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A B S T R A C T   

While coordinated control of a large population of electric loads can provide important services to the electric 
grid, situations have been observed where control of load ensembles may lead to highly nonlinear behavior such 
as synchronization, sustained oscillations and bifurcations. Synchronization of thermostatically controlled loads 
(TCLs) is undesirable since it can lead to increased short-cycling, sudden changes in power demand and network 
voltage issues. In this paper, we investigate the synchronizing tendency of TCLs under control strategies where 
updates are broadcast periodically for coordinating TCLs. We study the problem using a hybrid dynamical 
systems framework to model both the continuous and discrete dynamics of load ensembles. Analysis of eigen
modes of the underlying discrete-time system provide insights into synchronizing tendencies and rate of con
vergence to the synchronized state. Simulations are provided to illustrate the theory.   

1. Introduction 

Coordinated control of thermostatically controlled loads (TCLs), 
such as air-conditioners, water-heaters and refrigerators, can provide 
many services to power systems, including balancing fluctuations from 
renewables, reducing peak demand and providing voltage support  
[1,2]. Various coordination techniques have been proposed in the lit
erature including randomized switching, temperature set-point varia
tion, and Transactive energy coordination. However, such controls may 
sometimes lead to undesirable phenomenon such as synchronization 
(which generally refers to the loss of diversity in temperatures) of TCLs 
and large fluctuations in aggregate demand of loads [3–6]. Large os
cillations in aggregate power may cause new peaks in system demand 
and result in voltage violations in distribution systems. TCL synchro
nization can additionally lead to increased short-cycling of TCLs, 
sudden undesirable changes in power demand, and poor performance 
of TCL controllers [7–9]. Hence, synchronizing behavior of TCLs under 
different control schemes must be carefully studied. 

1.1. Literature review 

Temperature synchronization of TCLs is a well-known problem, 
especially in the context of demand response (DR) events where ap
plying a prolonged ‘off’ signal to TCLs causes loss of natural diversity. 
Consequently at the end of the DR event, new peaks and oscillations are 
observed [4,10]. However, synchronization of TCL temperatures is less 
studied and understood under advanced coordination mechanisms, 

such as market-based coordination, set-point variation and randomized 
switching, where control signals may be updated regularly with update 
intervals varying from a few seconds to minutes ranges. A systematic 
analysis of such cases is therefore the main focus of our work. 

Since the ensemble behavior of hysteresis-based loads is challenging 
to model, simulation-based studies are often undertaken to show the 
possibility of oscillations and characterize the damping due to noise and 
heterogeneity. In [1], oscillatory behavior was observed in the ag
gregate demand when simulating a large number of price-responsive 
electric vehicles. In [5,8], simulations show that under market-based 
coordination of TCLs, a sequence of price signals can induce synchro
nization and large oscillations in the aggregate TCL demand. Synchro
nization and rapid cycling of TCLs may also appear under randomized 
switching schemes, hence has been studied in [7]. Some recent work  
[11–13] provides analytical results characterizing the behavior of TCLs 
in the presence of noise and heterogeneity. However, the synchronizing 
and oscillatory behavior observed in [8,14], [14] cannot be explained 
fully without resorting to modeling both the continuous-time behavior 
of loads as well as the discrete events due to the control actions that 
occur at slower intervals. Hence, the reset-based hybrid systems model 
presented in this paper can provide intuition into complex system be
havior which is not available under simplifying modeling assumptions 
that are common in the existing literature. 

