

1

The formation of preference in risky choice

2 Moshe Glickman^{1†}, Orian Sharoni^{1†}, Dino J Levy^{2,3}, Ernst Niebur⁴, Veit Stuphorn⁴ &
3 Marius Usher^{1,3}

4¹ The School of Psychological Sciences, Tel Aviv University, Israel

5² Coller School of Management, Tel Aviv University, Israel

6³ Sagol School of Neuroscience, Tel Aviv University, Israel

7⁴ Department of Neuroscience and Krieger Mind/Brain Institute, Johns Hopkins
8University, Baltimore, USA

9[†]Co-first authors

10

11 Corresponding Author:

12 Marius Usher

13 The School of Psychological Sciences and the Sagol School of Neuroscience

14 Tel Aviv University

15 Ramat Aviv, POB 39040

16 Tel Aviv 69978 ISRAEL

17 Email: marius@post.tau.ac.il

18

19

20

21

22

23

24

25

11

2

26

The formation of preference in risky choice

27A key question in decision-making is how people integrate amounts and
28probabilities to form preferences between risky alternatives. Here we rely on the
29general principle of integration-to-boundary to develop several biologically
30plausible process models of risky-choice, which account for *both* choices and
31response-times. These models allowed us to contrast two influential competing
32theories: i) within-alternative evaluations, based on multiplicative interaction
33between amounts and probabilities, ii) within-attribute comparisons across
34alternatives. To constrain the preference formation process, we monitored eye-
35fixations during decisions between pairs of simple lotteries, designed to
36systematically span the decision-space. The behavioral results indicate that the
37participants' eye-scanning patterns were associated with risk-preferences and
38expected-value maximization. Crucially, model comparisons showed that within-
39alternative process models decisively outperformed within-attribute ones, in
40accounting for choices and response-times. These findings elucidate the
41psychological processes underlying preference formation when making risky-
42choices, and suggest that compensatory, within-alternative integration is an
43adaptive mechanism employed in human decision-making.

44

45

46

47

48

49

50

51

52

32

4

53Author Summary

54Decision-making under risk requires a selection between alternatives, such as
55lotteries, which offer a reward with a specified probability. Human decision between
56such alternatives is at the center of the normative decision theory, which assumes that
57decisions are rationally made by forming a value for each alternative and selecting the
58alternative with the highest value. To this day, there is still a considerable debate on
59how such values are computed. While the normative theory assumes that values of the
60alternatives reflect the statistically expected reward, more recent theories have argued
61that alternative-values are not computed and choices are only based on sequentially
62comparing the alternatives on amounts or on probabilities. Here, we carried out an
63experimental investigation of risky decision-making, in which participants chose
64between pairs of simple lottery alternatives that systematically span a range of
65probabilities and rewards, while we tracked their eye positions during their decision-
66making process. We found that the participants are sensitive to the expected-utility of
67the alternatives, as predicted by the normative decision theories, but they also exhibit
68risk-biases that correlate with the eye-scanning patterns. We then carry out
69computational modeling, comparing preference-formation models on their ability to
70account for both choices and their reaction-time. The results provide strong support
71for normative models which assume that the values of the alternative are computed
72via a multiplicative function of the amounts and probabilities. These results suggest
73that humans are closer to normative principles than previously assumed, and motivate
74further investigation into the neural mechanism that mediates these multiplicative
75computations.

76

77

78

79

80

811. Introduction

82Decision-making under risk is ubiquitous in daily activities, such as deciding whether
83to take an umbrella when the weather forecast predicts 50% chance for rain or
84whether to purchase a lottery ticket with a winning probability of 1%. Such decisions
85are difficult because the outcomes of the alternatives are only known with some
86probability, and thus they are subject to risk tradeoffs. For example, when deciding
87between a lottery that offers \$100 with a probability of 50% and an offer of \$40 with
88certainty, one needs to balance between the appeal of the attractive amount (\$100) and
89the risk of getting nothing (rather than gaining \$40 for certain). Choices between such
90lotteries were the subject of intensive research in economics and experimental
91psychology that investigated how humans make risky decisions, starting from the
92normative Expected-Utility (*EU*; [1]), followed by random utility models [2] and
93culminating with Cumulative Prospect Theory (*CPT*; [3–6], see also Transfer of
94Attention eXchange [*TAX*], for a related type of model [7]). Yet despite the
95impressive success of *CPT* in accounting for risky choice data (e.g., the dependence
96of risk-aversion on the magnitude of the outcomes' probabilities [8]), the theory has
97been criticized for making assumptions that are inconsistent with capacity limitations
98of human online information processing, and for not explicating the process by which
99the preferences are formed [9,10].

100Several process theories were developed to account for risky choice. First, heuristic
101models, such as Priority Heuristic (*PH*), suggest that preferences are not formed via a
102compensatory process of averaging over all outcomes (like in *EU* and *CPT*), but
103rather via a sequential process of comparing the alternatives over one specific
104attribute (probability or amount) at a time, in a specified order, and stopping at the
105first instance in which a termination criterion is satisfied [9]. Second, a number of
106models have relied on the sequential-sampling framework [11–14], which
107successfully accounted for choices in perceptual tasks, in order to develop a process
108model of risky choice. For example, in Decision Field Theory (*DFT*; [15]), as
109attention fluctuates between the alternatives, the preference dynamically evolves by
110integrating amounts, which are sampled with a frequency that is associated with their
111(subjective) probabilities [16]. In the Decision by Sampling model (*DbS*; [17–19]),

112like in *PH*, the sampling involves comparisons between the values of the alternatives
113on a specific attribute (i.e., amounts or probabilities, but not both). However, unlike
114*PH*, *DbS* does not assume a fixed order of attribute sampling, nor that the decision is
115settled at a single comparison, but rather a stochastic sampling, which continues until
116the accumulated difference of favorable comparisons reaches a decision boundary.
117Critically, as opposed to *EU* or *CPT*, in *DbS* the processing takes place within-
118attributes (i.e., comparison between amounts or between probabilities). Finally, in the
119Parallel Constraint Satisfaction model (*PCS*; [20]), a compensatory within-alternative
120process similar to *EU* (i.e., multiplication of amounts and probabilities) is carried out
121in a parallel and automatic manner; this process is mediated by a connectionist
122network of bottom-up and top-down connections. Although several qualitative
123predictions of the *PCS* model have been confirmed [20], this model has not been
124tested quantitatively in risky choice.

125More recently, a number of studies have relied on eye-fixations during choice
126between alternatives, to gain insight into the preference formation process. For
127example, Krajbich, Rangel and colleagues have shown that an extension of the Drift
128Diffusion Model (*DDM*; [12,13]), the attentional *DDM* (*aDDM*), accounts well for
129observed preferences between consumer products, food items and 50-50 monetary
130gambles [21–24]. To do so, the *aDDM* assumes that the value of the sampled
131alternative is modulated by eye-fixations, so that the values of the non-fixated
132alternatives are attenuated compared with the fixated ones. In the domain of risky
133choice, a number of studies have contrasted within-alternative and within-attribute
134models, and reported partial support for both [20,24–28]. In particular, Glöckner and
135Herbold [20] analyzed risky choice while monitoring eye-movements, and provided
136evidence against the *PH* model and in favor of the *PCS* and *DFT* models (see also
137[29] for similar results). Finally, in a recent investigation of eye-movements during
138risky choice, Stewart, Hermens, & Matthews [30] concluded that, while eye-
139movements contribute to choice preference, this contribution is mostly independent of
140the values sampled. In other words, the more one looks at an alternative the more
141likely s/he is to choose it, independently of the magnitude of amount or probability.

142The aim of the current study is to develop and contrast process models of risky
143choice, which are constrained by the eye movements of participants making decisions.
144In particular, we adopt an integration-to-boundary framework, which allows to predict
145both choices and their decision-time, and we extend the *aDDM* [21,22,31] approach to
146the domain of risky choice (see also [24] for a recent extension to 50-50 monetary
147gambles). In this regard, a central question is whether the preferences are formed by
148integrating global alternative-values, based on multiplicative interactions between
149amounts and probabilities (*within-alternative* processing), or by sampling and
150integrating attribute-comparisons (*within-attribute* processing). Furthermore, using
151process models that include attentional modulation of fixated information, we wish to
152account for individual differences in risk preference. While previous work has
153highlighted the impact of task-complexity (e.g., number of alternatives and attributes)
154in determining the decision strategy that the participants adopt (e.g., [32]), here we
155focus on the simplest type of risky choice (between pairs of alternatives, each
156consisting of a probability p to win amount x , see Fig. 1A). Thus, our aim here is not
157to determine which of these two types of processes prevail in any choice scenario (we
158think that they both can take place, subject to task-conditions and individual
159differences). Rather, we wish to test if, at least for this simple case, the more
160“economically-normative” (within-alternative and multiplicative) strategies are within
161the capacity of participants resources. Towards this end, we carry out a systematic
162investigation of risky choice with simple two-outcome lotteries, while eye-fixations
163are monitored. To anticipate our results, we provide a clear demonstration that within-
164alternative and multiplicative evaluations are being used, subject to individual
165differences that correlate with choice normativity.

1662. Results

167The participants were tested on choices between simple lotteries of the type (x_1 with
168 p_1 and otherwise 0, vs. x_2 , with p_2 and otherwise 0; where $x_{1,2}$ are monetary amounts
169and $p_{1,2}$ are the corresponding probabilities of winning). The choice problems (94
170trials) were selected by systematically sampling a two-dimensional grid of
171probabilities and amounts (Fig. 1B). Dominated choice problems (in which both the
172amount and probability of one option were higher than in the other option) were

173 excluded except for 10 catch-trials, which were used to assess task engagement. To
 174 discourage numerical calculations, the choice alternatives were presented in graphical
 175 format (Fig. 1A). The experiment was incentive compatible: it was explained to the
 176 participants that one of their choices will be randomly chosen and played out for real
 177 money at the end of the experiment (see *Methods and Suppl. Experimental*
 178 *instructions* for details on the stimuli and task instructions).

