
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

How Does Refactoring Impact Security When
Improving Quality? A Security-Aware

Refactoring Approach
Chaima Abid, Marouane Kessentini, Vahid Alizadeh, Mouna Dhaouadi and Rick Kazman

Abstract—While state of the art of software refactoring research uses various quality attributes to identify refactoring opportunities and
evaluate refactoring recommendations, the impact of refactoring on the security of software systems when improving other quality
objectives is under-explored. It is critical to understand how a system is resistant to security risks after refactoring to improve quality
metrics. For instance, refactoring is widely used to improve the reusability of code, however such an improvement may increase the attack
surface due to the created abstractions. Increasing the spread of security-critical classes in the design to improve modularity may result in
reducing the resilience of software systems to attacks. In this paper, we investigated the possible impact of improving different quality
attributes (e.g. reusability, extendibility, etc.), from the QMOOD model, effectiveness on a set of 8 security metrics defined in the literature
related to the data access. We also studied the impact of different refactorings on these static security metrics. Then, we proposed a
multi-objective refactoring recommendation approach to find a balance between quality attributes and security based on the correlation
results to guide the search. We evaluated our tool on 30 open source projects. We also collected the practitioner perceptions on the
refactorings recommended by our tool in terms of the possible impact on both security and other quality attributes. Our results confirm
that developers need to make trade-offs between security and other qualities when refactoring software systems due to the negative
correlations between them.

Index Terms—Quality, critical code, security metrics, attack surface, refactoring, multi-objective search.

F

1 INTRODUCTION

The National Institute of Standards and Technology (NIST)
estimates that the US economy loses an average of $60
billion per year by either implementing patches to fix security
vulnerabilities or the impact of these security issues [1], [2].
These vulnerabilities depend on how a system is designed
and implemented. At the same time, code quality is also
critical: it impacts programmer productivity and may cause
project failure as maintenance consumes over 70% of the
lifetime budget of a typical software project.

The ISO/IEC-25000 SQuaRE (Software product Qual-
ity Requirements and Evaluation) [3] classifies software
quality in a structured set of eight characteristics and sub-
characteristics. In this classification, security is a new charac-
teristic that was created to measure how much a software is
resistant to attacks and risks. Therefore, it is crucial to take
this characteristic into account when improving the quality
of the software.

Several researchers and practitioners have assumed that
improving a quality metric of software, such as modularity,
will have a positive impact on security, making the design
more robust and resilient to attacks [4], [5], [6] . However,

• Chaima Abid, Marouane Kessentini, Vahid Alizadeh, Mouna Dhaouadi are
with the department of Computer and Information Science, University of
Michigan, Dearborn, MI, USA.
E-mail: firstname@umich.edu

• Rick Kazman is a Professor at the University of Hawaii and a Principal
Researcher at the Software Engineering Institute of Carnegie Mellon
University. E-mail: kazman@hawaii.edu

Manuscript received on November 2019.

this assumption is poorly supported by empirical validations.
Architects and developers may not pay much attention to
design fragments containing data and logic pertinent to
security properties, which makes them overexposed while
still improving some quality aspects of their architecture.
For instance, a developer may create a hierarchy in a set
of classes to improve the reusability of the code. However,
these actions may expand the attack surface if the superclass
contains critical attributes and methods. Another example
that we observed in practice is that improving modularity
may result in spreading dependencies on security-critical
files into many other components. A security-critical file
contains data (e.g., attributes) and logic (e.g., methods) that
can potentially be misused to violate fundamental security
properties such as confidentiality, integrity, or availability of
a system.

Refactoring to improve the design structure while pre-
serving behavior is widely used to enhance the quality
of software systems [7]. Most existing refactoring research
focuses on handling conflicting quality attributes [8], [9], [10],
[11], [12]. However, the impact of refactoring on security
is poorly understood and under-studied. Recent studies
estimate the impact of a few refactoring operations on some
security metrics based on their definitions, but without
empirically validating these assumptions on real software
projects [13], [14], [15], [16]. To the best of our knowledge,
there is no previous research on the correlations between
security metrics and quality attributes, or that provided a
tool to recommend refactorings based on the preferences of
developers from both quality and security perspectives, and
the possible conflicts between them.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

In this paper, we investigate the possible correlations
between the Quality Model for Object-Oriented Design
(QMOOD) quality attributes [17] and a set of security
metrics extracted from source code widely used in the
current literature and practice [18], [19]. We also empirically
validated the impact of different refactoring types on 8 code
security metrics that are primarily related to data access.

We analyzed a total of 30 open-source projects and, based
on the outcomes of these analyses showing the conflicting
nature of the studies security and quality metrics, we propose
a security-aware multi-objective refactoring approach to find
a balance between code qualities and security metrics. We
formulated the different quality and security objectives as
fitness functions to guide the search for relevant refactorings
and find trade-offs between them using NSGA-II [20].

We evaluated our tool on this set of 30 projects. Fur-
thermore, we compared our results with an existing multi-
objective refactoring tool [9] that only considers code quality,
to understand the sacrifice in security measures when
improving code quality and vice-versa. The comparison
shows that our security-aware approach performed better
than the existing approach when it comes to improving the
security of systems, and with low cost in terms of sacrificing
code quality. Our survey of 15 practitioners confirmed the
efficiency of our tool and the importance of considering
security while improving other qualities. More details about
the surveys, experiments and tool can be found in the online
appendix [21].

The primary contributions of this paper are as follows:

1) The paper introduces one of the first empirical
studies to understand the impact of source code
refactoring on both quality and security metrics and
the correlations between them.

2) The creation of a framework to recommend refactor-
ings to find trade-offs between quality and security
objectives considering the correlation results between
them.

3) A validation of this framework on open source
systems. The survey with practitioners shows the
potential of our work in improving refactoring rec-
ommendations by taking into account both security
and quality.

The remainder of this paper is organized as follows:
Section 2 introduces the background and motivations behind
our work, Section 3 presents the description of our security-
aware multi-objective approach while Section 4 contains the
results of our methodology. Section 5 discusses threats to
validity. Section 6 surveys relevant related work, and finally,
we conclude and outline our future research directions in
Section 7.

2 BACKGROUND AND MOTIVATING EXAMPLE

In this section, we present first the necessary background
related to quality attributes, security metrics, and refactoring
operations. Then, we describe a motivating example related
to the possible negative impact of refactoring on security.

2.1 Background

2.1.1 Quality Attributes
We selected as code quality metrics the ones defined by ISO
9126, called QMOOD [22], since they are commonly used
in industry to estimate code quality [23], [24], [25], cover
most of the maintainability issues, and are also frequently
used in refactoring studies [9], [11], [12], [26], [27], [28]. The
QMOOD model contains six quality attributes—reusability,
flexibility, understandability, functionality, extendibility, and
effectiveness as described in Table 1.

2.1.2 Security Metrics
Code elements containing confidential or sensitive informa-
tion such as userIDs, transactions, credit card, authentication,
security constraints, may be security-critical. These code
elements may be attributes, methods, classes, or packages.
If these code fragments are over-exposed, this may result in
vulnerabilities that can be exploited. Thus, developers should
ensure that these code fragments are not over-exposed.
Several software security metrics have been defined in the
research literature at different levels of abstraction [29]. We
focus in this study on those that are related to the code level
and can be measured by static and dynamic analyses.

For the selected security metrics, we have adopted the
terminology and definitions proposed in existing studies [18],
[19]. We consider that classified, confidential, and vulnerable
attributes all refer to attributes that need to be secured. Tables
2 and 3 summarizes the definition of these 8 security metrics:
Classified Instance Data Accessibility (CIDA), Classified
Class Data Accessibility (CCDA), Classified Operation Ac-
cessibility (COA), Classified Mutator Attribute Interactions
(CMAI), Classified Accessor Attribute Interactions (CAAI),
Classified Attributes Interaction Weight (CAIW), Classified
Methods Weight (CMW) and Vulnerable Association within
a class (VAClass). We adopted the Soot parser [30], based
on static analysis, to calculated these metrics including the
automated identification of classified versus non-classified
code elements, as shown in the video of our tool [21].

