Theme Article: Top Picks

MAESTRO: A Data-Centric

AP
Re
a

nroach to Understand
use, Performance, and
rdware Cost of DNN

Mappings

Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer and Angshuman Parashar
Vivek Sarkar, and Tushar Krishna NVIDIA Corp
Georgia Tech

20

Abstract—The efficiency of an accelerator depends on three factors—mapping, deep
neural network (DNN) layers, and hardware—constructing extremely complicated design
space of DNN accelerators. To demystify such complicated design space and guide the
DNN accelerator design for better efficiency, we propose an analytical cost model,
MAESTRO. MAESTRO receives DNN model description and hardware resources
information as a list, and mapping described in a data-centric representation we propose
as inputs. The data-centric representation consists of three directives that enable
concise description of mappings in a compiler-friendly form. MAESTRO analyzes various
forms of data reuse in an accelerator based on inputs quickly and generates more than 20
statistics including total latency, energy, throughput, etc., as outputs. MAESTRO’s fast
analysis enables various optimization tools for DNN accelerators such as hardware design
exploration tool we present as an example.

Digital Object Identifier 10.1109/MM.2020.2985963
Date of publication 22 April 2020, date of current version 22
May 2020.

0272-1732 © 2020 IEEE Published by the IEEE Computer Society 1IEEE Micro

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

7D DNN Layer

P
CONV N

X. = N

Filter Input
Weight Activation

K

Output
Activation

Data / Computation Tiling

MAESTRO

Abstract HW - Access Counts

(Energy)
Izl - Size Req.

Buffer
Analysis

2]
o
<3
ol
@
c
ES
<

Data Reuse
Analysis Engine

- Max BW REQ.
- # of Traversals

Number: Tile IDs

la??zgﬁ P, 3
= g wir S

X
Output Tiles

Tile Scheduling

Filter Tiles Input Tiles

t=1 Time--.

»

Performance - Bottleneck Point
Analysis Engine NoC

Analysis

HW Resources DNN Model

Buffer - Throughput
Analysis Engine - Latency

Mapping
4

Spatial Partitioning

Performance

Mapping
(a)

Analysis

(b)

Figure 1. High-level overview of mapping a high-dimensional DNN layer (CONV2D in this figure) to an
accelerator with 2-D PE array. Note that tile scheduling also needs to be done within spatial partitioning; we omit
it for simplicity. (a) An Overview of Mapping CONV2D to an Accelerator. (b) High-level Tool flow of MAESTRO.

B Deep NeuraL NETwork (DNN) inference accel-
erators achieve high performance by exploiting
parallelism over hundreds of processing ele-
ments (PEs) and high energy efficiency by maxi-
mizing data reuse within PEs and on-chip
scratchpads.!™ The efficiency (performance and
energy efficiency) of a DNN accelerator depends
on three factors depicted in Figure 1: 1) the
workload (DNN layers), 2) the amount and type
of available hardware resources (hardware), and
3) the mapping strategy of a DNN layer on the
target hardware (mapping). That is, we can pre-
dict the efficiency (latency, energy, buffer
requirement, etc.) of an accelerator when we
have full parameters for those three factors,
which can guide the DNN accelerator design for
better efficiency. One critical requirement on the
efficiency estimation is that it needs to be fast
since the design space (e.g., 480 million valid
designs in our hardware DSE even if we fix the
target mapping and layer) is huge, and we need
to query the efficiency of candidate designs in
the search space when we search for an optimal
design. How do we implement such a fast effi-
ciency estimation framework that thoroughly
considers all the parameters of the three
factors that determine the efficiency of DNN
accelerators?

Such demands led to the development of an
analytical cost model instead of cycle-accurate
simulators. Analytically, modeling the complex
high-dimensional DNN accelerator design space
over the three factors (DNN layer, hardware, and

May/June 2020

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

mapping) is challenging because it requires
deep understanding of complex interaction of
hardware components, mapping, and DNN
layers. In particular, data reuse in scratchpad
memory hierarchy in DNN accelerators is one of
the key behaviors, which is critical for energy
efficiency, thus the prime optimization target of
DNN accelerators. Data reuse pattern is dictated
by dataflow,! which are data/computation tile
scheduling and spatial partitioning strategies
without actual tile size as described in Figure 1
(a). To systematically and analytically model the
data reuse for DNN accelerators’ efficiency esti-
mation, we need a precise and thorough descrip-
tion of mapping and a framework to analyze data
reuse of a mapping on target hardware and the
DNN layer.

Therefore, we propose a data-centric repre-
sentation of mapping that enables precise
descriptions of all the possible mappings in a
concise and compiler-friendly manner. Leverag-
ing the compiler-friendly format, we develop
MAESTRO, a comprehensive cost-benefit analy-
sis framework based on systematic data reuse
analysis. As shown in Figure 1(b), MAESTRO
receives the three factors—DNN layer, hard-
ware, and mapping—as inputs and generates
more than 20 estimated statistics including
latency, energy, the number of buffer accesses,
buffer size requirement, etc. We validated the
performance statistics of MAESTRO against
cycle-accurate RTL simulation results® and
reported performance in a previous work® with

Top Picks

Table 1. The taxonomy of data reuse in DNN accelerators and
implementation choices for each. We highlight implementation used
in the example reuse patterns with red texts.

