (DCC) metric can be seen in Figure 3. Of

course, refactoring rarely happen in isolation and most of commits and pull-

requests contain a sequence of refactorings as described in the example Figure

2 that shows a sequence of three refactorings applied in one commit.

2.2. Motivation150

The primary motivation for our work emerged from our interactions, as part

of an NSF I-Corps project, with 127 professional developers at 38 medium and

large-size companies including eBay, Amazon, Google, IBM, and others. The

main goal of that study was to identify the challenges associated with current

refactoring tools. These are discussed next.155

Understanding the refactoring rationale is a key for relevant rec-

ommendations. Developers lack knowledge of why they should apply the

refactorings recommended by existing tools and are frequently overwhelmed by

hundreds of automatically generated antipatterns to fix and quality attributes

to improve without any indication of their impact on their current context160

[41, 42, 32, 18]. While existing refactoring approaches are mainly based on

static and dynamic analyses to find refactoring opportunities [33, 43], devel-

10

opers may not have the time and motivation to fix every quality issue. For

instance, several developers we interviewed [17, 21, 44] mentioned that they are

reluctant to apply refactorings on files that they do not ”own” or that are not165

related to their current tasks. Without understanding and detecting developer

intentions when they choose to refactor their code, refactoring recommendation

techniques will continue to be underutilized [45].

Developers describe and document refactoring opportunities in

commit messages.170

While several empirical studies [46, 47] have shown that over 62% of code

reviews discuss maintainability issues to be addressed by refactoring, and only

23% are focused on bug-fixing, most existing work still relies primarily on static

and dynamic analyses to identify refactoring opportunities and to explain the

need for them. During our survey of industrial partners (for three projects) we175

found that an average of 38% of quality issues discussed in code reviews and

commit messages could not be detected using existing traditional static and

dynamic analysis tools for code smell detection. As described in Figures 1, 2 and

3, the developer documented their refactoring rationale in terms of improving

the coupling that was detected both in the metrics change and the detected180

refactorings in that commit. Thus, a recommendation refactoring tool can use

this information of both the quality attribute to improve and the improved code

location (files) to find more refactorings that may fit with the current intention

of the developer. But none of the existing studies have used commit message

analysis to detect refactoring opportunities or to infer recommendations.185

Developers may not manually find the best refactoring strategy

meeting their needs. Developers need documentation to comprehend refac-

toring and understand quality changes for code reviews, and to assess technical

debt. We found that 46% of the commits in JHotDraw, Xerces, and three

projects of one of our industrial partners, eBay, were related to refactoring, as190

detected using RefactoringMiner [31]. However, 39% of the documentation of

their pull-request descriptions or commit messages was inconsistent with the

actual quality changes observed in the systems after refactoring. We found

11

Figure 4: Approach Overview: RefCom.

that a majority of the inconsistencies in these projects was attributable to poor

refactoring decisions taken manually by developers rather than to wrong docu-195

mentation. Thus we need to link documentation with refactoring recommenda-

tions and we need an automated system that can check the consistency of the

developer-created descriptions of refactorings and which can also recommend

further refactorings for quality changes.

3. RefCom: Commit-Based Refactoring Recommendations200

Operation Source/entity Target entity

Move Method ctrl.booking.BookingController::handleLodgingViewEvent (java.awt.event.ActionEvent):void ctrl.booking.LodgingModel

Extract Class ctrl.booking.SelectionModel:: -flightList+ addFlight():void+clearFlight():void ctrl.booking.FlightList

Move Method ctrl.booking.BookingController::createBookings():void ctrl.CoreModel

Table 3: An example of a solution: sequence of refactorings recommended by RefCom

Figure 4 gives an overview of our RefCom approach consisting of three main

components: the extraction of refactoring-related commits, the identification of

refactoring rationale from commits (where and why developers applied refactor-

ings) and the recommendation of refactorings based on the extracted rationale

from the commits to address the identified quality issues and meet the devel-205

oper’s intention. We describe, in the following, these three main components.

12

Algorithm 1 Commit-based multi-objective refactoring

1: Input

2: Sys: system to evaluate, Pt : parent population, Files: detected files from the

commits analysis, Quality Attributes: detected quality attributes to improve from

the commits analysis

3: Output

4: Pt+1

5: Begin

6: /* Test if any user interaction occurred in the previous iteration */

7: St ← ∅, i← 1;

8: Qt ← V ariation(Pt);

9: Rt ← Pt ∪Qt;

10: Pt ← evaluate(Pt, Ct, Sys);

11: (F1, F2, ...)← NonDominatedSort(Rt);

12: repeat

13: St ← St ∪ Fi;

14: i← i + 1

15: until (|St| ≥ N)

16: Fl ← Fi; . //Last front to be included

17: if |St| = N then

18: Pt+1 ← St;

19: else

20: Pt+1 ← ∪l−1
j=1Fj ;

21: /*Number of points to be chosen from Fl*/

22: K ← N − |Pt+1|;

23: /*Crowding distance of points in Fl */

24: Crowding −Distance−Assignment(Fl);

25: Quick − Sort(Fl);

26: /*Choose K solutions with largest distance*/

27: Pt+1 ← Pt+1 ∪ Select(Fl, k);

28: end if

29: if CommitsAnalysis← TRUE then

30:

31: /* Select and rank the best front */

32: Filter − Solution(F1, F iles,QualityAttributes);

33: Recommend− Solution(Commit)

34: end if

35: End

13

3.1. Refactoring Related Commit Extraction

The first step of our approach is to filter the set of commits of a project

by keeping only those related to refactorings. This filtering step will help con-

structing a set of commits that are related to refactoring. First, we created a set210

of 87 keywords via combining different predefined refactoring related keywords

from previous work [48, 28, 29]. Thus, the input for the keyword extraction step

is the set of commits along with the list of keywords and the output is a filtered

set of refactoring related commits. The full list of considered keywords can be

found in the website appendix [49]. Second, we used the latest version of Refac-215

toringMiner [31], which supports 38 types of refactoring, to identify the actual

refactorings applied between commits by the developers. We selected Refactor-

ingMiner based on the high precision and recall score of over 90%, as reported

in their study. Third, we calculated the QMOOD quality attributes of each

commit to check whether there were improvements in the quality between com-220

mits (which would suggest that a set of refactorings had taken place). Qmood

improvement evaluation step takes as an input a set of commits and outputs a

filtered set of commits that contain observed actual improvements in at least

one of the qmood quality attributes.