We chose only those 8 security metrics among the ones
available in the literature specifically because their definition
is clear and relatively easy to implement. We also wanted
to highlight that our parser is based on Soot [30] for static
analysis–we did not create a custom parser from scratch. The
source code is analyzed to extract the relevant code elements
such as classes, methods, attributes, etc. and the relationships
between them. Each code element has several attributes that
describe its level of access/visibility, whether it is considered
to be classified or not.

We describe in the following the different steps to identify
the security sensitive attributes by taking inspiration from
existing studies [31], [32], [33], [34] based on text similari-
ties/mining. We first use a set of keywords [31], [33], [34]
related to security and indicators of sensitive information
extracted from multiple sources such as source codes, com-
ments, security bugs, vulnerability reports, commit messages,
and security questions/tags on Stack Overflow. We included
these keywords in the online appendix associated with this
submission. Second, we calculated a textual criticality score,
based on cosine similarity, for each file to estimate the extent
to which the file is related to security concerns. The higher the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

TABLE 1: QMOOD quality attributes

Metric Definition Formula
Reusability Reflects the presence of object-oriented design characteristics that

allow a design to be reapplied to a new problem without significant
effort.

-0.25*Coupling + 0.25*Cohesion + 0.5*Messaging + 0.5*Design Size

Flexibility Characteristics that allow the incorporation of changes in a design.
The ability of a design to be adapted to provide functionality related
capabilities.

0.25*Encapsulation - 0.25*Coupling + 0.5*Composition + 0.5*Polymor-
phism

Understandability The properties of designs that enable it to be easily learned and
comprehended. This directly relates to the complexity of the design
structure.

-0.33*Abstraction + 0.33*Encapsulation + 0.33*Coupling + 0.33*Cohe-
sion - 0.33*Polymorphism - 0.33*Complexity - 0.33* Design Size

Functionality The responsibility assigned to the classes of a design, which are made
available by classes through their public interfaces.

0.12*Cohesion + 0.22*Polymorphism + 0.22*Messaging + 0.22*Design
Size + 0.22*Hierarchies

Extendibility Refers to their presence and usage of properties in an existing design
that allow for the incorporation of new requirements in the design.

0.5*Abstraction - 0.5*Coupling + 0.5*Inheritance + 0.5* Polymorphism

Effectiveness This refers to the designs ability to achieve the desired functionality
and behavior using object oriented design concepts and techniques.

0.2*Abstraction + 0.2*Encapsulation + 0.2*Composition + 0.2*Inheri-
tance + 0.2*Polymorphism

TABLE 2: Security metrics terminology.

Term Definition
Classified At-
tribute

An attribute which is defined in UMLsec
[35] as secrecy.

Instance
Attribute

An attribute which value is stored by each
instance of a class.

Class
Attribute

An attribute which value is shared by all
instances of that class.

Classified
Methods

A method which interacts with at least one
classified attribute.

Mutator A method that sets the value of an attribute.
Accessor A method that returns the value of an

attribute.

score is the more likely the file needs to be protected. We pre-
processed the source code using tokenization, lemmatization,
stop words filtering and punctuation removal [31], [33]. Then,
we computed the cosine similarity between each file and the
set of keywords. Finally, we manually validated the top 10
critical files and use their critical attributes (fields that have
names that match one of the keywords from the list we
gathered at the beginning) to identify the critical attributes
in all the other files that will be used to compute the security
metrics. This process, including security metrics calculation,
is not time-consuming since it takes a few seconds to minutes
to extract the security-critical attributes and compute the
metrics, depending on the size of the project to be analyzed.
We note that the identification of code elements as security
sensitive is not a core contribution of this paper since we
leveraged the use of existing work for this step.

2.1.3 Refactoring
Martin Fowler defined refactoring as “a change made to the
internal structure of software to make it easier to understand
and cheaper to modify without changing its observable
behavior” [7]. This implies that refactoring is a method that
reconfigures code structure, without altering its behavior,
to improve code quality in terms of maintainability, exten-
sibility, and reusability. Table 4 summarizes 15 refactoring
types considered in this paper. Recent empirical studies on
refactoring show that these refactorings are widely used in
open-source projects [15], [27], [36].

2.2 Motivating Examples
By mining the well-known Common Vulnerabilities and
Exposures (CVE) security bug database, we found a total

of 269 security vulnerabilities that were introduced by
code refactorings. These 269 vulnerabilities were manually
identified by the authors of this paper out of 681 reports
containing the keyword "refactor". Figure 1 shows an exam-
ple of a vulnerability, CVE-2019-131771, from Django REST
Registration library due to refactorings resulted in allowing
remote attackers to trick the verification process. This security
bug impacted the confidentially of Django REST Registration
library in several releases before 0.5.0. Thus, it is essential to
evaluate the impact of the recommended refactorings on the
security of the application.

We introduce, in the following, another motivating ex-
ample to show how refactoring may improve code quality
while making the design weaker from a security perspective.
The design fragment in Figure 2 is responsible for storing
information about customer accounts, which, by definition,
requires careful attention in terms of security to access those
classes. A bank account can be either a debit or credit account.
The interestRateConstant is an attribute that stores the value
of the interest rate of the credit account. Thus, it is only
used by the creditAccount class. The deposit and withdraw
operations have duplicated code that performs the transac-
tions. This code can be extracted to a new separate method
that can be used by both operations. Both accountNumber
and creditCardNum are sensitive and are meant to be kept
confidential.

The developer applied the refactoring “push down field”
by moving the interestRateConstant from the BankAccount
class to its subclass CreditAccount as well as the refactoring
“extract method” by moving the duplicated code to a separate
new method called performTransaction and replacing the old
code with a call to this new method. These refactorings
improved cohesion and messaging [27], which results in
increasing the following quality attributes: Understandability,
Functionality, and Reusability [37]. However, these transfor-
mations might increase the security metrics CMAI, CAAI,
CMW, and CAIW [15] which will reduce the security of
the design due to the fact that the classes are becoming
more exposed and easier to access than before. This example
motivates our research to investigate further the impact of
refactorings on security when improving code quality.

1. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-
13177

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Fig. 1: An example of a security vulnerability from Django REST Registration library due to refactorings.

Fig. 2: A Simplified Bank Account System Hierarchy Before and After Refactoring

3 SECURITY-AWARE MULTI-OBJECTIVE REFAC-
TORING

3.1 Overview

Fig. 3: Security-Aware Multi-Objective Refactorings

Our approach, as sketched in figure 3, takes as input the
source code (or GitHub link) of a project to be analyzed and
generates a list of refactoring recommendations that balance
code quality and security based on developer preferences.

The first component parses the code to calculate the
security metrics and quality attributes as defined in the
previous section. Then, the collected data is used to analyze
the correlation between the different quality and security
metrics (without the need for refactoring at this point).

For the second component, we adapted a multi-objective
search algorithm, based on NSGA-II [20], used in our
previous work [9] to integrate the security and quality
objectives. We selected this algorithm due to its ability to
find trade-offs between independent or conflicting objectives,
and it has previously been applied for various software

engineering problems [8], [9], [10], [11], [12]. Security and
quality objectives cannot be aggregated together since they
are independent and even conflicting, as discussed later in
our validation. Our goal is to find a set of non-dominated
refactoring solutions capable of improving both the quality
and security of the project taken as input. A code refactoring
activity may be focused on quality improvements, and the
developers care less about security (e.g., the component
is used internally and never exposed to attacks). In this
case, users of the tool may want to assign higher weights to
quality metrics. In another scenario, it could be the opposite,
especially for critical code fragments. In our multi-objective
formulation, the developer is not required to enter any
weights to the objectives since the output of the algorithm is
a Pareto-front of a diverse set of solutions that the user can
select one of them based on their preferences. Finally, a user
can interact with our tool to accept or reject the refactoring
recommendations. A detailed demo can be found in [21]. In
the remainder of this section, we will explain the steps of the
approach.