1.2. Contributions 

The paper presents an analytical investigation of conditions under 
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which temperature synchronization of TCLs may appear and large os
cillations in the aggregate demand of a load ensemble may emerge. For 
understanding oscillatory behavior with TCLs, under a given control 
strategy, it is important to understand if the control has a tendency to 
synchronize the TCLs, and to what degree. We show that eigenmode 
analysis can (i) guarantee if synchronization will appear, (ii) the rate at 
which it would appear. To accomplish this, the dynamics of a controlled 
TCL population, under a given strategy, is expressed using a reset-based 
hybrid system. This allows us to study the problem as a parameter- 
dependent eigenvalue problem. Using the hybrid representation, the 
aggregate autonomous dynamics of TCLs is captured using a con
tinuous-time model while the control updates (e.g. price or set-point 
updates) are assumed to occur at slower discrete intervals (minutes 
range). Then, the eigenvalues and steady-state distributions of a dis
cretized system are analyzed to explain the effects of control input 
variations, check if synchronization is imminent, and find bounds on 
demand fluctuations. A set of indices to automatically measure syn
chronization has also been proposed. Then, for both priority- or market- 
based control and randomized switching, we show how control update 
intervals and levels of control variations can influence periodic beha
vior, synchronization, and/or damping of oscillations. For a given in
itial condition, modal analysis can also lead to reduced computational 
needs. 

The remainder of the paper is organized as follows. Section 2 de
scribes the modeling and control framework. Section 3 presents modal 
analysis to characterize the systems. Section 4 proposed a set of indices 
to automatically measure synchronization. Section 5 provides numer
ical examples. Finally, Section 6 concludes by summarizing our findings 
and discussing their implications. 

2. Modeling TCL dynamics as a reset-based hybrid system 

2.1. Individual TCL model 

The temperature, θ(t) (in ∘C) dynamics of TCLs can be modeled 
using a first-order differential equation [3,10,15], 

=t
CR

t m t PR( ) 1 ( ) ( )amb

(1) 

where C is the thermal capacitance (kWh/∘C), R is the thermal re
sistance (∘C/kW), P is the energy transfer rate which is positive for 
cooling TCLs (e.g. air-conditioners), θamb (∘C) is the ambient tempera
ture external to the conditioned space. The on/off state m(t) is governed 
by the thermostatic switching law with a dead-band, δdb (∘C), around a 
user-specified set-point, θset (∘C). Then, = /2,min set db

= + /2,max set db and 

=m t
t
t

m t
( )

0, if ( )
1, if ( )

( ), otherwise,

min

max

(2) 

where t represents the limit from below, since m(t) is discontinuous at 
the switching times [16]. 

2.2. TCL population model 

Following the work of [17–20], the autonomous dynamics of a TCL 
population can be described using an LTI system representation. The 
temperature range [θmin, θmin] is first discretized using N bins, where 
the bin width is given by = N

bw db
. To capture both ON and OFF states, 

let bins = …i N1, , represent the OFF states and = + …i N N1, ,2 the 
ON states, as shown in Fig. 1. Let xi(t) represent the fraction of the total 
population of TCLs lying in bin i at time t. This implies xi(t) ≥ 0 and 

== x t( ) 1i
N

i1
2 for all time t ≥ 0. For convenience, we will use 

== x t x t( ) ( )i
N

i N1
2

2 where N2 is the 2N-length vector of all ones. 

The evolution of x(t) can be described by, 

=x t x t( ) ( ), (3) 

where the elements of matrix can be obtained by considering the 
portion of the population of TCLs that is entering and leaving each bin  
[17–19]. Consider α0 and α1 to be the average OFF and ON rates of 
cooling TCLs, respectively. From (1), these rates can be approximated 
by [17,19], , 

=
CR
1 ,0

amb set

(4)  

=
CR

PR1 .1
amb set

(5) 

Then, for bins 2 ≤ i ≤ N and +N i N2 2 we obtain, 

=x t x t x t i N( ) ( ) ( ) , 2 ,i i i
0

bw 1
(6a)  

= + +x t x t x t N i N( ) ( ) ( ) , 2 2 ,i i i
1

bw 1
(6b) 

and for the bins, =i 1 and = +i N 1, at the θmin and θmax boundaries, 
respectively, we obtain, 

=x t x t x t( ) ( ) ( );N1
0

bw 1
1

bw 2 (7a)  

= ++ +x t x t x t( ) ( ) ( ).N N N1
0

bw
1

bw 1 (7b) 

The coefficients in (6) and (7) give the elements of . 
Because (3) is a linear time-invariant (LTI) system, its solution can 

be written explicitly as, 

+ =x t x t( ) exp( ) ( ).