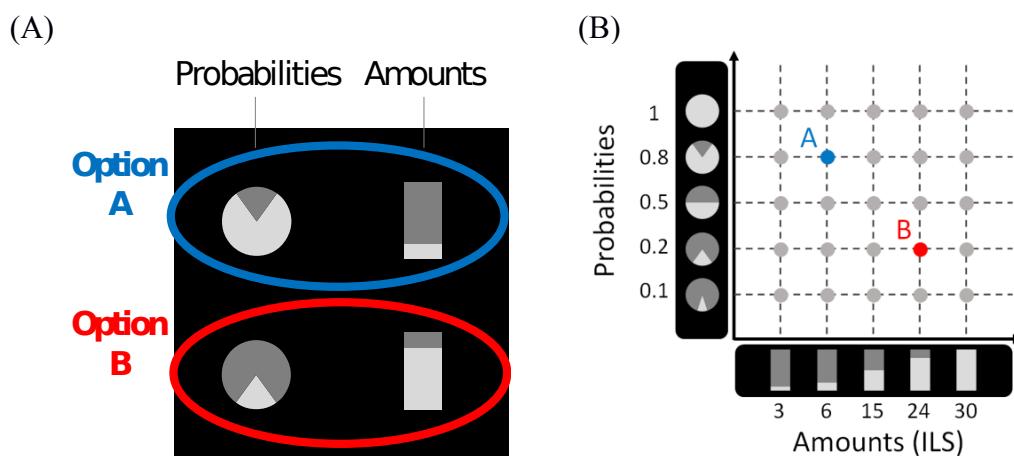


Figure 1. Stimuli and study design. (A) Example of the stimuli used in the experiment. Amounts were represented by the lower (brighter) parts of divided bar graphs, and probabilities by the lower (brighter) sectors of pie charts. Note that the figure is not to scale, and the colored ellipses and labels are shown for illustration purposes only (they were not used in the actual experiment). (B) Choices were drawn from a 5x5 two-dimensional grid with amounts along one dimension, and probabilities along the other. The two stimuli from panel A are shown in this grid. Choice stimuli were presented without deadline until response.

1792.1 Choice behavior

180 We began by examining the basic psychometric properties of our choice-data.
 181 Analysis of the "catch-trials" showed that the participants chose the better option
 182 (higher in both amount and probability) in 97% of these trials ($SD = 6\%$). Next, we
 183 conducted a mixed-effect logistic regression on the choice data, with the Expected-
 184 Value (EV) differences ($x_1 \cdot p_1 - x_2 \cdot p_2$) as a predictor, and with random intercepts and
 185 slopes at the participant level. The results indicated that, consistent with an
 186 "economically-normative" theory, the participants were sensitive to EV differences,
 187 and preferred lotteries with higher EVs over lotteries with lower ones ($\beta = 0.40$, p
 188 $< .001$; Fig. 2A). Additionally, using a Pearson correlation analysis, we showed that

189the reaction time (RT) of a decision decreased as the absolute *EV* difference between
190the lotteries increased ($r = -0.8$, $p < .001$; Fig. 2B). This finding is consistent with
191previous process models such as the *PCS* [20], the *aDDM* [21], and the *DFT* [16],
192indicating that the participants take longer to decide when the evidence (as measured
193by the *EV*-difference) is smaller.

194Finally, we evaluated the risk-preferences of the participants. To this end, we focused
195on choice problems with similar *EVs* ($|\Delta EV| \leq 1$, $N_{choice\ problems} = 26$), and examined the
196proportion of trials in which high-payoff/low-probability lotteries (riskier options)
197were preferred over low-payoff/high-probability lotteries (safer options). Following
198the *CPT* regularity of differential risk-attitudes for low vs. medium/high probabilities
199(see *Suppl. Cumulative Prospect Theory (CPT) risk attitudes predictions*), we
200examined the risk-preferences separately for these two probability domains: i) low-
201probability cases, in which one of the lotteries has $p < .25$ (e.g., \$24 with $p = .1$ vs. \$6
202with $p = .5$), and ii) high-probability cases, in which both lotteries have $p \geq .25$ (e.g.,
203\$30 with $p = .5$ vs. \$15 with $p = 1$); the .25 cutoff was selected to match *CPT* (see Fig.
204S1). A paired samples *t*-test indicated that, consistent with *CPT*, the participants
205showed higher levels of risk-aversion for medium/high probabilities as compared to
206low ones ($t(30) = 3.84$, $p < .001$). Follow-up one-sample *t*-tests (against .5) indicated
207that the participants showed risk-aversion for medium/high probabilities ($t(30) = 4.49$,
208 $p < .001$); no risk-aversion, however, was obtained for low probabilities ($t(30) = -$
2090.11, $p = .9$).

2102.2 *Eye-fixations and individual differences*

211On average, the participants made 9.05 fixations ($SD = 0.64$) per trial, with a mean
212duration of 407ms ($SD = 244$ ms) per fixation. Also, on average across participants,
213there was no significant difference between the proportion of fixations towards
214amounts and probabilities ($t(30) = 0.78$, $p = .44$). There was, however, a remarkable
215difference between participants in this proportion, which was correlated with
216participants' risk preferences: the more a participant fixated on amounts, the more
217likely he or she was to choose the riskier alternatives ($r = .48$, $p = .006$; Fig. S2A). To
218understand this relationship we examined individual differences in fixating the higher
219of two amounts/probabilities, as this can explain risk-biases (looking more at higher

220amounts or at lower probabilities leads to risk-seeking according to the *aDDM*
221[21,22,24]). Importantly, we find that the more a participant tends to fixate on
222amounts the more s/he fixates on the larger of them ($r = .47$; $p = .007$; Fig. S2B), and
223similarly for probabilities ($r = .46$; $p = .007$; Fig. S2C). Finally, the frequency of
224fixations on the higher of the two amounts was positively correlated with risk-seeking
225($r = .58$; $p < .001$; Fig. 2E), and the frequency of fixations on the higher of the two
226probabilities was negatively correlated with risk-seeking ($r = .45$; $p = .01$; Fig. S2D)
227see also [24,33].

228We also examined the eye-trajectories in relation to their transitions between the four
229attributes (x_1 , p_1 , x_2 , p_2). The transitions between decision attributes (amounts and
230probabilities) were classified into three categories [20,25,30]: i) Within-alternative
231transitions – transitions between attributes that belong to the same alternative. ii)
232Within-attribute transitions – transitions between different alternatives, within the
233same attribute. iii) “Diagonal” transitions – transitions between the amount of
234alternative A and the probability of alternative B and *vice versa*. Figures 2C-D show
235one example each for within-alternative and within-attribute trials, respectively. An
236Analysis of Variances (ANOVA) revealed significant differences of the transition
237probabilities between the three transitions types ($F(2,60) = 431.1$, $p < .001$). Post-hoc
238comparisons showed that the participants made more within-alternative than within-
239attribute transitions ($p < .001$), as well as more within-attribute than diagonal ones (p
240 $< .001$). The proportion of within-alternative transitions (out of all transitions) was
241subject to individual differences and was correlated with the economically-normative
242choice performance (ΔEV), such that the higher the fraction of within-alternative
243transitions the higher was the proportion of the alternative with the higher EV to be
244chosen ($r = .57$, $p < .001$; Fig. 2F).

245

246

247

248

249

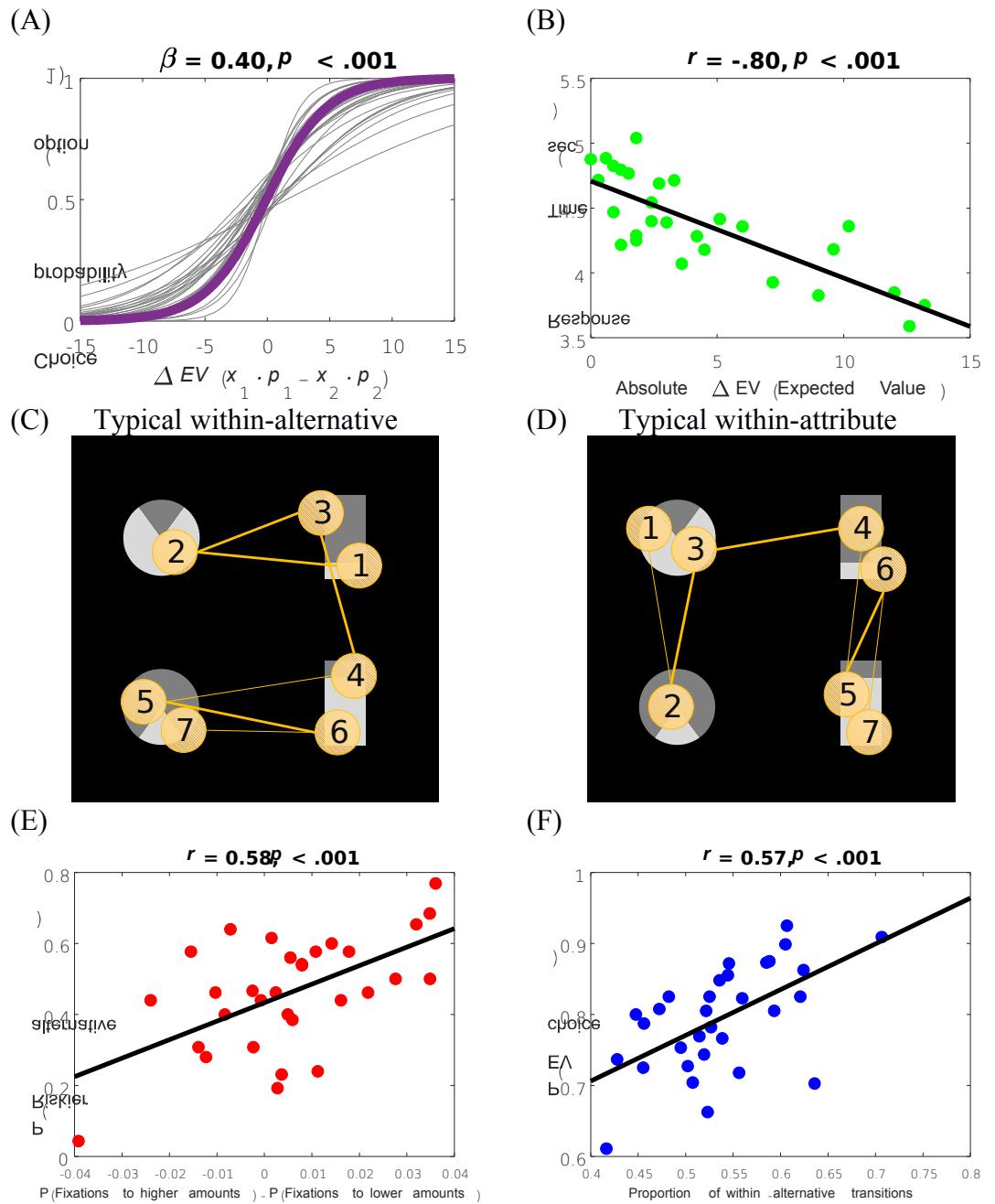


Figure 2. Choice and eye-movements analysis. (A) The participants were sensitive to EV differences between the options. Solid purple line corresponds to the group fit; grey lines correspond to the fit of individual participants. (B) Response times were negatively correlated with the alternatives' EV differences. (C-D) Example eye-trajectory characterized by within-alternative transitions (in C) and by within-attribute transitions (in D). The numbers indicate the order of fixations. (E) The proportion of fixations to the higher amount correlated with risk-seeking preference. (F) The proportion of within-alternative transitions correlated with the proportion of higher EV choices.