The refactoring related commits are the union of the results of the Refactor-225

ingMiner detection, keywords extraction and QMOOD improvement evaluation.

We decided to unify the data from these sources for the following reasons: (1)

RefactoringMiner can help to identify the applied refactorings even if they did

not improve quality metrics or they were not documented, (2) the keywords

extraction can help to detect commits related to refactorings even there were no230

refactorings detected by RefactoringMiner or no observed quality improvements

(inconsistencies detection), and (3) the QMOOD improvements can help not

only in identifying commits related to refactoring even if they were not doc-

umented in the commits but also in understanding the impact of the applied

refactorings. Additionally, we determined that the combination of the keywords,235

quality changes, and RefactoringMiner is sufficient to filter the commits since

we have also manually inspected some of them as well. In fact, we selected the

14

commits that are identified by only one of the three strategies (RefactoringMin-

der, QMOOD improvements or keywords). We considered commits that are

confirmed by at least two out of these three strategies as having already a very240

high probability to be related to refactorings. Thus, we inspected manually all

the commits that are only detected with exclusively one of the three strategies.

The total number of commits in that category are around 23% (319 commits).

RefactoringMiner can detect non-documented refactorings in the commit

messages, and the use of the keywords is useful to identify the claims and inten-245

tions of developers which may not be translated into actual refactorings. The

automated check of quality changes can also help to identify refactoring-related

commits and check if the developers actually addressed the quality issues de-

scribed in the commit messages. To summarize, the documented refactorings

are in general the ones that are described in the commit messages and eventually250

could be detected using the keywords. Furthermore, we are able to detect the

refactorings related commits using both RefactoringMinder and the QMOOD

improvements. In fact, these refactorings related commits may not be described

in the commits message but they are detected because they contained identified

refactorings or they improved the quality.255

3.2. Identifying Refactoring Rationale from Commits

Identifying refactoring rationale has two parts. The first part is the detection

of the files that are refactored by developers in a commit. The second part is

the identification of changes in the QMOOD quality attributes then comparing

these changes with the information in the commit message.260

For the first part, we used the GitHub API to identify the changed files in

each commit. In the second part, we compared the QMOOD quality attribute

values before and after the commit to capture the actual quality changes for

each file. Once the changed files and quality attributes were identified, we

checked if the developers intended to actually improve these files and quality265

attributes. In fact, we preprocessed the commit messages and we used the

names of code elements in the changed files and the changed quality metrics as

15

keywords to match with words in the commit message. Once the refactoring

rationale is automatically detected using this procedure, we continue with the

next step to find better refactoring recommendations that can fully meet the270

developer’s intentions and expectations. In case that no quality changes were

identified at all then a warning will be generated to developers that the manually

applied refactorings are not addressing the quality issues described in his commit

message.

3.3. Refactoring Recommendations275

After the identification of the refactoring rationale from the history of com-

mits as described in the previous step, we adopted an existing multi-objective

algorithm for refactoring [32] to search for relevant refactoring solutions im-

proving both the detected files and changed quality attributes. A refactoring

solution, as shown in Table 3, consists of a sequence of n refactoring operations280

involving one or multiple source code elements of the system to refactor. For ev-

ery refactoring, pre- and post-conditions are specified to ensure the feasibility of

the operation [50]. We selected multi-objective algorithm adaptation due to the

conflicting quality attributes that are considered in this study. In fact, our adap-

tation of multi-objective algorithm takes as objectives the 6 QMOOD quality285

attributes. Furthermore, multi-objective search has the advantage of generating

a diverse set of solutions, thus we can filter the recommendations automatically

based on the preferred files and quality attributes of the developer (extracted

from the commits as described in the previous step) without the need to run

the refactoring recommendation algorithm multiple times. For instance, if the290

refactoring rationale extracted from commits focused on improving both un-

derstandability and reusability in specific Class A and Class B, we execute our

multi-objective algorithm using all the 6 quality attributes then we filter the

Pareto front based on the two main criteria that are contained in the extracted

refactoring rationale. First, we make sure that the selected solution is the one295

that provides the highest improvement in the quality attributes extracted from

the commits during our analysis step (e.g. understandability and reusability).

16

Second, the optimal solution should also refactor the detected changed files in

the commits (e.g. Class A, Class B.

For more details about the multi-objective refactoring algorithm, the reader300

can refer to [32].

The adopted multi-objective refactoring tool is based on the non-dominated

sorting genetic algorithm (NSGA-II) [51] to find a trade-off between the six

QMOOD quality attributes. A multi-objective optimization problem can be

formulated as follow :305

Minimize F (x) = (f1(x), f2(x), ..., fM (x)),

Subject to x ∈ S,

S = {x ∈ Rm : h(x) = 0, g(x) ≥ 0};

where S is the set of inequality and equality constraints and the functions fi

are objective or fitness functions. In multi-objective optimization, the quality

of a solution is recognized by dominance. The set of feasible solutions that are

not dominated by any other solution is called Pareto-optimal or Non-dominated

solution set.310

NSGA-II is a multi-objective evolutionary algorithm operating on a popula-

tion of candidate solutions which are evolved toward the Pareto-optimal solution

set. As described in Algorithm 1, the first iteration of the process begins with

the complete execution of NSGA-II adapted to our refactoring recommenda-

tion problem based on the fitness functions representing each of the quality315

attributes. In the beginning, a random population of encoded refactoring so-

lutions, P0, is generated as the initial parent population. Then, the children

population, Q0, is created from the initial population using crossover and mu-

tation. Parent and children populations are combined to form R0. Finally, a

subset of solutions is selected from R0 based on the crowding distance and dom-320

ination rules. This selection is based on elitism which means keeping the best

solutions from the parent and child population. Elitism does not allow an al-

ready discovered non-dominated solution to be removed. After the identification

17

of the non-dominated refactoring solutions, we apply a filter on them consist-

ing of the detected changed files from the commit(s) and the desired quality325

attributes, also extracted from the commit(s). These identified refactorings are

assigned to each of the commits that have been modified by the developers.

3.4. Running Example

To demonstrate a practical example of our proposed approach, we analyzed

a real-world software repository on GitHub. For this purpose, we executed our330

tool on a repository called ”Inception D”. This project provides a semantic

annotation platform offering intelligent annotation assistance and knowledge

management. It is a large project including over 5000 commits.

