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The formation of preference in risky choice

A  key  question  in  decision-making  is  how  people  integrate  amounts  and 

probabilities to form preferences between risky alternatives. Here we rely on the 

general  principle  of  integration-to-boundary  to  develop  several  biologically 

plausible  process  models  of  risky-choice,  which account  for  both choices  and 

response-times. These models allowed us to contrast two influential competing 

theories:  i)  within-alternative  evaluations,  based  on  multiplicative  interaction 

between  amounts  and  probabilities,  ii)  within-attribute  comparisons  across 

alternatives. To constrain the preference formation process, we monitored eye-

fixations  during  decisions  between  pairs  of  simple  lotteries,  designed  to 

systematically span the decision-space. The behavioral results indicate that the 

participants'  eye-scanning patterns  were  associated with  risk-preferences  and 

expected-value maximization. Crucially, model comparisons showed that within-

alternative  process  models  decisively  outperformed  within-attribute  ones,  in 

accounting  for  choices  and  response-times.  These  findings  elucidate  the 

psychological  processes  underlying  preference  formation  when  making  risky-

choices,  and  suggest  that  compensatory,  within-alternative  integration  is  an 

adaptive mechanism employed in human decision-making. 
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Author Summary

Decision-making  under  risk  requires  a  selection  between  alternatives,  such  as 

lotteries, which offer a reward with a specified probability. Human decision between 

such alternatives is at the center of the normative decision theory, which assumes that 

decisions are rationally made by forming a value for each alternative and selecting the 

alternative with the highest value. To this day, there is still a considerable debate on 

how such values are computed. While the normative theory assumes that values of the 

alternatives reflect the statistically expected reward, more recent theories have argued 

that alternative-values are not computed and choices are only based on sequentially 

comparing the alternatives on amounts or on probabilities. Here, we carried out an 

experimental  investigation  of  risky  decision-making,  in  which  participants  chose 

between  pairs  of  simple  lottery  alternatives  that  systematically  span  a  range  of 

probabilities and rewards, while we tracked their eye positions during their decision-

making process. We found that the participants are sensitive to the expected-utility of 

the alternatives, as predicted by the normative decision theories, but they also exhibit 

risk-biases  that  correlate  with  the  eye-scanning  patterns.  We  then  carry  out 

computational modeling, comparing preference-formation models on their ability to 

account for both choices and their reaction-time. The results provide strong support 

for normative models which assume that the values of the alternative are computed 

via a multiplicative function of the amounts and probabilities. These results suggest 

that humans are closer to normative principles than previously assumed, and motivate 

further  investigation  into  the  neural  mechanism that  mediates  these  multiplicative 

computations.
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1. Introduction

Decision-making under risk is ubiquitous in daily activities, such as deciding whether 

to  take  an  umbrella  when  the  weather  forecast  predicts  50% chance  for  rain  or 

whether to purchase a lottery ticket with a winning probability of 1%. Such decisions 

are  difficult  because  the  outcomes  of  the  alternatives  are  only  known with  some 

probability, and thus they are subject to risk tradeoffs. For example, when deciding 

between a lottery that offers $100 with a probability of 50% and an offer of $40 with 

certainty, one needs to balance between the appeal of the attractive amount ($100) and 

the risk of getting nothing (rather than gaining $40 for certain). Choices between such 

lotteries  were  the  subject  of  intensive  research  in  economics  and  experimental 

psychology that  investigated  how humans  make risky decisions,  starting  from the 

normative  Expected-Utility  (EU;  [1]),  followed  by random utility  models  [2] and 

culminating  with  Cumulative  Prospect  Theory  (CPT;  [3–6],  see  also  Transfer  of 

Attention  eXchange  [TAX],  for  a  related  type  of  model  [7]).  Yet  despite  the 

impressive success of CPT in accounting for risky choice data (e.g., the dependence 

of risk-aversion on the magnitude of the outcomes' probabilities  [8]), the theory has 

been criticized for making assumptions that are inconsistent with capacity limitations 

of human online information processing, and for not explicating the process by which 

the preferences are formed [9,10]. 

Several process theories were developed to account for risky choice. First, heuristic 

models, such as Priority Heuristic (PH), suggest that preferences are not formed via a 

compensatory  process  of  averaging  over  all  outcomes  (like  in  EU and  CPT),  but 

rather  via  a  sequential  process  of  comparing  the  alternatives  over  one  specific 

attribute (probability or amount) at a time, in a specified order, and stopping at the 

first instance in which a termination criterion is satisfied  [9]. Second, a number of 

models  have  relied  on  the  sequential-sampling  framework  [11–14],  which 

successfully accounted for choices in perceptual tasks, in order to develop a process 

model  of  risky  choice.  For  example,  in  Decision  Field  Theory  (DFT;  [15]),  as 

attention fluctuates between the alternatives, the preference dynamically evolves by 

integrating amounts, which are sampled with a frequency that is associated with their 

(subjective) probabilities  [16]. In the Decision by Sampling model (DbS;  [17–19]), 
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like in PH, the sampling involves comparisons between the values of the alternatives 

on a specific attribute (i.e., amounts or probabilities, but not both). However, unlike 

PH, DbS does not assume a fixed order of attribute sampling, nor that the decision is 

settled at a single comparison, but rather a stochastic sampling, which continues until 

the accumulated difference of favorable comparisons reaches a decision boundary. 

Critically,  as  opposed  to  EU or  CPT,  in  DbS the  processing  takes  place  within-

attributes (i.e., comparison between amounts or between probabilities). Finally, in the 

Parallel Constraint Satisfaction model (PCS; [20]), a compensatory within-alternative 

process similar to EU (i.e., multiplication of amounts and probabilities) is carried out 

in  a  parallel  and  automatic  manner;  this  process  is  mediated  by  a  connectionist 

network  of  bottom-up  and  top-down  connections.  Although  several  qualitative 

predictions of the  PCS model  have been confirmed  [20], this  model  has not been 

tested quantitatively in risky choice.  

More  recently,  a  number  of  studies  have  relied  on  eye-fixations  during  choice 

between  alternatives,  to  gain  insight  into  the  preference  formation  process.  For 

example, Krajbich, Rangel and colleagues have shown that an extension of the Drift 

Diffusion Model (DDM;  [12,13]), the attentional  DDM (aDDM), accounts well for 

observed preferences  between consumer products,  food items and 50-50 monetary 

gambles  [21–24].  To  do  so,  the  aDDM assumes  that  the  value  of  the  sampled 

alternative  is  modulated  by  eye-fixations,  so  that  the  values  of  the  non-fixated 

alternatives are attenuated compared with the fixated ones. In the domain of risky 

choice,  a number of studies have contrasted  within-alternative  and within-attribute 

models, and reported partial support for both [20,24–28]. In particular, Glöckner and 

Herbold  [20] analyzed risky choice while monitoring eye-movements, and provided 

evidence against the  PH model and in favor of the  PCS and  DFT models (see also 

[29] for similar results). Finally, in a recent investigation of eye-movements during 

risky  choice,  Stewart,  Hermens,  &  Matthews  [30] concluded  that,  while  eye-

movements contribute to choice preference, this contribution is mostly independent of 

the values sampled. In other words, the more one looks at an alternative the more 

likely s/he is to choose it, independently of the magnitude of amount or probability.
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The aim of  the  current  study is  to  develop  and  contrast  process  models  of  risky 

choice, which are constrained by the eye movements of participants making decisions. 

