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26 The formation of preference in risky choice

27A key question in decision-making is how people integrate amounts and
28probabilities to form preferences between risky alternatives. Here we rely on the
29general principle of integration-to-boundary to develop several biologically
30plausible process models of risky-choice, which account for both choices and
31response-times. These models allowed us to contrast two influential competing
32theories: i) within-alternative evaluations, based on multiplicative interaction
33between amounts and probabilities, ii) within-attribute comparisons across
34alternatives. To constrain the preference formation process, we monitored eye-
35fixations during decisions between pairs of simple lotteries, designed to
36systematically span the decision-space. The behavioral results indicate that the
37participants' eye-scanning patterns were associated with risk-preferences and
38expected-value maximization. Crucially, model comparisons showed that within-
39alternative process models decisively outperformed within-attribute ones, in
40accounting for choices and response-times. These findings elucidate the
41psychological processes underlying preference formation when making risky-
42choices, and suggest that compensatory, within-alternative integration is an

43adaptive mechanism employed in human decision-making.
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53Author Summary

54Decision-making under risk requires a selection between alternatives, such as
55lotteries, which offer a reward with a specified probability. Human decision between
S6such alternatives is at the center of the normative decision theory, which assumes that
57decisions are rationally made by forming a value for each alternative and selecting the
58alternative with the highest value. To this day, there is still a considerable debate on
59%how such values are computed. While the normative theory assumes that values of the
60alternatives reflect the statistically expected reward, more recent theories have argued
61that alternative-values are not computed and choices are only based on sequentially
62comparing the alternatives on amounts or on probabilities. Here, we carried out an
63experimental investigation of risky decision-making, in which participants chose
64between pairs of simple lottery alternatives that systematically span a range of
65probabilities and rewards, while we tracked their eye positions during their decision-
66making process. We found that the participants are sensitive to the expected-utility of
67the alternatives, as predicted by the normative decision theories, but they also exhibit
68risk-biases that correlate with the eye-scanning patterns. We then carry out
69computational modeling, comparing preference-formation models on their ability to
70account for both choices and their reaction-time. The results provide strong support
71for normative models which assume that the values of the alternative are computed
72via a multiplicative function of the amounts and probabilities. These results suggest
73that humans are closer to normative principles than previously assumed, and motivate
74further investigation into the neural mechanism that mediates these multiplicative

75computations.
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811. Introduction

82Decision-making under risk is ubiquitous in daily activities, such as deciding whether
83to take an umbrella when the weather forecast predicts 50% chance for rain or
84whether to purchase a lottery ticket with a winning probability of 1%. Such decisions
85are difficult because the outcomes of the alternatives are only known with some
86probability, and thus they are subject to risk tradeoffs. For example, when deciding
87between a lottery that offers $100 with a probability of 50% and an offer of $40 with
88certainty, one needs to balance between the appeal of the attractive amount ($100) and
89the risk of getting nothing (rather than gaining $40 for certain). Choices between such
90lotteries were the subject of intensive research in economics and experimental
91psychology that investigated how humans make risky decisions, starting from the
92normative Expected-Utility (EU; [1]), followed by random utility models [2] and
93culminating with Cumulative Prospect Theory (CPT, [3—6], see also Transfer of
94 Attention eXchange [TAX], for a related type of model [7]). Yet despite the
95impressive success of CPT in accounting for risky choice data (e.g., the dependence
960f risk-aversion on the magnitude of the outcomes' probabilities [8]), the theory has
97been criticized for making assumptions that are inconsistent with capacity limitations
98of human online information processing, and for not explicating the process by which

99the preferences are formed [9,10].

100Several process theories were developed to account for risky choice. First, heuristic
101models, such as Priority Heuristic (PH), suggest that preferences are not formed via a
102compensatory process of averaging over all outcomes (like in £U and CPT), but
103rather via a sequential process of comparing the alternatives over one specific
104attribute (probability or amount) at a time, in a specified order, and stopping at the
105first instance in which a termination criterion is satisfied [9]. Second, a number of
106models have relied on the sequential-sampling framework [11-14], which
107successfully accounted for choices in perceptual tasks, in order to develop a process
108model of risky choice. For example, in Decision Field Theory (DFT; [15]), as
109attention fluctuates between the alternatives, the preference dynamically evolves by
110integrating amounts, which are sampled with a frequency that is associated with their

111(subjective) probabilities [16]. In the Decision by Sampling model (DbS; [17-19]),



112like in PH, the sampling involves comparisons between the values of the alternatives
1130n a specific attribute (i.e., amounts or probabilities, but not both). However, unlike
114PH, DbS does not assume a fixed order of attribute sampling, nor that the decision is
115settled at a single comparison, but rather a stochastic sampling, which continues until
116the accumulated difference of favorable comparisons reaches a decision boundary.
117Ceritically, as opposed to EU or CPT, in DbS the processing takes place within-
118attributes (i.e., comparison between amounts or between probabilities). Finally, in the
119Parallel Constraint Satisfaction model (PCS; [20]), a compensatory within-alternative
120process similar to EU (i.e., multiplication of amounts and probabilities) is carried out
121in a parallel and automatic manner; this process is mediated by a connectionist
122network of bottom-up and top-down connections. Although several qualitative
123predictions of the PCS model have been confirmed [20], this model has not been
124tested quantitatively in risky choice.

125More recently, a number of studies have relied on eye-fixations during choice
126between alternatives, to gain insight into the preference formation process. For
127example, Krajbich, Rangel and colleagues have shown that an extension of the Drift
128Diffusion Model (DDM; [12,13]), the attentional DDM (aDDM), accounts well for
1290bserved preferences between consumer products, food items and 50-50 monetary
130gambles [21-24]. To do so, the aDDM assumes that the value of the sampled
131alternative is modulated by eye-fixations, so that the values of the non-fixated
132alternatives are attenuated compared with the fixated ones. In the domain of risky
133choice, a number of studies have contrasted within-alternative and within-attribute
134models, and reported partial support for both [20,24-28]. In particular, Gléckner and
135Herbold [20] analyzed risky choice while monitoring eye-movements, and provided
136evidence against the PH model and in favor of the PCS and DFT models (see also
137[29] for similar results). Finally, in a recent investigation of eye-movements during
138risky choice, Stewart, Hermens, & Matthews [30] concluded that, while eye-
139movements contribute to choice preference, this contribution is mostly independent of
140the values sampled. In other words, the more one looks at an alternative the more