As a first step of our approach, we analyzed and filtered the commits of the

mentioned repository and we extracted the refactoring-related commits. Fig-335

ure 5 represents the commit where the developer(s) documented the changes as

” Refactor PredictionTask.java for increased reusability”. It is clear from the

developer’s documentation that his intention was to improve the reusability of

that class. This information helped in identifying the refactoring rationale. Our

refactoring recommendation component takes as an input the modified classes340

which is, in this commit, ”PredictionTask.java” and ”Reusability” as a quality

attribute to improve. Figure 7 shows the list of refactorings that were recom-

mended by our tool to enhance/extend the developer’s list of applied refactoring

as shown in Figure 6. Three out of the four recommended refactoring solutions

contained the specific modified file as a parameter. To show the usefulness and345

the impact of our recommended solutions, RefCom generates charts for com-

paraison between the before developer’s changes, the after developer’s changes

and the after RefCom refactorings values of each QMOOD quality attributes.

Figure 8 highlights that RefCom clearly provided much better alternatives than

the actual manual refactorings applied by the developer. For instance, the350

reusability attribute was significantly improved—almost 15 times more than

the improvement introduced by the developer’s changes.

18

Figure 5: The analyzed commit message from ”Inception D”

4. Evaluation

4.1. Research Questions

To validate our proposed approach, we defined the following three research355

questions:

• RQ1. To what extent are refactorings documented in commit messages?

• RQ2. To what extent do developers accurately document their refactoring

and its rationale?

• RQ3. To what extent can our approach recommend relevant refactorings360

based on commit analysis compared to existing refactoring techniques?

While the first research question will validate our first hypothesis about de-

velopers document their refactoring rationale in commit messages, the second

research question will validate the second hypothesis that developers spend the

19

Figure 6: The manual refactoring applied by the developer in the commit

Figure 7: The List of refactorings recommended by RefCom

20

Figure 8: QMOOD quality before and after the commits comparing the manual refactorings

and RefCom

minimum of manual refactorings effort to fix the identified quality issues, thus365

there are inconsistencies (or incomplete refactorings) between documented and

applied refactorings in terms of expected impact/intention. The third question

will evaluate the relevance of the recommended refactorings after integrating

the two above insights into our refactoring tool to make actionable recommen-

dations. A demo of our refactoring tool, Refcom, can be found in [49].370

4.2. Experimental setting

To address the research questions, we analyzed the six open source systems

in Table 4. Atomix is a fault-tolerant distributed coordination framework. Btm

is a distributed and complete implementation of the JTA 1.1 API. Jgrapht is a

graph library that provides mathematical graph-theory objects and algorithms.375

JSAT is a set of algorithms for pre-processing, classification, regression, and

clustering with support for multi-threaded execution. Pac4j is a security engine.

Tablesaw includes a data-frame, an embedded column store, and hundreds of

methods to transform, summarize, or filter data. We selected these projects

because of their size, number of commits, and applied refactorings.380

To answer RQ1, we computed the ratio of the number of refactoring re-

lated commits to the total number of commits. Then, we counted the number

of documented refactorings among these identified refactoring related commits.

Documented refactorings are the commit messages that contain documentation

21

Table 4: Summary of the evaluated systems.

N Project Name LOC Number of Classes Total Commits Refactoring related commits Total number of refactorings

1 atomix 182280 1459 4237 343 12909

2 btm 34232 187 975 150 522

3 jgrapht 158665 526 2902 204 2202

4 JSAT 182267 436 1561 236 1457

5 pac4j 31916 302 2282 127 3130

6 tablesaw 52837 224 1930 327 3143

about refactoring. These documented refactorings are detected using keywords.385

However, refactoring related commits are the commits found after the union of

the results of RefactoringMiner [31] detection, keywords extraction (same list of

keywords previously mentioned) and the observed quality attribute changes be-

tween commits detected using our dedicated parser. A commit can be considered

as a “refactoring related commit” , while it does not contain refactoring docu-390

mentation (in the commit message) because it may contain either refactorings

detected by RefactoringMiner or included quality improvements (when compar-

ing before/after refactoring). In addition to evaluate the number of refactoring

related commits and documented refactorings, we have also evaluated the main

quality attributes that are documented in refactoring related commits to under-395

stand the most important ones that developers document. The detection of the

documented quality attributes is carried out by searching for quality attributes

names and their roots in the commit messages. Finally, we investigated the

number of commits that introduce significant changes in the quality attributes,

but which developers did not document.400

To answer RQ2, we checked all the quality attributes by analyzing the code,

and not only the ones claimed/documented by developers in their commits.

There are two main reasons for checking all the quality attributes improvement.

First, it helped identifying the refactoring related commits that contain doc-

umented quality attributes but there were no actual observed improvement of405

the quality attributes before and after the commit. Second, checking all the

quality attributes improvement helps detecting the commit that does not claim

a quality attribute but still is related to refactoring. In fact, we have used Refac-

22

toringMiner [31] and our tool for code analysis to detect the situations where

quality attributes changes and applied refactorings were not documented. These410

are opportunities for refactoring solutions that better address these quality at-

tributes.

To answer RQ3, we used the outcomes of the two prior research questions

to identify developer refactoring rationale per commit: what files did they want

to refactor? And what quality attributes did they want to improve? Then, we415

used that rationale to guide and filter the refactoring recommendations gen-

erated using our approach based on multi-objective search. We compared the

automated refactorings using RefCom to the manual refactorings applied by

the developers in the commits in terms of quality improvements. Then, we

compared the recommended refactorings to two existing studies [33, 32] using420

a relevance measure. The relevance of the refactorings is defined as the num-

ber of refactoring recommendations accepted by developers participating in our

experiments divided by the total number of recommended refactorings.

We asked 24 developers to evaluate the meaningfulness of the refactorings

recommended by Refcom and by the approach of Ouni [32] and JDeodorant [33]425

for pull-requests on the six subject systems. We followed a random order of

the three tools when the results were manually inspected. All the experimental

techniques generate sequences of refactoring operations that make sense when

considered together rather than when looking at them in isolation. However,

it is not an option to ask a developer to assess the meaningfulness of all the430

refactoring operations generated for a given system. For this reason, we started

by filtering for each system the sequences of refactoring operations impacting

the files of a set of pull-requests to make a fair comparison between both tools.

Then, the developers manually evaluated the outcomes of both tools for the

commits of each pull-request.435

Each participant was then asked to assess the meaningfulness of the se-

quences of refactoring operations. We made sure that each participant only

evaluated refactoring sequences recommended by the three competitive tech-

niques on one system. The rationale for such a choice is that an external de-

23

veloper would need time to acquire system knowledge by inspecting its code,440

and we did not want participants to have to comprehend the code from multiple

systems since this would introduce a training effect in our study.