In particular, we adopt an integration-to-boundary framework, which allows to predict 

both choices and their decision-time, and we extend the aDDM [21,22,31] approach to 

the domain of risky choice (see also  [24] for a recent extension to 50-50 monetary 

gambles). In this regard, a central question is whether the preferences are formed by 

integrating  global  alternative-values,  based  on  multiplicative  interactions  between 

amounts  and  probabilities  (within-alternative processing),  or  by  sampling  and 

integrating  attribute-comparisons  (within–attribute  processing).  Furthermore,  using 

process models that include attentional modulation of fixated information, we wish to 

account  for  individual  differences  in  risk  preference.  While  previous  work  has 

highlighted the impact of task-complexity (e.g., number of alternatives and attributes) 

in determining the decision strategy that the participants adopt (e.g.,  [32]), here we 

focus  on  the  simplest  type  of  risky  choice  (between  pairs  of  alternatives,  each 

consisting of a probability p to win amount x, see Fig. 1A). Thus, our aim here is not 

to determine which of these two types of processes prevail in any choice scenario (we 

think  that  they  both  can  take  place,  subject  to  task-conditions  and  individual 

differences).  Rather,  we  wish  to  test  if,  at  least  for  this  simple  case,  the  more 

“economically-normative” (within-alternative and multiplicative) strategies are within 

the capacity of participants resources. Towards this end, we carry out a systematic 

investigation of risky choice with simple two-outcome lotteries, while eye-fixations 

are monitored. To anticipate our results, we provide a clear demonstration that within-

alternative  and  multiplicative  evaluations  are  being  used,  subject  to  individual 

differences that correlate with choice normativity.

2. Results

The participants were tested on choices between simple lotteries of the type (x1 with 

p1 and otherwise 0, vs. x2, with p2 and otherwise 0; where x1,2 are monetary amounts 

and  p1,2, are the corresponding probabilities  of winning).  The choice problems (94 

trials)  were  selected  by  systematically  sampling  a  two-dimensional  grid  of 

probabilities and amounts (Fig. 1B). Dominated choice problems (in which both the 

amount  and probability  of  one option were  higher  than  in  the  other  option)  were 
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excluded except for 10 catch-trials, which were used to assess task engagement. To 

discourage numerical calculations, the choice alternatives were presented in graphical 

format (Fig. 1A). The experiment was incentive compatible: it was explained to the 

participants that one of their choices will be randomly chosen and played out for real 

money  at  the  end  of  the  experiment  (see  Methods  and  Suppl.  Experimental  

instructions for details on the stimuli and task instructions).

(A)

Option 
A

Option 
B

Probabilities Amounts
(B)

 
Figure 1. Stimuli and study design. (A) Example of the stimuli used in the experiment.  
Amounts were represented by the lower (brighter) parts of divided bar graphs, and  
probabilities by the lower (brighter) sectors of pie charts. Note that the figure is not  
to scale, and the colored ellipses and labels are shown for illustration purposes only  
(they were not used in the actual experiment). (B) Choices were drawn from a 5x5  
two-dimensional grid with amounts along one dimension, and probabilities along the  
other.  The two stimuli  from panel  A are shown in this  grid.  Choice stimuli  were  
presented without deadline until response.

2.1 Choice behavior 

We  began  by  examining  the  basic  psychometric  properties  of  our  choice-data. 

Analysis  of  the  "catch-trials"  showed that  the  participants  chose  the  better  option 

(higher in both amount and probability) in 97% of these trials (SD = 6%). Next, we 

conducted a mixed-effect logistic regression on the choice data, with the Expected-

Value (EV) differences (x1∙p1 – x2∙p2) as a predictor, and with random intercepts and 

slopes  at  the  participant  level.  The  results  indicated  that,  consistent  with  an 

“economically-normative” theory, the participants were sensitive to  EV differences, 

and preferred lotteries with higher  EVs over lotteries with lower ones (β  = 0.40,  p 

< .001; Fig. 2A). Additionally, using a Pearson correlation analysis, we showed that 

7

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

13
14



the reaction time (RT) of a decision decreased as the absolute EV difference between 

the lotteries increased (r = -0.8,  p < .001; Fig. 2B). This finding is consistent with 

previous process models such as the  PCS  [20], the  aDDM [21], and the  DFT [16], 

indicating that the participants take longer to decide when the evidence (as measured 

by the EV-difference) is smaller. 

Finally, we evaluated the risk-preferences of the participants. To this end, we focused 

on choice problems with similar EVs (|∆EV| ≤ 1, Nchoice problems = 26), and examined the 

proportion  of  trials  in  which  high-payoff/low-probability  lotteries  (riskier  options) 

were preferred over low-payoff/high-probability lotteries (safer options). Following 

the CPT regularity of differential risk-attitudes for low vs. medium/high probabilities 

(see  Suppl.  Cumulative  Prospect  Theory  (CPT)  risk  attitudes  predictions),  we 

examined the risk-preferences separately for these two probability domains: i) low-

probability cases, in which one of the lotteries has p < .25 (e.g., $24 with p = .1 vs. $6 

with p = .5), and ii) high-probability cases, in which both lotteries have p ≥ .25 (e.g., 

$30 with p = .5 vs. $15 with p = 1); the .25 cutoff was selected to match CPT (see Fig. 

S1). A paired  samples  t-test  indicated  that,  consistent  with  CPT, the  participants 

showed higher levels of risk-aversion for medium/high probabilities as compared to 

low ones (t(30) = 3.84, p < .001). Follow-up one-sample t-tests (against .5) indicated 

that the participants showed risk-aversion for medium/high probabilities (t(30) = 4.49, 

p <  .001); no risk-aversion, however, was obtained for low probabilities (t(30) = -

0.11, p = .9).

2.2 Eye-fixations and individual differences

On average, the participants made 9.05 fixations (SD = 0.64) per trial, with a mean 

duration of 407ms (SD = 244 ms) per fixation. Also, on average across participants, 

there  was  no  significant  difference  between  the  proportion  of  fixations  towards 

amounts and probabilities (t(30) = 0.78, p = .44). There was, however, a remarkable 

difference  between  participants  in  this  proportion,  which  was  correlated  with 

participants’  risk preferences: the more a participant fixated on amounts, the more 

likely he or she was to choose the riskier alternatives (r = .48, p = .006; Fig. S2A). To 

understand this relationship we examined individual differences in fixating the higher 

of two amounts/probabilities, as this can explain risk-biases (looking more at higher 
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amounts  or  at  lower  probabilities  leads  to  risk-seeking  according  to  the  aDDM 

[21,22,24]).  Importantly,  we  find  that  the  more  a  participant  tends  to  fixate  on 

amounts the more s/he fixates on the larger of them (r = .47; p = .007; Fig. S2B), and 

similarly for probabilities  (r  = .46;  p = .007; Fig. S2C). Finally,  the frequency of 

fixations on the higher of the two amounts was positively correlated with risk-seeking 

(r = .58; p < .001; Fig. 2E), and the frequency of fixations on the higher of the two 

probabilities was negatively correlated with risk-seeking (r = .45; p = .01; Fig. S2D) 

see also [24,33].