141likely s/he is to choose it, independently of the magnitude of amount or probability.
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142The aim of the current study is to develop and contrast process models of risky
143choice, which are constrained by the eye movements of participants making decisions.
1441In particular, we adopt an integration-to-boundary framework, which allows to predict
145both choices and their decision-time, and we extend the aDDM [21,22,31] approach to
146the domain of risky choice (see also [24] for a recent extension to 50-50 monetary
147gambles). In this regard, a central question is whether the preferences are formed by
148integrating global alternative-values, based on multiplicative interactions between
149amounts and probabilities (within-alternative processing), or by sampling and
150integrating attribute-comparisons (within—attribute processing). Furthermore, using
151process models that include attentional modulation of fixated information, we wish to
152account for individual differences in risk preference. While previous work has
153highlighted the impact of task-complexity (e.g., number of alternatives and attributes)
154in determining the decision strategy that the participants adopt (e.g., [32]), here we
155focus on the simplest type of risky choice (between pairs of alternatives, each
156consisting of a probability p to win amount x, see Fig. 1A). Thus, our aim here is not
157to determine which of these two types of processes prevail in any choice scenario (we
158think that they both can take place, subject to task-conditions and individual
159differences). Rather, we wish to test if, at least for this simple case, the more
160“economically-normative” (within-alternative and multiplicative) strategies are within
161the capacity of participants resources. Towards this end, we carry out a systematic
162investigation of risky choice with simple two-outcome lotteries, while eye-fixations
163are monitored. To anticipate our results, we provide a clear demonstration that within-
164alternative and multiplicative evaluations are being used, subject to individual

165differences that correlate with choice normativity.
1662. Results

167The participants were tested on choices between simple lotteries of the type (x; with
168p,; and otherwise 0, vs. x,, with p, and otherwise 0; where x,, are monetary amounts
169and p,, are the corresponding probabilities of winning). The choice problems (94
170trials) were selected by systematically sampling a two-dimensional grid of
171probabilities and amounts (Fig. 1B). Dominated choice problems (in which both the

172amount and probability of one option were higher than in the other option) were
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173excluded except for 10 catch-trials, which were used to assess task engagement. To
174discourage numerical calculations, the choice alternatives were presented in graphical
175format (Fig. 1A). The experiment was incentive compatible: it was explained to the
176participants that one of their choices will be randomly chosen and played out for real
177money at the end of the experiment (see Methods and Suppl. Experimental

178instructions for details on the stimuli and task instructions).
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Figure 1. Stimuli and study design. (A) Example of the stimuli used in the experiment.
Amounts were represented by the lower (brighter) parts of divided bar graphs, and
probabilities by the lower (brighter) sectors of pie charts. Note that the figure is not
to scale, and the colored ellipses and labels are shown for illustration purposes only
(they were not used in the actual experiment). (B) Choices were drawn from a 5x5
two-dimensional grid with amounts along one dimension, and probabilities along the
other. The two stimuli from panel A are shown in this grid. Choice stimuli were

presented without deadline until response.

1792.1 Choice behavior

180We began by examining the basic psychometric properties of our choice-data.
181Analysis of the "catch-trials" showed that the participants chose the better option
182(higher in both amount and probability) in 97% of these trials (SD = 6%). Next, we
183conducted a mixed-effect logistic regression on the choice data, with the Expected-
184Value (EV) differences (x;'p; — x2'p>) as a predictor, and with random intercepts and
185slopes at the participant level. The results indicated that, consistent with an
186“economically-normative” theory, the participants were sensitive to EV differences,
187and preferred lotteries with higher EVs over lotteries with lower ones (f = 0.40, p
188<.001; Fig. 2A). Additionally, using a Pearson correlation analysis, we showed that
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189the reaction time (RT) of a decision decreased as the absolute £V difference between
190the lotteries increased (» = -0.8, p < .001; Fig. 2B). This finding is consistent with
191previous process models such as the PCS [20], the aDDM [21], and the DFT [16],
192indicating that the participants take longer to decide when the evidence (as measured

193by the EV-difference) is smaller.

194Finally, we evaluated the risk-preferences of the participants. To this end, we focused
1950n choice problems with similar EVs (|AEV| < 1, Nenice proviems = 26), and examined the
196proportion of trials in which high-payoff/low-probability lotteries (riskier options)
197were preferred over low-payoff/high-probability lotteries (safer options). Following
198the CPT regularity of differential risk-attitudes for low vs. medium/high probabilities
199(see Suppl. Cumulative Prospect Theory (CPT) risk attitudes predictions), we
200examined the risk-preferences separately for these two probability domains: 1) low-
201probability cases, in which one of the lotteries has p < .25 (e.g., $24 with p=.1 vs. $6
202with p = .5), and ii) high-probability cases, in which both lotteries have p > .25 (e.g.,
203$30 with p = .5 vs. $15 with p = 1); the .25 cutoff was selected to match CPT (see Fig.
204S1). A paired samples z-test indicated that, consistent with CPT, the participants
205showed higher levels of risk-aversion for medium/high probabilities as compared to
206low ones (#(30) = 3.84, p <.001). Follow-up one-sample ¢-tests (against .5) indicated
207that the participants showed risk-aversion for medium/high probabilities (#(30) = 4.49,
208p < .001); no risk-aversion, however, was obtained for low probabilities (#30) = -

2090.11, p=.9).
2102.2 Eye-fixations and individual differences

2110n average, the participants made 9.05 fixations (SD = 0.64) per trial, with a mean
212duration of 407ms (SD = 244 ms) per fixation. Also, on average across participants,
213there was no significant difference between the proportion of fixations towards
214amounts and probabilities (#(30) = 0.78, p = .44). There was, however, a remarkable
215difference between participants in this proportion, which was correlated with
216participants’ risk preferences: the more a participant fixated on amounts, the more
217likely he or she was to choose the riskier alternatives (» = .48, p = .006; Fig. S2A). To
218understand this relationship we examined individual differences in fixating the higher

219of two amounts/probabilities, as this can explain risk-biases (looking more at higher
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220amounts or at lower probabilities leads to risk-seeking according to the aDDM
221[21,22,24]). Importantly, we find that the more a participant tends to fixate on
222amounts the more s/he fixates on the larger of them (» = .47; p = .007; Fig. S2B), and
223similarly for probabilities (» = .46; p = .007; Fig. S2C). Finally, the frequency of
224fixations on the higher of the two amounts was positively correlated with risk-seeking
225(r = .58; p < .001; Fig. 2E), and the frequency of fixations on the higher of the two
226probabilities was negatively correlated with risk-seeking (» = .45; p = .01; Fig. S2D)
227see also [24,33].