To support such a complex experimental design, we built a Java Web-app

that automatically assigns the refactored pull-requests to be evaluated to the

developers. The Web-app showed each participant one sequence of refactoring445

operations on a single page, providing the developer with (i) the list of refac-

torings (move method mi to class Cj , then push down field fk to subclass Cj ,

), (ii) the code of the classes impacted by the sequence of refactorings, and (iii)

the complete code of the system subject of the refactoring with the generated

refactoring sequence. The web page showing the refactoring sequence asked par-450

ticipants the question Would you apply the proposed refactorings? with a choice

between no (the refactoring sequence is not meaningful), or yes (the refactoring

sequence is meaningful and should be implemented). Moreover, participants

were optionally allowed to leave a comment justifying their assessment. The

Web-app was also in charge of:455

Balancing the evaluations per system. We made sure that each system re-

ceived roughly the same number of participants evaluating the different refac-

tored pull-requests/commits (files associated/modified by these pull-requests)

by the three approaches.

Keeping track of the time spent by participants in the evaluation of each460

refactoring sequence/pull-request. The time spent by participants was counted

in seconds since the moment the Web-app showed the refactoring on the screen

to the moment in which the participant submitted their assessment. This fea-

ture was done to remove participants from our data set who did not spend a

reasonable amount of time in evaluating the refactorings. We consider less than465

90 seconds a reasonable threshold to remove noise (we removed all evaluation

sessions in which the participant spent less than 90 seconds in analyzing a single

refactoring sequence).

Collecting demographic information about the participants. We asked their

24

Table 5: Participants involved to answer RQ3.

System #Partic. Avg. Prog. Avg. Java Avg. Refact.

Experience Experience Exp.(1-5)

atomix 4 9 9 4.0 (high)

btm 4 8 7 3.5 (medium)

jgrapht 4 10 9 3.8 (medium)

JSAT 4 9 7 3.5 (high)

pac4j 4 7.5 7 4.5 (very high)

tablesaw 4 9 9 3.5 (high)

programming experience (in years) overall and in Java, and a self-assessment of470

their refactoring experience (from very low to very high). All of the participants

were hired based on our current and previous extensive industry collaborations

on refactoring. Despite that we contacted open source developers, we did not

receive from them a timely response or did not answer at all which is a common

challenge and threat in human studies within software engineering research [52].475

We made sure that all the selected participants from industry are experienced

in refactoring and used before these open source systems/libraries.

Table 5 shows the participants involved in our study and how they were

distributed in the evaluation of the refactoring sequences generated for the six

systems.480

4.3. Results

Results for RQ1. Since our work is based on the assumption that devel-

opers write commit messages to document some of the applied refactorings, we

identified first the commits related to refactorings then we checked those that

documented the applied refactorings in the commit messages.485

Table 6 summarizes our findings. It is clear that all the six open source

projects have extensive refactorings applied in previous commits: an average of

over 30% of all commits. The Atomix system has the highest number of com-

mits related to refactoring. We found that 211 commit messages documented

the applied refactorings, which is more than 60% of commits containing refac-490

torings. The same observation can be applied to the remaining systems. While

developers extensively apply refactorings, they may not document all of them.

25

Still there are enough commits including refactoring documentation to identify

further opportunities for refactoring.

Project Total number of commits
Commits related

to refactoring

Docuented commits related

to refactoring

Commits identified

with RefacotoringMiner

Commits identified

with Quality Improvements

atomix 4237 343 211 233 174

btm 975 150 52 55 46

jgraphft 2902 204 107 87 40

jsat 1561 236 113 58 65

pac4j 2282 127 84 65 33

tablesaw 1930 327 159 116 63

Table 6: An overview of the documented commits related to refactoring on the six open source

systems.

We also investigated the main quality attributes of QMOOD that were docu-495

mented by developers in the commit messages when refactorings were applied to

improve those attributes. As described in Figure 9, we found understandability

to be the most common quality documented by developers in commit messages.

In 4 of the 6 open source systems it is the most common quality attribute doc-

umented by developers. For instance, the developers mentioned the rationale500

of understandability in messages in 53% of the commits improving the Atomix

system. Reusability is the second most documented rationale, on average, in

the six systems. It is also normal that developers document the rationale of the

refactorings in combination with the features that were modified (functionality).

To conclude, we found that developers do document refactorings and they505

extensively apply refactorings over the commits of all six open source systems.

Our results show that developers mention quality attributes as a rationale for

their refactorings in over 50% of commits related to refactoring that are docu-

mented, which is enough to find opportunities for enhanced refactorings.

Results for RQ2. Figure 10 shows that developers are documenting their510

intention to refactor the code to address quality issues in the commit messages;

however we did not find any quality improvements when we analyzed the quality

changes in the files of these commits. For the Btm system, we found that only

32 out of 149 commits related to refactoring have actual quality changes. Only

60 out 236 commits related to refactorings have actual quality changes despite515

26

Figure 9: The percentage of documented quality attributes per system among the commits

improving the quality attributes.

developers commenting on applying refactorings in their commit messages.

It is clear that developers highlight their intention to refactor the code with

its rationale; however no actual quality improvements have been observed in

many commits. This conclusion is one of the main motivations for RQ3.

Results for RQ3. After validating the two hypotheses of the previous re-520

search questions, we implemented our Refcom tool for improving the QMOOD

quality attributes by integrating a filter to guide the refactoring recommen-

dations based on rationale identified in the previous research questions (what

quality attributes and which files do developers want to improve?). Figure 9

shows that developers documented refactorings with the intention of improving525

all the 6 quality attributes but with different levels of frequency. For instance,

it is clear that developers focused on improving both understandability and

reusability in project atomix. Thus, we executed our multi-objective algorithm

using all the 6 quality attributes then we filter the Pareto front based on the two

main criteria that are contained in the extracted refactoring rationale. First,530

we make sure that the selected solution is the one that provides the highest

improvement in the quality attributes extracted from the commits during our

27

Figure 10: Missed documented refactoring opportunities in the 6 systems.

analysis step (e.g. understandability and reusability in project atomix). Second,

the optimal solution should also refactor the detected changed files in the com-

mits. We compared our results with two existing refactoring tools. Ouni [32]535

proposed a multi-objective refactoring formulation based on NSGA-II that gen-

erates a solution to maximize the design coherence and refactoring reuse from

previous releases. JDeodorant [33] is an Eclipse plugin to detect bad smells and

apply refactorings.