For subsequent development of a discrete-time equivalent of (3), it is 
convenient to define, 

=A exp( ). (8) 

By construction, the matrix A is the transpose of a Markov transition 
matrix [21]. 

The discrete-time A-matrix can also be obtained from Monte Carlo 
simulation of (1) and (2) [21]. Techniques to incorporate noise and 
heterogeneity are presented in [12,22]. 

2.3. Controlled dynamics as a reset-based hybrid system 

In earlier work on TCL control design, state space models have as
sumed control action is applied at every time-step. However, the con
trol updates typically occur at relatively slow discrete intervals, 
whereas the aggregate dynamics of TCLs are more accurately captured 
using continuous-time models. This time-scale separation of the con
tinuous/discrete dynamics of TCLs coordinated by switching signals can 

Fig. 1. Bin-based aggregate model for a TCL population. The influence of 
market-based strategies can be captured using bclr, and the influence of ran
domized switchings can be captured using f on or f off . 
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be expressed as: 

=x t x t( ) ( ), (continuous dynamics) (9a)  

= =x t B t x t t( ) ( ) ( ), , 2 , (discrete switching) (9b)  

=y t Cx t( ) ( ). (output) (9c)  

In (9b), it is assumed that discrete switching occurs only at 
= …t , 2 , , where τ is the switching interval. The effect of control 

action is captured by the reset matrix B(t), with the entries of B(t) de
pendent on the particular control strategy. Sections 2.4 and 2.5 develop 
B-matrices for randomized switching, and for market- and priority- 
based strategies. 

With time-invariant and A its discrete-time equivalent, the evo
lution of x(t) from one reset event to the next is given by, 

+ = = …x t B t A x t t( ) ( ) ( ), 0, , 2 , . (10) 

This can be expressed in discrete-time as, 

+ = = = …+
+x k x B A x k(( 1) ) , 0, 1, 2, ,k k k1 (11) 

where k indexes the discrete intervals and +x represents the TCL dis
tribution immediately after a reset. 

The hybrid model (9a)–(9c) is sufficiently general to support a 
variety of control strategies, such as randomized switching, market- 
based coordination and set-point variation. The reset map and 
switching interval depends on the particular strategy. 

2.4. Randomized switching 

Sending probabilistic switching signals to increase/decrease power 
consumption has frequently been considered in TCL literature  
[9,16,20,21]. Consider control logic where bins receive a command 
signal to switch the status of a fixed fraction of the bin’s TCLs (during 
dispatch each TCL can generate a random number and turn on/off to 
meet this signal [9,21]). For a power increase, where the fraction f on of 
the bin’s TCLs are switched from off to on, the reset equations can be 
written, 

=+x f x i N(1 ) , 1 ,i i
on (12a)  

= + ++
+x x f x N i N, ( 1) 2 ,i i N i

on
2 1 (12b) 

where the superscripts - and + refer to the value taken by the state just 
prior to and just after the reset event, respectively. For a power de
crease, where the fraction f off of TCLs within a bin are switched from 
on to off, the reset equations are, 

= ++
+x x f x i N, 1 ,i i N i

off
2 1 (13a)  

= ++x f x N i N(1 ) , ( 1) 2 .i i
off (13b)  

The reset matrices Bon associated f on and Boff associated f off can be 
readily obtained from the above. The column sums for Bon and Boff

equal 1 to ensure probability conservation. 