3.2 Algorithm Adaptation

The search space is composed of the different refactoring
operations as well as an exhaustive combination of code
locations, attributes, and methods. The algorithm is executed
for some iterations to find non-dominated solutions balanc-
ing the 7 objectives of improving the 6 QMOOD quality
metrics, and the last objective of minimizing the security
objective (aggregating the 8 security metrics) in the proposed
solutions. The output of this step is a set of Pareto-equivalent
refactoring solutions that optimize the above objectives.
These solutions are not dominated with respect to each other.
In the following subsections, we summarize the adaptation
of the multi-objective algorithm to our problem.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

Fig. 4: Sample of outputs (refactorings) of our Web app on the Open CSV project to balance quality and security.

3.2.1 Solution Representation.

In our approach, a refactoring solution is represented by
an ordered vector of refactoring operations as shown in
Figure 4. Each operation is defined by an action (e.g., pull
up field, encapsulate field, extract superclass, etc.) and its
parameters such as source class, target class, attributes, etc.
Since we need to apply the change operators of mutation
and crossover during evolution, we need to evaluate the
feasibility of a solution and see if it preserves the behavior of
the system using a set of pre- and post-conditions defined in
[38].

3.2.2 Fitness Functions.

Our approach takes into consideration seven objectives:
the first six are the relative changes of the 6 QMOOD
attributes [17] after applying a refactoring solution. QMOOD
defines six high-level design quality attributes (reusability,
flexibility, understandability, functionality, extendibility, and
effectiveness) that are calculated using 11 lower-level metrics
[9]. Each objective can be written as follow:

QualityObjectivei =
Qafter

i −Qbefore
i

Qbefore
i

(1)

where Qbefore
i and Qafter

i are the values of the
qualityAttributei before and after applying a refactoring
solution, respectively.

Since all metrics in the table 3 are at the class level,
we consider the corresponding system-level metrics as the
average of all class level metrics. For instance, AvgCCDA is
defined as the ratio of the sum of the CCDA values of all
classes of the system to the number of classes in that system.
In a similar manner, we define the other system-level security
metrics AvgCIDA, AvgCOA, AvgCAAI, AvgCMAI, AvgCMW,
AvgCAIW and AvgVA. Therefore, the seventh objective, which
is the security objective, corresponds to the relative change in
the average of the average of all eight security metrics in the
table 3 after applying a refactoring solution. We can represent
the fitness function of the security objective as follows:

SecurityObjective =
Safter − Sbefore

Sbefore
(2)

where S= (AvgCCDA + AvgCIDA + AvgCOA + AvgCAAI +
AvgCMAI + AvgCMW + AvgCAIW + AvgVA) / 8

Unlike the quality objectives, we decided to aggregate
the security metrics into one objective since they are not
conflicting to each other based on our analysis of the data on
the open-source systems detailed later in our experiments.
Furthermore, the performance of the multi-objective algo-
rithm will decrease when the number of objectives becomes
large.

4 EXPERIMENTS AND RESULTS

We used a set of 30 open source projects to study the possible
correlations between 1) the quality and security metrics and
2) refactoring types and security metrics. To evaluate the
ability of our security-aware multi-objective refactoring tool
to generate good refactoring recommendations that balance
both quality and security, we conducted a set of experiments
based on 4 out of the 30 open source systems. The obtained
results are subsequently statistically analyzed with the aim of
comparing our proposal with a variety of existing approaches.
The relevant data related to our experiments and a demo
about the main features of the tool can be found in [21]. We
have also conducted a survey with practitioners to manually
evaluate the refactoring recommendations and the obtained
correlations between quality, refactoring types and security.

In this section, we first present our research questions
and validation methodology followed by the experimental
setup. Then we describe and discuss the obtained results.

4.1 Research Questions
In this study, we defined four main research questions:

• RQ1: Impact of refactoring on code security. Can
automated refactoring have a significant impact on
security metrics?

• RQ2: Impact of improving quality on security and
vice-versa. Are there strong correlations between
code quality attributes, as measured by the QMOOD
metrics, and code security metrics?

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

TABLE 3: Security metrics definition

Metric Definition
Classified
Instance Data
Accessibility
(CIDA)

consider CA as a set of classified attributes
in a class C, CA = cai, i ∈ {1, 2, . . . , n},
and CIPA its classified public attributes as
CIPA = cipai, i ∈ {1, 2, . . . , n}

CIDA(C) = |CIPA|/|CA|

Classified
Class Data
Accessibility
(CCDA)

consider CA as a set of classified at-
tributes in a class C, CA = cai, i ∈
{1, 2, . . . , n}, and CCPA its classified class
public attributes as CCPA = ccpai, i ∈
{1, 2, . . . , n, }

CCDA(C) = |CCPA|/|CA|

Classified Op-
eration Acces-
sibility (COA)

consider CM as a set of classified methods
in a class C, CM = cmi, i ∈ {1, 2, . . . , n},
and CPM classified public methods as
CPM = cpmi, i ∈ {1, 2, . . . , n}

COA(C) = |CPM |/|CM |

Classified
Mutator
Attribute
Interactions
(CMAI)

consider a set of mutator methods in a class
C as MM = mmi, i ∈ {1, 2, . . . ,mm}, and
CA the classified attributes CA = caj , j ∈
{1, 2, . . . , ca}. Let α(CAj) be the number
of mutator methods which may access
classified attribute (CAj). Then, CMAI can
be expressed as:

CMAI(C) =

ca∑
j=1

α(CAj)/(|MM | ∗ |CA|)

Classified
Accessor
Attribute
Interactions
(CAAI)

consider a set of accessor methods in a class
C as AM = mmi, i ∈ {1, 2, . . . , am}, and
CA the classified attributes CA = caj , j ∈
{1, 2, . . . , ca}. Let β(CAj) be the number
of accessor methods which may access
classified attribute (CAj). Then, CAAI can
be expressed as:

CAAI(C) =

ca∑
j=1

β(CAj)/(|AM | ∗ |CA|)

Classified At-
tributes Inter-
action Weight
(CAIW)

consider a set of classified attributes CA in
a class C as CA = cai, i ∈ {1, 2, . . . , ca},
and A the set of attributes A = aj , j ∈
{1, 2, . . . , a}. Let (CAj) be the number of
methods which may access classified at-
tribute (CAj), and θ(Ai) be the number of
methods which may access the attribute
(Ai), Then, CAIW can be expressed as:

CAIW (C) =

ca∑
j=1

γ(CAj)/

a∑
i=1

θ(Ai)

Classified
Methods
Weight
(CMW)

consider CM as a set of classified methods
in a class C, CM = cmi, i ∈ {1, 2, . . . ,m},
and M the set of all methods as M =
mj , j ∈ {1, 2, . . . , n}

COA(C) = |CM |/|M |

Vulnerable As-
sociation with
in a class (VA-
Class)

consider CA as a set of classified attributes
in a class C, CA = cai, i ∈ {1, 2, . . . ,m},
and M the set of all methods as M =
mj , j ∈ {1, 2, . . . , n}, and α(Mj) the num-
ber of classified attributes associated with
the method mj . Then VAClass is:

V AClass(C) =

n∑
j=1

α(mj)/(|CA| ∗ |M |)

TABLE 4: Refactoring Types Considered in our Study

Refactoring
Types

Definition

Encapsulate
Field

Changes the access modifier of public fields to
private and generates its getter and setter.

Increase Field
Security

Changes the access modifier of protected fields
to private, and of public fields to protected.

Decrease Field
Security

Changes the access modifier of protected fields
to public, and of private fields to protected.

Pull Up Field If two subclasses have the same field, then this
rule moves this field to their superclass.

Push Down
Field

If only some subclasses use a field, then this rule
moves this field to those subclasses.

Move Field Moves a field to another class.
Increase
Method
Security

Changes the access modifier of protected meth-
ods to private, and of public methods to pro-
tected.

Decrease
Method
Security

Changes the access modifier of protected meth-
ods to public, and of private methods to pro-
tected.

Pull Up Method If two subclasses have the same method, then
this rule moves the method to their superclass.

Push Down
Method

If only some subclasses use a method, then this
rule moves the method to those subclasses.