Figure 11 highlights the out-performance of RefCom compared to the tools of540

Ouni et al. [32] and JDeodorant [33]. In fact, most refactorings recommended by

our approach are relevant, and all of them were successfully applied for the case

Atomix system on the expected files and achieved high-quality improvements,

based on the feedback from the participants.

By looking at the comments left by participants when justifying their assess-545

ments, thirteen out of the twenty four developers highlighted in their comments

about the refactoring sequences that they found the refactorings relevant be-

cause they are completing the effort started by the submitter of the developer

as described in the commit messages. For example, one of the developers wrote

in a comment: “I found these refactorings really improving the reusability of550

28

Figure 11: The relevance of the recommended refactorings by RefCom compared to existing

refactoring approaches.

this class which is the main intention of the developer but he just applied couple

of move methods. I found the tool recommendation even better to improve the

reusability.”. We found this comment as important qualitative evidence of only

the value of RefCom in terms of analyzing the recently closed pull-requests to

identify changed files and fix the identified quality issues in these files.555

Thus RefCom provided relevant refactoring recommendations based on the

commit analysis, outperforming existing approaches to recommend refactor-

ings.

5. Threats to Validity

We discuss in this section the different threats related to our experiments.560

The threats to internal validity can be related to the list of keywords that we

used to identify the commits where developers documented refactorings. How-

ever, the impact of this threat was limited by considering the use of Refactoring-

Miner to identify the actual refactorings applied by developers. The parameters

tuning of the optimization algorithm used in our experiments may create an565

29

internal threat that needs to be evaluated in future work since the parameter

values used in our experiments were found by trial and error.

Construct validity is concerned with the relationship between theory and

what is observed. We have used the QMOOD quality attributes to capture

the quality changes between commits. While the QMOOD model is already570

empirically validated by existing studies [53], it is possible that some quality

changes may not be detected using QMOOD.

External validity refers to the generalizability of our findings. We performed

our experiments on 6 open-source systems belonging to different domains. How-

ever, we cannot assert that our results can be generalized to other applications575

and other developers. Moreover, we found that only 32 out of 149 commits

related to refactoring have actual quality changes which limits the generaliz-

ability of our findings and requires more experiments. Another threat could be

the number of subjects (24 developers) used for validation. Future replications

of this study are necessary to confirm our findings.580

6. Related Work

6.1. Detection Refactoring Opportunities

Several approaches have been proposed to automatically detect design flaws

(anti-patterns, code smells) [54, 55, 56, 57, 58, 59, 60, 61, 62, 63]. We only

discuss a few representative works and refer the interested reader to the recent585

survey by Sharma and Spinellis [64] for a complete overview.

Marinescu [7] proposes a metric-based mechanism to capture deviations from

good design principles and heuristics, called “detection strategies”. Such strate-

gies are based on the identification of symptoms characterizing a particular smell

and metrics for measuring such symptoms.590

Moha et al. [65] exploit a similar idea in their DECOR approach, proposing

a Domain-Specific Language (DSL) for specifying smells using high-level ab-

stractions. Four design smells are identified by DECOR, namely Blob, Swiss

Army Knife, Functional Decomposition, and Spaghetti Code.

30

Design flaw detection can also be formulated as an optimization problem,595

as pointed out by Kessentini et al. [37]. They present a cooperative parallel

search-based approach for identifying code smell instances. The idea here is

that many evolutionary algorithms are executed in parallel to solve a common

goal (the detection of code smells). The empirical evaluation reported in the

paper shows the high accuracy of the proposed approach (recall and precision600

higher than 85%).

Besides metrics exploiting structural information extracted from the code,

Palomba et al. [66] provide evidence that historical data can be successfully

exploited to identify code smells; not only smells that are intrinsically charac-

terized by their evolution across the program history but also smells such as605

Blob and Feature Envy.

Despite the extensive studies on the detection of refactoring opportunities

[64, 67], none of them considered the use of commit messages to understand

developer intentions during refactoring and the type of quality issues they want

to address. The main assumption of most of these approaches is that developers610

want to fix code smells and antipatterns. However, we found that developers

largely did not use terms related to antipatterns or code smells when describing

and documenting refactoring opportunities in practice.

6.2. Refactoring Recommendation

Much effort has been devoted to the definition of approaches supporting615

refactoring. One representative example is JDeodorant, the tool proposed by

Tsantalis and Chatzigeorgiou [68]. We point the interested reader to the survey

by Bavota et al. [69] for an overview of approaches supporting code refactoring.

O’Keeffe and Cinnéide [70] presented the idea of formulating the refactor-

ing task as a search problem in the space of alternative designs, generated by620

applying a set of refactoring operations. Such a search is guided by a quality

evaluation function based on eleven object-oriented design metrics that reflect

refactoring goals. Harman and Tratt [71] were the first to introduce the concept

of Pareto optimality to search-based refactoring. They used it to combine two

31

metrics, namely CBO (Coupling Between Objects) and SDMPC (Standard De-625

viation of Methods Per Class), into a fitness function and showed its superior

performance as compared to a mono-objective technique [71].

The two aforementioned works [70, 71] paved the way to several search-based

approaches aimed at recommending refactoring operations [72, 73, 74, 75, 42,

32]. A representative example of these techniques is the recent work by Ouni630

et al. [32], who propose a multi-criteria code refactoring approach aimed at

optimizing five objectives: (i) minimizing the number of code smells; (ii) min-

imizing the refactoring cost (the number of recommended refactorings); (iii)

preserving the design semantics (meaning considering textual information em-

bedded in code identifiers and comments in the refactoring recommendation);635

and (iv) maximizing the consistency with code changes performed over the sys-

tem’s change history.

Murphy-Hill et al. [8] show that semi-automated tools for refactorings have

been underutilized. In fact, fully automatic refactoring usually does not lead

to the desired architecture and thus a designer’s feedback should be included.640

Other studies also highlighted that developers are mainly interested in incremen-

tal refactoring and they are combining regular code changes such as bug-fixing

with refactoring [18]. We proposed, in this paper, another perception to the way

that refactorings can be recommended by extracting relevant information from

commit messages and providing better suggestions to refactor the files related645

to the interests of the developers.

6.3. Empirical Studies on Refactoring

Empirical studies on software refactoring mainly aim at investigating the

refactoring habits of software developers and the relationship between refactor-

ing and code quality.650

Murphy-Hill et al. [41] investigated how developers perform refactorings.