2.5. Market- or priority-based scheme 

As detailed in [6], market-based or transactive techniques for co
ordinating TCLs can be incorporated in the aggregate model using reset 
equations. Assume TCLs that reach higher temperatures are willing to 
pay increasingly higher prices to turn on than those already at cooler 
temperatures [6,23]. Upon broadcast of a price signal, TCLs with offers 
above the market price will clear. In the bin model, this means (i) TCL 
price offers increase from lower temperature bins to higher bins, and 
(ii) on/off bins at the same temperature have the same offer price, 
hence are cleared simultaneously. A clearing price πclr(t) thus de
termines which bins are cleared (i.e. allowed to turn ON to consume 
power). Note that the above coordination mechanism is conceptually 
similar to the ‘priority-stacking’ scheme [2,21] where bins near the 

edges get progressively higher priority to switch on/off depending on 
whether they are near the upper/lower limit of the dead-band range. 

Assume each bin i has a corresponding price level πi. Assume a 
market-clearing price πclr, with …b N{1, , }clr being the clearing bin 
index associated with πclr. Then, for + …i b N{ 1, , },clr the price 
πi ≥ πclr, so all such bins get cleared (see Fig. 1). On the other hand, 
bins …i b{1, , }clr do not get cleared. The ON bins corresponding to 
each OFF bin behave similarly because = +i N i2 1 for = …i N1, , . 
Hence, the reset equations can be written, 

= ++
+x x x i b, 1 ,i i N i2 1

clr (14a)  

= ++x b i N0, ( 1) ,i
clr (14b)  

= + ++
+x x x N i N b, 1 (2 ),i i N i2 1

clr (14c)  

= ++x N b i N0, (2 1) 2 .i
clr (14d)  

Eq. (14) form the B-matrix for this control scheme. The column sum 
of B is always equal to 1 to ensure probability conservation. In a 
market-based coordination framework, the clearing prices πclr(t) can 
vary with time t. Different clearing prices πclr(t) result in different 
clearing bins bclr(t) The corresponding B(t) follows from (14). 

In the following section, we develop an eigenvalue-based approach 
to analyze how system behavior changes as TCL parameters change and 
under different control strategies. 

3. Analysis using eigenmodes 

3.1. Modal decomposition 

Modal analysis of = BA can be used to explore the evolution of 
TCLs under periodic control. Assume matrix is diagonalizable, with 
eigenvalues …, , , N1 2 2 and corresponding right eigenvectors 

…v v v, , , ,N1 2 2 i.e. =v vi i i. Let = …V v v v[ ]N1 2 2 . 
Matrix A is the transpose of a Markov transition matrix and B is 

structured to ensure =x 1N2 . Therefore, is also the transpose of a 
transition matrix. Accordingly, it has one eigenvalue at 1 (its largest)  
[24]. The eigenvalues can be ordered = …1 | | . | |N1 2 2 . 

Let =c V x1 0. Then it is straightforward to show that the initial 
condition x0 can be expressed as, 

= + …+x c v c v .N N0 1 1 2 2 (15) 

Therefore, 

= =
=

x x c v .k
k

i

N

i i
k

i0
1

2

(16) 

Hence, xk can be decomposed into the weighted sum of the temporal 
evolution of each eigenmode. The eigenmodes may involve complex ci, 
λi, vi depending on the structure of . Such complex valued eigenmodes 
contribute to xk in conjunction with their complex conjugate, which 
must also be an eigenmode because is a real-valued matrix. The 
contribution to xk from this pair of complex conjugate modes can be 
expressed as, 

= × + +x c v k c v2| | | | cos( ),k i i
k

i i i i (17) 

where |vi| and ∠vi refer to the vector that satisfy =v v v| |i i i on an ele
ment-by-element basis. 

Because = 1,1 the first mode c1v1 describes the steady-state dis
tribution of TCLs across the bins, with =c v 1N1 2 1 . Furthermore, due to 
the structure of , all other modes = …i N2, ,2 satisfy =v 0N i2 . For 
modes with |λi| < 1, it can be seen from (16) and (17) that the modal 
contribution will decay to zero. It is possible for = 1,2 or more 
generally =| | 1i for i ≥ 2 (though this is rare beyond =i 2). Such 
modes will not decay, but rather introduce an undamped oscillation 
that adds to the steady-state mode c1v1. It is also interesting to note that 
if x c v0 1 1 lies on a real eigenvector vi then the deviation from steady- 
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state c1v1 will always lie on vi. For complex eigenvectors, if x c v0 1 1
lies on the plane spanned by the vectors Re(vi) and Im(vi) then the 
deviation from steady-state will always lie on that plane. 

