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While coordinated control of a large population of electric loads can provide important services to the electric
grid, situations have been observed where control of load ensembles may lead to highly nonlinear behavior such
as synchronization, sustained oscillations and bifurcations. Synchronization of thermostatically controlled loads
(TCLs) is undesirable since it can lead to increased short-cycling, sudden changes in power demand and network
voltage issues. In this paper, we investigate the synchronizing tendency of TCLs under control strategies where
updates are broadcast periodically for coordinating TCLs. We study the problem using a hybrid dynamical

systems framework to model both the continuous and discrete dynamics of load ensembles. Analysis of eigen-
modes of the underlying discrete-time system provide insights into synchronizing tendencies and rate of con-
vergence to the synchronized state. Simulations are provided to illustrate the theory.

1. Introduction

Coordinated control of thermostatically controlled loads (TCLs),
such as air-conditioners, water-heaters and refrigerators, can provide
many services to power systems, including balancing fluctuations from
renewables, reducing peak demand and providing voltage support
[1,2]. Various coordination techniques have been proposed in the lit-
erature including randomized switching, temperature set-point varia-
tion, and Transactive energy coordination. However, such controls may
sometimes lead to undesirable phenomenon such as synchronization
(which generally refers to the loss of diversity in temperatures) of TCLs
and large fluctuations in aggregate demand of loads [3-6]. Large os-
cillations in aggregate power may cause new peaks in system demand
and result in voltage violations in distribution systems. TCL synchro-
nization can additionally lead to increased short-cycling of TCLs,
sudden undesirable changes in power demand, and poor performance
of TCL controllers [7-9]. Hence, synchronizing behavior of TCLs under
different control schemes must be carefully studied.

1.1. Literature review

Temperature synchronization of TCLs is a well-known problem,
especially in the context of demand response (DR) events where ap-
plying a prolonged ‘off’ signal to TCLs causes loss of natural diversity.
Consequently at the end of the DR event, new peaks and oscillations are
observed [4,10]. However, synchronization of TCL temperatures is less
studied and understood under advanced coordination mechanisms,
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such as market-based coordination, set-point variation and randomized
switching, where control signals may be updated regularly with update
intervals varying from a few seconds to minutes ranges. A systematic
analysis of such cases is therefore the main focus of our work.

Since the ensemble behavior of hysteresis-based loads is challenging
to model, simulation-based studies are often undertaken to show the
possibility of oscillations and characterize the damping due to noise and
heterogeneity. In [1], oscillatory behavior was observed in the ag-
gregate demand when simulating a large number of price-responsive
electric vehicles. In [5,8], simulations show that under market-based
coordination of TCLs, a sequence of price signals can induce synchro-
nization and large oscillations in the aggregate TCL demand. Synchro-
nization and rapid cycling of TCLs may also appear under randomized
switching schemes, hence has been studied in [7]. Some recent work
[11-13] provides analytical results characterizing the behavior of TCLs
in the presence of noise and heterogeneity. However, the synchronizing
and oscillatory behavior observed in [8,14], [14] cannot be explained
fully without resorting to modeling both the continuous-time behavior
of loads as well as the discrete events due to the control actions that
occur at slower intervals. Hence, the reset-based hybrid systems model
presented in this paper can provide intuition into complex system be-
havior which is not available under simplifying modeling assumptions
that are common in the existing literature.

1.2. Contributions

The paper presents an analytical investigation of conditions under
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which temperature synchronization of TCLs may appear and large os-
cillations in the aggregate demand of a load ensemble may emerge. For
understanding oscillatory behavior with TCLs, under a given control
strategy, it is important to understand if the control has a tendency to
synchronize the TCLs, and to what degree. We show that eigenmode
analysis can (i) guarantee if synchronization will appear, (ii) the rate at
which it would appear. To accomplish this, the dynamics of a controlled
TCL population, under a given strategy, is expressed using a reset-based
hybrid system. This allows us to study the problem as a parameter-
dependent eigenvalue problem. Using the hybrid representation, the
aggregate autonomous dynamics of TCLs is captured using a con-
tinuous-time model while the control updates (e.g. price or set-point
updates) are assumed to occur at slower discrete intervals (minutes
range). Then, the eigenvalues and steady-state distributions of a dis-
cretized system are analyzed to explain the effects of control input
variations, check if synchronization is imminent, and find bounds on
demand fluctuations. A set of indices to automatically measure syn-
chronization has also been proposed. Then, for both priority- or market-
based control and randomized switching, we show how control update
intervals and levels of control variations can influence periodic beha-
vior, synchronization, and/or damping of oscillations. For a given in-
itial condition, modal analysis can also lead to reduced computational
needs.