We also examined the eye-trajectories in relation to their transitions between the four 

attributes  (x1,  p1,  x2,  p2).  The transitions  between decision attributes  (amounts  and 

probabilities)  were classified into  three categories  [20,25,30]:  i)  Within-alternative 

transitions  –  transitions  between attributes  that  belong to  the  same alternative.  ii) 

Within-attribute  transitions  –  transitions  between  different  alternatives,  within  the 

same  attribute.  iii)  “Diagonal”  transitions  –  transitions  between  the  amount  of 

alternative A and the probability of alternative B and vice versa. Figures 2C-D show 

one example each for within-alternative and within-attribute trials, respectively. An 

Analysis  of  Variances  (ANOVA) revealed  significant  differences  of  the  transition 

probabilities between the three transitions types (F(2,60) = 431.1, p < .001). Post-hoc 

comparisons showed that the participants made more within-alternative than within-

attribute transitions (p < .001), as well as more within-attribute than diagonal ones (p 

< .001). The proportion of within-alternative transitions (out of all transitions) was 

subject to individual differences and was correlated with the economically-normative 

choice  performance  (∆EV),  such  that  the  higher  the  fraction  of  within-alternative 

transitions the higher was the proportion of the alternative with the higher  EV to be 

chosen (r = .57, p <  .001; Fig. 2F). 
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(A)

-15 -10 -5 0 5 10 15

  EV  (x
1
  p

1
 – x

2
  p

2
)

0

0.5

1
  = 0.40,   p    < .001

(B)

0 5 10 15

Absolute   EV  (Expected  Value )

3.5

4

4.5

5

5.5
  r  = -.80,  p  < .001

(C)      Typical within-alternative

2 1

3

4
5

67

(D)       Typical within-attribute

2

1
3

4

5

6

7

(E)

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

P (Fixations  to  higher  amounts ) - P (Fixations  to  lower  amounts )

0

0.2

0.4

0.6

0.8
 r  = 0.58, p  < .001

(F)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Proportion  of  within -alternative  transitions

0.6

0.7

0.8

0.9

1
  r  = 0.57,  p  < .001

Figure 2. Choice and eye-movements analysis. (A) The participants were sensitive to  
EV differences between the options. Solid purple line corresponds to the group fit;  
grey lines correspond to the fit of individual participants. (B) Response times were  
negatively  correlated  with  the  alternatives'  EV  differences.  (C-D)  Example  eye-
trajectory  characterized  by  within-alternative  transitions  (in  C)  and  by  within-
attribute  transitions (in D).  The numbers indicate  the order of  fixations.  (E) The  
proportion of fixations to the higher amount correlated with risk-seeking preference.  
(F) The proportion of within-alternative transitions correlated with the proportion of  
higher EV choices.

2.3 Predicting choices using eye-fixations

10

250

19
20



Recent research has demonstrated that attentional mechanisms play a key role in the 

development of preferences [24,34–38]. In particular, it was shown that the more an 

alternative  is  fixated,  the  more  likely  it  is  to  be  chosen  [21,30,39].. We  have 

confirmed this regularity in our data by carrying out a number of logistic regression 

models that predict choices based on the EU or CPT utility functions, and the relative 

number  of  fixations  (or  dwell-times)  on  each  alternative  (see  Suppl. Predicting  

choices using eye-fixations for details).

(A)

Dwell Time Regression

- Total looking time on option A

- Total looking time on option B

(B)

Number of Fixations Regression

- Number of fixations to option A

- Number of fixations to option B

As illustrated in Fig. 3A, we examined an EU × time model1, in which the EU value 

of each alternative increases with its dwell time on the two alternatives (α is the risk-

parameter of EU, τ is a saturation parameter, and β is a slope parameter). Additionally, 

we examined a similar regression model, in which dwell-times were replaced with the 

number of fixations each alternative is sampled (Fig 3B). Comparison of these models 

with the traditional  EU (which does not take eye-movements into account) showed 

that  using  eye-movements  significantly  improved  prediction  accuracy  and  AIC 

comparted with the traditional  EU (Fig. 3C). Note also, that the prediction accuracy 

1 We focus here on EU based models, however similar conclusions were obtained for CPT based 
models, see Suppl. Predicting choices using eye-fixations.
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and  AIC which  were  obtained  using  the  number  of  fixations,  equal  (for  EU)  or 

surpasses  (for  CPT),  the  prediction  accuracy  and  AIC obtained  using  the  more 

traditional  measure  of  dwell-time.  In  addition,  the  fitted  values  of  saturation-

parameter  τ, were lower than 1, in both time based regressions (number of fixations 

and dwell time), indicating that, for example, looking twice as long at an alternative 

increases its value by a factor of less than 2. One way to understand this non-linear 

saturation is in relation to a leak of the accumulated values ([14,40,41]). In such leaky 

integration models, the accumulated evidence saturates at an asymptotic value, and 

remains  constant  even  if  more  integration  time  is  allowed.  Accordingly,  at  each 

fixation one samples  and accumulates  a value,  however,  as the trial  proceeds,  the 

accumulated value leaks, resulting in a type of recency. Indeed, when we compute the 

percentage of match between the fixated alternative and the final choice as a function 

of fixation number (backwards from the end) we obtain a clear recency pattern (see 

Fig. S5 in Suppl. Last fixations and choice). 

2.4 Towards a process model of risky choice based on eye-movements 

The central aim of this study is to develop and contrast two classes of process models 

that differ in the way attentional (or eye) transitions affect the integration of amounts 

and  probabilities.  Both  types  of  models  assume  that:  a)  fixated  objects  receive 

enhanced attention, b) attention modulates the weight of value integration [21], and c) 

recently sampled values are weighted more than earlier ones [14,40,41]. The models 

differ, however, on how the values are integrated into preferences. Note that we do 

not aim to test specific models but rather distinguish between broad classes of models 

based  on  certain  principles,  in  particular,  between  within-attribute vs.  within-

alternative models [20,25,32,42]. While the former is used in models such as PH and 

DBS, the latter is used in models such as  EU,  CPT and  PCS. We also examined a 

more  hybrid  model,  which  still  relies  on  multiplicative  within-alternative 

computations, but also allows some extent of competition between the attributes.

Within-attribute  integration  models.  Models  from  this  class  assume  that  when 

decision-makers attend to one attribute (e.g., amount or probability), they accumulate 

the  value-difference  (or  categorical  difference)  of  the  two  alternatives  on  that 

attribute, according to:
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Y A (t +1 )=(1− λ ) ∙Y A (t )+D A (t )

Y B (t +1 )=(1−λ ) ∙Y B (t )+D B (t )

where Yi,  i∈{A,B} is the accumulated preference for alternative i, λ is an integration-

leak  factor  that  emphasizes  recent  values,  and  Di is  the  value  (or  categorical) 

difference between the attributes, which depends on eye-fixation and model variant 

(see  Suppl. Within-attribute  integration  models for  a  detailed  description  of  the 

models). This mechanism was implemented in two model variants. In the first one, 

preferences  were  generated  by accumulating  the  normalized  differences  (min-max 

normalization,  over  the  whole  set  of  decision  problems)  of  the  attended  attribute 

values. For example,  if the participant had to choose between A:($20, 0.2) and B:

($10, 0.5), then the difference between the normalized amount values (of $20 and $10, 

respectively),  is accumulated whenever the representations  of amounts are fixated. 