Examples of the exploited datasets are usage data from 41 developers using the

Eclipse environment and information extracted from versioning systems. Among

their findings they show that developers often perform floss refactoring, namely

32

they interleave refactoring with other programming activities, confirming that655

refactoring is rarely performed in isolation. Kim et al. [28] present a survey

of software refactoring with 328 Microsoft engineers. To investigate when and

how they refactor code and developer perception of the benefits, risks, and

challenges of refactoring. They show that the major risk factor perceived by

developers is the introduction of bugs and one of the main benefits they expect660

is to have fewer bugs in the future, thus indicating the usefulness of refactoring

for code components exhibiting high fault-proneness. A recent empirical study

[76] shows that developers have a misperception of quality metrics, as compared

to terms used in academia, when documenting refactorings which motivates our

work where we look at the actual metric changes rather than just the term in665

the commit messages, when recommending refactorings.

7. Conclusion

We presented a first attempt to recommend refactorings by analyzing com-

mit messages. The salient feature of the proposed RefCom approach is its

ability to capture developers need, from their commit messages, and propose670

to them refactorings to enhance their changes to better address quality issues.

To evaluate the effectiveness of our technique, we applied it to six open-source

projects and compared it with state-of-the-art approaches that rely on static

and dynamic analysis. Our results show promising evidence on the usefulness

of the proposed commit-based refactoring approach.675

Future work will involve validating our technique with additional refactor-

ing types, programming languages and a more extensive set of projects and

commits to investigate the general applicability of the proposed methodology.

We will also check the relevance of integrating commit messages in finding and

recommending refactoring opportunities then fixing them based on different680

refactoring recommendations tools beyond our previous work.

33

References

[1] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-

Wesley Longman Publishing Co., Inc., 1999 (1999).

[2] M. Feathers, Working Effectively with Legacy Code: WORK EFFECT685

LEG CODE p1, Prentice Hall Professional, 2004 (2004).

[3] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,

A. Shapochka, A case study in locating the architectural roots of tech-

nical debt, in: 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, Vol. 2, IEEE, 2015, pp. 179–188 (2015).690

[4] J. Carriere, R. Kazman, I. Ozkaya, A cost-benefit framework for making

architectural decisions in a business context, in: 2010 ACM/IEEE 32nd

International Conference on Software Engineering, Vol. 2, IEEE, 2010, pp.

149–157 (2010).

[5] M. Kim, M. Gee, A. Loh, N. Rachatasumrit, Ref-finder: a refactoring695

reconstruction tool based on logic query templates, in: Proceedings of the

eighteenth ACM SIGSOFT international symposium on Foundations of

software engineering, ACM, 2010, pp. 371–372 (2010).

[6] D. Batory, J. N. Sarvela, A. Rauschmayer, Scaling step-wise refinement,

IEEE Transactions on Software Engineering 30 (6) (2004) 355–371 (2004).700

[7] R. Marinescu, Detection strategies: Metrics-based rules for detecting design

flaws, in: 20th IEEE International Conference on Software Maintenance,

2004. Proceedings., IEEE, 2004, pp. 350–359 (2004).

[8] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know

it, IEEE Transactions on Software Engineering 38 (1) (2012) 5–18 (2012).705

[9] D. Dig, C. Comertoglu, D. Marinov, R. Johnson, Automated detection of

refactorings in evolving components, in: European Conference on Object-

Oriented Programming, Springer, 2006, pp. 404–428 (2006).

34

[10] J. Kim, D. Batory, D. Dig, M. Azanza, Improving refactoring speed by 10x,

in: 2016 IEEE/ACM 38th International Conference on Software Engineer-710

ing (ICSE), IEEE, 2016, pp. 1145–1156 (2016).

[11] A. Ouni, M. Kessentini, H. Sahraoui, M. Boukadoum, Maintainability de-

fects detection and correction: a multi-objective approach, Automated

Software Engineering 20 (1) (2013) 47–79 (2013).

[12] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, M. Ó Cinnéide, Rec-715

ommendation system for software refactoring using innovization and in-

teractive dynamic optimization, in: Proceedings of the 29th ACM/IEEE

international conference on Automated software engineering, ACM, 2014,

pp. 331–336 (2014).

[13] B. Du Bois, S. Demeyer, J. Verelst, Refactoring-improving coupling and co-720

hesion of existing code, in: 11th working conference on reverse engineering,

IEEE, 2004, pp. 144–151 (2004).

[14] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, K. Deb, Multi-criteria

code refactoring using search-based software engineering: An industrial

case study, ACM Transactions on Software Engineering and Methodology725

(TOSEM) 25 (3) (2016) 23 (2016).

[15] I. H. Moghadam, M. Ó Cinnéide, Code-imp: a tool for automated search-

based refactoring, in: Proceedings of the 4th Workshop on Refactoring

Tools, ACM, 2011, pp. 41–44 (2011).

[16] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, S. Yang, Refactoring730

android java code for on-demand computation offloading, in: ACM Sigplan

Notices, Vol. 47, ACM, 2012, pp. 233–248 (2012).

[17] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni, Y. Cai,

An interactive and dynamic search-based approach to software refactoring

recommendations, IEEE Transactions on Software Engineering (2018).735

35

[18] V. Alizadeh, M. Kessentini, Reducing interactive refactoring effort via

clustering-based multi-objective search, in: Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineer-

ing, ACM, 2018, pp. 464–474 (2018).

[19] M. O’Keeffe, M. O. Cinnéide, Search-based refactoring for software main-740

tenance, Journal of Systems and Software 81 (4) (2008) 502–516 (2008).

[20] W. Brown, R. Malveau, S. McCormick, T. Mowbray, AntiPatterns: Refac-

toring Software, Architectures, and Projects in Crisis, Wiley, 1998 (1998).

[21] V. Alizadeh, M. Kessentini, Reducing interactive refactoring effort via

clustering-based multi-objective search, in: Proceedings of the 33rd745

ACM/IEEE International Conference on Automated Software Engineer-

ing, ASE 2018, ACM, New York, NY, USA, 2018, pp. 464–474 (2018).

doi:10.1145/3238147.3238217.

URL http://doi.acm.org/10.1145/3238147.3238217

[22] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, W. Zhao, Interactive and750

guided architectural refactoring with search-based recommendation, in:

Proc. 24th.

[23] G. B. V. A. Jeffrey Yackley, Marouane Kessentini, B. Maxim, Simultaneous

refactoring and regression testing: A multi-tasking approach, in: Proceed-

ings of the 19th IEEE International Working Conference on Source Code755

Analysis and Manipulation SCAM2019, 2019, p. 12 pages (2019).