Mode shapes (eigenvectors) of the first four mode for a typical TCL- 
derived -matrix are shown in Fig. 2. As mentioned previously, the first 
mode describes the steady-state distribution while the other modes 
influence the transient behavior. For the two complex modes, 2 and 4, 
the real portion has been plotted. 

3.2. Convergence rate analysis 

Synchronization of TCLs is dependent upon particular coordination 
strategies. The steady-state distribution of TCLs is described by the ei
genvector v1, the first mode of , so it determines whether or not 
synchronization will occur. The convergence rate to a synchronized 
state is directly related to the eigenvalues of . 

From (16) and (17), if |λ2| < 1, x c vk
0 1 1 since 0k

2 as k → ∞. 
Thus, xk converges to a multiple of eigenvector v1 such that the ele
ments of c1v1 sum to 1. The convergence is geometric with ratio 

= | || |
| | 2

2
1

. This is illustrated in Fig. 3 for a range of |λ2| values and 
evolution in k. In certain cases, = 12 (as will be shown in Section 5). 
Then, xk will oscillate as noted earlier. 

After k time steps, let =| | ,k
2 where ϵ is small. Taking logs of both 

sides gives, 

=k ( ) log( )
log(| |)

.
2 (18) 

For example, with = 10 5 and λ2 = 0.5, we obtain =k 17. With λ2 = 
0.2 we obtain =k 8. Thus, the contribution of λ2 vanishes in a limited 
number of time-steps. 

More generally, since can be shown to be the transpose of a 

Markov transition matrix, the convergence behavior can also be studied 
using the spectral gap γ* of matrix , where =* 1 | |2 . Large gaps 
indicate faster convergence [24]. 

3.3. Bounds on variations in aggregate power 

Eigenmode analysis can also be used to obtain bounds on aggregate 
power variations for controlled TCL ensembles. 

3.3.1. Fixed reset conditions 
Assume B is fixed and dynamics are governed by = BA . The 

steady-state when observed just after the reset, denoted +x ,ss is given by 
v1 of . The steady-state observed just prior to the reset xss is related 
through =+x Bxss ss . Thus, at resets (when the control update is applied), 
the absolute change in power consumed by TCLs can be obtained using, 

=+ +y y C x x| | | ( )|ss ss (19a)  

= C B I x( ) |.ss (19b)  

3.3.2. Variable reset conditions 
Variable reset conditions can also be considered. For example, it is 

straightforward to extend to the case of periodic reset signals where two 
reset maps B1 and B2 are applied alternatively during reset events. In 
this case, the dynamics can be written in either of the two forms, 

= = …+x B A B A x k, 0, 1, 2, ,k k1 1 2 (20a)  

= = …+x B A B A x k, 0, 1, 2, .k k1 2 1 (20b)  

The steady-state distribution corresponding to +xss is given by the 
eigenvector v1 of B1AτB2Aτ or B2AτB1Aτ. Knowing xss and +x ,ss the change 
in aggregate power consumed can be computed without resorting to 

Fig. 2. Mode shapes for four modes.  

Fig. 3. Eigenvalue convergence, considering λ2 from 0.1 to 1 and plotting ,k
2 = …k 1, ,20.  
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simulation. The above technique can also be extended to study other 
combinations of control sequences. 