Likewise, the difference between the normalized probability values (of 0.2 and 0.5, 

respectively) is accumulated whenever the representations of probabilities are fixated. 

The second model  assumes integration  of  categorical  differences;  this  follows the 

DBS  assumption that people have access to ordinal comparisons rather than values 

[18]. Therefore, in the above example, the accumulator associated with alternative A 

increases by one unit at each fixation of an amount (since $20 is more than $10), and 

the accumulator of alternative B increases by one unit at each fixation of a probability 

(since  0.5 is  larger  than 0.2).  This  means that  the  mechanism accumulates  binary 

counts of comparison between the same attribute in different alternatives [17,19]. To 

enhance these models’ performance we allowed an additional parameter: attentional 

modulation,  which enhances  the weight  of  sampled  attributes  ([21,22];  see  Suppl. 

within-attribute integration models). Note that since the values of both attributes are 

used in the comparison, these models assume either the existence of some degree of 

peripheral vision, or reliance on memory. Since memory cannot play a role during the 

first fixation of an attribute (and since peripheral vision is less sensitive to the low 

contrast of our stimuli in any fixation, including the first), we assumed that default 

values (mid-range of the amounts and probabilities values used in the experiment) are 

used  for  the yet  un-scanned attributes.  The default  values  were  replaced  with the 

actual  attributes'  values  at  the  first  fixation  to  each  attribute.  This  treatment  was 

implemented in all versions the process models. 
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Figure 4. Illustration of the two-layer leaky accumulator model and its dynamics. (A)  
The  first  layer  consists  of  four  leaky-accumulators  associated  with  the  different  
attributes,  and the second consists  of  two leaky accumulators associated with the  
alternatives’ values. The units in the first layer are updated with the attentionally  
modulated subjective values of each attribute (the red arrow indicates the input from 
the attended attribute, whereas the black arrows indicate the attenuated inputs from  
the unattended attributes). The units in the second layer are fed with the first layer  
units' activations, and accumulate their product. (B) Simulated run of the two-layer  
leaky accumulators model using the average best fitted parameters (see Table S2), in  
a choice between: A($6, .8) and B($24, .2); A-wins. Blue circles (x-axis) correspond  
to fixation toward A, and red circles correspond to fixation toward B. Values on the  
y-axis correspond to the activations of the second-layer accumulators.

Within-alternative integration models.  The second class of models assumes that the 

values that are integrated are associated with the alternatives and are multiplicatively 

formed  from  the  attributes  (as  in  expected  utility).  This  mechanism  was  also 

implemented  in  two  models.  The  first  model  has  single-layer  architecture  and 

involves two accumulator units, one for each alternative (A or B). On each fixation, 

the accumulators  are  updated with the integrated subjective  utilities  of the fixated 

alternative  (which  is  based  on  multiplication  of  the  subjective-amounts  and 

subjective-probabilities;  see  Suppl. Within-alternative  selection/One-layer  leaky  

accumulators), according to: 

Y A ( t +1 )=(1− λ ) ∙Y A ( t )+SU A ( t )

Y B (t +1 )=(1−λ ) ∙Y B (t )+SU B (t )
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where  Yi,  i∈{A,B} is the accumulated preference of alternative-i, λ  is an integration-

leak,  and  SUi   is  the  subjective  expected  utility  of  alternative-i  (similar  to  CPT), 

subject  to  attentional  modulation  that  depends  on  eye-fixation.  As  in  the  aDMM 

model [21], this model assumes that the inputs are modulated by gaze direction, i.e., 

higher weight is assigned to the fixated alternative than to the non-fixated one. Note 

that in this model the update does not depend on whether the current fixation is on 

amount  or  probability,  but  only  which  alternative  is  fixated,  with  the  non-fixated 

alternative being attenuated. For example, when one looks at either the amount or the 

probability  of  alternative  A,  the  corresponding  accumulator  is  updated  with  the 

integrated subjective utility of that alternative, while the other accumulator is updated 

with an attenuated value of the subjective utility of alternative B. 

The second within-alternative  model  contains  two-layers  of  leaky-accumulators  in 

cascade (Fig 4A); as we will show, this model allows to apply attentional modulations 

to specific attributes and not only to the whole alternative. The first layer of the model 

consists of four leaky-accumulators associated with the four different attributes (x1,  

p1; x2,  p2). Unlike in the previous (single layer) version, these units are updated with 

the attentionally modulated subjective values of each attribute. For example, when a 

participant looks at the amount of alternative A (x1), the accumulator of that attribute 

is updated with the subjective value associated with it (i.e.,  x1
α, where  α is a free 

parameter), while the other accumulators (of p1, x2 and p2) are updated with attenuated 

subjective values of these attributes. The second layer of the model consists of two 

leaky-accumulators corresponding to the integrated preference of the two alternatives. 

At  each  fixation,  each  second  layer  (alternative)  accumulator  is  fed  with  the 

activations of the first layer units associated with it, by accumulating the product of 

their values (see Fig 4B for illustration of the model dynamics and Suppl. Within-

alternative selection/Two-layer leaky accumulators for details). In one version of the 

two-layer model, we also introduced mutual inhibition between the amount units (i.e., 

competition between x1 and x2) and the probability units (i.e., competition between p1 

and p2). One can think of such a model as implementing a hybrid between within-

attribute  and within-alternative  processes:  while  the  alternatives  units  still  receive 

multiplicative input from both their attributes units, the mutual inhibition (depending 

on  its  strength)  can  polarize  the  difference  in  activation,  subject  to  attentional 
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modulation based on the current fixation.  We note that the level of activation-leakage 

(in  both  types  of  models)  is  a  free-parameter,  so  that  the  case  in  which  λ=0, 

corresponds to the more standard Drift-Diffusion models, and is thus explicitly tested 

as part of our model fit procedures. 

The models were fitted to the data in two steps. In the first, we fitted the models to 

choice data, based on the values of the alternatives and the eye-fixations made for that 

decision, using maximum likelihood estimations to obtain the best model parameters 

(see  Suppl.  Model Fitting). In the second step, we used the models with their fitted 

parameters from step 1, to make predictions for decision-time, under an integration-

to-boundary  framework  (in  which  we  included  a  new  set  of  parameters  that 

correspond to the response boundary). At this stage we also compared the models on 

their ability to predict both choices and decision-times. 

In  addition  to  the  process  models,  we  also  fitted  a  number  of  benchmark non-

integration to boundary models. Specifically we examined traditional compensatory 

models, such as EV, EU and CPT, as well as non-compensatory heuristic models such 

as  Maximax  [43], Least-Likely  [44] and  PH ([9]; see  Suppl. Heuristics for detailed 

description of these models). 