The remainder of the paper is organized as follows. Section 2 de-
scribes the modeling and control framework. Section 3 presents modal
analysis to characterize the systems. Section 4 proposed a set of indices
to automatically measure synchronization. Section 5 provides numer-
ical examples. Finally, Section 6 concludes by summarizing our findings
and discussing their implications.

2. Modeling TCL dynamics as a reset-based hybrid system
2.1. Individual TCL model

The temperature, 6(t) (in °C) dynamics of TCLs can be modeled
using a first-order differential equation [3,10,15],

6(t) = i(eamb —0@) - m(t)PR]

CR 6h)
where C is the thermal capacitance (kWh/°C), R is the thermal re-
sistance ("C/kW), P is the energy transfer rate which is positive for
cooling TCLs (e.g. air-conditioners), 6™ (°C) is the ambient tempera-
ture external to the conditioned space. The on/off state m(t) is governed
by the thermostatic switching law with a dead-band, §% (°C), around a

user-specified  set-point, 6°' (°C). Then, O™ = gset — §db/3,
gmax = gset 4 5%/2, and

0, if 8(t) < omin
m(t) =11, if 6(1) > omx

m(t™), otherwise, 2

where ¢~ represents the limit from below, since m(t) is discontinuous at
the switching times [16].

2.2. TCL population model

Following the work of [17-20], the autonomous dynamics of a TCL
population can be described using an LTI system representation. The
temperature range [6™", 6™"] is first discretized using N bins, where

the bin width is given by A" = %. To capture both ON and OFF states,
let bins i = 1, ...,N represent the OFF states and i = N + 1, ...,2N the
ON states, as shown in Fig. 1. Let x;(t) represent the fraction of the total
population of TCLs lying in bin i at time t. This implies x;(t) = 0 and
Zfivl x;(t) =1 for all time t = 0. For convenience, we will use

21251 x;(t) = ILyx(t) where L,y is the 2N-length vector of all ones.
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Fig. 1. Bin-based aggregate model for a TCL population. The influence of
market-based strategies can be captured using b, and the influence of ran-
domized switchings can be captured using f°" or f°f.

The evolution of x(t) can be described by,
x(t) = Ax(1), 3)

where the elements of matrix A can be obtained by considering the
portion of the population of TCLs that is entering and leaving each bin
[17-19]. Consider ay and a; to be the average OFF and ON rates of
cooling TCLs, respectively. From (1), these rates can be approximated
by [17,19], ,

ay = L(eamb _ eset)’

CR “
a = L(eamb — p@set _ PR)

CR (5)

Then, for bins 2 < i < Nand N + 2 < i < 2N we obtain,

xi(t)=°‘T3V(xi71(t) - xi(t>), 2<i<N,
A (6a)

xi(t)=i(—x,-,l(t) n xi(t)), N+ 2<i<2N,

Abw ( 6b)

and for the bins, i = 1 and i = N + 1, at the 6™" and 6™ boundaries,
respectively, we obtain,

3 o)) A .
x(t) = _ﬁxl(t) - szN(f), (7a)
1) = =y () + e (0. 7b)

The coefficients in (6) and (7) give the elements of A.
Because (3) is a linear time-invariant (LTI) system, its solution can
be written explicitly as,

x(t + 1) = exp(AT)x(¢).

For subsequent development of a discrete-time equivalent of (3), it is
convenient to define,

A = exp(A). (8)

By construction, the matrix A is the transpose of a Markov transition
matrix [21].

The discrete-time A-matrix can also be obtained from Monte Carlo
simulation of (1) and (2) [21]. Techniques to incorporate noise and
heterogeneity are presented in [12,22].

2.3. Controlled dynamics as a reset-based hybrid system

In earlier work on TCL control design, state space models have as-
sumed control action is applied at every time-step. However, the con-
trol updates typically occur at relatively slow discrete intervals,
whereas the aggregate dynamics of TCLs are more accurately captured
using continuous-time models. This time-scale separation of the con-
tinuous/discrete dynamics of TCLs coordinated by switching signals can
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be expressed as:

X(t) = Ax(t), (continuous dynamics) (9a)
x(t) = B(t)x(t"), t = 1, 27, --- (discrete switching) (9b)
y(t) = Cx(t). (output) (9¢)

In (9b), it is assumed that discrete switching occurs only at
t =1, 27, .., where 7 is the switching interval. The effect of control
action is captured by the reset matrix B(t), with the entries of B(t) de-
pendent on the particular control strategy. Sections 2.4 and 2.5 develop
B-matrices for randomized switching, and for market- and priority-
based strategies.