[24] V. A. M. K. Soumaya Rebai, Ousaama Ben Sghaier, M. Chater, Interactive

refactoring documentation bot, in: Proceedings of the 19th IEEE Inter-

national Working Conference on Source Code Analysis and Manipulation

SCAM2019, 2019, p. 12 pages (2019).760

[25] J. Pantiuchina, M. Lanza, G. Bavota, Improving code: The (mis) percep-

tion of quality metrics, in: 2018 IEEE International Conference on Software

36

http://doi.acm.org/10.1145/3238147.3238217
http://doi.acm.org/10.1145/3238147.3238217
http://doi.acm.org/10.1145/3238147.3238217
https://doi.org/10.1145/3238147.3238217
http://doi.acm.org/10.1145/3238147.3238217
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017

Maintenance and Evolution, ICSME 2018, Madrid, Spain, September 23-

29, 2018, 2018, pp. 80–91 (2018). doi:10.1109/ICSME.2018.00017.

URL https://doi.org/10.1109/ICSME.2018.00017765

[26] E. Murphy-Hill, A. P. Black, Refactoring tools: Fitness for purpose, IEEE

Software 25 (5) (2008) 38–44 (2008).

[27] G. Bavota, B. D. Carluccio, A. D. Lucia, M. D. Penta, R. Oliveto,

O. Strollo, When does a refactoring induce bugs? an empirical study, in:

12th IEEE International Working Conference on Source Code Analysis and770

Manipulation, SCAM, 2012, pp. 104–113 (2012).

[28] M. Kim, T. Zimmermann, N. Nagappan, An empirical study of refactor-

ingchallenges and benefits at microsoft, Software Engineering, IEEE Trans-

actions on 40 (7) (2014) 633–649 (July 2014).

[29] E. A. AlOmar, M. W. Mkaouer, A. Ouni, Can refactoring be self-affirmed?:775

An exploratory study on how developers document their refactoring activi-

ties in commit messages, in: Proceedings of the 3rd International Workshop

on Refactoring, IWOR ’19, IEEE Press, Piscataway, NJ, USA, 2019, pp.

51–58 (2019). doi:10.1109/IWoR.2019.00017.

URL https://doi.org/10.1109/IWoR.2019.00017780

[30] G. Soares, R. Gheyi, T. Massoni, Automated behavioral testing of refac-

toring engines, IEEE Transactions on Software Engineering 39 (2) (2013)

147–162 (2013).

[31] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, D. Dig, Accu-

rate and efficient refactoring detection in commit history, in: Proceedings785

of the 40th International Conference on Software Engineering, ICSE 2018,

Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 483–494 (2018).

doi:10.1145/3180155.3180206.

URL https://doi.org/10.1145/3180155.3180206

37

https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206

[32] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, K. Deb, Multi-criteria790

code refactoring using search-based software engineering: an industrial

case study, ACM Transactions on Software Engineering and Methodology

(TOSEM) 25 (3) (2016) 23 (2016).

[33] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou, Jdeodorant: iden-

tification and application of extract class refactorings, in: 33rd Interna-795

tional Conference on Software Engineering (ICSE), 2011, pp. 1037–1039

(2011).

[34] J. Bansiya, C. G. Davis, A hierarchical model for object-oriented de-

sign quality assessment, IEEE Transactions on software engineering 28 (1)

(2002) 4–17 (2002).800

[35] M. O’Keeffe, M. O. Cinnéide, Search-based refactoring: An empirical study,

Journal of Software Maintenance and Evolution 20 (5) (2008) 345–364

(2008).

[36] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, I. Hemati Moghadam,

Experimental assessment of software metrics using automated refactoring,805

in: International Symposium on Empirical Software Engineering and Mea-

surement (ESEM), 2012, pp. 49–58 (2012).

[37] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, A. Ouni, A coop-

erative parallel search-based software engineering approach for code-smells

detection, IEEE Transactions on Software Engineering 40 (9) (2014) 841–810

861 (2014).

[38] A. C. Jensen, B. H. Cheng, On the use of genetic programming for auto-

mated refactoring and the introduction of design patterns, in: Proceedings

of the 12th annual conference on Genetic and evolutionary computation,

ACM, 2010, pp. 1341–1348 (2010).815

[39] S. Lee, G. Bae, H. S. Chae, D.-H. Bae, Y. R. Kwon, Automated scheduling

38

for clone-based refactoring using a competent ga, Software: Practice and

Experience 41 (5) (2011) 521–550 (2011).

[40] R. Khatchadourian, H. Masuhara, Automated refactoring of legacy java

software to default methods, in: Proceedings of the 39th International820

Conference on Software Engineering, IEEE Press, 2017, pp. 82–93 (2017).

[41] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know

it, IEEE Transactions on Software Engineering (TSE) 38 (1) (2011) 5–18

(2011).

[42] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,825

A. Ouni, Many-objective software remodularization using nsga-iii, ACM

Transactions on Software Engineering and Methodology (TOSEM) 24 (3)

(2015) 17:1–17:45 (2015).

[43] A. Alali, H. Kagdi, J. I. Maletic, What’s a typical commit? a characteriza-

tion of open source software repositories, in: Proc. 16th, 2008, pp. 182–191830

(Jun. 2008).

[44] H. F. Vahid Alizadeh, M. Kessentini, Less is more: From multi-objective to

mono-objective refactoring via developers knowledge extraction, in: Pro-

ceedings of the 19th IEEE International Working Conference on Source

Code Analysis and Manipulation SCAM2019, 2019, p. 12 pages (2019).835

[45] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, A. Bernstein, The missing

links: Bugs and bug-fix commits, in: Proc. 16th, 2010 (Nov. 2010).

[46] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, C. Chockley, Process aspects and

social dynamics of contemporary code review: Insights from open source

development and industrial practice at microsoft, IEEE Transactions on840

Software Engineering 43 (1) (2017) 56–75 (2017).

[47] M. Beller, A. Bacchelli, A. Zaidman, E. Juergens, Modern code reviews in

open-source projects: Which problems do they fix?, in: Proceedings of the

39

11th working conference on mining software repositories, ACM, 2014, pp.

202–211 (2014).845

[48] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know

it, IEEE Transactions on Software Engineering 38 (1) (2011) 5–18 (2011).

[49] Recommending Rfactorings via Commit Message Analyis.

URL https://sites.google.com/view/istrefcom

[50] M. Fowler, Refactoring: Improving the Design of Existing Code, 1999 (Jul.850

1999).