To evaluate the models' capabilities to fit the data, we used several selection criteria: 

prediction-accuracy, AIC and cross-validation measures (see Suppl. Model Selection). 

For the heuristic models, whose choices are deterministic,  we only examined their 

accuracy  measures  [8].  Because  it  can  be  argued  that the  prediction-accuracy  of 

models with fixed (or no) parameter values (such as the heuristic models) cannot be 

compared to the prediction-accuracy of models with fitted parameter values [45], we 

compare them using the Cross-Validation/Accuracy measure.

2.4.1 Step-1: choice data

The most complex of the models (in terms of number of parameters) is the within-

alternative process model,  which has four free parameters.  The first  two,  α  and  γ 

correspond to the  CPT parameters  [3] for risk aversion and probability weighting, 

respectively,  θ corresponds to the aDDM attentional modulation parameter, and λ is 
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the activation-leak.  As we show in  Suppl.  Parameters Recovery,  we carried out a 

recovery  exercise,  showing  that  our  fitting  procedure  is  able  to  provide  a  good 

recovery for all those parameters over a wide range of values that correspond to those 

found in the actual data. This non-trivial result is helped by the fact that our 94 choice 

problems systematically  span the  choice  space.  As  shown in  Table-2,  the  within-

alternative process models with attention modulation and leak gave the best fit and 

showed the highest cross-validation prediction accuracy. They outperformed both the 

within-attribute process models, as well as the traditional, non-integration to boundary 

models (compensatory and non-compensatory heuristics). These results speak against 

the hypothesis that the participants accumulate only the differences of the attended 

attributes.  We also found that the within-attribute models with perfect (rather than 

leaky) integration (Normalized and Binary differences), resulted in much worse AIC, 

prediction  accuracy,  and cross-validation  (therefore  in  Table-2 we report  only the 

within-attribute models which include leak as a free parameter). We also note that the 

within-alternative choice models required a significant degree of information leak (λ

group= 0.58).  As we show in the  Suppl.  Additional  model  variations,  we explicitly 

tested  four  versions  of  within-alternative  models  that  included  an  attentional 

modulation but no activation-leak, all of which resulted in much poorer prediction-

accuracy and  AIC fit values (these models reached a prediction accuracy that while 

exceeding that of the simple EU, did not exceed that of the CPT without eye-fixations; 

see  Suppl. Additional model variations)2. By contrast, the within-alternative process 

models (with leak) outperformed (on prediction accuracy,  AIC and cross-validation) 

the regression models that  include either  EU or  CPT together with the number of 

fixations  (see  Suppl.  Predicting  choices  using  eye-fixations).  This  suggests  that 

considering  dynamic  processes,  such  as  attentional  shifts  and  leak  of  activation 

improves prediction accuracy and fit measures beyond what is achievable by using 

2 The hybrid model resulted in fits that did not exceed (AIC and prediction accuracy) those of the 
within-alternative  model  (see  Suppl.  Additional  model  variations)  and  with  a  moderate  mutual 
inhibition value (.13), which does not trigger a full all-or-none dynamics. As this model has two extra 
parameters  (the mutual inhibition values between the  x and the  p units),  we kept two of the other 
parameters  (leak  and  attentional  modulation)  to  the  optimal  values  of  the  model  without  mutual 
inhibition. Due to its complexity, we leave a full investigation of this model to future research. We 
wish to point out, however, that inhibition at the level of attributes is not motivated by Connectionist 
principles  ([72]),  which  suggested  mutual  inhibition  between  units  that  correspond  to  different 
alternatives  (for  example,  this  could  apply  to  inhibition  between  alternative  A  and  B  at  the  2 nd 

alternative layer, see Fig. 4A).
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only  the  number  of  fixations.  Note  that  the  within-alternative  two-layer  leaky 

accumulators  model  outperforms  the  single  layer  accumulator  model.  This  result 

suggests that the perception of the attributes is dynamic and is subject to modulation 

by attentional processes.

Table-2: Model comparison

Model AIC Predictio

n

Accuracy

Cross-Validation

(-

2∙LogLikelihood)

Cross-Validation 

(Accuracy)

Traditional Models
EV 2789 75.1% 567 75.1%
EU 2617 76.5% 527 76.0%
CPT 2364 81.2% 484 79.6%

Heuristics
MaxiMax - 44.8% - 44.8%

Least-Likely - 55.2% - 55.2%
Priority Heuristic - 58.3% - 58.3%
Fixation based regression models

EUFixations 2447 79.9% 506 78.7%
CPTFixations 2173 83.9% 453 81.7%

Within-attribute Integration
Normalized 

differences
2716 76.8% 551 75.4%

Categorical  

differences
2724 76.4% 576 74.4%

Within-alternative Integration
one-layer leaky  

accumulators
1980 86.1% 445 83.8%

two-layer leaky 

accumulators
1877 87.2% 436 84.1%

AIC values are rounded to the nearest integers. Bold entry indicates the best fitting 
models. Note that AIC differences exceeding 10 are considered very strong 
evidence in favor of the model with the lower numerical values.

Finally,  we  carried  out  a  comparison  of  the  predictive  accuracy  of  our  best 

performance model – the two-layer leaky accumulators - with that of the traditional 

EU and  CPT models  across  all  decisions  as  a  function  of  EV-differences.  The 

comparison demonstrates that the difference in prediction accuracy is especially large 
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for  difficult  choices  (low  EV-differences,  1-3  Quantiles;  Fig.  5),  suggesting  that 

attentional modulations are particularly significant in difficult decisions [46].
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EU CPT 2-layer leaky accumulator Figure 5. Predictive accuracy of the EU,  
CPT and the two-layer within-alternative  
integration  models  as  a function  of  ΔEVEV  
quantile.  The  two-layer  model  
outperformed all  other  models  especially  
in difficult decisions (low EV-differences).  
Bars denote S.E., clustered by subjects.

2.4.2 Step-2: Accounting for both choice and decision-time.

We contrasted the  within-alternative and the within-attribute models, in accounting 

simultaneously for choices and decision-times. To this end, we adopt an integration-

to-boundary framework, which assumes that preferences are accumulated until they 

cross  a  decision criterion  [47,48];  this  introduced  a  few more parameters  (for  the 

boundary)  into  the  model  (see  Suppl.  Model  Fitting).  The  models  are  now set  to 

estimate the probability  of a subject’s choice conditioned on its decision time and 

fixations. This probability is accumulated for all choice trials of the participant to a 

total likelihood, which is used to optimize the boundary parameters. Two families of 

decision boundaries were tested, for each of the models: i) the standard fixed (time-

invariant)  boundary,  which introduces  a single new boundary parameter,  and ii)  a 

collapsing  (time-variant)  boundary  model,  which  introduces  three  new parameters 

(see  Suppl.  Optimization procedure: choices and decision-times,  for further details 

regarding  the  implementations  of  these  two  types  of  models).  The  collapsing 

boundary model has been the focus of recent investigations in decision neuroscience 

[41, 42], and appears to be favored in experimental tasks that span over longer time 

intervals (more than 2-3 sec [49,50]).