2502.3 Predicting choices using eye-fixations

251Recent research has demonstrated that attentional mechanisms play a key role in the
 252development of preferences [24,34–38]. In particular, it was shown that the more an
 253alternative is fixated, the more likely it is to be chosen [21,30,39].. We have
 254confirmed this regularity in our data by carrying out a number of logistic regression
 255models that predict choices based on the *EU* or *CPT* utility functions, and the relative
 256number of fixations (or dwell-times) on each alternative (see *Suppl. Predicting*
 257*choices using eye-fixations* for details).

(A)

Dwell Time Regression

$$P(A, B) = \frac{1}{1 + e^{-\beta(x_1^g \cdot p_1 \cdot t_1 - x_2^g \cdot p_2 \cdot t_2)}}$$

t_1 - Total looking time on option A

t_2 - Total looking time on option B

(B)

Number of Fixations Regression

$$P(A, B) = \frac{1}{1 + e^{-\beta(x_1^g \cdot p_1 \cdot f_1 - x_2^g \cdot p_2 \cdot f_2)}}$$

f_1 - Number of fixations to option A

f_2 - Number of fixations to option B

(C)

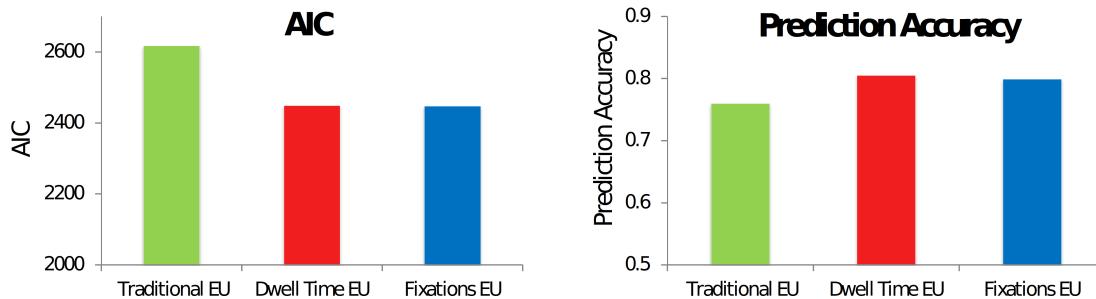


Figure 3. Expected Utility based regression models. (A) $EU_{Dwell\text{-}time}$: the EU value of each of the alternatives is modulated by the total looking time on each alternative. (B) $EU_{Fixations}$: the EU value of each of the alternatives is modulated by the relative number of fixations toward it. (C) Prediction accuracy and AIC for the traditional, dwell time and number of fixations EU .

258As illustrated in Fig. 3A, we examined an $EU \times time$ model¹, in which the EU value
 259of each alternative increases with its dwell time on the two alternatives (α is the risk-
 260parameter of EU , τ is a saturation parameter, and β is a slope parameter). Additionally,
 261we examined a similar regression model, in which dwell-times were replaced with the
 262number of fixations each alternative is sampled (Fig 3B). Comparison of these models
 263with the traditional EU (which does not take eye-movements into account) showed
 264that using eye-movements significantly improved prediction accuracy and AIC
 265compared with the traditional EU (Fig. 3C). Note also, that the prediction accuracy

²¹ We focus here on EU based models, however similar conclusions were obtained for *CPT* based
 22models, see *Suppl. Predicting choices using eye-fixations*.

266and *AIC* which were obtained using the number of fixations, equal (for *EU*) or
267surpasses (for *CPT*), the prediction accuracy and *AIC* obtained using the more
268traditional measure of dwell-time. In addition, the fitted values of saturation-
269parameter τ , were lower than 1, in both time based regressions (number of fixations
270and dwell time), indicating that, for example, looking twice as long at an alternative
271increases its value by a factor of less than 2. One way to understand this non-linear
272saturation is in relation to a leak of the accumulated values ([14,40,41]). In such leaky
273integration models, the accumulated evidence saturates at an asymptotic value, and
274remains constant even if more integration time is allowed. Accordingly, at each
275fixation one samples and accumulates a value, however, as the trial proceeds, the
276accumulated value leaks, resulting in a type of recency. Indeed, when we compute the
277percentage of match between the fixated alternative and the final choice as a function
278of fixation number (backwards from the end) we obtain a clear recency pattern (see
279Fig. S5 in *Suppl. Last fixations and choice*).

2802.4 Towards a process model of risky choice based on eye-movements

281The central aim of this study is to develop and contrast two classes of process models
282that differ in the way attentional (or eye) transitions affect the integration of amounts
283and probabilities. Both types of models assume that: a) fixated objects receive
284enhanced attention, b) attention modulates the weight of value integration [21], and c)
285recently sampled values are weighted more than earlier ones [14,40,41]. The models
286differ, however, on how the values are integrated into preferences. Note that we do
287not aim to test specific models but rather distinguish between broad classes of models
288based on certain principles, in particular, between *within-attribute* vs. *within-*
289*alternative* models [20,25,32,42]. While the former is used in models such as *PH* and
290*DBS*, the latter is used in models such as *EU*, *CPT* and *PCS*. We also examined a
291more hybrid model, which still relies on multiplicative within-alternative
292computations, but also allows some extent of competition between the attributes.

293*Within-attribute integration models.* Models from this class assume that when
294decision-makers attend to one attribute (e.g., amount or probability), they accumulate
295the value-difference (or categorical difference) of the two alternatives on that
296attribute, according to:

297
$$Y_A(t+1) = (1 - \lambda) \cdot Y_A(t) + D_A(t)$$

298
$$Y_B(t+1) = (1 - \lambda) \cdot Y_B(t) + D_B(t)$$

299 where Y_i , $i \in \{A, B\}$ is the accumulated preference for alternative i , λ is an integration-
300 leak factor that emphasizes recent values, and D_i is the value (or categorical)
301 difference between the attributes, which depends on eye-fixation and model variant
302 (see *Suppl. Within-attribute integration models* for a detailed description of the
303 models). This mechanism was implemented in two model variants. In the first one,
304 preferences were generated by accumulating the normalized differences (min-max
305 normalization, over the whole set of decision problems) of the attended attribute
306 values. For example, if the participant had to choose between A:(\$20, 0.2) and B:
307 (\$10, 0.5), then the difference between the normalized amount values (of \$20 and \$10,
308 respectively), is accumulated whenever the representations of amounts are fixated.
309 Likewise, the difference between the normalized probability values (of 0.2 and 0.5,
310 respectively) is accumulated whenever the representations of probabilities are fixated.
311 The second model assumes integration of categorical differences; this follows the
312 DBS assumption that people have access to ordinal comparisons rather than values
313 [18]. Therefore, in the above example, the accumulator associated with alternative A
314 increases by one unit at each fixation of an amount (since \$20 is more than \$10), and
315 the accumulator of alternative B increases by one unit at each fixation of a probability
316 (since 0.5 is larger than 0.2). This means that the mechanism accumulates binary
317 counts of comparison between the same attribute in different alternatives [17,19]. To
318 enhance these models' performance we allowed an additional parameter: attentional
319 modulation, which enhances the weight of sampled attributes ([21,22]; see *Suppl.*
320 *within-attribute integration models*). Note that since the values of both attributes are
321 used in the comparison, these models assume either the existence of some degree of
322 peripheral vision, or reliance on memory. Since memory cannot play a role during the
323 first fixation of an attribute (and since peripheral vision is less sensitive to the low
324 contrast of our stimuli in any fixation, including the first), we assumed that default
325 values (mid-range of the amounts and probabilities values used in the experiment) are
326 used for the yet un-scanned attributes. The default values were replaced with the
327 actual attributes' values at the first fixation to each attribute. This treatment was
328 implemented in all versions the process models.

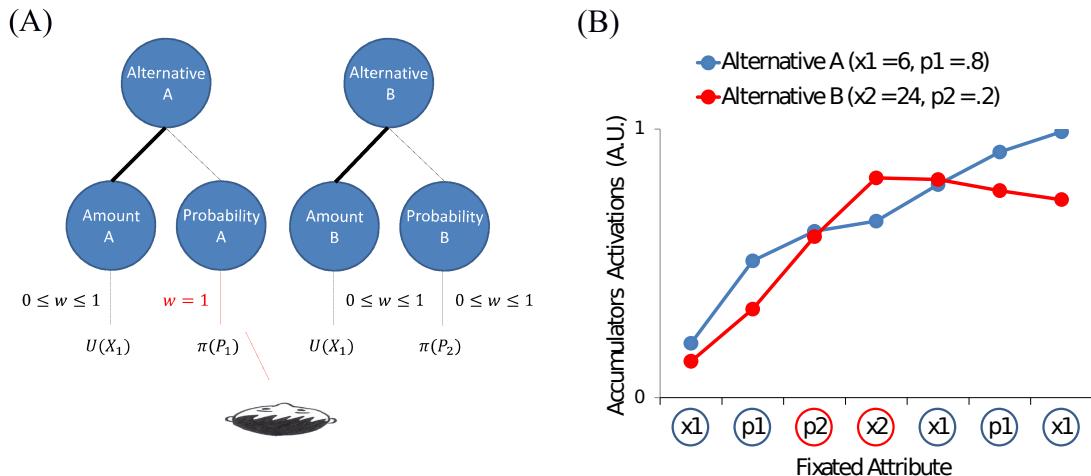


Figure 4. Illustration of the two-layer leaky accumulator model and its dynamics. (A) The first layer consists of four leaky-accumulators associated with the different attributes, and the second consists of two leaky accumulators associated with the alternatives' values. The units in the first layer are updated with the attentionally modulated subjective values of each attribute (the red arrow indicates the input from the attended attribute, whereas the black arrows indicate the attenuated inputs from the unattended attributes). The units in the second layer are fed with the first layer units' activations, and accumulate their product. (B) Simulated run of the two-layer leaky accumulators model using the average best fitted parameters (see Table S2), in a choice between: A(\$6, .8) and B(\$24, .2); A-wins. Blue circles (x-axis) correspond to fixation toward A, and red circles correspond to fixation toward B. Values on the y-axis correspond to the activations of the second-layer accumulators.