Move Method Moves a method to another class.
Extract Class Creates a new class from an existing one.
Extract Super-
class

If two subclasses have similar features, this rule
creates a superclass and moves these features
into it.

Extract Subclass If two superclasses have similar features, this
rule creates a subclass and moves these features
into it.

Extract Method takes a sequence of statements, copies them
into a new method, and then replaces the orig-
inal statements with an invocation of the new
method.

• RQ3: Comparison with an existing work for refac-
toring recommendation How does our security-
aware refactoring tool perform compared to refactor-
ing approaches that only focus on improving quality
(and not security)?

• RQ4: Insights. Do professional programmers highly
value considering security while improving quality?

To answer RQ1, we collected a dataset of refactorings
applied on 30 medium to large-size open-source systems,
listed in table 5, to understand the impact of 14 refactoring
types on 8 different security metrics. We selected these
systems based on their domains, size and large history of
evolution (e.g. commits). We did not extract refactorings
from previous commits due to the challenges related to dif-
ferentiating between functional and non-functional changes
and the limited number of refactorings that developers apply
manually. Instead, we obtained the data by running the
refactoring recommendation tool of Alizadeh et al. [9] on
these projects, selecting the obtained refactoring solution and
recording its impact on the security metrics. We selected the
tool based on its high accuracy in recommending relevant
refactorings that significantly improve the quality. Then, we
statistically analyzed the impact of these refactoring types
on code security metrics for the 30 projects.

To answer RQ2, we used a procedure similar to the
one used for RQ1: we collected data from the execution
of our tool on the 30 projects by recording the impact of the
refactorings on both the QMOOD quality attributes and the
8 code security metrics. Unlike the impact of QMOOD on

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

quality, we note that the security level increases when the
security metrics decrease. Finally, we ran statistical tests to
understand the correlations between the different metrics
using the Pearson correlation coefficient [39] (chosen due to
the normal distribution of the data).

To answer RQ3, we compared our approach with an
existing technique that considers only the QMOOD attributes
[9] as objectives using 4 projects, as described later. Since
meta-heuristic algorithms are stochastic optimizers, they can
provide different results for the same problem instance from
one run to another. For this reason, our study is based on
30 independent simulation runs for each problem instance
to make sure that the results were statistically significant.
The goal of this research question is to understand the cost
of improving code quality on security and vice-versa. We
selected the work of Alizadeh et al. [9] since it is the closest
to our proposed approach and outperformed most of the
existing refactoring tools based on the same systems used
in this evaluation. We only considered five systems in this
comparison due to the very time-consuming task to run the
different heuristic algorithms 30 times to check if the results
are statistically significant. Furthermore, it is difficult to find
knowledgeable participants who can manually evaluate the
results on all 30 open source projects. Thus this part of our
evaluation poses a threat to validity.

To answer RQ4, we used a post-study questionnaire to
collect the opinions of developers regarding our tool and the
relevance of considering security when refactoring. Further-
more, the participants manually evaluated the refactoring
recommendations of our approach. We asked the developers
about their opinions on the possible correlations between 1)
quality and security metrics; and 2) refactoring types and
security. The survey allowed us to compare the quantitative
results obtained in our experiments with developer opinions.
The full details of our extensive validation, including a demo
of our tool and the survey details, can be found at [21].

4.2 Software Projects and Experimental Setting
4.2.1 Studied Projects
We used a set of 30 well-known open-source Java projects
as detailed in Table 5. We selected these systems for our
validation because they range from medium to large-sized
and have been actively developed in recent years. Table 5 also
provides some descriptive statistics about these programs.

4.2.2 Subjects
Our qualitative study involved 15 software developers. All
participants were volunteers who were knowledgeable in
software security, Java, refactoring, and quality assurance.
They were all hired from our former and current industry
partners of refactoring projects.

Participants were first asked to fill out a pre-study ques-
tionnaire. The questionnaire helped to collect background
information such as their role within the company, their
programming experience, and their familiarity with software
security, quality, and refactoring. They all had a minimum of
2 years of experience as programmers and 5 out of 15 have
over 5 years of experience. 12 participants were working on
software assurance tasks as part of their regular duties, which
was one of the main criteria used to solicit their participation,

TABLE 5: Studied Open Source Projects.

System Release #Classes KLOC GitHub Link
jFreeChart v1.0.9 521 170 jfree/jfreechart.git

ArgoUML v0.3 1358 114 marcusvnac/argouml-
spl.git

atomix v3.0.11 2719 188 atomix/atomix.git

JHotDraw v7.5.1 585 25 wumpz/jhotdraw.git

GanttProject v1.10.2 241 48 bardsoftware/ganttproject.git

Apache Ant v1.8.2 1191 112 apache/ant.git

moshi v1.8.0 289 27 square/moshi.git

opencsv v1.7 50 7 jlawrie/opencsv.git

zerocell v0.3.2 39 3 creditdatamw/zerocell.git

gson v2.8.5 691 69 google/gson.git

jolt v0.1.1 370 31 bazaarvoice/jolt.git

Hystrix v1.5.18 1117 85 Netflix/Hystrix.git

btm v2.1.3 375 40 bitronix/btm.git

packr v1.2 8 3 libgdx/packr.git

tracer v2.0.0 33 3 zalando/tracer.git

JSAT v0.0.9 1171 185 EdwardRaff/JSAT.git

smile v1.5.2 1206 8316 haifengl/smile.git

dkpro-core v1.10.0 1269 1323 dkpro/dkpro-core.git

Erdos v1.0 128 7 Erdos-Graph-
Framework/Erdos.git

jgrapht v1.3.0 1257 171 jgrapht/jgrapht.git

mockito v2.27.3 1880 94 mockito/mockito.git

tablesaw v0.32.7 583 714 lwhite1/tablesaw.git

bazel v0.25.0 11267 2753 bazelbuild/bazel.git

spotbugs v4.0.0 5207 389 spotbugs/spotbugs.git

FreeBuilder v2.3.0 1636 58 google/FreeBuilder.git

async-http v2.8.1 602 52 AsyncHttpClient/async-
http-client.git

javaparser v3.13.10 1414 251 javaparser/javaparser.git

vavr v0.10.0 838 135 vavr-io/vavr.git

javamelody v1.77.0 662 109 javamelody/javamelody.git

commons-cli v1.4 63 10 apache/commons-cli.git

based on our previous collaborations and contacts. The other
criteria were related to their level of expertise in refactoring
and security, and also their familiarity with the five selected
open source systems. The pre-study survey shows that the
majority of the developers (11 out 15) have high experience
and are knowledge about software refactoring and security. A
minimum of 12 of 15 participants per system have medium or
above expertise regarding the evaluated open source systems.
The full details of our pre-study survey results can be found
at [21].

Each participant was asked then to complete an eval-
uation form to evaluate 5 refactoring solutions that had
different impacts on quality and security on 4 different
systems: JHotDraw, Gantt, Apache Ant and JFreeChart.
The participants were asked to evaluate the refactorings
on all the systems; we did not divide them into groups.
After that, each participant was given a post-study survey.
This second survey was more general as it collected the
practitioners’ opinions on the relevance of the outcomes and
their perception of the importance of considering security
when refactoring their code.

4.2.3 Parameter tuning and statistical tests

Parameter setting significantly influences the performance
of a search algorithm on a problem. For this reason, for
each algorithm and for each system, we performed a set of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

experiments using several population sizes: 50, 100, 200, 300
and 500. The stopping criterion was set to 10,000 evaluations
for all algorithms to ensure fairness of comparison. The other
parameter values were fixed by trial and error and are as
follows: crossover probability = 0.8 and mutation probability
= 0.5 where the probability of gene modification is 0.3. We
also limited the size of the refactoring solutions to no more
than 30 operations.

To have significant results, for each pair (algorithm,
system), we used one of the most efficient and popular
approaches for parameter setting of evolutionary algorithms
which is Design of Experiments (DoE) [40]. Each parameter
was uniformly discretized in some intervals. Values from
each interval have been tested for our application. Finally, we
picked the best values for all parameters. Hence, a reasonable
set of parameter values were applied.