[51] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-

objective genetic algorithm: Nsga-ii, IEEE transactions on evolutionary

computation 6 (2) (2002) 182–197 (2002).

[52] A. J. Ko, T. D. Latoza, M. M. Burnett, A practical guide to controlled ex-855

periments of software engineering tools with human participants, Empirical

Software Engineering 20 (1) (2015) 110–141 (2015).

[53] O. Baysal, R. Holmes, A qualitative study of mozilla’s process management

practices, David R. Cheriton School of Computer Science, University of

Waterloo, Waterloo, Canada, Tech. Rep. CS-2012-10 (2012).860

[54] A. Ghannem, M. Kessentini, G. El Boussaidi, Detecting model refactoring

opportunities using heuristic search, in: Proceedings of the 2011 Conference

of the Center for Advanced Studies on Collaborative Research, 2011, pp.

175–187 (2011).

[55] M. Kessentini, P. Langer, M. Wimmer, Searching models, modeling search:865

On the synergies of sbse and mde, in: 2013 1st International Workshop on

Combining Modelling and Search-Based Software Engineering (CMSBSE),

IEEE, 2013, pp. 51–54 (2013).

[56] M. Kessentini, R. Mahaouachi, K. Ghedira, What you like in design use to

correct bad-smells, Software Quality Journal 21 (4) (2013) 551–571 (2013).870

40

https://sites.google.com/view/istrefcom
https://sites.google.com/view/istrefcom

[57] A. Ghannem, G. El Boussaidi, M. Kessentini, Model refactoring using ex-

amples: a search-based approach, Journal of Software: Evolution and Pro-

cess 26 (7) (2014) 692–713 (2014).

[58] A. Ouni, M. Kessentini, S. Bechikh, H. Sahraoui, Prioritizing code-smells

correction tasks using chemical reaction optimization, Software Quality875

Journal 23 (2) (2015) 323–361 (2015).

[59] M. Kessentini, A. Ouni, P. Langer, M. Wimmer, S. Bechikh, Search-based

metamodel matching with structural and syntactic measures, Journal of

Systems and Software 97 (2014) 1–14 (2014).

[60] B. Amal, M. Kessentini, S. Bechikh, J. Dea, L. B. Said, On the use of ma-880

chine learning and search-based software engineering for ill-defined fitness

function: a case study on software refactoring, in: International Sympo-

sium on Search Based Software Engineering, Springer, Cham, 2014, pp.

31–45 (2014).

[61] A. Ghannem, G. El Boussaidi, M. Kessentini, On the use of design de-885

fect examples to detect model refactoring opportunities, Software Quality

Journal 24 (4) (2016) 947–965 (2016).

[62] H. Wang, M. Kessentini, A. Ouni, Bi-level identification of web ser-

vice defects, in: International Conference on Service-Oriented Computing,

Springer, 2016, pp. 352–368 (2016).890

[63] A. Ouni, M. Kessentini, M. Ó Cinnéide, H. Sahraoui, K. Deb, K. Inoue,

More: A multi-objective refactoring recommendation approach to introduc-

ing design patterns and fixing code smells, Journal of Software: Evolution

and Process 29 (5) (2017).

[64] T. Sharma, D. Spinellis, A survey on software smells, Journal of Systems895

and Software 138 (2018) 158 – 173 (2018).

41

[65] N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F. L. Meur, Decor: A method

for the specification and detection of code and design smells, IEEE Trans-

actions on Software Engineering 36 (1) (2010) 20–36 (2010).

[66] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, A. De Lu-900

cia, Mining version histories for detecting code smells, IEEE Transactions

on Software Engineering 41 (5) (2015) 462–489 (2015).

[67] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Oź CinneźIde, K. Deb,

On the use of many quality attributes for software refactoring: A

many-objective search-based software engineering approach, Empirical905

Softw. Engg. 21 (6) (2016) 2503–2545 (Dec. 2016). doi:10.1007/

s10664-015-9414-4.

URL https://doi.org/10.1007/s10664-015-9414-4

[68] N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring

opportunities, IEEE Transactions on Software Engineering 35 (3) (2009)910

347–367 (2009).

[69] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, Recommending refactor-

ing operations in large software systems, in: M. P. Robillard, W. Maalej,

R. J. Walker, T. Zimmermann (Eds.), Recommendation Systems in Soft-

ware Engineering, Springer Berlin Heidelberg, 2014, pp. 387–419 (2014).915

[70] M. O’Keeffe, M. Ó Cinnéide, A stochastic approach to automated de-

sign improvement, in: International Conference on Principles and practice

of programming in Java, Computer Science Press, Inc., 2003, pp. 59–62

(2003).

[71] M. Harman, L. Tratt, Pareto optimal search based refactoring at the design920

level, in: 9th annual conference on Genetic and evolutionary computation,

2007, pp. 1106–1113 (2007).

[72] O. Seng, J. Stammel, D. Burkhart, Search-based determination of refac-

torings for improving the class structure of object-oriented systems, in:

42

https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4

International conference on Genetic and evolutionary computation, ACM,925

2006, pp. 1909–1916 (2006).

[73] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, A. Ouni, De-

sign defects detection and correction by example, in: International Confer-

ence on Program Comprehension (ICPC), IEEE, 2011, pp. 81–90 (2011).

[74] A. Ouni, M. Kessentini, H. Sahraoui, Search-based refactoring using930

recorded code changes, in: Proceedings of the 17th European Conference

on Software Maintenance and Reengineering (CSMR 2013), pp. 221–230.

[75] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, M. Ó Cinnéide, Rec-

ommendation system for software refactoring using innovization and in-

teractive dynamic optimization, in: Proceedings of the 29th ACM/IEEE935

International Conference on Automated Software Engineering (ASE 2014),

pp. 331–336.

[76] P. W. McBurney, S. Jiang, M. Kessentini, N. A. Kraft, A. Armaly, M. W.

Mkaouer, C. McMillan, Towards prioritizing documentation effort, IEEE

Transactions on Software Engineering 44 (9) (2018) 897–913 (2018).940

43

	Introduction
	Problem Statement
	Background
	Motivation

	RefCom: Commit-Based Refactoring Recommendations
	Refactoring Related Commit Extraction
	Identifying Refactoring Rationale from Commits
	Refactoring Recommendations
	Running Example

	Evaluation
	Research Questions
	Experimental setting
	Results

	Threats to Validity
	Related Work
	Detection Refactoring Opportunities
	Refactoring Recommendation
	Empirical Studies on Refactoring

	Conclusion