329 *Within-alternative integration models.* The second class of models assumes that the
 330 values that are integrated are associated with the alternatives and are multiplicatively
 331 formed from the attributes (as in expected utility). This mechanism was also
 332 implemented in two models. The first model has single-layer architecture and
 333 involves two accumulator units, one for each alternative (A or B). On each fixation,
 334 the accumulators are updated with the integrated subjective utilities of the fixed alternative
 335 (which is based on multiplication of the subjective-amounts and
 336 subjective-probabilities; see *Suppl. Within-alternative selection/One-layer leaky*
 337 *accumulators*), according to:

$$338 \quad Y_A(t+1) = (1 - \lambda) \cdot Y_A(t) + SU_A(t)$$

$$339 \quad Y_B(t+1) = (1 - \lambda) \cdot Y_B(t) + SU_B(t)$$

340where Y_i , $i \in \{A, B\}$ is the accumulated preference of alternative- i , λ is an integration-
341leak, and SU_i is the subjective expected utility of alternative- i (similar to *CPT*),
342subject to attentional modulation that depends on eye-fixation. As in the *aDMM*
343model [21], this model assumes that the inputs are modulated by gaze direction, i.e.,
344higher weight is assigned to the fixated alternative than to the non-fixated one. Note
345that in this model the update does not depend on whether the current fixation is on
346amount or probability, but only which alternative is fixated, with the non-fixated
347alternative being attenuated. For example, when one looks at either the amount or the
348probability of alternative A, the corresponding accumulator is updated with the
349integrated subjective utility of that alternative, while the other accumulator is updated
350with an attenuated value of the subjective utility of alternative B.

351The second within-alternative model contains two-layers of leaky-accumulators in
352cascade (Fig 4A); as we will show, this model allows to apply attentional modulations
353to specific attributes and not only to the whole alternative. The first layer of the model
354consists of four leaky-accumulators associated with the four different attributes (x_1 ,
355 p_1 ; x_2, p_2). Unlike in the previous (single layer) version, these units are updated with
356the attentionally modulated subjective values of each *attribute*. For example, when a
357participant looks at the amount of alternative A (x_1), the accumulator of that attribute
358is updated with the subjective value associated with it (i.e., x_1^α , where α is a free
359parameter), while the other accumulators (of p_1, x_2 and p_2) are updated with attenuated
360subjective values of these attributes. The second layer of the model consists of two
361leaky-accumulators corresponding to the integrated preference of the two alternatives.
362At each fixation, each second layer (alternative) accumulator is fed with the
363activations of the first layer units associated with it, by accumulating the product of
364their values (see Fig 4B for illustration of the model dynamics and *Suppl. Within-*
365*alternative selection/Two-layer leaky accumulators* for details). In one version of the
366two-layer model, we also introduced mutual inhibition between the amount units (i.e.,
367competition between x_1 and x_2) and the probability units (i.e., competition between p_1
368and p_2). One can think of such a model as implementing a hybrid between within-
369attribute and within-alternative processes: while the alternatives units still receive
370multiplicative input from both their attributes units, the mutual inhibition (depending
371on its strength) can polarize the difference in activation, subject to attentional

372modulation based on the current fixation. We note that the level of activation-leakage
373(in both types of models) is a free-parameter, so that the case in which $\lambda=0$,
374corresponds to the more standard Drift-Diffusion models, and is thus explicitly tested
375as part of our model fit procedures.

376The models were fitted to the data in two steps. In the first, we fitted the models to
377choice data, based on the values of the alternatives and the eye-fixations made for that
378decision, using maximum likelihood estimations to obtain the best model parameters
379(see *Suppl. Model Fitting*). In the second step, we used the models with their fitted
380parameters from step 1, to make predictions for decision-time, under an integration-
381to-boundary framework (in which we included a new set of parameters that
382correspond to the response boundary). At this stage we also compared the models on
383their ability to predict *both* choices and decision-times.

384In addition to the process models, we also fitted a number of *benchmark* non-
385integration to boundary models. Specifically we examined traditional compensatory
386models, such as *EV*, *EU* and *CPT*, as well as non-compensatory heuristic models such
387as *Maximax* [43], *Least-Likely* [44] and *PH* ([9]; see *Suppl. Heuristics* for detailed
388description of these models).

389To evaluate the models' capabilities to fit the data, we used several selection criteria:
390prediction-accuracy, *AIC* and cross-validation measures (see *Suppl. Model Selection*).
391For the heuristic models, whose choices are deterministic, we only examined their
392accuracy measures [8]. Because it can be argued that the prediction-accuracy of
393models with fixed (or no) parameter values (such as the heuristic models) cannot be
394compared to the prediction-accuracy of models with fitted parameter values [45], we
395compare them using the Cross-Validation/Accuracy measure.

3962.4.1 Step-1: choice data

397The most complex of the models (in terms of number of parameters) is the within-
398alternative process model, which has four free parameters. The first two, α and γ
399correspond to the *CPT* parameters [3] for risk aversion and probability weighting,
400respectively, θ corresponds to the *aDDM* attentional modulation parameter, and λ is

401the activation-leak. As we show in *Suppl. Parameters Recovery*, we carried out a
 402recovery exercise, showing that our fitting procedure is able to provide a good
 403recovery for all those parameters over a wide range of values that correspond to those
 404found in the actual data. This non-trivial result is helped by the fact that our 94 choice
 405problems systematically span the choice space. As shown in Table-2, the *within-*
 406*alternative* process models with attention modulation and leak gave the best fit and
 407showed the highest cross-validation prediction accuracy. They outperformed both the
 408within-attribute process models, as well as the traditional, non-integration to boundary
 409models (compensatory and non-compensatory heuristics). These results speak against
 410the hypothesis that the participants accumulate only the differences of the attended
 411attributes. We also found that the within-attribute models with perfect (rather than
 412leaky) integration (Normalized and Binary differences), resulted in much worse *AIC*,
 413prediction accuracy, and cross-validation (therefore in Table-2 we report only the
 414within-attribute models which include leak as a free parameter). We also note that the
 415within-alternative choice models required a significant degree of information leak (λ
 416_{group} = 0.58). As we show in the *Suppl. Additional model variations*, we explicitly
 417tested four versions of within-alternative models that included an attentional
 418modulation but no activation-leak, all of which resulted in much poorer prediction-
 419accuracy and *AIC* fit values (these models reached a prediction accuracy that while
 420exceeding that of the simple *EU*, did not exceed that of the *CPT* without eye-fixations;
 421see *Suppl. Additional model variations*)². By contrast, the within-alternative process
 422models (with leak) outperformed (on prediction accuracy, *AIC* and cross-validation)
 423the regression models that include either *EU* or *CPT* together with the number of
 424fixations (see *Suppl. Predicting choices using eye-fixations*). This suggests that
 425considering dynamic processes, such as attentional shifts and leak of activation
 426improves prediction accuracy and fit measures beyond what is achievable by using

35² The hybrid model resulted in fits that did not exceed (*AIC* and prediction accuracy) those of the
 36within-alternative model (see *Suppl. Additional model variations*) and with a moderate mutual
 37inhibition value (.13), which does not trigger a full all-or-none dynamics. As this model has two extra
 38parameters (the mutual inhibition values between the *x* and the *p* units), we kept two of the other
 39parameters (leak and attentional modulation) to the optimal values of the model without mutual
 40inhibition. Due to its complexity, we leave a full investigation of this model to future research. We
 41wish to point out, however, that inhibition at the level of attributes is not motivated by Connectionist
 42principles ([72]), which suggested mutual inhibition between units that correspond to different
 43alternatives (for example, this could apply to inhibition between alternative A and B at the 2nd
 44alternative layer, see Fig. 4A).

427only the number of fixations. Note that the within-alternative two-layer leaky
 428accumulators model outperforms the single layer accumulator model. This result
 429suggests that the perception of the attributes is dynamic and is subject to modulation
 430by attentional processes.

431 **Table-2: Model comparison**

Model	AIC	Prediction	Cross-Validation	
			n	(- Accuracy 2•LogLikelihood)
Traditional Models				
EV	2789	75.1%	567	75.1%
EU	2617	76.5%	527	76.0%
CPT	2364	81.2%	484	79.6%
Heuristics				
MaxiMax	-	44.8%	-	44.8%
Least-Likely	-	55.2%	-	55.2%
Priority Heuristic	-	58.3%	-	58.3%
Fixation based regression models				
EU _{Fixations}	2447	79.9%	506	78.7%
CPT _{Fixations}	2173	83.9%	453	81.7%
Within-attribute Integration				
Normalized differences	2716	76.8%	551	75.4%
Categorical differences	2724	76.4%	576	74.4%
Within-alternative Integration				
one-layer leaky accumulators	1980	86.1%	445	83.8%
two-layer leaky accumulators	1877	87.2%	436	84.1%

AIC values are rounded to the nearest integers. Bold entry indicates the best fitting models. Note that AIC differences exceeding 10 are considered very strong evidence in favor of the model with the lower numerical values.

432Finally, we carried out a comparison of the predictive accuracy of our best
 433performance model – the two-layer leaky accumulators - with that of the traditional
 434EU and CPT models across all decisions as a function of EV-differences. The
 435comparison demonstrates that the difference in prediction accuracy is especially large

436for difficult choices (low *EV*-differences, 1-3 Quantiles; Fig. 5), suggesting that
 437attentional modulations are particularly significant in difficult decisions [46].