4. Synchronization index 

While it is intuitive to detect full or partial synchronization of TCL 
temperature distributions by visual inspection, it can be time-con
suming and does not provide a quantifiable result. Availability of 
standard and easy to interpret indices would allow systematic mea
surement of the level of synchronization in a given TCL distribution, 
and indicate if mitigating actions should to be taken. For example, it 
may be appropriate to implement feedback or penalty terms to suppress 
synchronization. In order to propose such measures, recall that a bin 
represents a temperature range and its associated on/off state. The 
temperature distribution xθ over the bin space can be reconstructed 
using, 

= + = …+x x x i N, 1, , ,i i N i2 1 (21) 

because i and +N i2 1, = …i N1, , represent the same temperature 
range. Using xθ, the following synchronization indices are proposed:  

4.1. Maximum fraction of TCLs in a bin 
Given a distribution xθ over N bins, S1 ∈ [0 1] is given by, 

= = …S x i Nmax{ , 1, , }.i1 (22)  

4.2. Bin spread 
Define as a set of indices of bins containing TCL fractions above a 

specified threshold ϵ. Hence, 

= = …i x i N{ : , 1, , }.i (23) 

Then, a measure for bin spread is given by the cardinality of , i.e. | |. 
Normalizing gives, 

=S
N

1 | | ,2 (24) 

with S2 ∈ [0 1]. Small values of S2 indicates the distribution is widely 
spread over the temperature bins, whereas larger values indicate syn
chronization. 

4.3. Bin range 
Note however that S2 as a measure of the bin spread is still not 

indicative of whether fractions of TCLs are lying in adjacent bins or are 
spread apart. Hence, the range the of should also be considered, 

=S
N

1 max min ,3 (25) 

giving S3 ∈ [0 1]. Smaller values of S3 imply TCL distributions are more 
widely spread over bins, whereas larger values indicate synchroniza
tion. 

4.4. Combined metric 
Each of the indices 0 ≤ S1, S2, S3 ≤ 1 can be measured and reported 

separately. However, since all are normalized quantities, consider the 
combined indices, 

=S S S S^ .1 2 3 (26) 

or alternatively, 

= + +
+ +

S S S S ,t
1 1 2 2 3 3

1 2 3 (27) 

where the ωi are user-defined weights. While more sophisticated mea
sures can also be considered, this paper will consider the listed three. 

These proposed indices, together with convergence rates from 

eigenvalues and spectral gaps, provide detailed insights into whether a 
given control strategy will induce synchronization, to what degree and 
at what rate. 

5. Simulations 

5.1. Influence of parameters on system behavior 

Consider =N 200. To obtain the -matrix, the average heating and 
cooling rates in (4) and (5) are computed using =P 14 kW, R = 2 ∘C/ 
kW, =C 10 kWh/∘C, = 20set ∘C and = 32amb ∘C [3] (unless specified 
otherwise). A 2 ∘C dead-band is assumed. Then, the A matrix is obtained 
from using (8). Matrix B for market-based switching is calculated 
using bclr and for randomized switching (RS) using f on and f off . 

To study how system behavior changes under market-based 
switching with changes in TCL parameters, three cases are considered,  

(a) τ = 30 min and =b N0.8 ,clr

(b) τ = 10 min and =b N0.8 ,clr

(c) τ = 30 min and =b N0.5clr . 

For cases (a)–(c), we vary θamb from 21 to 40 ∘C. For each θamb, we 
compute α0 and α1, construct the A-matrix, and apply B to obtain (see  
(11)). For case (a), the changes in real and imaginary parts of the ei
genvalues are shown in Figs. 4 and 7, as a function of |α0/α1| (which 
changes due to changing θamb). Similarly, for case (b), the changes in 
real and imaginary parts of the eigenvalues are shown in Figs. 5 and 9, 
and for case (c), in Figs. 6 and 9. 

In case (a), we observe that as |α0/α1| increases, an eigenvalue of 
value 1 emerges. For these parameter values, if this second mode is 
excited by the initial conditions x0, it will introduce sustained oscilla
tions about the steady-state distribution c1v1 described by the first 
mode. Only when the initial conditions x0 do not have a component in 
the direction of the eigenvector v2 of the second mode, i.e. =c 02 in  
(15), will the bins converge to the steady-state distribution. From  
Figs. 7–9, we also notice how the imaginary parts of the eigenvalues 
disappear when |α0/α1| approaches 1, indicating structural changes in 
the system behavior. 