With A time-invariant and A its discrete-time equivalent, the evo-
lution of x(t) from one reset event to the next is given by,

x(t + 1) =B(®)AX(), t=0,T1,?27, ... (10)

This can be expressed in discrete-time as,

x*((k + 1)7) = Xgp1 = BeA™x,, k=0,1,2, .., an

where k indexes the discrete intervals and x* represents the TCL dis-
tribution immediately after a reset.

The hybrid model (9a)-(9c¢) is sufficiently general to support a
variety of control strategies, such as randomized switching, market-
based coordination and set-point variation. The reset map and
switching interval depends on the particular strategy.

2.4. Randomized switching

Sending probabilistic switching signals to increase/decrease power
consumption has frequently been considered in TCL literature
[9,16,20,21]. Consider control logic where bins receive a command
signal to switch the status of a fixed fraction of the bin’s TCLs (during
dispatch each TCL can generate a random number and turn on/off to
meet this signal [9,21]). For a power increase, where the fraction f°" of
the bin’s TCLs are switched from off to on, the reset equations can be
written,

Xt=Q—f"x, 1<i<N, (12a)

X=x7 + fo_is1, (N+ 1) <i<2N, (12b)

where the superscripts - and + refer to the value taken by the state just
prior to and just after the reset event, respectively. For a power de-
crease, where the fraction f°f of TCLs within a bin are switched from
on to off, the reset equations are,

xit=x 4 [Ty ip, 1<IZN, (13a)

xt=(1 - fofx~, (N+1)<i<2N. (13b)

The reset matrices B°" associated f°" and B°T associated f°ff can be
readily obtained from the above. The column sums for B and B°ff
equal 1 to ensure probability conservation.

2.5. Market- or priority-based scheme

As detailed in [6], market-based or transactive techniques for co-
ordinating TCLs can be incorporated in the aggregate model using reset
equations. Assume TCLs that reach higher temperatures are willing to
pay increasingly higher prices to turn on than those already at cooler
temperatures [6,23]. Upon broadcast of a price signal, TCLs with offers
above the market price will clear. In the bin model, this means (i) TCL
price offers increase from lower temperature bins to higher bins, and
(ii) on/off bins at the same temperature have the same offer price,
hence are cleared simultaneously. A clearing price n"(¢) thus de-
termines which bins are cleared (i.e. allowed to turn ON to consume
power). Note that the above coordination mechanism is conceptually
similar to the ‘priority-stacking’ scheme [2,21] where bins near the
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edges get progressively higher priority to switch on/off depending on
whether they are near the upper/lower limit of the dead-band range.

Assume each bin i has a corresponding price level ;. Assume a
market-clearing price s, with b?" € {1,..,N} being the clearing bin
index associated with n". Then, for i € {b°r + 1, ..,N}, the price
7 = n°", so all such bins get cleared (see Fig. 1). On the other hand,
bins i € {1, ...,b"} do not get cleared. The ON bins corresponding to
each OFF bin behave similarly because m = my_;1; for i =1, ..,N.
Hence, the reset equations can be written,

X=X 4 XN, 10D, (142)
xt=0, T+ <i<N, (14b)
Xt =x7 +Xn_ip, N+ 1<i<(N = b, (14c)
x =0, (2N—b" +1)<i<2N. (14d)

Eq. (14) form the B-matrix for this control scheme. The column sum
of B is always equal to 1 to ensure probability conservation. In a
market-based coordination framework, the clearing prices ni"(t) can
vary with time t. Different clearing prices n°"(t) result in different
clearing bins b.(t) The corresponding B(t) follows from (14).

In the following section, we develop an eigenvalue-based approach
to analyze how system behavior changes as TCL parameters change and
under different control strategies.

3. Analysis using eigenmodes
3.1. Modal decomposition

Modal analysis of A = BA" can be used to explore the evolution of
TCLs under periodic control. Assume matrix A is diagonalizable, with
eigenvalues A, 4, ..,y and corresponding right eigenvectors
V1, Y, ey Vay, 180 AV = 41 Let V = [vy vy ... Vo).