(A) (B)
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Figure 6. Accounting for choices and decision times. (A) Group quantile (Vincentizing;  
[12]) decision-time density distribution (in number of fixations to decision). Dashed  
red lines indicate the quantiles of the actual data distribution ([.1, .3, .5, .7, .9, .99]).  
(B)  Group  Quantile-Quantile  plot  comparing  the  actual  decision  time  and  the  
simulated  decision  time  of  the  within-alternative  (red)  and within-attribute  models  
(blue).  Note  that  the  within-alternative  model  captures  better  the  tail  of  the  
distribution.

The results  show that,  with  both  decision  boundary  families,  the  two-layer  leaky  

accumulator model  outperformed  all  the  other  models.  Among  the  two  types  of 

boundary families, the best fits by far were obtained under the collapsing boundary 

model (AIC and cross-validation), despite the cost of the two extra parameters (see 

Suppl.  Process model comparison for all  models).  For this  reason, we only report 

below the results for this type of boundary. We find that the within-alternative/two-

layer leaky accumulator model (AIC = 14,492) decisively outperformed the  within-

attribute/normalized differences model (AIC = 15,815; ΔAIC = 823), in accounting for 

decision-times (conditioned on the actual fixation patterns).  Finally, we used these 

models to predict the distribution of decision times (measured in number of fixations), 

for novel but statistically matched patterns of fixations. To this end, for each trial we 

simulated a fixation sequence that is based on a statistical model of the participant’s 

fixations towards the four attributes as a function of their values [21,30]. The results 

indicate  that  for  the  two-layer  leaky  accumulator  model,  the  predicted  and actual 

decision-time  distributions  show  a  good  match,  however  for  the  normalized 

differences model, the tail of the predicted decision-time distribution deviates from 

that of the actual decision-time distribution (Fig. 6 A-B).
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2.5  Accounting  for  individual  differences  in  risk-bias  and  in  economically  

normative choice

Our  best  within-alternative  integration model  accounts  also  for  the  empirical 

correlation we reported between the proportion of fixations a participant makes to the 

higher of the two amounts and his or her risk-preference bias (Fig. 2E; see also [24]). 

To show this, we simulated choices for each participant, based on his or her fitted 

model-parameters  and  the  participant's  actual  fixation  sequence.  The  correlation 

between the model's risk-preference prediction and the proportion of fixations to the 

higher  amount  (r = .58,  p < .001),  was exactly  equal  to  the empirical  correlation 

obtained in the data (Fig. 2E). Next, we sought to demonstrate that this relation is 

associated  with  the  fixation  pattern  and  not  merely  with  differences  in  model 

parameters. To this end, we simulated choices for each participant, by using his or her 

actual  fixation  sequences,  however,  this  time  we  used  model  parameters  that 

correspond to the group mean (rather than the individually fitted parameters). This 

resulted in a significant  correlation (r  = .52;  p = .002; Fig. 7A) between the risk-

preference  and  the  proportion  of  fixating  on  the  higher  amount.  This  correlation 

between  risk-biases  and  fixation-pattern  relies  upon  the  model’s  attentional 

component,  which  gives  higher  weights  to  the  attributes  on which  the  participant 

fixates. For example, assume that a participant is asked to choose between A:($20, 

0.5) and B:($10, 1). If s/he fixates more the amount of alternative A than the amount 

of alternative B, higher weights would be given to the former, and thus the riskier 

alternative (A) would be preferred by the model over the safer one (B). 

(A)

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

P (Fixations  to  higher  amounts ) - P (Fixations  to  lower  amounts )
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 r  = 0.52,  p  = .002
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Figure 7. Model predictions and individual differences. (A) The proportion of fixations  
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toward the higher amount was correlated with the risk-seeking preference predicted by  
the two-layer within-alternative integration model with parameters fixed at the group-
mean, but with actual fixations. (B) The within-alternative model is closer to the data and  
predicts a higher fraction of economical-normative EV-choices (left panel) and a lower  
fraction of (irrational)  transitivity  violations (right  panel),  compared with the within-
attribute model. Error bars represent the standard error of the mean.

Finally,  we address an important  question:  which preference-formation mechanism 

(within-alternative or  within-attribute) results in better  normative performance, and 

thus can be regarded as more adaptive? To answer this, we simulated the two types of 

models based on the participants' best fitted parameters and actual fixation sequences, 

and we examined two measures of normative choice predicted by each model: i) the 

fraction of EV-choices (for simplification we discuss normativity in terms of EV, but 

the same would hold in terms of EU), and ii) the fraction of transitivity violations – a 

direct measure of choice irrationality ([51,52]; see Suppl. Transitivity Violations). As 

seen in Fig. 7B, the normative performance is higher for the within-alternative model 

than for the within-attribute model, for both measures:  EV-choices: t(30) = 6.27,  p 

< .001 and transitivity violations: t(30) = 5.15, p < .001. This is expected because our 

within-alternative  model,  like  CPT,  assumes a  multiplication  between subjectively 

transformed  amounts  and  probabilities,  which  also  maintains  choice-consistency. 

Although the economically-normative  model  requires  a  multiplication  of objective 

values  whereas  our  model  requires  a  multiplication  of  subjective  values,  this 

discrepancy  is  relatively  minor  compared  with  non-multiplicative  strategies  (i.e., 

within-attribute  integration  or  heuristics).  Moreover,  we have found that  the more 

within-alternative  transitions  a  person  makes,  the  higher  is  his  or  her  fraction  of 

economically-normative  EV choices (Fig. 2F; see also [28]). This correlation can be 

naturally understood, since the participants rely on a within-alternative multiplicative 

mechanism,  and  this  operation  is  likely  to  be  more  precise  following  an  actual 

transition between amounts and probabilities (i.e., a fixation on one attribute of an 

alternative  followed  immediately  by  a  fixation  to  the  other  attribute  of  the  same 

alternative), than following a non-direct transition (where one of the to-be-multiplied 

attributes  is  based  on  memory  or  defaults).  Consistent  with  this,  we  found  a 

correlation  across  participants  between  the  prediction  accuracy  of  the  within-

22

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

55
56



alternative  model and  the  proportion  of  within-alternative  transitions  (r =  0.39,  p 

= .03). 

3. Discussion

The main aim of our study was to elucidate mechanisms by which different attributes 

(amounts and probabilities) are integrated to generate an overall subjective value of 

choice alternative. To this end, we focused on choices between simple lotteries and 

developed process models of risky choice, which are constrained by eye-fixations and 

we  assumed  a  fixation-based  attentional  modulation.  In  addition,  we  introduced 

activation-leak and examined two types of decision-boundaries, in order to account 

for decision times. Within these models we specifically contrasted within-alternative 

multiplicative models and within-attribute type models, and carried out a systematic 

parametric investigation of choices between simple lotteries (x1 with p1 vs. x2 with p2), 

while tracking participants' eye-fixations. 