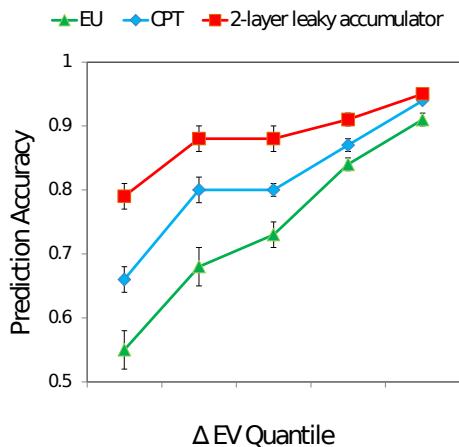


Figure 5. Predictive accuracy of the EU, CPT and the two-layer within-alternative integration models as a function of ΔEV quantile. The two-layer model outperformed all other models especially in difficult decisions (low *EV*-differences). Bars denote S.E., clustered by subjects.

438

439 2.4.2 Step-2: Accounting for both choice and decision-time.

440We contrasted the *within-alternative* and the *within-attribute* models, in accounting
 441simultaneously for choices and decision-times. To this end, we adopt an integration-
 442to-boundary framework, which assumes that preferences are accumulated until they
 443cross a decision criterion [47,48]; this introduced a few more parameters (for the
 444boundary) into the model (see *Suppl. Model Fitting*). The models are now set to
 445estimate the probability of a subject's choice conditioned on its decision time and
 446fixations. This probability is accumulated for all choice trials of the participant to a
 447total likelihood, which is used to optimize the boundary parameters. Two families of
 448decision boundaries were tested, for each of the models: i) the standard fixed (time-
 449invariant) boundary, which introduces a single new boundary parameter, and ii) a
 450collapsing (time-variant) boundary model, which introduces three new parameters
 451(see *Suppl. Optimization procedure: choices and decision-times*, for further details
 452regarding the implementations of these two types of models). The collapsing
 453boundary model has been the focus of recent investigations in decision neuroscience
 454[41, 42], and appears to be favored in experimental tasks that span over longer time
 455intervals (more than 2-3 sec [49,50]).

(A)

(B)

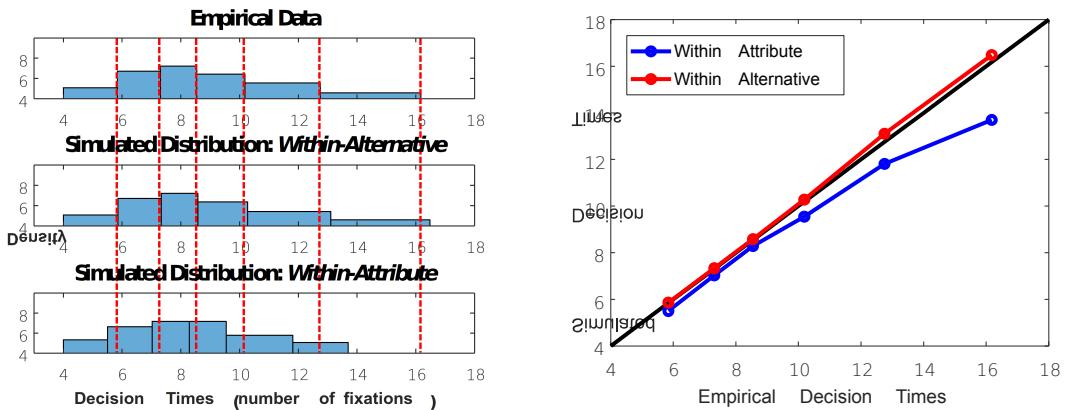


Figure 6. Accounting for choices and decision times. (A) Group quantile (Vincentizing; [12]) decision-time density distribution (in number of fixations to decision). Dashed red lines indicate the quantiles of the actual data distribution ([.1, .3, .5, .7, .9, .99]). (B) Group Quantile-Quantile plot comparing the actual decision time and the simulated decision time of the within-alternative (red) and within-attribute models (blue). Note that the within-alternative model captures better the tail of the distribution.

456 The results show that, with both decision boundary families, the *two-layer leaky*
 457 *accumulator* model outperformed all the other models. Among the two types of
 458 boundary families, the best fits by far were obtained under the collapsing boundary
 459 model (*AIC* and cross-validation), despite the cost of the two extra parameters (see
 460 *Suppl. Process model comparison* for all models). For this reason, we only report
 461 below the results for this type of boundary. We find that the *within-alternative/two-*
 462 *layer leaky accumulator* model (*AIC* = 14,492) decisively outperformed the *within-*
 463 *attribute/normalized differences* model (*AIC* = 15,815; ΔAIC = 823), in accounting for
 464 decision-times (conditioned on the actual fixation patterns). Finally, we used these
 465 models to predict the distribution of decision times (measured in number of fixations),
 466 for novel but statistically matched patterns of fixations. To this end, for each trial we
 467 simulated a fixation sequence that is based on a statistical model of the participant's
 468 fixations towards the four attributes as a function of their values [21,30]. The results
 469 indicate that for the two-layer leaky accumulator model, the predicted and actual
 470 decision-time distributions show a good match, however for the normalized
 471 differences model, the tail of the predicted decision-time distribution deviates from
 472 that of the actual decision-time distribution (Fig. 6 A-B).

4732.5 *Accounting for individual differences in risk-bias and in economically
474normative choice*

475Our best within-alternative integration model accounts also for the empirical
476correlation we reported between the proportion of fixations a participant makes to the
477higher of the two amounts and his or her risk-preference bias (Fig. 2E; see also [24]).
478To show this, we simulated choices for each participant, based on his or her fitted
479model-parameters and the participant's actual fixation sequence. The correlation
480between the model's risk-preference prediction and the proportion of fixations to the
481higher amount ($r = .58, p < .001$), was exactly equal to the empirical correlation
482obtained in the data (Fig. 2E). Next, we sought to demonstrate that this relation is
483associated with the fixation pattern and not merely with differences in model
484parameters. To this end, we simulated choices for each participant, by using his or her
485actual fixation sequences, however, this time we used model parameters that
486correspond to the group mean (rather than the individually fitted parameters). This
487resulted in a significant correlation ($r = .52, p = .002$; Fig. 7A) between the risk-
488preference and the proportion of fixating on the higher amount. This correlation
489between risk-biases and fixation-pattern relies upon the model's attentional
490component, which gives higher weights to the attributes on which the participant
491fixates. For example, assume that a participant is asked to choose between A:(\$20,
4920.5) and B:(\$10, 1). If s/he fixates more the amount of alternative A than the amount
493of alternative B, higher weights would be given to the former, and thus the riskier
494alternative (A) would be preferred by the model over the safer one (B).

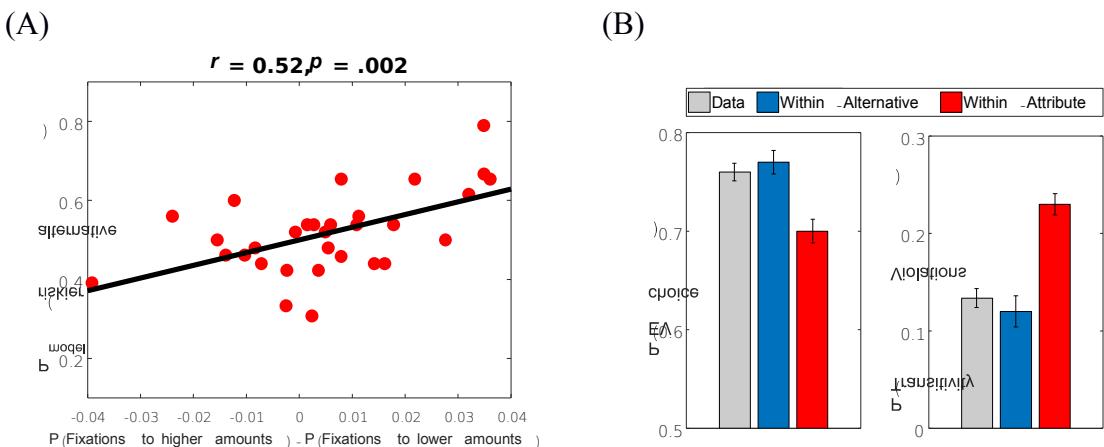


Figure 7. Model predictions and individual differences. (A) The proportion of fixations

toward the higher amount was correlated with the risk-seeking preference predicted by the two-layer within-alternative integration model with parameters fixed at the group-mean, but with actual fixations. (B) The within-alternative model is closer to the data and predicts a higher fraction of economical-normative EV-choices (left panel) and a lower fraction of (irrational) transitivity violations (right panel), compared with the within-attribute model. Error bars represent the standard error of the mean.

495Finally, we address an important question: which preference-formation mechanism
496(*within-alternative* or *within-attribute*) results in better normative performance, and
497thus can be regarded as more adaptive? To answer this, we simulated the two types of
498models based on the participants' best fitted parameters and actual fixation sequences,
499and we examined two measures of normative choice predicted by each model: i) the
500fraction of *EV*-choices (for simplification we discuss normativity in terms of *EV*, but
501the same would hold in terms of *EU*), and ii) the fraction of transitivity violations – a
502direct measure of choice irrationality ([51,52]; see *Suppl. Transitivity Violations*). As
503seen in Fig. 7B, the normative performance is higher for the within-alternative model
504than for the within-attribute model, for both measures: *EV*-choices: $t(30) = 6.27$, $p < .001$ and
505transitivity violations: $t(30) = 5.15$, $p < .001$. This is expected because our
506within-alternative model, like *CPT*, assumes a multiplication between subjectively
507transformed amounts and probabilities, which also maintains choice-consistency.
508Although the economically-normative model requires a multiplication of objective
509values whereas our model requires a multiplication of subjective values, this
510discrepancy is relatively minor compared with non-multiplicative strategies (i.e.,
511within-attribute integration or heuristics). Moreover, we have found that the more
512within-alternative transitions a person makes, the higher is his or her fraction of
513economically-normative *EV* choices (Fig. 2F; see also [28]). This correlation can be
514naturally understood, since the participants rely on a within-alternative multiplicative
515mechanism, and this operation is likely to be more precise following an actual
516transition between amounts and probabilities (i.e., a fixation on one attribute of an
517alternative followed immediately by a fixation to the other attribute of the same
518alternative), than following a non-direct transition (where one of the to-be-multiplied
519attributes is based on memory or defaults). Consistent with this, we found a
520correlation across participants between the prediction accuracy of the *within-*

521 *alternative model* and the proportion of within-alternative transitions ($r = 0.39$, p
522 = .03).