228We also examined the eye-trajectories in relation to their transitions between the four
229attributes (x;,, p;, x> p). The transitions between decision attributes (amounts and
230probabilities) were classified into three categories [20,25,30]: i) Within-alternative
23 1transitions — transitions between attributes that belong to the same alternative. ii)
232Within-attribute transitions — transitions between different alternatives, within the
233same attribute. iii) “Diagonal” transitions — transitions between the amount of
234alternative A and the probability of alternative B and vice versa. Figures 2C-D show
2350ne example each for within-alternative and within-attribute trials, respectively. An
236Analysis of Variances (ANOVA) revealed significant differences of the transition
237probabilities between the three transitions types (£(2,60) = 431.1, p <.001). Post-hoc
238comparisons showed that the participants made more within-alternative than within-
239attribute transitions (p < .001), as well as more within-attribute than diagonal ones (p
240< .001). The proportion of within-alternative transitions (out of all transitions) was
241subject to individual differences and was correlated with the economically-normative
242choice performance (AEV), such that the higher the fraction of within-alternative
243transitions the higher was the proportion of the alternative with the higher EV to be
244chosen (r= .57, p < .001; Fig. 2F).

245

246
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248

249

179
18



(A) (B)

r=-.380,P <.001

55
2?05 [

1UNsr

Keebouee
3.5

0 5 10 15
Absolute A EV (Expected Value )

©) (D)  Typical within-attribute
(E) (F)
r=0.57,p <.001
0.8 1
) ° o*
0.6 0.9
)
[ J
glfefspne cjoft
[ J
o o EA L
Bfeg! L [ ] b0.7 .
b
o> 0.6"®

-0.04 -003 -002 -0.01 0 001 002 003 004 04 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8

P (Fixations to higher amounts ) . P (Fixations to lower amounts ) Proportion  of within -alternative transitions

Figure 2. Choice and eye-movements analysis. (A) The participants were sensitive to
EV differences between the options. Solid purple line corresponds to the group fit;
grey lines correspond to the fit of individual participants. (B) Response times were
negatively correlated with the alternatives' EV differences. (C-D) Example eye-
trajectory characterized by within-alternative transitions (in C) and by within-
attribute transitions (in D). The numbers indicate the order of fixations. (E) The
proportion of fixations to the higher amount correlated with risk-seeking preference.

(F) The proportion of within-alternative transitions correlated with the proportion of
higher EV choices.

2502.3 Predicting choices using eye-fixations
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251Recent research has demonstrated that attentional mechanisms play a key role in the
252development of preferences [24,34-38]. In particular, it was shown that the more an
253alternative is fixated, the more likely it is to be chosen [21,30,39].. We have
254confirmed this regularity in our data by carrying out a number of logistic regression
255models that predict choices based on the EU or CPT utility functions, and the relative
256number of fixations (or dwell-times) on each alternative (see Suppl. Predicting

257 choices using eye-fixations for details).
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Figure 3. Expected Utility based regression models. (A) EUpyei.ime: the EU value of each
of the alternatives is modulated by the total looking time on each alternative. (B)
EUraions: the EU value of each of the alternatives is modulated by the relative number of
fixations toward it. (C) Prediction accuracy and AIC for the traditional, dwell time and
number of fixations EU.
258As illustrated in Fig. 3A, we examined an EU x time model', in which the EU value
2590f each alternative increases with its dwell time on the two alternatives (a is the risk-
260parameter of EU, 7 is a saturation parameter, and £ is a slope parameter). Additionally,
261we examined a similar regression model, in which dwell-times were replaced with the
262number of fixations each alternative is sampled (Fig 3B). Comparison of these models
263with the traditional EU (which does not take eye-movements into account) showed
264that using eye-movements significantly improved prediction accuracy and AIC

265comparted with the traditional EU (Fig. 3C). Note also, that the prediction accuracy

21" We focus here on EU based models, however similar conclusions were obtained for CPT based
22models, see Suppl. Predicting choices using eye-fixations.
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266and AIC which were obtained using the number of fixations, equal (for EU) or
267surpasses (for CPT), the prediction accuracy and A/C obtained using the more
268traditional measure of dwell-time. In addition, the fitted values of saturation-
269parameter 7, were lower than 1, in both time based regressions (number of fixations
270and dwell time), indicating that, for example, looking twice as long at an alternative
271increases its value by a factor of less than 2. One way to understand this non-linear
272saturation is in relation to a leak of the accumulated values ([14,40,41]). In such leaky
273integration models, the accumulated evidence saturates at an asymptotic value, and
274remains constant even if more integration time is allowed. Accordingly, at each
275fixation one samples and accumulates a value, however, as the trial proceeds, the
276accumulated value leaks, resulting in a type of recency. Indeed, when we compute the
277percentage of match between the fixated alternative and the final choice as a function
2780f fixation number (backwards from the end) we obtain a clear recency pattern (see

279Fig. S5 in Suppl. Last fixations and choice).

2802.4 Towards a process model of risky choice based on eye-movements

281The central aim of this study is to develop and contrast two classes of process models
282that differ in the way attentional (or eye) transitions affect the integration of amounts
283and probabilities. Both types of models assume that: a) fixated objects receive
284enhanced attention, b) attention modulates the weight of value integration [21], and c)
285recently sampled values are weighted more than earlier ones [14,40,41]. The models
286differ, however, on how the values are integrated into preferences. Note that we do
287not aim to test specific models but rather distinguish between broad classes of models
288based on certain principles, in particular, between within-attribute vs. within-
289alternative models [20,25,32,42]. While the former is used in models such as PH and
290DBS, the latter is used in models such as EU, CPT and PCS. We also examined a
291more hybrid model, which still relies on multiplicative within-alternative

292computations, but also allows some extent of competition between the attributes.