The following statistical tests show that all the compar-
isons performed between our approach and existing ones
are statistically significant based on all the metrics and the
systems considered in our experiments. We used a 2-sample t-
test with a 95% confidence level (α = 5%) to find out whether
our sample results of different approaches are significantly
different. We also calculated the Pearson coefficient to study
the various correlations.

4.3 Results

Results for RQ1. Table 6 summarizes the correlations
between the different types of refactorings and averaged
security metrics considered in our experiments by analyzing
the refactoring recommendations generated by our tool on
the 30 projects. The results show either a positive or negative
correlation based on the Pearson Correlation Coefficient
except for the Move Field refactoring. The symbol "++"
(strong positive correlation) means that the Pearson correla-
tion coefficient has a value higher than 0.5 while "–" (Strong
negative correlation) means the opposite (lower than -0.5).
The symbol "+" means that the Pearson correlation coefficient
is between 0.1 and 0.5 and "-" means the opposite (between
-0.1 and -0.5). The symbol "*" reflects that the correlation
coefficient is around 0 (between -0.1 and 0.1) and there is no
statistically significant correlation. For each refactoring type,
we filtered the solutions to keep only the ones containing that
type and counted its occurrence within the solution. Then,
we checked the correlation between the appearance of the
refactoring type and its impact on the security metric.

Increase Field Security refactoring has the strongest
positive correlation with the average of the 8 security metrics.
It is expected that the frequent use of this refactoring type
will reduce access to the attributes which may reduce their
visibility and reduce the attack surface when a set of classes
are exposed to malicious code. The same observation is also
valid for Increase Method Security which also has a positive
correlation with security improvements. Encapsulate Field,
Push Down Field, and Push Down Method refactorings have
also positive correlations with the security average measure.
It is clear that all these refactoring types reduce the level of
abstraction of classes which may increase the protection of
the fields and methods.

Decrease Field Security, Decrease Method Security, and
Extract Superclass have a strong negative correlation with the

Fig. 5: Average distribution of the refactoring types among
the solutions recommended for the 30 projects that signifi-
cantly improve the security objective.

security measure since the Pearson Correlation Coefficient
is lower than -0.6. All these refactorings can either make the
fields and methods overexposed or increase the abstraction
of the code which may have a negative impact on security.
The Encapsulate Field refactoring increases the ability to
conceal object data. Otherwise, all objects would be public
and other objects could get and modify the object’s data
without any constraints. Furthermore, the encapsulate field
refactoring can help in bringing data and behaviors closer
together which will reduce unnecessary access and public
visibility of attributes. Thus, the security metrics should be
improved after application of Encapsulate Field refactorings.

Table 6 also shows that Extract Superclass is negatively
correlated with the security metrics. One of the main expla-
nations of this outcome is the fact that creating superclasses
may expose all the child classes under the created superclass.
Thus, the attack surface could be rapidly expanded when this
refactoring type is extensively used. In fact, someone who
has access to a superclass can affect its subclasses’ behavior
by modifying the implementation of an inherited method
that is not overridden. If a subclass overrides all inherited
methods, a superclass can still affect subclass behavior by
introducing new methods.

Figure 5 and Table 7 show the most frequent refactorings
and patterns in the solutions that significantly increased the
security measure. In this study, a refactoring pattern is an
ordered sequence of refactoring operations. We found that
the most frequent refactoring types are the ones making
the methods and fields less exposed and accessed, which
confirms the correlation results. Figure 6 describes the impact
of refactorings generated by our tool on the 8 security metrics
aggregated into one objective. The results show that none of
the metrics are conflicting with other security metrics since
they were all minimized using the refactoring solutions. This
observation confirms our choice to aggregate them rather
than considering them as separate objectives. All the security
metrics are normalized in the range of [0,1].

To summarize, refactoring can impact code security
metrics both positively and negatively based on our analysis
of the refactoring solutions proposed for 30 open source
projects.

Finding 1: Encapsulate Field, Increase Field

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE 6: Correlation results between the average of security metrics and different refactoring types on the 30 projects. The
results are statistically significant using the 2sample t-test with a 95% confidence level (α = 5%)

Refactoring
Average Security Metrics Pearson Correlation Coefficient

Encapsulate Field + (0.237)
Increase Field Security ++ (0.728)
Decrease Field Security - - (-0.624)

Pull Up Field - (0.361)
Push Down Field + (0.471)

Move Field * (0.026)
Increase Method Security + (0.358)
Decrease Method Security - - (-0.681)

Pull Up Method - (-0.316)
Push Down Method + (0.247)

Move Method - (-0.235)
Extract Class - (-0.437)

Extract Superclass - - (-0.694)
Extract Subclass - (-0.424)
Extract method - (- 0.472)

TABLE 7: The two most common refactoring patterns with the highest impact on the improvement of the average security
measure for the 30 open source projects.

Refactoring patterns Average Security Improvement
Encapsulate Field, Increase Field Security, Increase Method Security, Push Down Field, Move Method 0.42

Increase Field Security, Increase Method Security, Move Field, Push Down Method 0.34

Fig. 6: Impact of the recommended refactorings on security
metrics based on the 30 projects.

Security, Push Down Field, Increase Method
Security, Push Down Method are all positively
correlated with the avg security metrics. Decrease
Field Security, Pull Up Field, Decrease Method
Security, Pull Up Method, Move Method, Extract
Class, Extract Superclass, Extract method and
Extract Subclass are all negatively correlated with
the avg security metrics. There is no statistically
significant correlation between the Move Field
refactoring and the avg security metrics.

Results for RQ2. Table 8 confirms the conflicting nature
between several of the quality attributes and most of the
security metrics by analyzing the impact of the refactoring
solutions generated by our tool on the 30 open source projects.
Four of the quality attributes were negatively correlated
with the security metrics except Flexibility and Effectiveness.
Reusability and Extendibility are negatively correlated with
most of the security metrics which confirms the results
of RQ1. In fact, these quality attributes can be improved

using the extract super/sub class and pull-up method/field
refactoring types that were already negatively correlated
with security metrics.

Figure 7 presents more details related to the distribution
of the refactoring solutions on the 30 open source projects
based on each pair of quality and security metrics (all the
metrics are to minimize based on our formulation). The
distribution of the solutions is consistent with the correlation
results reported in Table 8. For instance, the refactoring
solutions with good reusability (low values) have the worst
security impacts (high values) on the open source projects.

Since it is not enough to check the ability of our refactor-
ing solutions to improve the quality and security objectives,
we asked the 15 selected participants to evaluate the gener-
ated refactorings for 5 of the 30 open source projects using our
tool (+Security) and an existing refactoring tool (-Security)
[9]. The average manual correctness on the five systems is
86% for our approach compared to 73% for [9] (without the
consideration of security objective) as described in Figure 8.
Thus, it is clear that refactoring solutions addressing both
quality and security issues were preferred compared to only
improving the quality metrics. We presented the refactorings
in a random way (not on the same code locations) to the
participants and they were not aware of which tool is used to
generate them. The refactorings recommended for the Gantt
project were all considered relevant by the participants. The
obtained results confirm that the combination of both quality
and security objectives reasonably match the preferences of
the participants.

Finding 2: Understandability, Reusability, Func-
tionality and Extendibility are all negatively
correlated with the avg security metric. Flexi-
bility and Effectiveness are positively correlated
with the avg security metric. Reusability and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

TABLE 8: Correlation results between the average of security metrics and quality attributes on the 30 projects. The results
are statistically significant using the two-sample t-test at a 95% confidence level (α = 5%)

Security Metrics
QMOOD Understandability Reusability Functionality Flexibility Extendibility Effectiveness

CIDA - (-0.237) - - (-0.617) - (-0.184) - (-0.318) - (-0.391) + (0.116)
CCDA - (-0.224) - (-0.382) - (-0.137) + (0.281) - (-0.232) + + (0.589)
COA + (0.192) - (-0.373) - (-0.183) + (0.219) - - (-0.619) + (0.314)
CMAI - (-0.217) - (-0.387) - (-0.120) + (0.113) - (-0.382) + (0.221)
CAAI + (0.114) - (-0.234) + (0.131) ++ (0.612) - (-0.224) - (-0.122)
CAIW - (-0.213) - (-0.346) - (-0.114) + (0.116) - - (0.563) + (0.138)
CMW + (0.194) - (-0.213) - (-0.233) + (0.221) - (0.241) + (0.187)

VA - (-0.226) - (-0.362) - (-0.341) + (0.412) - (-0.268) + (0.224)
AvgSecurity - (-0.382) - - (-0.731) - (- 0.114) + (0.183) - - (-0.618) + (0.213)

Fig. 7: Distribution of refactoring solutions based on each pair of quality and security metrics for the 30 projects.