523 3. Discussion

524 The main aim of our study was to elucidate mechanisms by which different attributes
525 (amounts and probabilities) are integrated to generate an overall subjective value of
526 choice alternative. To this end, we focused on choices between simple lotteries and
527 developed process models of risky choice, which are constrained by eye-fixations and
528 we assumed a fixation-based attentional modulation. In addition, we introduced
529 activation-leak and examined two types of decision-boundaries, in order to account
530 for decision times. Within these models we specifically contrasted *within-alternative*
531 multiplicative models and *within-attribute* type models, and carried out a systematic
532 parametric investigation of choices between simple lotteries (x_1 with p_1 vs. x_2 with p_2),
533 while tracking participants' eye-fixations.

534 First, we replicated previous findings indicating that participants show preference for
535 lotteries that reflect the economic-normative theory: choice probability of the
536 alternative with the higher *EV* increases (and choice-RT decreases) with *EV*-
537 difference between the lotteries. Nevertheless, participants also exhibited risk biases
538 that are probability-dependent, being risk-averse at high/medium probabilities, but not
539 at low probabilities. Second, we found that, on average, the eye-scan patterns were
540 dominated by within-alternative as compared to within-attribute or diagonal
541 transitions (Fig. 2C-D, respectively), and that individual differences on this eye-scan
542 pattern correlate with *EV*-choice (see also [28], for a similar result). Third, we used
543 eye-fixations to constrain a number of process models that accumulate preference
544 across fixations, using an *aDDM* approach with two attributes [21,53]. Here we
545 contrasted two types of integration-to-boundary process models: i) within-attribute
546 models, and ii) within-alternative models. As shown in Table-2, the latter resulted in
547 the best predictive accuracy and measures of fit. Importantly, the two-layer model
548 also accounted well for decision times (see Fig. 6) and for individual differences in
549 risk biases. Finally, the worst performance in our task was obtained for the non-
550 compensatory heuristic models. For example, the best of the heuristics (the *PH*)

551 resulted in a worse fit than even the simple *EV* model (see cross-validation measure in
552 Table-2).

553 The conclusions favoring the within-alternative multiplicative models may need to be
554 the task conditions we used here. First, we used simple lotteries with single non-zero
555 outcomes (x with p , 0 with $1-p$). It is possible that the amount of non-compensatory,
556 within-attribute processing would increase when more complex choices are used
557 ([25,32]). While we cannot rule out this possibility, recent research in the domain of
558 probabilistic inferences ([54–56]), and risky choice ([20,57]), indicate that when
559 decision processes are monitored via eye-tracking (which does not slow down the
560 decision process) rather than via mouse pressing techniques (e.g., [10]), participants
561 are able to use compensatory strategies for relatively high complexity levels (see also
562 [58] for a multi-attribute choice task). With regards to our study, we need to also
563 qualify the results to our use of analog (graphic rather than symbolic) presentation of
564 the data³, and the fact that our alternatives were presented top/bottom (and thus the
565 amounts and probabilities left/right, Fig. 1A)⁴. Here we wish to support the following
566 conclusion: humans possess the ability to deploy an ‘economic’ (multiplicative
567 across-dimension) type computation, supporting the idea that humans are closer to
568 normative principles than previously thought (see also [56,59]). Future research will
569 be needed to further quantify to what extent the use of this mechanism (or strategy)
570 depends on the task complexity and type of stimuli.

571 There are several important properties of our winning process model that we want to
572 highlight. First, it assumes two layers of leaky accumulators, one for the estimation of
573 subjective amounts and of subjective probabilities, and the one for the evaluation of
574 the integrated subjective values (the combination of subjective amounts and
575 probabilities). Second, it assumes that the units in the second layer are updated via a

59³ We used here analog representations because we wanted to prevent our participants (who are students
60 that may be familiar with *EV*-principles), and are required to do 94 choice problems, from adopting an
61 explicit *EV* calculation strategy. We believe that such a strategy is less likely with analog information
62 and thus our results favoring an implicit multiplicative mechanism are even more remarkable.

63⁴ It is possible to argue that our experimental layout (horizontal) favors within attribute processing (left
64 to right, or right to left for our Hebrew speaking participants). Note, however, that the alternative layout
65 (setting amounts bars horizontally), would trigger a strong bias favoring within-attribute processing (in
66 particular, comparing the aligned bars). Nevertheless, we report in the *Suppl. Pilot study* data from a
67 pilot Experiment ($N=13$) using this layout (i.e., vertical), which shows that even under such within-
68 attribute favorable conditions, we still find dominance for within alternative transitions.

576multiplication of the activation of the corresponding, first layer units (Fig. 4A). This is
577similar to how the *CPT* model generates subjective utilities. In fact, we find a high
578correlation between the utility function's curvature parameter (α) of the classical *CPT*
579and the corresponding parameter of our process model ($r = .91, p < .001$), with higher
580 α -values for the classical *CPT* (see *Suppl. Relationship between the models' utility*
581*parameters*). This suggests that the classical *CPT*-parameters reflect a combination of
582several processes, such as attention allocation and subjective-value transformation
583[60]. Note also, that the model assumes an activation-leak, a feature that allows it to
584account for recency effects in the data (see *Suppl. Last fixations and choice*), and
585prevents a double-integration that would occur in the two-layer model in its absence.
586Third, in addition to predicting choices, the model also predicts decision times,
587describing the preference formation dynamics under the integration to boundary
588framework with inputs that correspond to a multiplicative transformation of subjective
589amounts and probabilities. In particular, we found support for a collapsing boundary,
590consistent with choice studies that span longer intervals [49,50]).

591Other process models of risky choice, such as *DFT* [15,16] also assume an implicit
592multiplicative interaction between amounts and probabilities. In *DFT*, however, this is
593not due to the multiplication of amounts and probabilities but rather to the sampling
594frequency of the amounts, which changes with the corresponding probabilities. This
595implies that observers look (or attend) more to a given amount if the corresponding
596probability is higher. In our data, while we find that the relative number of fixations to
597an amount increases with its probability, this increase was quite minor (about 1%),
598and therefore cannot explain the multiplicative interaction [20]. However, it is
599possible that eye-fixations under-estimate the differential of covert attention
600modulation.

601Future research is also needed to better understand the neural mechanisms underlying
602these computations [61–63]. While the computation of subjective amounts and
603probabilities can be understood to involve simple psychophysical transformations
604over amounts (unbounded scale; [64]) and probabilities (bounded scales; [65]), the
605nature of the multiplicative interaction between neural activations requires future
606investigations. Note that a multiplicative interaction is also assumed in the *PCS* risk

607model [20]. To do so, *PCS* had to assume different neural substrates for amounts
608(neural activations) and for probabilities (synaptic weights). The latter assumption,
609however, may be difficult to justify for one-shot decisions, which allow little
610opportunity for learning synaptic weights. We thus suggest that the multiplicative
611interactions involve neural activations. While less standard than linear interactions
612[66], a number of neural mechanisms have been proposed to mediate multiplication of
613neural activity in neural systems [67,68]. Future research is also needed to extend the
614scope of this investigation from simple lotteries to more complex ones (with multiple
615outcomes) and from binary to multiple choices.

6164. Methods

6174.1 Experiment

618*Participants.* 35 Tel-Aviv University undergraduate students (24 females; ages range
619from 19 to 26, Median_{age} = 23) were recruited to the experiment. All of them reported
620having normal or corrected-to-normal vision. Four of the participants were not able to
621carry out the eye tracker calibration task, and thus did not take part in the main
622experiment, leaving 31 participants. The participants received course credit in
623exchange for participating, as well as a bonus fee ranging from 0 to 30 Israeli Shekels
624(ILS), which was contingent upon their choices. The experiment was approved by the
625ethics committee at Tel-Aviv University.

626*Apparatus.* Eye-movements were recorded using a Tobii TX300 desk-mounted eye-
627tracker (23" monitor with 1920 x 1080 pixels resolution, sampling rate: 300Hz, spatial
628accuracy: 0.5°), attached to an Intel i7 personal computer. Displays were presented
629using Psychtoolbox for MATLAB [69]. Viewing distance was approximately 60 cm.
630Responses were collected via the computer keyboard. A chin rest was not used.

631*Stimuli.* Each choice consisted of two simple lotteries in the form of p_1 chance to get
632 x_1 ILS (otherwise nothing) vs. p_2 chance to get x_2 ILS (otherwise nothing). An
633example of the display is presented in Fig. 1A. Amounts were represented by the
634lower parts of divided bar graphs, and probabilities were represented by the lower
635sectors of pie charts. These attributes appeared at the vertices of an imaginary square
636subtending 14.5° (15.25 cm), and located in the center of a black screen. The height of

637each bar graph subtended 2.07° (2.17 cm) and its width subtended 0.67° (0.69 cm);
638the radius of each pie chart subtended 0.67° (0.69 cm). Thus, the bar graphs and pie
639charts had exactly the same surface. The amounts and probabilities of each alternative
640were displayed horizontally (one lottery was placed over the other); but see footnote 4
641and the results of a pilot study reported in *Suppl. Pilot study*.

642*Choices*. Choice problems were constructed in the following way: we generated a 2-
643dimensional grid with amounts (3, 6, 15, 24 and 30 ILS) along one dimension, and
644probabilities (0.1, 0.2, 0.5, 0.8 and 1) along the other dimension. The resulting grid
645contained 25 lotteries (Fig. 1B), each of which was paired with all other possible
646lotteries. Stochastically dominated choices (in which both the amount and probability
647of one alternative were higher than those of the other) were excluded, except for 10
648choice problems which served as "catch-trials". Overall, the experiment consisted of
649104 separate choices: 94 non-dominated trials and 10 "catch-trials" (all the choice
650problems are given in *Table S1*).