293 Within-attribute integration models. Models from this class assume that when
294decision-makers attend to one attribute (e.g., amount or probability), they accumulate
295the value-difference (or categorical difference) of the two alternatives on that

296attribute, according to:

2512
26



297 Y, [t+1)=(1-A)-Y,[t|+D,[t|

298 Yolt+1)=(1-2]-Y y[t|+Dylt]

299where Y; i€ {A,B} is the accumulated preference for alternative 1, 4 is an integration-
300leak factor that emphasizes recent values, and D; is the value (or categorical)
301difference between the attributes, which depends on eye-fixation and model variant
302(see Suppl. Within-attribute integration models for a detailed description of the
303models). This mechanism was implemented in two model variants. In the first one,
304preferences were generated by accumulating the normalized differences (min-max
305normalization, over the whole set of decision problems) of the attended attribute
306values. For example, if the participant had to choose between A:($20, 0.2) and B:
307($10, 0.5), then the difference between the normalized amount values (of $20 and $10,
308respectively), is accumulated whenever the representations of amounts are fixated.
309Likewise, the difference between the normalized probability values (of 0.2 and 0.5,
310respectively) is accumulated whenever the representations of probabilities are fixated.
311The second model assumes integration of categorical differences; this follows the
312DBS assumption that people have access to ordinal comparisons rather than values
313[18]. Therefore, in the above example, the accumulator associated with alternative A
314increases by one unit at each fixation of an amount (since $20 is more than $10), and
315the accumulator of alternative B increases by one unit at each fixation of a probability
316(since 0.5 is larger than 0.2). This means that the mechanism accumulates binary
317counts of comparison between the same attribute in different alternatives [17,19]. To
318enhance these models’ performance we allowed an additional parameter: attentional
319modulation, which enhances the weight of sampled attributes ([21,22]; see Suppl.
320within-attribute integration models). Note that since the values of both attributes are
321used in the comparison, these models assume either the existence of some degree of
322peripheral vision, or reliance on memory. Since memory cannot play a role during the
323first fixation of an attribute (and since peripheral vision is less sensitive to the low
324contrast of our stimuli in any fixation, including the first), we assumed that default
325values (mid-range of the amounts and probabilities values used in the experiment) are
326used for the yet un-scanned attributes. The default values were replaced with the
327actual attributes' values at the first fixation to each attribute. This treatment was

328implemented in all versions the process models.

2713
28



(A) (B)
-@-Alternative A (X1 =6, p1 =.8)
-®-Alternative B (X2 =24, p2 =.2)

=
)

U(X1) n(Py) U(X1) n(P2)

o

Accumulators Activations (A.U.)

OO e ®
Figure 4. [llustration of the two-layer leaky accumulator model and its dynamics. (A)
The first layer consists of four leaky-accumulators associated with the different
attributes, and the second consists of two leaky accumulators associated with the
alternatives’ values. The units in the first layer are updated with the attentionally
modulated subjective values of each attribute (the red arrow indicates the input from
the attended attribute, whereas the black arrows indicate the attenuated inputs from
the unattended attributes). The units in the second layer are fed with the first layer
units' activations, and accumulate their product. (B) Simulated run of the two-layer
leaky accumulators model using the average best fitted parameters (see Table S2), in
a choice between: A($6, .8) and B(324, .2); A-wins. Blue circles (x-axis) correspond
to fixation toward A, and red circles correspond to fixation toward B. Values on the
y-axis correspond to the activations of the second-layer accumulators.

329Within-alternative integration models. The second class of models assumes that the

330values that are integrated are associated with the alternatives and are multiplicatively
331formed from the attributes (as in expected utility). This mechanism was also
332implemented in two models. The first model has single-layer architecture and
333involves two accumulator units, one for each alternative (A or B). On each fixation,
334the accumulators are updated with the integrated subjective utilities of the fixated
335alternative (which is based on multiplication of the subjective-amounts and
336subjective-probabilities; see Suppl. Within-alternative selection/One-layer leaky

337accumulators), according to:

338 Y, [t+1]=[1—2A)-Y,[t|+SU ,[t]
339 Y, t+1)=(1-A]-Y ,(t|+SU,|t]
2914
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340where Y; i€ {A,B} is the accumulated preference of alternative-i, 4 is an integration-
341leak, and SU; is the subjective expected utility of alternative-i (similar to CPT),
342subject to attentional modulation that depends on eye-fixation. As in the aDMM
343model [21], this model assumes that the inputs are modulated by gaze direction, i.e.,
344higher weight is assigned to the fixated alternative than to the non-fixated one. Note
345that in this model the update does not depend on whether the current fixation is on
346amount or probability, but only which alternative is fixated, with the non-fixated
347alternative being attenuated. For example, when one looks at either the amount or the
348probability of alternative A, the corresponding accumulator is updated with the
349integrated subjective utility of that alternative, while the other accumulator is updated

350with an attenuated value of the subjective utility of alternative B.

351The second within-alternative model contains two-layers of leaky-accumulators in
352cascade (Fig 4A); as we will show, this model allows to apply attentional modulations
353to specific attributes and not only to the whole alternative. The first layer of the model
354consists of four leaky-accumulators associated with the four different attributes (x,,
355p.; x2 p2). Unlike in the previous (single layer) version, these units are updated with
356the attentionally modulated subjective values of each attribute. For example, when a
357participant looks at the amount of alternative A (x;), the accumulator of that attribute
358is updated with the subjective value associated with it (i.e., x;“, where « is a free
359parameter), while the other accumulators (of p;, x> and p») are updated with attenuated
360subjective values of these attributes. The second layer of the model consists of two
361leaky-accumulators corresponding to the integrated preference of the two alternatives.
362At each fixation, each second layer (alternative) accumulator is fed with the
363activations of the first layer units associated with it, by accumulating the product of
364their values (see Fig 4B for illustration of the model dynamics and Suppl. Within-
365alternative selection/Two-layer leaky accumulators for details). In one version of the
366two-layer model, we also introduced mutual inhibition between the amount units (i.e.,
367competition between x; and x>) and the probability units (i.e., competition between p;,
368and p,). One can think of such a model as implementing a hybrid between within-
369attribute and within-alternative processes: while the alternatives units still receive
370multiplicative input from both their attributes units, the mutual inhibition (depending

371on its strength) can polarize the difference in activation, subject to attentional
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372modulation based on the current fixation. We note that the level of activation-leakage
373(in both types of models) is a free-parameter, so that the case in which A=0,
374corresponds to the more standard Drift-Diffusion models, and is thus explicitly tested

375as part of our model fit procedures.

376The models were fitted to the data in two steps. In the first, we fitted the models to
377choice data, based on the values of the alternatives and the eye-fixations made for that
378decision, using maximum likelihood estimations to obtain the best model parameters
379(see Suppl. Model Fitting). In the second step, we used the models with their fitted
380parameters from step 1, to make predictions for decision-time, under an integration-
381to-boundary framework (in which we included a new set of parameters that
382correspond to the response boundary). At this stage we also compared the models on

383their ability to predict both choices and decision-times.

384In addition to the process models, we also fitted a number of benchmark non-
385integration to boundary models. Specifically we examined traditional compensatory
386models, such as EV, EU and CPT, as well as non-compensatory heuristic models such
387as Maximax [43], Least-Likely [44] and PH ([9]; see Suppl. Heuristics for detailed
388description of these models).