Fig. 8: Average manually determined correctness of the
refactorings on different open source projects generated
by our tool (+Security) and an existing refactoring tool (-
Security) [9]..

Extendibility are negatively correlated with all of
the eight security metrics.

Results for RQ3. Figure 9 summarizes the comparison of
our tool with the work of Alizadeh et al. [9], not considering
the security objective. The goal is to understand the sacrifice
in quality when improving the security objective using
the generated refactoring solutions. While Alizedeh et al.’s
tool [9] improved the quality attributes more than our
tool, the improvements are very similar to our security-
aware approach for almost all the quality metrics. The
major difference is for the extendibility measure, which is
understandable based on the results of RQ1 and RQ2, and
the difference is rather small.

Figure 10 shows that the multi-objective security-aware
approach was able to generate a diverse set of refactoring
solutions in terms of security improvements. The tool of
Alizadeh et al. [9] was not able to generate any refactoring
solution that can have a security objective value lower than
0.183 while our approach was able to improve better the
security metric to reach lower than 0.175. While the deviation
in terms of value may look small, the formulation of the
security objective actually requires significant code changes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

Fig. 9: Box plots of the impact of refactoring solutions on the
quality attributes based on 4 open source projects using our
tool (+Security) and an existing refactoring tool (-Security) [9].
The results are statistically significant using the two-sample
t-test at a 95% confidence level (α = 5%)

Fig. 10: Distribution of the refactoring solutions using the
security objective based on 4 open source projects comparing
our tool (+Security) and an existing refactoring tool (-
Security) [9].

to slightly improve security values.

Finding 3: The sacrifice, by our approach, in
terms of quality improvements is very limited
when enhancing code security comparing to an
existing work only based on quality [9].

Results for RQ4. We asked participants to rate their
agreement on a Likert scale from 1 (complete disagreement)
to 5 (complete agreement) with the following questions:

• The security-aware refactoring recommendations are
a desirable feature in integrated development envi-
ronments to improve code security while enhancing
quality.

• The security-aware refactoring web app is easy to use
compared to fully-automated or manual refactoring
tools that you used in the past.

The post-study questionnaire results show the average
agreement of the participants was 3.96 and 4.12 based on a
Likert scale for the first and second statements, respectively.
This confirms both the relevance and usability of our security-
aware tool to find a trade-off between code security and

Fig. 11: The important motivations for code refactoring by
the participants.

Fig. 12: The potential impacts of refactoring on security
metrics based on the survey.

quality metrics. More details can be found in our appendix
[21] showing the simple steps developers can follow to
evaluate and fix both the quality and security issues of their
projects.

We also asked the participants about the most important
reasons to refactor their code. Figure 11 shows, surprisingly,
that most of the participants considered security as the most
critical reason for refactoring, even compared to improving
quality metrics which is the second most important motiva-
tion for refactoring. Bug likelihood and code smells were also
considered important by some participants. The outcomes of
this question on why to refactor the code are aligned with
the motivations of this paper advocating for considering
both security and quality metrics when recommending
refactorings.

The next questions asked the respondents about the
impact of refactoring on the code security metrics. Figure 12
shows that the developers think that refactoring can improve
and positively impact most of the security metrics considered
in our experiments. This confirms our selection of the security
metrics and the outcomes of RQ1 obtained by analyzing the
code. The developers think that the CCDA metric is the
one that can be most improved by refactoring. The CCDA
metric measures the direct access of classified class attributes
of a class. It aims to protect the internal representations of
a class, i.e. class attributes, from direct access. In fact, the
accessibility of class attributes is one of the most critical entry
points for security attacks to the architecture, and so the use

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Fig. 13: The potential impact of different refactoring types on
security metrics based on the survey.

Fig. 14: The possible positive impact of improving the
security metrics on quality attributes based on the survey.

of refactorings such as Increase Field Security can improve
this metric. Figure 13 describes more detailed results on the
possible impact of each refactoring type on the various static
code security metrics. It is clear that Encapsulate field can
have the most positive impact on several security metrics
based on the developers’ feedback. They also suggested
that Extract Superclass will impact the security metrics,
but in a negative way. The participants found as well that
Push down method refactoring can improve several security
metrics since it will reduce accessibility to the methods
after refactoring. The results of these questions also confirm
the results obtained in RQ1 about the impact of different
refactoring types on security when we analyzed the code
before and after refactoring.

Figure 14 shows the opinion of developers on whether
improving the security metrics will positively impact some
quality attributes. The results show that effectiveness and
functionally quality attributes can be improved if the refac-
torings improved security. The developers also suggested
that improving security will have a negative impact on
both understandability and extendibility since they have
the least support from developers (around 2.7 out of 5).
These outcomes are also partially consistent with the results
found in RQ2 when we analyzed the correlation between
the security metrics and quality attributes based on the code
level information before and after refactoring.

Figure 15 shows that our approach based on multi-
objective search can find good trade-offs between the various

Fig. 15: Box plots of the impacts of refactoring solutions on
both quality and security objectives based on the 30 projects.

quality and security objectives. The box plots describe the
diversity of the refactoring solutions generated by our multi-
objective approach where the developer can find solutions
that impact both quality and security at different levels. This
aspect is important since a developer can select solutions
that impact their specific quality or security objectives based
on their preferences.

The impact of the refactorings on the different quality
and security metrics is calculated based on the differences
between their values before and applying the refactorings.
The formulas of the different metrics are described in Tables
1 and 2. Thus, we just measured the difference of these metric
values before and after applying the refactorings to estimate
the improvements. The box plots show that the generated
refactorings can improve the majority of the quality and
security objectives with varying levels of improvement, but
sometimes it is possible to deteriorate (or sacrifice) some
of the metric values/improvements due to their conflicting
nature. However, Figure 15 shows that the multi-objective
algorithm was able to generate solutions improving the
objectives at different levels with little deterioration. Thus,
we conclude that the tool was successful in finding trade-offs
rather than merely improving one or two specific objectives.

To summarize, the participants found the tool unique
in terms of enabling them to understand the impact of
refactoring on both security and quality. They highlighted
that it is one of the first tools in their opinion that enables
the identification of refactoring solutions to offer trade-offs
between quality and security. The developers found the tool
flexible as it provides multiple options to select a solution
based on their preferences. A suggested improvement is
to use visualization techniques to evaluate the impact of
applying a refactoring sequence on the different security and
quality metrics.

Finding 4: The evaluation of our tool by 15
developers confirmed its efficiency in helping
to understand the impact of refactoring on both
security and quality and generating refactoring
solutions that find a trade-offs between quality
and security.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

5 THREATS TO VALIDITY

The parameter tuning of the NSGA-II optimization algorithm
used in our experiments is the first internal threat since these
values were found by trial-and-error [41]. Since we used a
limited number of evaluated systems and participants, the
generalizability of our results is threatened. Besides, we only
considered 14 refactoring types in our study. Furthermore,
for the manual validation and comparison with an existing
refactoring study, we used a selected subset of projects
rather than the full 30 systems. Therefore, we estimate that
a potential replication of our work is necessary to validate
our results completely. We are also planning to consider
more security and quality metrics to extend our empirical
validation. The opinions of the practitioners involved in our
study may be divergent when it comes to the recommended
refactorings, and they might have different priorities for the
security of the system which could have an impact on our
results. Furthermore, our security metrics are limited to 8
measures thus we may need to include further metrics in our
future studies and not only the easiest ones to implement.