651*Procedure*. The participants signed an informed consent form prior to the experiment.
652Then, a calibration of the eye-tracker took place. In case the calibration was
653successful, the experiment started, otherwise recalibration was performed. At the
654beginning of the experiment, instructions were given to the participants (see *Suppl.*
655*Experimental instructions*). The experimenter emphasized that choices should be
656made in accordance with subjective preferences and that there is no "correct" choice.
657The experiment consisted of two blocks of 52 choice trials each. A short break was
658allowed between blocks, and a recalibration procedure was performed before the
659second block. Each trial began with a fixation display which consisted of a red 0.2° ×
6600.2° fixation cross (+) that remained on screen until a continuous fixation of 500 ms
661duration was made. Then, the two lotteries were presented until response. Choice was
662made using the up and down arrow keys. Participants were told that after completing
663the experiment, one of the choices will be randomly chosen and payed out. The whole
664experiment took approximately 30 min per participant. Choice order as well as the
665horizontal position (left/right) of the amounts and probabilities were randomized for
666each participant; the vertical position of each lottery (up/down) was randomized
667between subjects.

668 *Eye-movements*. Fixations were classified as being directed to a certain attribute, if
 669 they were within 100 pixels of the center of that attribute and lasted at least 50 ms.
 670 Two consecutive fixations to the same attribute were joined and considered as one
 671 fixation. Trials longer than 10 sec or shorter than 500 ms (4% of all trials), as well as
 672 trials in which the participants did not look at all of the attributes (4% of all trials),
 673 were excluded from further analysis.

674.2 Models of Risky-choice

675 Here we briefly describe the key features of the models applied (for a full description
 676 see *Suppl. Models of risky choice*). In all of the models (except for the Heuristics
 677 models), the probability of choosing each alternative is calculated using an
 678 exponential version of Luce's choice rule [70,71]:

$$679 P(x_1, p_1; x_2, p_2) = \frac{1}{1 + e^{-\beta(U_1 - U_2)}}$$

680 where U_1 and U_2 are the utilities of the alternatives, and β is a free parameter
 681 indicating the sensitivity of the model to their difference.

Traditional Models

Expected Value (EV)

- Participants choose the alternative with the higher Expected-Value:

$$EV = x \cdot p.$$

Expected Utility (EU)

- Participants choose the alternative with the higher Expected-Utility:

$$EU = u(x) \cdot p ; u(x) = x^\alpha.$$

Cumulative Prospect Theory (CPT)

- Participants choose the alternative with the higher Subjective-Utility:

$$SU = u(x) \cdot \pi(p) ; \pi(p) = \frac{p^\gamma}{(p^\gamma + (1-p)^\gamma)^\frac{1}{\gamma}}.$$

Fixation based regression models

EU_{Fixations}

- $U_{alternative} = u(x) \cdot p \cdot n^\tau$, where n is the number of fixations to the alternative,
 and τ is a saturation parameter.

CPT_{Fixations}

- Defined analogously to *Multiplicative EU_{Fixations}*, but with p replaced with
 $\pi(p)$ according to *CPT*.

Heuristics

MaxiMax

- Choose the alternative with the highest maximum amount.

Least-Likely

- Choose the alternative with the lowest probability of its worst outcome.

Priority Heuristic

- Compare sequentially the following attributes: minimum amounts, probability of minimum amounts, maximum amount.
- Stop when difference between the attributes reaches a termination criterion.

Within-attribute Integration

Normalized differences

- Normalize the amounts and probabilities using min-max normalization:

$$y' = \frac{y - \min(y)}{\max(y) - \min(y)}$$

- On each fixation, the normalized differences of the attended attribute are accumulated. Unattended attribute are underweighted.
- Example: if one fixates on x_1 , accumulator A increases by: $x_1' - \theta \cdot x_2'$, and accumulator B by: $\theta \cdot x_2' - x_1'$. $\theta \in [0,1]$ represents attentional modulation.

Categorical differences

- This model was implemented as the *normalized differences* model, except that instead of accumulating normalized differences, the model accumulates counts based on categorical comparisons.
- Example: if one fixate on x_1 and $x_1 > \theta \cdot x_2$, accumulator A increases by one unit, and B remains the same. $\theta \in [0,1]$ represents attentional modulation.

Within-alternative

Integration

One-layer leaky accumulators

- On each fixation, this model accumulates the *SU* of the two alternatives, defined as in *CPT*.
- At fixation toward alternative A, the input of alternative B is attenuated (and vice versa).
- Example: if one fixate on x_1 , accumulator A increases by: SU_A , whereas the accumulator B increases by: $\theta \cdot SU_B$.
- The activations of the alternatives' accumulators are subject to leak.

Two-layer leaky accumulators

- Two layers of leaky accumulators, the first estimates subjective amounts and probabilities (defined as in *CPT*), and the second estimates integrated *SU*.
- On each fixation, the first-layer units are updated with the subjective amounts and probabilities, with the inputs of the unattended attributes attenuated.
- Example, if one fixates on x_1 the inputs of p_1 , x_2 and p_2 are $\theta \cdot \pi(p_1)$, $\theta \cdot u(x_2)$ and $\theta \cdot \pi(p_2)$, respectively. The second-layer units are fed with the activations of the first layer units, and accumulate the product of their values.
- The units of both layers (first and second) are subject to leak.

682 Acknowledgments

683 M.U. and D.L. are supported by the United States-Israel Binational Science
684 Foundation (CNCRS = 2014612); E.N. and V.S. are supported by NIH/NIDA
685 (R01DA040990).

686 Authors' contributions:

687 D.L., E.N., M.G., M.U. and V.T. developed the study concept. M.G., M.U. and O.S.
688 designed the experiment. M.G. and O.S. performed research and analyzed the data.
689 M.G. and M.U. developed the models. M.G. fitted the models. M.G. and M.U. wrote
690 the paper. All authors provided critical feedback and final approval for publication.

691

References

6921. Savage LJ. *The Foundations of Statistics*. New York: Wiley; 1954.
693 doi:10.1002/nav.3800010316

6942. McFadden D. Econometric models of probabilistic choice. *Struct Anal Discret*
695 data with *Econom Appl*. 1981;198272.

6963. Tversky A, Kahneman D. Advances in prospect theory: Cumulative
697 representation of uncertainty. *J Risk Uncertain*. 1992;5:297-323.
698 doi:10.1007/BF00122574

6994. Fox CR, Poldrack RA. Prospect theory and the brain. In: *Neuroeconomics*.
700 Elsevier; 2009:145-173. doi:10.1016/B978-0-12-374176-9.00011-7

7015. Gonzalez R, Wu G. On the shape of the probability weighting function. *Cogn Psychol.* 1999;38:129-166. doi:10.1006/cogp.1998.0710

7036. Kahneman D, Tversky A. Prospect Theory: An Analysis of Decision under Risk. *Econometrica.* 1979;47:263-291. doi:10.2307/1914185

7057. Birnbaum MH. New paradoxes of risky decision making. *Psychol Rev.* 2008;115:463-501. doi:10.1037/0033-295X.115.2.463

7078. Glöckner A, Pachur T. Cognitive models of risky choice: Parameter stability and predictive accuracy of prospect theory. *Cognition.* 2012;123:21-32. doi:10.1016/j.cognition.2011.12.002

7109. Brandstätter E, Gigerenzer G, Hertwig R. The priority heuristic: Making choices without trade-offs. *Psychol Rev.* 2006;113:409-432. doi:10.1037/0033-295X.113.2.409

71310. Payne JW, Bettman JR, Johnson EJ. Adaptive strategy selection in decision making. *J Exp Psychol Learn Mem Cogn.* 1988;14:534-552. doi:10.1037/0278-7393.14.3.534

71611. Gold JI, Shadlen MN. Neural computations that underlie decisions about sensory stimuli. *Trends Cogn Sci.* 2001;5:10-16. doi:10.1016/S1364-6613(00)01567-9

71912. Ratcliff R, McKoon G. The diffusion decision model: theory and data for two-choice decision tasks. *Neural Comput.* 2008;20:873-922. doi:10.1162/neco.2008.12-06-420

72213. Ratcliff R, Smith PL, Brown SD, McKoon G. Diffusion decision model: current issues and history. *Trends Cogn Sci.* 2016;20:260-281. doi:10.1016/j.tics.2016.01.007

72514. Teodorescu AR, Usher M. Disentangling decision models: From independence to competition. *Psychol Rev.* 2013;120:1-38. doi:10.1037/a0030776

72715. Busemeyer JR, Townsend JT. Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. *Psychol Rev.* 1993;100:432-459. doi:10.1037/0033-295X.100.3.432

73016. Johnson JG, Busemeyer JR. A computational model of the attention process in risky choice. *Decision.* 2016;3:254-280. doi:10.1037/dec0000050

73217. Stewart N. Decision by sampling: The role of the decision environment in risky

733 choice. *Q J Exp Psychol.* 2009;62:1041-1062.
734 doi:10.1080/17470210902747112

735 18. Stewart N, Chater N, Brown GDA. Decision by sampling. *Cogn Psychol.*
736 2006;53:1-26. doi:10.1016/j.cogpsych.2005.10.003

737 19. Stewart N, Simpson K. A decision-by-sampling account of decision under risk.
738 probabilistic mind *Prospect Bayesian Cogn Sci.* 2008;261-276.
739 doi:10.1093/acprof:oso/9780199216093.003.0012

740 20. Glöckner A, Herbold A-K. An eye-tracking study on information processing in
741 risky decisions: Evidence for compensatory strategies based on automatic
742 processes. *J Behav Decis Mak.* 2011;24:71-98. doi:10.1002/bdm.684

743 21. Krajbich I, Armel C, Rangel A. Visual fixations and the computation and
744 comparison of value in simple choice. *Nat Neurosci.* 2010;13:1292-1298.
745 doi:10.1038/nn.2635

746 22. Krajbich I, Rangel A. Multialternative drift-diffusion model predicts the
747 relationship between visual fixations and choice in value-based decisions. *Proc
748 Natl Acad Sci U S A.* 2011;108:13852-13857. doi:10.1073/pnas.1101328108

749 23. Krajbich I, Lu D, Camerer C, Rangel A. The attentional drift-diffusion model
750 extends to simple purchasing decisions. *Front Psychol.* 2012;3:193.
751 doi:10.3389/fpsyg.2012.00193

752 24. Smith SM, Krajbich I. Attention and choice across domains. *J Exp Psychol
753 Gen.* 2018;147:1810-1826. doi:10.1037/xge0000482