389To evaluate the models' capabilities to fit the data, we used several selection criteria:
390prediction-accuracy, AI/C and cross-validation measures (see Suppl. Model Selection).
391For the heuristic models, whose choices are deterministic, we only examined their
392accuracy measures [8]. Because it can be argued that the prediction-accuracy of
393models with fixed (or no) parameter values (such as the heuristic models) cannot be
394compared to the prediction-accuracy of models with fitted parameter values [45], we

395compare them using the Cross-Validation/Accuracy measure.
3962.4.1 Step-1: choice data

397The most complex of the models (in terms of number of parameters) is the within-
398alternative process model, which has four free parameters. The first two, a and y
399correspond to the CPT parameters [3] for risk aversion and probability weighting,

400respectively, 0 corresponds to the aDDM attentional modulation parameter, and A is
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401the activation-leak. As we show in Suppl. Parameters Recovery, we carried out a
402recovery exercise, showing that our fitting procedure is able to provide a good
403recovery for all those parameters over a wide range of values that correspond to those
404found in the actual data. This non-trivial result is helped by the fact that our 94 choice
405problems systematically span the choice space. As shown in Table-2, the within-
406alternative process models with attention modulation and leak gave the best fit and
407showed the highest cross-validation prediction accuracy. They outperformed both the
408within-attribute process models, as well as the traditional, non-integration to boundary
409models (compensatory and non-compensatory heuristics). These results speak against
410the hypothesis that the participants accumulate only the differences of the attended
411attributes. We also found that the within-attribute models with perfect (rather than
412leaky) integration (Normalized and Binary differences), resulted in much worse AIC,
413prediction accuracy, and cross-validation (therefore in Table-2 we report only the
414within-attribute models which include leak as a free parameter). We also note that the
415within-alternative choice models required a significant degree of information leak (A
41640p= 0.58). As we show in the Suppl. Additional model variations, we explicitly
417tested four versions of within-alternative models that included an attentional
418modulation but no activation-leak, all of which resulted in much poorer prediction-
419accuracy and AIC fit values (these models reached a prediction accuracy that while
420exceeding that of the simple £U, did not exceed that of the CPT without eye-fixations;
421see Suppl. Additional model variations)*. By contrast, the within-alternative process
422models (with leak) outperformed (on prediction accuracy, 4/C and cross-validation)
423the regression models that include either EU or CPT together with the number of
424fixations (see Suppl. Predicting choices using eye-fixations). This suggests that
425considering dynamic processes, such as attentional shifts and leak of activation

426improves prediction accuracy and fit measures beyond what is achievable by using

35% The hybrid model resulted in fits that did not exceed (A/C and prediction accuracy) those of the
36within-alternative model (see Suppl. Additional model variations) and with a moderate mutual
37inhibition value (.13), which does not trigger a full all-or-none dynamics. As this model has two extra
38parameters (the mutual inhibition values between the x and the p units), we kept two of the other
39parameters (leak and attentional modulation) to the optimal values of the model without mutual
40inhibition. Due to its complexity, we leave a full investigation of this model to future research. We
41wish to point out, however, that inhibition at the level of attributes is not motivated by Connectionist
42principles ([72]), which suggested mutual inhibition between units that correspond to different
43alternatives (for example, this could apply to inhibition between alternative A and B at the 2™
44alternative layer, see Fig. 4A).
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427only the number of fixations. Note that the within-alternative two-layer leaky
428accumulators model outperforms the single layer accumulator model. This result
429suggests that the perception of the attributes is dynamic and is subject to modulation

430by attentional processes.

431Table-2: Model comparison

Model AIC  Predictio Cross-Validation  Cross-Validation
n (- (Accuracy)
Accuracy  2eLogLikelihood)
Traditional Models
EV 2789 75.1% 567 75.1%
EU 2617 76.5% 527 76.0%
CPT 2364 81.2% 484 79.6%
Heuristics
MaxiMax - 44.8% - 44.8%
Least-Likely - 55.2% - 55.2%
Priority Heuristic - 58.3% - 58.3%
Fixation based regression models
E UFisations 2447 79.9% 506 78.7%
CPTFicasions 2173 83.9% 453 81.7%
Within-attribute Integration
Normalized
2716 76.8% 551 75.4%
differences
Categorical
2724 76.4% 576 74.4%
differences

Within-alternative Integration
one-layer leaky

1980 86.1% 445 83.8%
accumulators

two-layer leaky

1877 87.2% 436 84.1%
accumulators

AIC values are rounded to the nearest integers. Bold entry indicates the best fitting
models. Note that AIC differences exceeding 10 are considered very strong
evidence in favor of the model with the lower numerical values.

432Finally, we carried out a comparison of the predictive accuracy of our best
433performance model — the two-layer leaky accumulators - with that of the traditional
434EU and CPT models across all decisions as a function of EV-differences. The

435comparison demonstrates that the difference in prediction accuracy is especially large
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436for difficult choices (low EV-differences, 1-3 Quantiles; Fig. 5), suggesting that

437attentional modulations are particularly significant in difficult decisions [46].

-+-EU -o-CPT -m-2-layer leaky accumulator Figure 5. Predictive accuracy of the EU,
1 CPT and the two-layer within-alternative
integration models as a function of AEV
o) * quantile. The two-layer model
§ 08 outperformed all other models especially
g . in difficult decisions (low EV-differences).
8 Bars denote S.E., clustered by subjects.
05

AEV Quantile

438
4392.4.2 Step-2: Accounting for both choice and decision-time.

440We contrasted the within-alternative and the within-attribute models, in accounting
441simultaneously for choices and decision-times. To this end, we adopt an integration-
442to-boundary framework, which assumes that preferences are accumulated until they
443cross a decision criterion [47,48]; this introduced a few more parameters (for the
444boundary) into the model (see Suppl. Model Fitting). The models are now set to
445estimate the probability of a subject’s choice conditioned on its decision time and
446fixations. This probability is accumulated for all choice trials of the participant to a
447total likelihood, which is used to optimize the boundary parameters. Two families of
448decision boundaries were tested, for each of the models: 1) the standard fixed (time-
449invariant) boundary, which introduces a single new boundary parameter, and ii) a
450collapsing (time-variant) boundary model, which introduces three new parameters
451(see Suppl. Optimization procedure: choices and decision-times, for further details
452regarding the implementations of these two types of models). The collapsing
453boundary model has been the focus of recent investigations in decision neuroscience
454[41, 42], and appears to be favored in experimental tasks that span over longer time

455intervals (more than 2-3 sec [49,50]).
(A) (B)
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Figure 6. Accounting for choices and decision times. (A) Group quantile (Vincentizing;
[12]) decision-time density distribution (in number of fixations to decision). Dashed
red lines indicate the quantiles of the actual data distribution ([.1, .3, .5, .7, .9, .99]).
(B) Group Quantile-Quantile plot comparing the actual decision time and the
simulated decision time of the within-alternative (red) and within-attribute models
(blue). Note that the within-alternative model captures better the tail of the
distribution.