First, we replicated previous findings indicating that participants show preference for 

lotteries  that  reflect  the  economic-normative  theory:  choice  probability  of  the 

alternative  with  the  higher  EV increases  (and  choice-RT  decreases)  with  EV-

difference between the lotteries. Nevertheless, participants also exhibited risk biases 

that are probability-dependent, being risk-averse at high/medium probabilities, but not 

at low probabilities. Second, we found that, on average, the eye-scan patterns were 

dominated  by  within-alternative  as  compared  to  within-attribute  or  diagonal 

transitions (Fig. 2C-D, respectively), and that individual differences on this eye-scan 

pattern correlate with EV-choice (see also [28], for a similar result). Third, we used 

eye-fixations  to  constrain  a  number of process  models  that  accumulate  preference 

across  fixations,  using  an  aDDM approach  with  two  attributes  [21,53].  Here  we 

contrasted two types  of  integration-to-boundary process  models:  i)  within-attribute 

models, and ii) within-alternative models. As shown in Table-2, the latter resulted in 

the best predictive accuracy and measures of fit.  Importantly,  the two-layer model 

also accounted well for decision times (see Fig. 6) and for individual differences in 

risk biases.  Finally,  the  worst  performance in  our  task was obtained for  the non-

compensatory  heuristic  models.  For  example,  the  best  of  the  heuristics  (the  PH) 
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resulted in a worse fit than even the simple EV model (see cross-validation measure in 

Table-2). 

The conclusions favoring the within-alternative multiplicative models may need to be 

the task conditions we used here. First, we used simple lotteries with single non-zero 

outcomes (x with p, 0 with 1-p). It is possible that the amount of non-compensatory, 

within-attribute  processing  would  increase  when  more  complex  choices  are  used 

([25,32]). While we cannot rule out this possibility, recent research in the domain of 

probabilistic  inferences  ([54–56]),  and  risky  choice  ([20,57]),  indicate  that  when 

decision processes are monitored via eye-tracking (which does not slow down the 

decision process) rather than via mouse pressing techniques (e.g.,  [10]), participants 

are able to use compensatory strategies for relatively high complexity levels (see also 

[58] for a multi-attribute choice task).  With regards to our study, we need to also 

qualify the results to our use of analog (graphic rather than symbolic) presentation of 

the data3, and the fact that our alternatives where presented top/bottom (and thus the 

amounts and probabilities left/right, Fig. 1A)4. Here we wish to support the following 

conclusion:  humans  possess  the  ability  to  deploy  an  ‘economic’  (multiplicative 

across-dimension) type computation,  supporting the idea that humans are closer to 

normative principles than previously thought (see also [56,59]). Future research will 

be needed to further quantify to what extent the use of this mechanism (or strategy) 

depends on the task complexity and type of stimuli.  

There are several important properties of our winning process model that we want to 

highlight. First, it assumes two layers of leaky accumulators, one for the estimation of 

subjective amounts and of subjective probabilities, and the one for the evaluation of 

the  integrated  subjective  values  (the  combination  of  subjective  amounts  and 

probabilities). Second, it assumes that the units in the second layer are updated via a 

3 We used here analog representations because we wanted to prevent our participants (who are students 
that may be familiar with EV-principles), and are required to do 94 choice problems, from adopting an 
explicit EV calculation strategy. We believe that such a strategy is less likely with analog information 
and thus our results favoring an implicit multiplicative mechanism are even more remarkable.
4 It is possible to argue that our experimental layout (horizontal) favors within attribute processing (left  
to right, or right to left for our Hebrew speaking participants). Note, however, that the alternative layout 
(setting amounts bars horizontally), would trigger a strong bias favoring within-attribute processing (in 
particular, comparing the aligned bars). Nevertheless, we report in the Suppl. Pilot study data from a 
pilot Experiment (N=13) using this layout (i.e., vertical), which shows that even under such within-
attribute favorable conditions, we still find dominance for within alternative transitions. 
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multiplication of the activation of the corresponding, first layer units (Fig. 4A). This is 

similar to how the  CPT model generates subjective utilities. In fact, we find a high 

correlation between the utility function’s curvature parameter (α) of the classical CPT 

and the corresponding parameter of our process model (r = .91, p < .001), with higher α -values for the classical  CPT (see  Suppl.  Relationship between the models' utility  

parameters). This suggests that the classical CPT-parameters reflect a combination of 

several  processes,  such as  attention  allocation  and subjective-value  transformation 

[60]. Note also, that the model assumes an activation-leak, a feature that allows it to 

account for recency effects  in the data (see  Suppl.  Last fixations  and choice),  and 

prevents a double-integration that would occur in the two-layer model in its absence. 

Third,  in  addition  to  predicting  choices,  the  model  also  predicts  decision  times, 

describing  the  preference  formation  dynamics  under  the  integration  to  boundary 

framework with inputs that correspond to a multiplicative transformation of subjective 

amounts and probabilities. In particular, we found support for a collapsing boundary, 

consistent with choice studies that span longer intervals [49,50]).    

Other process models of risky choice, such as  DFT [15,16] also assume an implicit 

multiplicative interaction between amounts and probabilities. In DFT, however, this is 

not due to the multiplication of amounts and probabilities but rather to the sampling 

frequency of the amounts, which changes with the corresponding probabilities. This 

implies that observers look (or attend) more to a given amount if the corresponding 

probability is higher. In our data, while we find that the relative number of fixations to 

an amount increases with its probability, this increase was quite minor (about 1%), 

and  therefore  cannot  explain  the  multiplicative  interaction  [20].  However,  it  is 

possible  that  eye-fixations  under-estimate  the  differential  of  covert  attention 

modulation. 

Future research is also needed to better understand the neural mechanisms underlying 

these  computations  [61–63].  While  the  computation  of  subjective  amounts  and 

probabilities  can  be  understood  to  involve  simple  psychophysical  transformations 

over amounts (unbounded scale;  [64]) and probabilities (bounded scales;  [65]), the 

nature  of  the  multiplicative  interaction  between  neural  activations  requires  future 

investigations. Note that a multiplicative interaction is also assumed in the PCS risk 
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model  [20].  To do so,  PCS had to assume different neural  substrates for amounts 

(neural activations) and for probabilities (synaptic weights).  The latter  assumption, 

however,  may  be  difficult  to  justify  for  one-shot  decisions,  which  allow  little 

opportunity  for  learning synaptic  weights.  We thus  suggest  that  the multiplicative 

interactions  involve neural  activations.  While  less standard than linear  interactions 

[66], a number of neural mechanisms have been proposed to mediate multiplication of 

neural activity in neural systems [67,68]. Future research is also needed to extend the 

scope of this investigation from simple lotteries to more complex ones (with multiple 

outcomes) and from binary to multiple choices.

4. Methods

4.1 Experiment

Participants. 35 Tel-Aviv University undergraduate students (24 females; ages range 

from 19 to 26, Medianage = 23) were recruited to the experiment. All of them reported 

having normal or corrected-to-normal vision. Four of the participants were not able to 

carry  out  the  eye  tracker  calibration  task,  and thus  did  not  take  part  in  the  main 

experiment,  leaving  31  participants.  The  participants  received  course  credit  in 

exchange for participating, as well as a bonus fee ranging from 0 to 30 Israeli Shekels 

(ILS), which was contingent upon their choices. The experiment was approved by the 

ethics committee at Tel-Aviv University. 