Matrix A is the transpose of a Markov transition matrix and B is
structured to ensure I}yx = 1. Therefore, A is also the transpose of a
transition matrix. Accordingly, it has one eigenvalue at 1 (its largest)
[24]. The eigenvalues can be ordered 1 = 11 >I4| > ....>2IAN|.

Let ¢ = V~lx,. Then it is straightforward to show that the initial
condition x, can be expressed as,

Xo = €1V + ...t ConVon- (15)
Therefore,

N
Xk = Akxg = Z cA kv

i=1 e6)

Hence, x; can be decomposed into the weighted sum of the temporal
evolution of each eigenmode. The eigenmodes may involve complex c;
A, v; depending on the structure of A. Such complex valued eigenmodes
contribute to X in conjunction with their complex conjugate, which
must also be an eigenmode because A is a real-valued matrix. The
contribution to xj from this pair of complex conjugate modes can be
expressed as,

Xk=2|Ci||ii|k|Vi| COS(k X L/li + Z¢; + Lvi), (17)

where |v;| and 2v; refer to the vector that satisfy v; = Iv;|£v; on an ele-
ment-by-element basis.

Because 4; = 1, the first mode c,v; describes the steady-state dis-
tribution of TCLs across the bins, with ¢, ILyv; = 1. Furthermore, due to
the structure of A, all other modes i = 2, ...,2N satisfy IIyv; = 0. For
modes with |A;] < 1, it can be seen from (16) and (17) that the modal
contribution will decay to zero. It is possible for 4, = —1, or more
generally I4;1 =1 for i = 2 (though this is rare beyond i = 2). Such
modes will not decay, but rather introduce an undamped oscillation
that adds to the steady-state mode c;v;. It is also interesting to note that
if xo — cqv; lies on a real eigenvector v; then the deviation from steady-
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Fig. 2. Mode shapes for four modes.

state c;v; will always lie on v;. For complex eigenvectors, if xo — c;v;
lies on the plane spanned by the vectors Re(v;) and Im(v;) then the
deviation from steady-state will always lie on that plane.

Mode shapes (eigenvectors) of the first four mode for a typical TCL-
derived A-matrix are shown in Fig. 2. As mentioned previously, the first
mode describes the steady-state distribution while the other modes
influence the transient behavior. For the two complex modes, 2 and 4,
the real portion has been plotted.

3.2. Convergence rate analysis

Synchronization of TCLs is dependent upon particular coordination
strategies. The steady-state distribution of TCLs is described by the ei-
genvector v, the first mode of A, so it determines whether or not
synchronization will occur. The convergence rate to a synchronized
state is directly related to the eigenvalues of A.

From (16) and (17), if |Ag| < 1, Akx, — c,v; since 1 — 0 ask — oo,
Thus, x; converges to a multiple of eigenvector v; such that the ele-
ments of c;v; sum to 1. The convergence is geometric with ratio
% = |A|. This is illustrated in Fig. 3 for a range of |A,| values and
evolution in k. In certain cases, 1, = —1 (as will be shown in Section 5).
Then, x; will oscillate as noted earlier.

After k time steps, let |4, = ¢, where ¢ is small. Taking logs of both
sides gives,

_ log(e)
k@ = ogann!

For example, with € = 107> and A, = 0.5, we obtain k = 17. With A, =
0.2 we obtain k = 8. Thus, the contribution of A, vanishes in a limited
number of time-steps.

More generally, since A can be shown to be the transpose of a

18

Markov transition matrix, the convergence behavior can also be studied
using the spectral gap v* of matrix A, where y* = 1 — I41|. Large gaps
indicate faster convergence [24].

3.3. Bounds on variations in aggregate power

Eigenmode analysis can also be used to obtain bounds on aggregate
power variations for controlled TCL ensembles.