456The results show that, with both decision boundary families, the two-layer leaky
457accumulator model outperformed all the other models. Among the two types of
458boundary families, the best fits by far were obtained under the collapsing boundary
459model (4/C and cross-validation), despite the cost of the two extra parameters (see
460Suppl. Process model comparison for all models). For this reason, we only report
461below the results for this type of boundary. We find that the within-alternative/two-
462layer leaky accumulator model (4IC = 14,492) decisively outperformed the within-
463attribute/normalized differences model (AIC = 15,815; AAIC = 823), in accounting for
464decision-times (conditioned on the actual fixation patterns). Finally, we used these
465models to predict the distribution of decision times (measured in number of fixations),
466for novel but statistically matched patterns of fixations. To this end, for each trial we
467simulated a fixation sequence that is based on a statistical model of the participant’s
468fixations towards the four attributes as a function of their values [21,30]. The results
469indicate that for the two-layer leaky accumulator model, the predicted and actual
470decision-time distributions show a good match, however for the normalized
471differences model, the tail of the predicted decision-time distribution deviates from

472that of the actual decision-time distribution (Fig. 6 A-B).
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4732.5 Accounting for individual differences in risk-bias and in economically

474normative choice

4750ur best within-alternative integration model accounts also for the empirical
476correlation we reported between the proportion of fixations a participant makes to the
477Thigher of the two amounts and his or her risk-preference bias (Fig. 2E; see also [24]).
478To show this, we simulated choices for each participant, based on his or her fitted
479model-parameters and the participant's actual fixation sequence. The correlation
480between the model's risk-preference prediction and the proportion of fixations to the
481higher amount (» = .58, p < .001), was exactly equal to the empirical correlation
482obtained in the data (Fig. 2E). Next, we sought to demonstrate that this relation is
483associated with the fixation pattern and not merely with differences in model
484parameters. To this end, we simulated choices for each participant, by using his or her
485actual fixation sequences, however, this time we used model parameters that
486correspond to the group mean (rather than the individually fitted parameters). This
487resulted in a significant correlation ( = .52; p = .002; Fig. 7A) between the risk-
488preference and the proportion of fixating on the higher amount. This correlation
489between risk-biases and fixation-pattern relies upon the model’s attentional
490component, which gives higher weights to the attributes on which the participant
491fixates. For example, assume that a participant is asked to choose between A:($20,
4920.5) and B:($10, 1). If s/he fixates more the amount of alternative A than the amount
4930f alternative B, higher weights would be given to the former, and thus the riskier

494alternative (A) would be preferred by the model over the safer one (B).
(A) (B)

r =0.52,p =.002

\DData W within _Aternative  [Jwithin _Attribute
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Figure 7. Model predictions and individual differences. (4) The proportion of fixations
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toward the higher amount was correlated with the risk-seeking preference predicted by
the two-layer within-alternative integration model with parameters fixed at the group-
mean, but with actual fixations. (B) The within-alternative model is closer to the data and
predicts a higher fraction of economical-normative EV-choices (left panel) and a lower
fraction of (irrational) transitivity violations (right panel), compared with the within-
attribute model. Error bars represent the standard error of the mean.
495Finally, we address an important question: which preference-formation mechanism
496(within-alternative or within-attribute) results in better normative performance, and
497thus can be regarded as more adaptive? To answer this, we simulated the two types of
498models based on the participants' best fitted parameters and actual fixation sequences,
499and we examined two measures of normative choice predicted by each model: 1) the
500fraction of EV-choices (for simplification we discuss normativity in terms of EV, but
501the same would hold in terms of EU), and ii) the fraction of transitivity violations — a
502direct measure of choice irrationality ([51,52]; see Suppl. Transitivity Violations). As
503seen in Fig. 7B, the normative performance is higher for the within-alternative model
504than for the within-attribute model, for both measures: EV-choices: #(30) = 6.27, p
505<.001 and transitivity violations: #(30) = 5.15, p <.001. This is expected because our
506within-alternative model, like CPT, assumes a multiplication between subjectively
507transformed amounts and probabilities, which also maintains choice-consistency.
508Although the economically-normative model requires a multiplication of objective
509values whereas our model requires a multiplication of subjective values, this
510discrepancy is relatively minor compared with non-multiplicative strategies (i.e.,
511within-attribute integration or heuristics). Moreover, we have found that the more
512within-alternative transitions a person makes, the higher is his or her fraction of
513economically-normative EV choices (Fig. 2F; see also [28]). This correlation can be
514naturally understood, since the participants rely on a within-alternative multiplicative
515mechanism, and this operation is likely to be more precise following an actual
516transition between amounts and probabilities (i.e., a fixation on one attribute of an
517alternative followed immediately by a fixation to the other attribute of the same
518alternative), than following a non-direct transition (where one of the to-be-multiplied
519attributes is based on memory or defaults). Consistent with this, we found a

520correlation across participants between the prediction accuracy of the within-
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521alternative model and the proportion of within-alternative transitions (r = 0.39, p

522=.03).
5233. Discussion

524The main aim of our study was to elucidate mechanisms by which different attributes
525(amounts and probabilities) are integrated to generate an overall subjective value of
526choice alternative. To this end, we focused on choices between simple lotteries and
527developed process models of risky choice, which are constrained by eye-fixations and
528we assumed a fixation-based attentional modulation. In addition, we introduced
529activation-leak and examined two types of decision-boundaries, in order to account
530for decision times. Within these models we specifically contrasted within-alternative
53 Imultiplicative models and within-attribute type models, and carried out a systematic
532parametric investigation of choices between simple lotteries (x; with p; vs. x; with p,),

533while tracking participants' eye-fixations.