754 25. Arieli A, Ben-Ami Y, Rubinstein A. Tracking decision makers under
755 uncertainty. *Am Econ J Microeconomics.* 2011;3:68-76.
756 doi:10.1257/mic.3.4.68

757 26. Brandstätter E, Körner C. Attention in risky choice. *Acta Psychol (Amst).*
758 2014;152:166-176. doi:10.1016/j.actpsy.2014.08.008

759 27. Russo JE, Dosher BA. Strategies for multiattribute binary choice. *J Exp
760 Psychol Learn Mem Cogn.* 1983;9:676-696. doi:10.1037/0278-7393.9.4.676

761 28. Aimone JA, Ball S, King-Casas B. It's Not What You See but How You See It:
762 Using Eye Tracking to Study the Risky Decision-Making Process. *J Neurosci
763 Psychol Econ.* 2016;9:137-144. doi:10.1037/npe0000061

764 29. Johnson EJ, Schulte-Mecklenbeck M, Willemse MC. Postscript: Rejoinder to

765 Brandst tter, Gigerenzer, and Hertwig (2008). *Psychol Rev.* 2008;115:272-273.
766 doi:10.1037/0033-295x.115.1.272

76730. Stewart N, Hermens F, Matthews WJ. Eye movements in risky choice. *J Behav
768 Decis Mak.* 2016;29:116-136. doi:10.1002/bdm.1854

76931. Tavares G, Perona P, Rangel A. The Attentional Drift Diffusion Model of
770 Simple Perceptual Decision-Making. *Front Neurosci.* 2017;11:468.
771 doi:10.3389/fnins.2017.00468

77232. Payne JW. Task complexity and contingent processing in decision making: An
773 information search and protocol analysis. *Organ Behav Hum Perform.*
774 1976;16:366-387. doi:10.1016/0030-5073(76)90022-2

77533. Kim BE, Seligman D, Kable JW. Preference Reversals in Decision Making
776 Under Risk are Accompanied by Changes in Attention to Different Attributes.
777 *Front Neurosci.* 2012;6. doi:10.3389/fnins.2012.00109

77834. Anderson BA, Laurent PA, Yantis S. Value-driven attentional capture. *Proc
779 Natl Acad Sci.* 2011;108:10367-10371. doi:10.1073/pnas.1104047108

78035. Orquin JL, Loose SM. Attention and choice: A review on eye movements in
781 decision making. *Acta Psychol (Amst).* 2013;144:190-206.
782 doi:10.1016/j.actpsy.2013.06.003

78336. Towal RB, Mormann M, Koch C. Simultaneous modeling of visual saliency
784 and value computation improves predictions of economic choice. *Proc Natl
785 Acad Sci.* 2013;110:E3858--E3867. doi:10.1073/pnas.1304429110

78637. Tsetsos K, Chater N, Usher M. Salience driven value integration explains
787 decision biases and preference reversal. *Proc Natl Acad Sci.* 2012;109:9659-
788 9664. doi:10.1073/pnas.1119569109

78938. Glickman M, Tsetsos K, Usher M. Attentional Selection Mediates Framing and
790 Risk-Bias Effects. *Psychol Sci.* 2018;29:2010-2019.
791 doi:10.1177/0956797618803643

79239. Shimojo S, Simion C, Shimojo E, Scheier C. Gaze bias both reflects and
793 influences preference. *Nat Neurosci.* 2003;6:1317-1322. doi:10.1038/nn1150

79440. Usher M, McClelland JL. The time course of perceptual choice: The leaky,
795 competing accumulator model. *Psychol Rev.* 2001;108:550-592.
796 doi:10.1037/0033-295x.108.3.550

79741. Usher M, McClelland JL. Loss Aversion and Inhibition in Dynamical Models
798 of Multialternative Choice. *Psychol Rev.* 2004;111:757-769. doi:10.1037/0033-
799 295x.111.3.757

80042. Reeck C, Wall D, Johnson EJ. Search predicts and changes patience in
801 intertemporal choice. *Proc Natl Acad Sci.* 2017;114:11890-11895. doi:10.1073/
802 pnas.1707040114

80343. Coombs CH, Dawes RM, Tversky A. *Mathematical Psychology: An
804 Elementary Introduction.* Prentice-Hall; 1970.

80544. Thorngate W. Efficient decision heuristics. *Syst Res Behav Sci.* 1980;25:219-
806 225. doi:10.1002/bs.3830250306

80745. Brandstätter E, Gigerenzer G, Hertwig R. Risky choice with heuristics: Reply
808 to Birnbaum (2008), Johnson, Schulte-Mecklenbeck, and Willemsen (2008),
809 and Rieger and Wang (2008). *Psychol Rev.* 2008;115:281-289.
810 doi:10.1037/0033-295x.115.1.281

81146. Milosavljevic M, Navalpakkam V, Koch C, Rangel A. Relative visual saliency
812 differences induce sizable bias in consumer choice. *J Consum Psychol.*
813 2012;22:67-74. doi:10.1016/j.jcps.2011.10.002

81447. Hawkins GE, Forstmann BU, Wagenmakers E-J, Ratcliff R, Brown SD.
815 Revisiting the Evidence for Collapsing Boundaries and Urgency Signals in
816 Perceptual Decision-Making. *J Neurosci.* 2015;35:2476-2484.
817 doi:10.1523/jneurosci.2410-14.2015

81848. Palestro JJ, Weichart E, Sederberg PB, Turner BM. Some task demands induce
819 collapsing bounds Evidence from a behavioral analysis. *Psychon Bull Rev.*
820 2018. doi:10.3758s13423-018-1479-9

82149. Busemeyer JR, Rapoport A. Psychological models of deferred decision
822 making. *J Math Psychol.* 1988;32:91-134. doi:10.1016/0022-2496(88)90042-9

82350. Drugowitsch J, Moreno-Bote R, Churchland AK, Shadlen MN, Pouget A. The
824 Cost of Accumulating Evidence in Perceptual Decision Making. *J Neurosci.*
825 2012;32:3612-3628. doi:10.1523/jneurosci.4010-11.2012

82651. Lee L, Amir O, Ariely D. In Search of Homo Economicus: Cognitive Noise
827 and the Role of Emotion in Preference Consistency. *J Consum Res.*
828 2009;36:173-187. doi:10.1086/597160

82952. Tversky A. Intransitivity of preferences. *Psychol Rev.* 1969;76:31-48.
830 doi:10.1037/h0026750

83153. Fisher G. An attentional drift diffusion model over binary-attribute choice.
832 *Cognition.* 2017;168:34-45. doi:10.1016/j.cognition.2017.06.007

83354. Glöckner A, Betsch T. Decisions beyond boundaries: When more information
834 is processed faster than less. *Acta Psychol (Amst).* 2012;139:532-542.
835 doi:10.1016/j.actpsy.2012.01.009

83655. Glöckner A, Betsch T. Multiple-Reason Decision Making Based on Automatic
837 Processing. {SSRN} Electron J. 2008. doi:10.2139/ssrn.1133445

83856. Glöckner A, Hilbig BE, Jekel M. What is adaptive about adaptive decision
839 making? A parallel constraint satisfaction account. *Cognition.* 2014;133:641-
840 666. doi:10.1016/j.cognition.2014.08.017

84157. Fiedler S, Glockner A. The Dynamics of Decision Making in Risky Choice: An
842 Eye-tracking Analysis. 2012. doi:10.1037/e519682015-072

84358. Brusovansky M, Glickman M, Usher M. Fast and effective: Intuitive processes
844 in complex decisions. *Psychon Bull Rev.* 2018;25:1542-1548.
845 doi:10.3758/s13423-018-1474-1

84659. Tsetsos K, Moran R, Moreland J, Chater N, Usher M, Summerfield C.
847 Economic irrationality is optimal during noisy decision making. *Proc Natl
848 Acad Sci.* 2016;113:3102-3107. doi:10.1073/pnas.1519157113

84960. Pachur T, Schulte-Mecklenbeck M, Murphy RO, Hertwig R. Prospect theory
850 reflects selective allocation of attention. *J Exp Psychol Gen.* 2018;147:147-169.
851 doi:10.1037/xge0000406

85261. Glimcher PW, Rustichini A. Neuroeconomics: the consilience of brain and
853 decision. *Science (80-).* 2004;306:447-452. doi:10.1126/science.1102566

85462. De Martino B, Kumaran D, Holt B, Dolan RJ. The neurobiology of reference-
855 dependent value computation. *J Neurosci.* 2009;29:3833-3842.
856 doi:10.1523/JNEUROSCI.4832-08.2009

85763. Hunt LT, Kolling N, Soltani A, Woolrich MW, Rushworth MFS, Behrens TEJ.
858 Mechanisms underlying cortical activity during value-guided choice. *Nat
859 Neurosci.* 2012;15:470-476. doi:10.1038/nn.3017

86064. Stevens SS. On the psychophysical law. *Psychol Rev.* 1957;64:153-181.

861 doi:10.1037/h0046162

86265. Hollands JG, Dyre BP. Bias in proportion judgments: The cyclical power
863 model. *Psychol Rev.* 2000;107:500-524. doi:10.1037/0033-295X.107.3.500

86466. McClelland JL, Rumelhart DE. Distributed memory and the representation of
865 general and specific information. *J Exp Psychol Gen.* 1985;114:159.

86667. Nezis P, Van Rossum MCW. Accurate multiplication with noisy spiking
867 neurons. *J Neural Eng.* 2011;8:34005. doi:10.1088/1741-2560/8/3/034005

86868. Verguts T, Fias W. Interacting neighbors: A connectionist model of retrieval in
869 single-digit multiplication. *Mem Cognit.* 2005;33:1-16.
870 doi:10.3758/bf03195293

87169. Brainard DH, Vision S. The psychophysics toolbox. *Spat Vis.* 1997;10:433-
872 436. doi:10.1163/156856897x00357

87370. Luce RD. *Individual Choice Behavior: A Theoretical Analysis.* Oxford: Wiley;
874 1959.

87571. Rieskamp J. The probabilistic nature of preferential choice. *J Exp Psychol
876 Learn Mem Cogn.* 2008;34:1446.

87772. McClelland JL. Toward a theory of information processing in graded, random,
878 and interactive networks. 1993.

879