Another potential threat is related to the identification of
security sensitive attributes which can impact the calculation
of the security metrics. To mitigate this threat, we manually
validated the top 10 critical files and use their critical
attributes (fields that have names that match one of the
keywords from the list we gathered at the beginning) to
identify the critical attributes in all the other files that will be
used to compute the security metrics.

Finally, there is a possible threat due to experimenter bias
in the surveys as the subjects had some prior contact with
the researchers.

6 RELATED WORK

We first review studies dealing with refactoring as a search
problem. Then, we focus on studies investigating refactoring
for security purposes.

6.1 Search-Based Refactoring
O’Keeffe and Cinnéide [42] presented the idea of formulating
the refactoring task as a search problem in the space of
alternative designs, generated by applying a set of refactoring
operations. The search is guided by a quality evaluation
function based on eleven object-oriented design metrics
that reflect refactoring goals. Ouni et al. [12] tried to find
recommendations that tend to maximize the use of refactor-
ing rules applied in the past to similar contexts from one
side, and to minimize semantic errors and the number of
defects from another. In another work [10], they focused
on refactoring solutions minimizing the number of bad-
smells while maximizing the use of development history
and semantic coherence.

Alizadeh et al. [9] generated refactoring solutions that
optimize the QMOOD metrics while minimizing the devi-
ation from the initial design. In another work [11], they
considered the QMOOD metrics as objectives for their
optimization problem. Then, they used an unsupervised
learning algorithm to cluster the different trade-off solutions
in order to reduce the developers’ interaction effort when

refactoring systems. Harman and Tratt [26] were the first to
introduce the concept of Pareto optimality to search-based
refactoring. They used it to combine two metrics, namely
CBO (Coupling Between Objects) and SDMPC (Standard
Deviation of Methods Per Class), into a fitness function and
showed its superior performance as compared to a mono-
objective technique [26].

None of the work mentioned has directly addressed
the research questions we investigated here: trying to find
refactoring solutions while considering the code quality
attributes and security metrics as conflicting objectives.

6.2 Security-Aware Refactoring
Alshayeb et al. [43] proposed an empirical study to check
the relationships between some types of code smell, such as
feature envy, and security metrics. The results show that these
code smell did not negatively impact the security metrics. In
this paper, we did not focus on code smells but more on the
impact of refactorings and improving quality attributes on
security.

Maruyama et al. [13], [14] implemented a prototype
of an automated refactoring tool detecting possible code
vulnerabilities. The tool presents the programmers with
information on the security level of the modified code.
However, their tool, Jsart, supports only two refactorings
(Push up method and Push down method) and assesses the
decrease of the security level by the decrease of the access
levels after the application of the above refactorings. Thus,
they do not use metrics as an assessment tool.

Alshammari et al. [15] studied the impact of refactoring
rules on the security of an object-oriented design using
the security design metrics [18], [19], [44], [45]. They also
introduced new security refactoring rules per analogy to
existing ones and distinguished their effects on classified
and non-classified features. They proposed one case study
to illustrate how applying the refactoring rules improves
the security of the design. Therefore, their findings are not
general.

Ghaith and Cinnéide [16] presented an approach to
automated improvement of software security based on
search-based refactoring using the Code-Imp platform. When
this platform is used to improve software design, the fitness
function is a combination of quality metrics. In their work,
they redefined this fitness function based uniquely on secu-
rity metrics. Therefore, they neither studied the relationship
between security and quality, nor the impact of the security-
aware refactorings on the quality of the system. They also
looked at the impact of certain refactorings on the security
metrics, but since they considered just one study case, their
results cannot be generalized.

7 CONCLUSION

We have presented an empirical study to validate the
correlations between the QMOOD quality attributes [17]
and a set of security metrics [18], [19] and to understand the
correlations between refactoring types and security metrics.
Based on the outcomes of these studies, we proposed a
security-aware multi-objective refactoring approach to find
a balance between quality and security goals. We evaluated

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

our tool on the same projects used for the empirical valida-
tions. Furthermore, we compared our results to an existing
refactoring work not considering security to understand the
sacrifice in security measures when improving the quality.
The comparison shows that our security-aware approach
performed significantly better than the existing approach
when it comes to preserving and improving the security of
the system but with low cost in terms of sacrificing quality.
The survey with the 15 practitioners confirmed the efficiency
of our tool and the importance of considering security while
improving several quality attributes.

We are planning as part of our future work to expand
the set of supported security metrics to include design-level
metrics [44], [45], [46] as well, in a similar study. We are also
planning to study the correlation between security metrics
and the impact of improving one on the other. We are
planning to expand our set of refactorings by those that
can change the relationship between classes, such as Replace
Inheritance with Delegation. It is an accepted principle in
industry that a delegation relationship should be preferred to
inheritance, particularly in the context of inversion of control
containers such as Spring. Thus, we are planning to study
the impact of these new types of refactoring on security
and quality then check their acceptability by developers.
Another research direction would be to generate refactoring
recommendations that include third-party libraries [47], [48]
in order to understand their impact on the security of JAVA
apps. Finally, we are planning to perform a survey with
developers to investigate the importance of considering
security as a goal/motivation for refactoring.

REFERENCES

[1] Nist and E. Aroms, NIST Special Publication 800-53 Revision 3
Recommended Security Controls for Federal Information Systems and
Organizations. Paramount, CA: CreateSpace, 2012.

[2] S. Planning, “The economic impacts of inadequate infrastructure
for software testing,” National Institute of Standards and Technology,
2002.

[3] W. Suryn, A. Abran, and A. April, “Iso/iec square. the second
generation of standards for software product quality,” 2003.

[4] T. A. Linden, “Operating system structures to support security and
reliable software,” ACM Computing Surveys (CSUR), vol. 8, no. 4,
pp. 409–445, 1976.

[5] A. Adewumi, S. Misra, and N. Omoregbe, “Evaluating open
source software quality models against iso 25010,” in 2015 IEEE
International Conference on Computer and Information Technology;
Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing. IEEE,
2015, pp. 872–877.

[6] A. Ouni, M. Kessentini, M. Ó Cinnéide, H. Sahraoui, K. Deb, and
K. Inoue, “More: A multi-objective refactoring recommendation
approach to introducing design patterns and fixing code smells,”
Journal of Software: Evolution and Process, vol. 29, no. 5, p. e1843,
2017.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley, Reading,
MA, USA, 1999.

[8] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “Search-
based refactoring: Towards semantics preservation,” in 2012 28th
IEEE International Conference on Software Maintenance (ICSM). IEEE,
2012, pp. 347–356.

[9] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni,
and Y. Cai, “An interactive and dynamic search-based approach
to software refactoring recommendations,” IEEE Transactions on
Software Engineering, 2018.

[10] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “The use of
development history in software refactoring using a multi-objective

evolutionary algorithm,” in Proceedings of the 15th annual conference
on Genetic and evolutionary computation. ACM, 2013, pp. 1461–1468.

[11] V. Alizadeh and M. Kessentini, “Reducing interactive refactoring
effort via clustering-based multi-objective search,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 464–474.

[12] A. Ouni, M. Kessentini, and H. Sahraoui, “Search-based refactoring
using recorded code changes,” in 2013 17th European Conference on
Software Maintenance and Reengineering. IEEE, 2013, pp. 221–230.

[13] K. Maruyama and K. Tokoda, “Security-aware refactoring alerting
its impact on code vulnerabilities,” in 2008 15th Asia-Pacific Software
Engineering Conference, Dec 2008, pp. 445–452.

[14] K. Maruyama and T. Omori, “A security-aware refactoring tool for
java programs,” 01 2011.

[15] B. Alshammari, C. Fidge, and D. Corney, “Assessing the impact
of refactoring on security-critical object-oriented designs,” in 2010
Asia Pacific Software Engineering Conference, Nov 2010, pp. 186–195.

[16] S. Ghaith and M. Ó Cinnéide, “Improving software security using
search-based refactoring,” in Search Based Software Engineering,
G. Fraser and J. Teixeira de Souza, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 121–135.