534First, we replicated previous findings indicating that participants show preference for
535lotteries that reflect the economic-normative theory: choice probability of the
536alternative with the higher EV increases (and choice-RT decreases) with EV-
537difference between the lotteries. Nevertheless, participants also exhibited risk biases
538that are probability-dependent, being risk-averse at high/medium probabilities, but not
539at low probabilities. Second, we found that, on average, the eye-scan patterns were
540dominated by within-alternative as compared to within-attribute or diagonal
S541transitions (Fig. 2C-D, respectively), and that individual differences on this eye-scan
542pattern correlate with EV-choice (see also [28], for a similar result). Third, we used
543eye-fixations to constrain a number of process models that accumulate preference
544across fixations, using an aDDM approach with two attributes [21,53]. Here we
545contrasted two types of integration-to-boundary process models: 1) within-attribute
546models, and i1) within-alternative models. As shown in Table-2, the latter resulted in
547the best predictive accuracy and measures of fit. Importantly, the two-layer model
548also accounted well for decision times (see Fig. 6) and for individual differences in
549risk biases. Finally, the worst performance in our task was obtained for the non-

550compensatory heuristic models. For example, the best of the heuristics (the PH)
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551resulted in a worse fit than even the simple £V model (see cross-validation measure in

552Table-2).

553The conclusions favoring the within-alternative multiplicative models may need to be
554the task conditions we used here. First, we used simple lotteries with single non-zero
555outcomes (x with p, 0 with /-p). It is possible that the amount of non-compensatory,
556within-attribute processing would increase when more complex choices are used
557([25,32]). While we cannot rule out this possibility, recent research in the domain of
558probabilistic inferences ([54-56]), and risky choice ([20,57]), indicate that when
559decision processes are monitored via eye-tracking (which does not slow down the
560decision process) rather than via mouse pressing techniques (e.g., [10]), participants
561are able to use compensatory strategies for relatively high complexity levels (see also
562[58] for a multi-attribute choice task). With regards to our study, we need to also
563qualify the results to our use of analog (graphic rather than symbolic) presentation of
564the data®, and the fact that our alternatives where presented top/bottom (and thus the
565amounts and probabilities left/right, Fig. 1A)*. Here we wish to support the following
566conclusion: humans possess the ability to deploy an ‘economic’ (multiplicative
567across-dimension) type computation, supporting the idea that humans are closer to
568normative principles than previously thought (see also [56,59]). Future research will
569be needed to further quantify to what extent the use of this mechanism (or strategy)
570depends on the task complexity and type of stimuli.

571There are several important properties of our winning process model that we want to
572highlight. First, it assumes two layers of leaky accumulators, one for the estimation of
573subjective amounts and of subjective probabilities, and the one for the evaluation of
574the integrated subjective values (the combination of subjective amounts and

575probabilities). Second, it assumes that the units in the second layer are updated via a

59° We used here analog representations because we wanted to prevent our participants (who are students
60that may be familiar with EV-principles), and are required to do 94 choice problems, from adopting an
61explicit EV calculation strategy. We believe that such a strategy is less likely with analog information
62and thus our results favoring an implicit multiplicative mechanism are even more remarkable.

63* It is possible to argue that our experimental layout (horizontal) favors within attribute processing (left
64to right, or right to left for our Hebrew speaking participants). Note, however, that the alternative layout
65(setting amounts bars horizontally), would trigger a strong bias favoring within-attribute processing (in
66particular, comparing the aligned bars). Nevertheless, we report in the Suppl. Pilot study data from a
67pilot Experiment (N=13) using this layout (i.e., vertical), which shows that even under such within-
68attribute favorable conditions, we still find dominance for within alternative transitions.
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576multiplication of the activation of the corresponding, first layer units (Fig. 4A). This is
577similar to how the CPT model generates subjective utilities. In fact, we find a high
578correlation between the utility function’s curvature parameter () of the classical CPT
579and the corresponding parameter of our process model (» = .91, p <.001), with higher
580« -values for the classical CPT (see Suppl. Relationship between the models' utility
581parameters). This suggests that the classical CPT-parameters reflect a combination of
582several processes, such as attention allocation and subjective-value transformation
583[60]. Note also, that the model assumes an activation-leak, a feature that allows it to
584account for recency effects in the data (see Suppl. Last fixations and choice), and
585prevents a double-integration that would occur in the two-layer model in its absence.
586Third, in addition to predicting choices, the model also predicts decision times,
587describing the preference formation dynamics under the integration to boundary
588framework with inputs that correspond to a multiplicative transformation of subjective
589amounts and probabilities. In particular, we found support for a collapsing boundary,

590consistent with choice studies that span longer intervals [49,50]).

5910ther process models of risky choice, such as DFT [15,16] also assume an implicit
592multiplicative interaction between amounts and probabilities. In DFT, however, this is
593not due to the multiplication of amounts and probabilities but rather to the sampling
594frequency of the amounts, which changes with the corresponding probabilities. This
595implies that observers look (or attend) more to a given amount if the corresponding
596probability is higher. In our data, while we find that the relative number of fixations to
597an amount increases with its probability, this increase was quite minor (about 1%),
598and therefore cannot explain the multiplicative interaction [20]. However, it is
599possible that eye-fixations under-estimate the differential of covert attention

600modulation.

601Future research is also needed to better understand the neural mechanisms underlying
602these computations [61-63]. While the computation of subjective amounts and
603probabilities can be understood to involve simple psychophysical transformations
604over amounts (unbounded scale; [64]) and probabilities (bounded scales; [65]), the
605nature of the multiplicative interaction between neural activations requires future

606investigations. Note that a multiplicative interaction is also assumed in the PCS risk
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607model [20]. To do so, PCS had to assume different neural substrates for amounts
608(neural activations) and for probabilities (synaptic weights). The latter assumption,
60%9however, may be difficult to justify for one-shot decisions, which allow little
610opportunity for learning synaptic weights. We thus suggest that the multiplicative
61linteractions involve neural activations. While less standard than linear interactions
612[66], a number of neural mechanisms have been proposed to mediate multiplication of
613neural activity in neural systems [67,68]. Future research is also needed to extend the
614scope of this investigation from simple lotteries to more complex ones (with multiple

6150utcomes) and from binary to multiple choices.

6164. Methods
6174.1 Experiment

618Participants. 35 Tel-Aviv University undergraduate students (24 females; ages range
619from 19 to 26, Median,,. = 23) were recruited to the experiment. All of them reported
620having normal or corrected-to-normal vision. Four of the participants were not able to
621carry out the eye tracker calibration task, and thus did not take part in the main
622experiment, leaving 31 participants. The participants received course credit in
623exchange for participating, as well as a bonus fee ranging from 0 to 30 Israeli Shekels
624(ILS), which was contingent upon their choices. The experiment was approved by the

625ethics committee at Tel-Aviv University.