3.3.1. Fixed reset conditions

Assume B is fixed and dynamics are governed by A = BA*. The
steady-state when observed just after the reset, denoted x;, is given by
vy of A. The steady-state observed just prior to the reset xg is related
through x;; = Bx. Thus, at resets (when the control update is applied),
the absolute change in power consumed by TCLs can be obtained using,

Iyt =yl =I1CKx} —x5)l (19a)

=|C(B - Dxgl. (19b)

3.3.2. Variable reset conditions

Variable reset conditions can also be considered. For example, it is
straightforward to extend to the case of periodic reset signals where two
reset maps B; and B, are applied alternatively during reset events. In
this case, the dynamics can be written in either of the two forms,

X1 = BIABA'x,, k=0,1,2, ..., (20a)

Xes1 = BoATBiA X, k=0,1,2, ... (20b)

The steady-state distribution corresponding to x;; is given by the
eigenvector v; of BjA"B,A” or B,A’B;A". Knowing x,; and x;., the change
in aggregate power consumed can be computed without resorting to

IA2I increasing from 0.1 to 1
4

8

10

12 16 18 20

Time period, k

Fig. 3. Eigenvalue convergence, considering A, from 0.1 to 1 and plotting A5, k = 1, ...,20.
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simulation. The above technique can also be extended to study other
combinations of control sequences.

4. Synchronization index

While it is intuitive to detect full or partial synchronization of TCL
temperature distributions by visual inspection, it can be time-con-
suming and does not provide a quantifiable result. Availability of
standard and easy to interpret indices would allow systematic mea-
surement of the level of synchronization in a given TCL distribution,
and indicate if mitigating actions should to be taken. For example, it
may be appropriate to implement feedback or penalty terms to suppress
synchronization. In order to propose such measures, recall that a bin
represents a temperature range and its associated on/off state. The
temperature distribution x° over the bin space can be reconstructed

using,
xP =% +%Nn_i41, i=1, .,N, 21)

because i and 2N — i + 1, i =1, ...,N represent the same temperature
range. Using x%, the following synchronization indices are proposed:

4.1. Maximum fraction of TCLs in a bin
Given a distribution x° over N bins, S; € [01] is given by,

S, = max{x’, i = 1,..,N}. 22)

4.2. Bin spread
Define X. as a set of indices of bins containing TCL fractions above a
specified threshold e. Hence,

X, = {i: xis >¢i=1,.,N}L (23)
Then, a measure for bin spread is given by the cardinality of X, i.e. IX,I.
Normalizing gives,

_
N’ (24)

with S, € [01]. Small values of S, indicates the distribution is widely
spread over the temperature bins, whereas larger values indicate syn-
chronization.

52:1

4.3. Bin range
Note however that S, as a measure of the bin spread is still not
indicative of whether fractions of TCLs are lying in adjacent bins or are
spread apart. Hence, the range the of X should also be considered,
max X, — min X,
Sy=1— e %

} N (25)
giving Sz € [0 1]. Smaller values of S3 imply TCL distributions are more
widely spread over bins, whereas larger values indicate synchroniza-
tion.

4.4. Combined metric

Each of the indices 0 < S;, S5, S3 < 1 can be measured and reported
separately. However, since all are normalized quantities, consider the
combined indices,

§ = SISZS3. (26)

or alternatively,

S, = w151 + COQSZ + CO_-;Sg
' W+ Wy +wy 27)
where the w; are user-defined weights. While more sophisticated mea-
sures can also be considered, this paper will consider the listed three.
These proposed indices, together with convergence rates from
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eigenvalues and spectral gaps, provide detailed insights into whether a
given control strategy will induce synchronization, to what degree and
at what rate.

5. Simulations
5.1. Influence of parameters on system behavior

Consider N = 200. To obtain the A-matrix, the average heating and
cooling rates in (4) and (5) are computed using P = 14 kW, R = 2 °C/
kW, C = 10 kWh/°C, 6°¢' = 20 "C and 6°™ = 32 °C [3] (unless specified
otherwise). A 2 °C dead-band is assumed. Then, the A matrix is obtained
from A using (8). Matrix B for market-based switching is calculated
using b and for randomized switching (RS) using f°" and fof.

To study how system behavior changes under market-based
switching with changes in TCL parameters, three cases are considered,

(a) = = 30 min and b = 0.8N,
(b) = = 10 min and b = 0.8N,
(¢) = = 30 min and b = 0.5N.

For cases (a)-(c), we vary 0% from 21 to 40°C. For each 6*™, we
compute ap and a;, construct the A-matrix, and apply B to obtain A (see
(11)). For case (a), the changes in real and imaginary parts of the ei-
genvalues are shown in Figs. 4 and 7, as a function of |ap/a;| (which
changes due to changing 6°™). Similarly, for case (b), the changes in
real and imaginary parts of the eigenvalues are shown in Figs. 5 and 9,
and for case (c), in Figs. 6 and 9.