Fig. 13 shows the values of the synchronization index Ŝ (given by  
(26)) for cases (a)–(c). Additionally, for case (a), Fig. 14 shows the 
individual indices (S1, S2, S3). In case (a), with = 30 min, we observe 
that Ŝ generally increased with increasing |α0/α1|. While S1, which 
indicates the maximum TCL concentration in a single bin, did not vary 
considerably, the values of S2 and S3, indicating the bin spread and bin 
ranges, showed some increase as |α0/α1| increased. From Figs. 13 
and 14, it is confirmed that Ŝ effectively captures the behavior of the 

Fig. 4. Real parts of eigenvalues as a function of |α0/α1| in case (a).  
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individual indices without being overly sensitive to changes in any 
single index. These indices thus enable us to rapidly quantify syn
chronizing behavior in TCL ensembles without resorting to visual in
spections of the steady-state distributions (Figs. 10–12). 

In cases (b) and (c), |λi| < 1 for ∀i > 1. Hence, unlike in case (a), xk 

will always converge to the steady-state given by c1λ1. From Fig. 13, 
observe that Ŝ remains relatively constant. This is because with 

= 10 min, the TCL distributions remain synchronized around bclr (also 
see Fig. 11). In case (c), however, with = 30 min and =b N0.5 ,clr TCLs 
can propagate further away from bclr, hence the value of Ŝ remained 

low (see Fig. 12). While in case (a), τ was also 30 min, bclr was close to 
the temperature boundary, hence temperatures did not propagate fur
ther away from bclr since TCLs reaching the boundary within τ switched 
their on/off states. Finally, it was observed that for case (b), the peak 
value of the spectral radius (1 | |)2 was at 0.35 (when =| / | 10 1 ), 
much higher than 0.13 observed for cases (a) and (c), suggesting faster 
convergence to the synchronized state for case (b). 

Comparing cases (a)–(c), it can be summarized that when bclr lay 
near the temperature boundaries and when τ was relatively small, the 
tendency to synchronize remained relatively higher. These simulations 
thus show how the synchronizing behavior of TCL ensembles under 

Fig. 5. Real parts of eigenvalues as a function of |α0/α1| in case (b).  

Fig. 6. Real parts of eigenvalues as a function of |α0/α1| in case (c).  

Fig. 7. Imaginary parts of eigenvalues as a function of |α0/α1| in case (a).  

Fig. 8. Imaginary parts of eigenvalues as a function of |α0/α1| in case (b).  

Fig. 9. Imaginary parts of eigenvalues as a function of |α0/α1| in case (c).  

Fig. 10. Steady-state distribution as a function of |α0/α1| in case (a).  
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market-clearing can be efficiently captured by analyzing the impact of 
varying bclr, τ and |α0/α1| using the proposed eigenmode based tech
niques. 

Next, we performed a similar analysis for randomized switching 
(RS) based coordination. A fraction of TCLs in each bin are asked to 
periodically increase and subsequently decrease power consumption, 
where each increase or decrease phase lasts for T minutes. Three cases 
are considered, 

= = =
= = =

= = =

f f T
f f T
f f T

(i) 0.001, 0.001, 5 min,
(ii) 0.001, 0.001, 10 min,
(iii) 0.0001, 0.0001, 5 min.

on off

on off

on off

First, Bon is constructed using f on and Boff using f off . Then, the 
evolution of xk is captured by = B A B A( ) ( )T Ton 60 off 60 and 

= B A B A( ) ( ) ,T Toff 60 on 60 where τ is set to 1 s. The resulting 

synchronization indices are shown in Fig. 15. The indices were much 
higher for small values of |α0/α1|. This suggests, when θamb is low, α0 is 
much smaller than α1 (cooling rate is much faster since heating is slow 
due to low ambient temperature). Thus, under a symmetric and fixed 
up-down power request signal, the TCL temperatures may become 
highly synchronized, under which TCLs would undergo fast cycling. In 
case (ii), with longer time duration of T = 10 min, this was even more 
severe. The synchronization level was slightly lower in case (iii) due to 
f on and f off being smaller. Finally, given the same |α0/α1| values, the 
value of the spectral radius was highest (around 0.33) in case (ii), 
suggesting faster convergence to the synchronized state than in cases (i) 
or (iii). While we showed the effectiveness of the eigenmode analysis 
technique for a simplistic case of RS-strategy, the approach can be ex
tended to study and identify critical cases pertaining to more advanced 
controllers [7,21]. 