626A4pparatus. Eye-movements were recorded using a Tobii TX300 desk-mounted eye-
627tracker (23" monitor with 1920 x 1080 pixels resolution, sampling rate: 300Hz, spatial
628accuracy: 0.5°), attached to an Intel i7 personal computer. Displays were presented
629using Psychtoolbox for MATLAB [69]. Viewing distance was approximately 60 cm.

630Responses were collected via the computer keyboard. A chin rest was not used.

631S8timuli. Each choice consisted of two simple lotteries in the form of p, chance to get
632x; ILS (otherwise nothing) vs. p, chance to get x; ILS (otherwise nothing). An
633example of the display is presented in Fig. 1A. Amounts were represented by the
634lower parts of divided bar graphs, and probabilities were represented by the lower
635sectors of pie charts. These attributes appeared at the vertices of an imaginary square

636subtending 14.5° (15.25 cm), and located in the center of a black screen. The height of
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637each bar graph subtended 2.07° (2.17 cm) and its width subtended 0.67° (0.69 cm);
638the radius of each pie chart subtended 0.67° (0.69 cm). Thus, the bar graphs and pie
639charts had exactly the same surface. The amounts and probabilities of each alternative
640were displayed horizontally (one lottery was placed over the other); but see footnote 4

641and the results of a pilot study reported in Suppl. Pilot study.

642Choices. Choice problems were constructed in the following way: we generated a 2-
643dimensional grid with amounts (3, 6, 15, 24 and 30 ILS) along one dimension, and
644probabilities (0.1, 0.2, 0.5, 0.8 and 1) along the other dimension. The resulting grid
645contained 25 lotteries (Fig. 1B), each of which was paired with all other possible
646lotteries. Stochastically dominated choices (in which both the amount and probability
6470f one alternative were higher than those of the other) were excluded, except for 10
648choice problems which served as "catch-trials". Overall, the experiment consisted of
649104 separate choices: 94 non-dominated trials and 10 "catch-trials" (all the choice

650problems are given in Table S1).

651Procedure. The participants signed an informed consent form prior to the experiment.
652Then, a calibration of the eye-tracker took place. In case the calibration was
653successful, the experiment started, otherwise recalibration was performed. At the
654beginning of the experiment, instructions were given to the participants (see Suppl.
655Experimental instructions). The experimenter emphasized that choices should be
656made in accordance with subjective preferences and that there is no "correct" choice.
657The experiment consisted of two blocks of 52 choice trials each. A short break was
658allowed between blocks, and a recalibration procedure was performed before the
659second block. Each trial began with a fixation display which consisted of a red 0.2° x
6600.2° fixation cross (+) that remained on screen until a continuous fixation of 500 ms
661duration was made. Then, the two lotteries were presented until response. Choice was
662made using the up and down arrow keys. Participants were told that after completing
663the experiment, one of the choices will be randomly chosen and payed out. The whole
664experiment took approximately 30 min per participant. Choice order as well as the
665horizontal position (left/right) of the amounts and probabilities were randomized for
666each participant; the vertical position of each lottery (up/down) was randomized

667between subjects.
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668Eye-movements. Fixations were classified as being directed to a certain attribute, if
669they were within 100 pixels of the center of that attribute and lasted at least 50 ms.
670Two consecutive fixations to the same attribute were joined and considered as one
671fixation. Trials longer than 10 sec or shorter than 500 ms (4% of all trials), as well as
672trials in which the participants did not look at all of the attributes (4% of all trials),

673were excluded from further analysis.

6744.2 Models of Risky-choice

675Here we briefly describe the key features of the models applied (for a full description
676see Suppl. Models of risky choice). In all of the models (except for the Heuristics
677models), the probability of choosing each alternative is calculated using an

678exponential version of Luce’s choice rule [70,71]:

1
679P (X1, Py Xy, Po| = — 5550
1+e ™ ‘

680where U, and U, are the utilities of the alternatives, and 8 is a free parameter

681lindicating the sensitivity of the model to their difference.

Traditional Models
Expected Value (EV)

e Participants choose the alternative with the higher Expected-Value:

EV=x-p.
Expected Utility (EU)

e Participants choose the alternative with the higher Expected-Ultility:

a

EU=ulx| p;ulx|=x"
Cumulative Prospect Theory (CPT)

e Participants choose the alternative with the higher Subjective-Utility:

Y

p

SU=ulx|-n|p);nlpl=——"F—
(p'+[1-p|)’
Fixation based regression models
EUFL'mtions

U grermaive=U X p-n’s Where n is the number of fixations to the alternative,

and 7 is a saturation parameter.
CP T Fixations

¢ Defined analogously to Multiplicative EUFiions, but with p replaced with

n|p| according to CPT.
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Heuristics

MaxiMax

® Choose the alternative with the highest maximum amount.

Least-Likely

® Choose the alternative with the lowest probability of its worst outcome.

Priority Heuristic
e Compare sequentially the following attributes: minimum amounts,
probability of minimum amounts, maximum amount.

e Stop when difference between the attributes reaches a termination criterion.

Within-attribute Integration

Normalized differences

¢ Normalize the amounts and probabilities using min-max normalization:

__ y—min|y|
max|y|—min|y|

¢ On cach fixation, the normalized differences of the attended attribute are
accumulated. Unattended attribute are underweighted.

e Example: if one fixates on X;, accumulator A increases by: X, —0-x,’, and
b b

accumulator B by: 0-x,"—x,".0c[0,1] represents attentional modulation.

Categorical differences
¢ This model was implemented as the normalized differences model, except
that instead of accumulating normalized differences, the model accumulates
counts based on categorical comparisons.

e Example: if one fixate on X; and X;>0" X,, accumulator A increases by one

unit, and B remains the same. 6€ [0,1] represents attentional modulation.

Within-alternative

Integration

One-layer leaky accumulators
® On each fixation, this model accumulates the SU of the two alternatives,
defined as in CPT.
e At fixation toward alternative A, the input of alternative B is attenuated (and
vice versa).
e Example: if one fixate on X,, accumulator A increases by: SU ,, whereas the
accumulator B increases by: 0-SU

® The activations of the alternatives' accumulators are subject to leak.
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Two-layer leaky accumulators
¢ Two layers of leaky accumulators, the first estimates subjective amounts
and probabilities (defined as in CPT), and the second estimates integrated
SU.
¢ On each fixation, the first-layer units are updated with the subjective
amounts and probabilities, with the inputs of the unattended attributes

attenuated.

e Example, if one fixates on x; the inputs of p;, x;and p, are 07 (pl), 6 'U(Xz)

and 07 ( pzj, respectively. The second-layer units are fed with the

activations of the first layer units, and accumulate the product of their
values.

* The units of both layers (first and second) are subject to leak.
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