Apparatus.  Eye-movements were recorded using a Tobii TX300 desk-mounted eye-

tracker (23" monitor with 1920 x 1080 pixels resolution, sampling rate: 300Hz, spatial 

accuracy: 0.5°), attached to an Intel i7 personal computer. Displays were presented 

using Psychtoolbox for MATLAB [69]. Viewing distance was approximately 60 cm. 

Responses were collected via the computer keyboard. A chin rest was not used.

Stimuli. Each choice consisted of two simple lotteries in the form of p1 chance to get 

x1 ILS  (otherwise  nothing)  vs.  p2 chance  to  get  x2 ILS  (otherwise  nothing).  An 

example of the display is  presented in Fig.  1A. Amounts were represented by the 

lower parts of divided bar graphs, and probabilities were represented by the lower 

sectors of pie charts. These attributes appeared at the vertices of an imaginary square 

subtending 14.5° (15.25 cm), and located in the center of a black screen. The height of 
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each bar graph subtended 2.07° (2.17 cm) and its width subtended 0.67° (0.69 cm); 

the radius of each pie chart subtended 0.67° (0.69 cm). Thus, the bar graphs and pie 

charts had exactly the same surface. The amounts and probabilities of each alternative 

were displayed horizontally (one lottery was placed over the other); but see footnote 4 

and the results of a pilot study reported in Suppl. Pilot study. 

Choices. Choice problems were constructed in the following way: we generated a 2-

dimensional grid with amounts (3, 6, 15, 24 and 30 ILS) along one dimension, and 

probabilities (0.1, 0.2, 0.5, 0.8 and 1) along the other dimension. The resulting grid 

contained 25 lotteries (Fig.  1B), each of which was paired with all  other  possible 

lotteries. Stochastically dominated choices (in which both the amount and probability 

of one alternative were higher than those of the other) were excluded, except for 10 

choice problems which served as "catch-trials". Overall, the experiment consisted of 

104 separate choices:  94 non-dominated trials  and 10 "catch-trials" (all  the choice 

problems are given in Table S1).

Procedure. The participants signed an informed consent form prior to the experiment. 

Then,  a  calibration  of  the  eye-tracker  took  place.  In  case  the  calibration  was 

successful,  the  experiment  started,  otherwise  recalibration  was  performed.  At  the 

beginning of the experiment, instructions were given to the participants (see  Suppl.  

Experimental  instructions).  The  experimenter  emphasized  that  choices  should  be 

made in accordance with subjective preferences and that there is no "correct" choice. 

The experiment consisted of two blocks of 52 choice trials each. A short break was 

allowed  between  blocks,  and  a  recalibration  procedure  was  performed  before  the 

second block. Each trial began with a fixation display which consisted of a red 0.2° × 

0.2° fixation cross (+) that remained on screen until a continuous fixation of 500 ms 

duration was made. Then, the two lotteries were presented until response. Choice was 

made using the up and down arrow keys. Participants were told that after completing 

the experiment, one of the choices will be randomly chosen and payed out. The whole 

experiment took approximately 30 min per participant. Choice order as well as the 

horizontal position (left/right) of the amounts and probabilities were randomized for 

each  participant;  the  vertical  position  of  each  lottery  (up/down)  was  randomized 

between subjects.
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Eye-movements. Fixations were classified as being directed to a certain attribute, if 

they were within 100 pixels of the center of that attribute and lasted at least 50 ms. 

Two consecutive fixations to the same attribute were joined and considered as one 

fixation. Trials longer than 10 sec or shorter than 500 ms (4% of all trials), as well as 

trials in which the participants did not look at all of the attributes (4% of all trials), 

were excluded from further analysis. 

4.2 Models of Risky-choice

Here we briefly describe the key features of the models applied (for a full description 

see  Suppl. Models of risky choice). In all  of the models (except for the Heuristics 

models),  the  probability  of  choosing  each  alternative  is  calculated  using  an 

exponential version of Luce’s choice rule [70,71]:

P ( x1, p1; x2 , p2 )=
1

1+e
−β ( U 1−U 2 )

where  U 1 and  U 2 are  the  utilities  of  the  alternatives,  and  β is  a  free  parameter 

indicating the sensitivity of the model to their difference.

Traditional Models
Expected Value (EV)

 Participants choose the alternative with the higher Expected-Value: 

EV =x ∙ p.
Expected Utility (EU)

 Participants choose the alternative with the higher Expected-Utility:

EU=u ( x ) ∙ p ; u ( x )=xα.
Cumulative Prospect Theory (CPT)

 Participants choose the alternative with the higher Subjective-Utility:

SU=u ( x ) ∙ π ( p ); π ( p )=
pγ

( pγ
+(1−p )

γ
)

1
γ
.

Fixation based regression models
EUFixations

 U alternative=u (x ) ∙ p ∙ nτ,  where n is  the number of fixations to the alternative, 

and τ  is a saturation parameter.
CPTFixations

 Defined analogously to Multiplicative EUFixations, but with p replaced with 

π ( p ) according to CPT. 
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Heuristics
MaxiMax

 Choose the alternative with the highest maximum amount.
Least-Likely

 Choose the alternative with the lowest probability of its worst outcome.
Priority Heuristic

 Compare  sequentially  the  following  attributes:   minimum  amounts, 

probability of minimum amounts, maximum amount. 

 Stop when difference between the attributes reaches a termination criterion.
Within-attribute Integration

Normalized differences

 Normalize the amounts and probabilities using min-max normalization: 

y '=
y−min ⁡( y )

max ( y )−min ( y )

 On each fixation,  the normalized differences of the attended attribute  are 

accumulated. Unattended attribute are underweighted.

 Example: if one fixates on x1, accumulator A increases by: x1 '−θ ∙ x2 ', and 

accumulator B by: θ ∙ x2 '− x1 '. θ∈ [0,1] represents attentional modulation.
Categorical differences

 This model was implemented as the normalized differences model, except 

that instead of accumulating normalized differences, the model accumulates 

counts based on categorical comparisons.

 Example: if one fixate on x1 and x1>θ∙ x2, accumulator A increases by one 

unit, and B remains the same. θ∈ [0,1] represents attentional modulation.
Within-alternative  

Integration
One-layer leaky accumulators

 On each fixation,  this  model accumulates the  SU of the two alternatives, 

defined as in CPT. 

 At fixation toward alternative A, the input of alternative B is attenuated (and 

vice versa). 

 Example: if one fixate on x1, accumulator A increases by: S U A, whereas the 

accumulator B increases by: θ ∙ S U B. 

 The activations of the alternatives' accumulators are subject to leak.

2979
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Two-layer leaky accumulators 

 Two layers of leaky accumulators, the first estimates subjective amounts 

and probabilities (defined as in CPT), and the second estimates integrated 

SU. 

 On each fixation, the first-layer units are updated with the subjective 

amounts and probabilities, with the inputs of the unattended attributes 

attenuated.

 Example, if one fixates on x1 the inputs of p1, x2 and p2 are θ ∙ π ( p1 ) , θ ∙u ( x2 ) 

and θ ∙ π ( p2 ), respectively. The second-layer units are fed with the 

activations of the first layer units, and accumulate the product of their 

values. 

 The units of both layers (first and second) are subject to leak.
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