In case (a), we observe that as |ao/a;| increases, an eigenvalue of
value — 1 emerges. For these parameter values, if this second mode is
excited by the initial conditions xo, it will introduce sustained oscilla-
tions about the steady-state distribution c;v; described by the first
mode. Only when the initial conditions xo do not have a component in
the direction of the eigenvector v, of the second mode, i.e. c; = 0 in
(15), will the bins converge to the steady-state distribution. From
Figs. 7-9, we also notice how the imaginary parts of the eigenvalues
disappear when |ao/a;| approaches 1, indicating structural changes in
the system behavior.

Fig. 13 shows the values of the synchronization index s (given by
(26)) for cases (a)-(c). Additionally, for case (a), Fig. 14 shows the
individual indices (S;, So, S3). In case (a), with 7 = 30 min, we observe
that § generally increased with increasing |ao/a;|. While S;, which
indicates the maximum TCL concentration in a single bin, did not vary
considerably, the values of S, and Ss, indicating the bin spread and bin
ranges, showed some increase as |ao/a;| increased. From Figs. 13
and 14, it is confirmed that S effectively captures the behavior of the

1.5

real()\)

A ‘ . ‘ .
0 05 1 15 2 2.5

|a,0/(:u1 |

Fig. 4. Real parts of eigenvalues as a function of |ap/a;| in case (a).
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1.5

0 0.5 1 1.5 2 2.5
|ao/a1|

Fig. 5. Real parts of eigenvalues as a function of |ap/a;| in case (b).

1.5 w w w w

|ozo/041|

Fig. 6. Real parts of eigenvalues as a function of |ap/a;| in case (c).

25

|a0/a1|

Fig. 7. Imaginary parts of eigenvalues as a function of |ap/a;| in case (a).

individual indices without being overly sensitive to changes in any
single index. These indices thus enable us to rapidly quantify syn-
chronizing behavior in TCL ensembles without resorting to visual in-
spections of the steady-state distributions (Figs. 10-12).

In cases (b) and (c), |A;| < 1 for Vi > 1. Hence, unlike in case (a), xx
will always converge to the steady-state given by c;A;. From Fig. 13,
observe that 8§ remains relatively constant. This is because with
7 = 10 min, the TCL distributions remain synchronized around beIr (also
see Fig. 11). In case (c), however, with 7 = 30 min and b°" = 0.5N, TCLs

can propagate further away from b, hence the value of $ remained
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imag(\)

0 0.5 1 15 2 2.5

|a0/a1|

Fig. 8. Imaginary parts of eigenvalues as a function of |ap/a;| in case (b).

2.5

|O¢O/a1|

Fig. 9. Imaginary parts of eigenvalues as a function of |ao/a;| in case (c).

0.04

Density

0 100 200 30 400

Bins

Fig. 10. Steady-state distribution as a function of |ap/a;| in case (a).

low (see Fig. 12). While in case (a), z was also 30 min, b was close to
the temperature boundary, hence temperatures did not propagate fur-
ther away from b°" since TCLs reaching the boundary within ¢ switched
their on/off states. Finally, it was observed that for case (b), the peak
value of the spectral radius (1 — |4,1) was at 0.35 (when lag/ag| = 1),
much higher than 0.13 observed for cases (a) and (c), suggesting faster
convergence to the synchronized state for case (b).

Comparing cases (a)-(c), it can be summarized that when pelr lay
near the temperature boundaries and when 7 was relatively small, the
tendency to synchronize remained relatively higher. These simulations
thus show how the synchronizing behavior of TCL ensembles under
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Fig. 11. Steady-state distribution as a function of |ap/a;| in case (b).
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Fig. 12. Steady-state distribution as a function of |ap/a;| in case (c).

market-clearing can be efficiently captured by analyzing the impact of
varying b, r and |ao/a;| using the proposed eigenmode based tech-
niques.

Next, we performed a similar analysis for randomized switching
(RS) based coordination. A fraction of TCLs in each bin are asked to
periodically increase and subsequently decrease power consumption,
where each increase or decrease phase lasts for T minutes. Three cases
are considered,

@G for =0.001, ff =0001, T
(i) for =0.001, f°f =0.001, T =10 min,
(iii) for =0.0001, fof =0.0001, T =5 min.