[17] P. K. Goyal and G. Joshi, “Qmood metric sets to assess quality
of java program,” in 2014 International Conference on Issues and
Challenges in Intelligent Computing Techniques (ICICT). IEEE, 2014,
pp. 520–533.

[18] A. Agrawal and R. Khan, “Assessing impact of cohesion on security-
an object oriented design perspective,” Pensee, vol. 76, no. 2, 2014.

[19] B. Alshammari, C. Fidge, and D. Corney, “Security metrics for
object-oriented class designs,” in 2009 Ninth International Conference
on Quality Software. IEEE, 2009, pp. 11–20.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions
on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[21] TSE. (2020) Online appendix for this publication.
https://doi.org/10.7302/0bgn-vt27 .

[22] J. Bansiya and C. G. Davis, “A hierarchical model for object-
oriented design quality assessment,” IEEE Transactions on Software
Engineering, vol. 28, no. 1, pp. 4–17, 2002.

[23] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring for
software maintenance,” Journal of Systems and Software, vol. 81,
no. 4, pp. 502–516, 2008.

[24] A. C. Jensen and B. H. Cheng, “On the use of genetic programming
for automated refactoring and the introduction of design patterns,”
in Proceedings of the 12th annual conference on Genetic and evolutionary
computation. ACM, 2010, pp. 1341–1348.

[25] B. Amal, M. Kessentini, S. Bechikh, J. Dea, and L. B. Said, “On the
use of machine learning and search-based software engineering for
ill-defined fitness function: a case study on software refactoring,”
in International Symposium on Search Based Software Engineering.
Springer, Cham, 2014, pp. 31–45.

[26] M. Harman and L. Tratt, “Pareto optimal search based refactoring
at the design level,” in Proceedings of the 9th annual conference on
Genetic and evolutionary computation. ACM, 2007, pp. 1106–1113.

[27] R. Shatnawi and W. Li, “An empirical assessment of refactoring
impact on software quality using a hierarchical quality model,”
International Journal of Software Engineering and Its Applications, vol. 5,
no. 4, pp. 127–149, 2011.

[28] A. Ghannem, G. El Boussaidi, and M. Kessentini, “On the use of
design defect examples to detect model refactoring opportunities,”
Software Quality Journal, vol. 24, no. 4, pp. 947–965, 2016.

[29] H. Wang, M. Kessentini, and A. Ouni, “Bi-level identification of
web service defects,” in International Conference on Service-Oriented
Computing. Springer, Cham, 2016, pp. 352–368.

[30] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot frame-
work for java program analysis: a retrospective,” in Cetus Users and
Compiler Infastructure Workshop (CETUS 2011), vol. 15, 2011, p. 35.

[31] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable
components: Software metrics vs text mining,” in 2014 IEEE 25th
international symposium on software reliability engineering. IEEE,
2014, pp. 23–33.

[32] B. Alshammari, C. Fidge, and D. Corney, “Security metrics for
object-oriented class designs,” in 2009 Ninth International Conference
on Quality Software. IEEE, 2009, pp. 11–20.

[33] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Pre-
dicting vulnerable software components via text mining,” IEEE
Transactions on Software Engineering, vol. 40, no. 10, pp. 993–1006,
2014.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

[34] Y. Tang, F. Zhao, Y. Yang, H. Lu, Y. Zhou, and B. Xu, “Predicting
vulnerable components via text mining or software metrics? an
effort-aware perspective,” in 2015 IEEE International Conference on
Software Quality, Reliability and Security. IEEE, 2015, pp. 27–36.

[35] J. Jürjens, Secure systems development with UML. Springer Science
& Business Media, 2005.

[36] N. Rachatasumrit and M. Kim, “An empirical investigation into
the impact of refactoring on regression testing,” in 2012 28th Ieee
International Conference on Software Maintenance (Icsm). IEEE, 2012,
pp. 357–366.

[37] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on software engineering,
vol. 28, no. 1, pp. 4–17, 2002.

[38] W. F. Opdyke, “Refactoring object-oriented frameworks,” 1992.
[39] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation

coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1–4.

[40] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil, “Using exper-
imental design to find effective parameter settings for heuristics,”
Journal of Heuristics, vol. 7, no. 1, pp. 77–97, 2001.

[41] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput.
Surv., vol. 45, no. 1, pp. 11:1–11:61, Dec. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2379776.2379787

[42] M. O’Keeffe and M. Ó. Cinnéide, “A stochastic approach to auto-
mated design improvement,” in Proceedings of the 2nd international
conference on Principles and practice of programming in Java. Computer
Science Press, Inc., 2003, pp. 59–62.

[43] H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi, “An empiri-
cal study to improve software security through the application of
code refactoring,” Information and Software Technology, vol. 96, pp.
112–125, 2018.

[44] B. Alshammari, C. Fidge, and D. Corney, “Security metrics for
object-oriented class designs,” in 2009 Ninth International Conference
on Quality Software, Aug 2009, pp. 11–20.

[45] G. McGraw and E. W. Felten, Securing Java: Getting Down to Business
with Mobile Code. New York, NY, USA: John Wiley & Sons, Inc.,
1999.

[46] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling
level: a new metric for architectural maintenance complexity,” in
2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE). IEEE, 2016, pp. 499–510.

[47] M. Reif, M. Eichberg, B. Hermann, and M. Mezini, “Hermes:
assessment and creation of effective test corpora,” in Proceedings of
the 6th ACM SIGPLAN International Workshop on State Of the Art in
Program Analysis, 2017, pp. 43–48.

[48] M. Reif, M. Eichberg, B. Hermann, J. Lerch, and M. Mezini, “Call
graph construction for java libraries,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2016, pp. 474–486.

Chaima Abid is currently a PhD student in the
intelligent Software Engineering group at the Uni-
versity of Michigan. Her PhD project is concerned
with the application of intelligent search and
machine learning in different areas such as web
services, refactoring and security. Her current
research interests are Search-Based Software
Engineering, web services, refactoring, security,
data analytics and software quality.

Marouane Kessentini is a recipient of the presti-
gious 2018 President of Tunisia distinguished re-
search award, the University distinguished teach-
ing award, the University distinguished digital
education award, the College of Engineering and
Computer Science distinguished research award,
4 best paper awards, and his AI-based software
refactoring invention, licensed and deployed by
industrial partners, is selected as one of the Top 8
inventions at the University of Michigan for 2018
(including the three campuses), among over 500

inventions, by the UM Technology Transfer Office. He is currently a
tenured associate professor and leading a research group on Software
Engineering Intelligence. Prior to joining UM in 2013, He received his
Ph.D. from the University of Montreal in Canada in 2012. He received
several grants from both industry and federal agencies and published over
110 papers in top journals and conferences. He has several collaborations
with industry on the use of computational search, machine learning and
evolutionary algorithms to address software engineering and services
computing problems.

Vahid Alizadeh is currently a Ph.D. student in
the intelligent Software Engineering group at
the University of Michigan. His Ph.D. project
is concerned with the application of intelligent
search and machine learning in different software
engineering areas such as refactoring, testing,
and documentation. His current research inter-
ests are Search-Based Software Engineering,
Refactoring, Artificial Intelligence, data analytics
and software quality.

Mouna Dhaouadi is a master student in the
intelligent Software Engineering group at the
University of Michigan. Her primary research in-
terests are Search-Based Software Engineering,
security, and refactoring.

Rick Kazman is a Professor at the University of
Hawaii and a Principal Researcher at the Soft-
ware Engineering Institute of Carnegie Mellon
University. His primary research interests are
software architecture, design and analysis tools,
software visualization, and software engineering
economics. He also has interests in human-
computer interaction and information retrieval.
Kazman has created several highly influential
methods and tools for architecture analysis, in-
cluding the SAAM (Software Architecture Anal-

ysis Method), the ATAM (Architecture Tradeoff Analysis Method), the
CBAM (Cost-Benefit Analysis Method) and the Dali architecture reverse
engineering tool.