5.2. Dominant modes and convergence 

In (16), with eigenvalues ordered according to their magnitude, the 
first few modes are often referred to as the dominant modes. We chose 
x0 to be uniformly distributed over =N2 100 bins. Then, we simulated 
to obtain xk at = …k 0, 1, , 5. In Fig. 16, we compared the actual xk 

against different number of modes summed to give approximations at 
=k 5. In this case, just the first and second modes were sufficient to 

obtain almost the exact distribution, whereas using just the first mode 
resulted in some error. The evolution in the ith mode’s weights, i.e. 

=w ci i i
k is shown in Fig. 17 for the first 6 modes, with = 11 and 

= 0.872 . We see that the evolution in the 2nd mode’s weight is os
cillatory and does not die out rapidly, hence is important to consider. 
Additionally, since many of the eigenvalues have negligible values, 
their contributions are also negligible. Therefore, modal analysis and 
modal coordinates may provide significant computational advantages 
compared to simulating TCL dynamics using 2N × 2N matrices. This is 
a topic of future research. 

5.3. Bounds on aggregate power consumed 

For a variety of control signals, the variations in output power can 
also be found using the eigenmodes. Assume TCLs are coordinated 
based on price signals in a double-auction market [6]. We applied 
periodic step changes in price signals, by varying bclr, and observed 
different forms of oscillations in aggregate demand. Fig. 18 shows how 
a periodic price signal with small step changes induced large amplitude 
oscillations in the aggregate demand. The variations at resets matched 
the predicted value of 0.83 obtained via the method described in  
Section 3.3. Similarly, more complex signals can be constructed and 
variations in aggregate TCL power (at resets) can be obtained. 

Fig. 11. Steady-state distribution as a function of |α0/α1| in case (b).  

Fig. 12. Steady-state distribution as a function of |α0/α1| in case (c).  

Fig. 13. Comparing the synchronization index values for cases (a)–(c) under market-based coordination.  
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Fig. 14. Individual synchronization index values (S1, S2, S3) for case (a) under market-based coordination.  

Fig. 15. Comparing the synchronization index values for cases (i)–(iii) under randomized switching signals.  

Fig. 16. At time period =k 5, actual TCL distribution (dashed line) vs. approximate distributions obtained using only 2 modes (solid line), only 1 mode (dotted line).  

Fig. 17. Evolution in modal weights at discrete time intervals.  

Fig. 18. Large fluctuations in demand induced by a periodic price signal (mapped to bclr).  
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6. Conclusions 

This paper presents an analytical framework to explore conditions 
under which temperature synchronization of TCLs may appear and 
large oscillations in aggregate demand of load ensembles may emerge. 
We show that eigen-structure analysis can (i) identify whether syn
chronization will appear, and (ii) determine the rate at which it would 
appear. To accomplish this, the dynamics of a controlled TCL popula
tion, under a given strategy, is expressed using a reset-based hybrid 
system. This allows us to study behavior as a parameter-dependent ei
genvalue problem. The eigenvalues and steady-state distributions of the 
discretized system explain whether the control will induce synchroni
zation. Under priority- or market-based control and randomized 
switching, we have shown that control parameters and update intervals 
can influence periodic behavior, synchronization, and/or damping of 
oscillations. The spectral gap of the transition matrix was used to es
timate the convergence rate. The insights developed here can be used to 
quickly assess benefits and limitations of control techniques. Future 
work can involve comparing other control techniques and considering 
additional operational constraints such as lockouts. 
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