= 5 min,

First, B is constructed using f°» and BT using f°f. Then, the
evolution of x; is captured by A = (Bo"A")OT(BTAT)T and
A = (BTAT)OT(BnAT)OT | where 7 is set to 1 s. The resulting
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synchronization indices are shown in Fig. 15. The indices were much
higher for small values of |ao/a;|. This suggests, when 6™ is low, aq is
much smaller than a; (cooling rate is much faster since heating is slow
due to low ambient temperature). Thus, under a symmetric and fixed
up-down power request signal, the TCL temperatures may become
highly synchronized, under which TCLs would undergo fast cycling. In
case (ii), with longer time duration of T = 10 min, this was even more
severe. The synchronization level was slightly lower in case (iii) due to
fo and f°f being smaller. Finally, given the same |ay/a;| values, the
value of the spectral radius was highest (around 0.33) in case (ii),
suggesting faster convergence to the synchronized state than in cases (i)
or (iii). While we showed the effectiveness of the eigenmode analysis
technique for a simplistic case of RS-strategy, the approach can be ex-
tended to study and identify critical cases pertaining to more advanced
controllers [7,21].

5.2. Dominant modes and convergence

In (16), with eigenvalues ordered according to their magnitude, the
first few modes are often referred to as the dominant modes. We chose
Xo to be uniformly distributed over 2N = 100 bins. Then, we simulated
to obtain x, at k =0, 1, ...,5. In Fig. 16, we compared the actual x;
against different number of modes summed to give approximations at
k = 5. In this case, just the first and second modes were sufficient to
obtain almost the exact distribution, whereas using just the first mode
resulted in some error. The evolution in the ith mode’s weights, i.e.
w; = ¢;4) is shown in Fig. 17 for the first 6 modes, with 4, = 1 and
A = —0.87. We see that the evolution in the 2nd mode’s weight is os-
cillatory and does not die out rapidly, hence is important to consider.
Additionally, since many of the eigenvalues have negligible values,
their contributions are also negligible. Therefore, modal analysis and
modal coordinates may provide significant computational advantages
compared to simulating TCL dynamics using 2N x 2N matrices. This is
a topic of future research.

5.3. Bounds on aggregate power consumed

For a variety of control signals, the variations in output power can
also be found using the eigenmodes. Assume TCLs are coordinated
based on price signals in a double-auction market [6]. We applied
periodic step changes in price signals, by varying b, and observed
different forms of oscillations in aggregate demand. Fig. 18 shows how
a periodic price signal with small step changes induced large amplitude
oscillations in the aggregate demand. The variations at resets matched
the predicted value of 0.83 obtained via the method described in
Section 3.3. Similarly, more complex signals can be constructed and
variations in aggregate TCL power (at resets) can be obtained.

0.03

=
B
()

0 0.5 1

1.5 2 25

|a0/a1|

Fig. 13. Comparing the synchronization index values for cases (a)-(c) under market-based coordination.



M.S. Nagzir and I. Hiskens Electric Power Systems Research 190 (2021) 106779

0.6 W -
'--'81
0.4 - |
o 82
............. 3
0.2 |
o tzo=-c-=co-oooco e I S
i e 1 15 > o5
|a0/a1|
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Fig. 15. Comparing the synchronization index values for cases (i)—(iii) under randomized switching signals.
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Fig. 16. At time period k = 5, actual TCL distribution (dashed line) vs. approximate distributions obtained using only 2 modes (solid line), only 1 mode (dotted line).
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Fig. 18. Large fluctuations in demand induced by a periodic price signal (mapped to b"").
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6. Conclusions

This paper presents an analytical framework to explore conditions
under which temperature synchronization of TCLs may appear and
large oscillations in aggregate demand of load ensembles may emerge.
We show that eigen-structure analysis can (i) identify whether syn-
chronization will appear, and (ii) determine the rate at which it would
appear. To accomplish this, the dynamics of a controlled TCL popula-
tion, under a given strategy, is expressed using a reset-based hybrid
system. This allows us to study behavior as a parameter-dependent ei-
genvalue problem. The eigenvalues and steady-state distributions of the
discretized system explain whether the control will induce synchroni-
zation. Under priority- or market-based control and randomized
switching, we have shown that control parameters and update intervals
can influence periodic behavior, synchronization, and/or damping of
oscillations. The spectral gap of the transition matrix was used to es-
timate the convergence rate. The insights developed here can be used to
quickly assess benefits and limitations of control techniques. Future
work can involve comparing other control techniques and considering
additional operational constraints such as lockouts.
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