Data ReuseTaxonomy E . Available
Reuse Type |Comm. Type| Reuse Pattern in HW HW Impmliementation Choices
PEs
. . q D ... GBM PE | PE @ PE @ PE |
Multicast L —— _ _____ PE
g
El .. qln Store-and-Fwd
Spatial E - » Fanout (e.g., Bus, Tree) (e.g., Systolic Array
Across PEs)
Pt e
. ES GBM
Reduction e El m=E3E
g Fanin Store-andFwd
= (e.g.,Reduction Tree) |(e.g., Systolic Array)
3
Multicast GBM M Buf MAC
g
£ Multiple reads from a buffer
Temporal F P
(Over Time)
3
Reduction GBM Buf MAC
o
.E Multiple read-modify-write to a buffer

[A] nputFilter Tile Index [1] Output Tile Index

22

the accuracy of 96.1% on average. MAESTRO pro-
vides fast cost-benefit estimation based on an
analytical model, which took 493 ms to analyze
the entire Resent50 layers’ on a 256PE NVDLA-
style? accelerator on a laptop with i9-9980H CPU
with 16 GB of memory. MAESTRO supports
arbitrary layer sizes and a variety of layer opera-
tions from state-of-the-art DNN models, which
includes CONV1D, CONV2D, fully connected (FC)
layer, depthwise separable convolution, up-scale
convolution, etc.

DATA REUSE IN DNN
ACCELERATORS

Data reuse is the key behavior in DNN acceler-
ator that improves both latency and energy via
reducing the number of remote buffer accesses
(i.e., global buffer),!® which is determined by
dataflow. Data reuse opportunities exist when
the dataflow assigns the same set of data tiles
over consecutive time on the same PE (i.e., reuse
in time) or across multiple PEs but not over con-
secutive time (i.e., reuse in space). We define
those opportunities as temporal and spatial
reuse opportunities. For example, in the example
dataflow in Figure 1, output tiles (orange tiles)
remain the same in time 0 and 1, which implies
the temporal reuse opportunities. Within time 1,
as the spatial partitioning example in Figure 1

shows, input tile 3 is mapped on all the PEs,
which implies the spatial reuse opportunities.

Dataflow implies data reuse opportunities,
and we can categorize data reuse in DNN acceler-
ators into four types (data reuse taxonomy),
which we summarize in Table 1. Each data reuse
type requires proper hardware support to
exploit the data reuse opportunity as actual data
reuse. We discuss those four reuse types
grouped in communication type as follows:

Spatial/Temporal Multicast. When the spa-
tial/temporal reuse opportunities are in input
tensors (i.e., filter and input activation), the
reused data can be multicasted to multiple PEs
(spatial reuse) or over time (temporal reuse).
The examples in Table 1 show such a pattern
based on fanout NoC (spatial multicast), which
delivers data to multiple PEs at the same time,
and buffer (temporal multicast).

In the spatial multicast example, tiles 1 and 2
are delivered to PE1 and PE2 at the same time
leveraging the multicast capability of fanout
hardware. Alternatively, store-and-forward style
implementation such as systolic arrays is avail-
able with tradeoff of hardware cost and latency.
In the temporal multicast example, the same
data tile appears over time in the same PE (PE1).
That is, we send the data to the future for reuse
in the future (i.e., store the data in a buffer and
read it in the future). Therefore, temporal multi-
cast, which is reading the same stored data over
time, requires a buffer, as shown in Table 1.

Spatial/Temporal Reduction. When the spa-
tial reuse opportunities are in the output activa-
tion tensor, the reuse pattern in hardware is
spatial reduction, which accumulates partial out-
puts (or, partial sums) for an output across multi-
ple PEs. The example in Table 1 shows an
example reuse pattern based on store-and-for-
ward hardware. We observe that the output tiles
1 and 2 are moving to the next PE over time,
which illustrates pipelined accumulation to the
right direction assuming that PEs are receiving
new operands from above (i.e., a row of a systolic
array). Alternatively, fanin hardware such as
reduction tree can support the spatial reduction.

In contrast, the temporal reuse opportunities
imply that we compute partial sums over time
and accumulate them within the same location.
This type of reuse requires a buffer since

IEEE Micro

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

Slide Slide
I s () s
S=6 X=11 X'=9
Filter Input Output

o0 000000
Time = 0Time = 1Time = 2

for(ints=1;s<=6; s++)
for(int x’ = 1; X" <= 9; X'++)
PartialSum[x’][s] = Weight[s] * Input[x’+s]

Each point is a partial sum
® ® 0 00 00 0 o

®eeo 0000000 0

Time = 0 Time =1 Time = 2, Each point is data

r's

[

Output

Time=0 Time=1 Time=2

Global Buffer

I

Input

Output[x’] += PartialSum[x’][s] 0

<Computation Space>

(a) An Example CONV1D Operation

e o oo o oo o o
@ e ol e oo oo ‘TJ oia
ime = 0,1,
e o oje o o0 o o LD [eeele ® @
=

0 Filter s
<Data Space>

(b) An Example Mapping of CONV1D

<Target Accelerator>

Figure 2. Example CONV1D operation and mapping of the example on an accelerator. We represent the
mapping in both computation and data space, where each point corresponds to a partial sum and a data,

respectively. We use 1-based indices in this example.

intermediate results need to be stored and read
again in the future, which effectively indicates
multiple read-modify-write to a buffer. The exam-
ple in Table 1 shows such a reuse pattern, where
the output tile 1 appears at the same PE over
time.

To identify the reuse opportunities in arbi-
trary mappings, we need a precise representa-
tion of mapping and systematically infer data
reuse from the description. For those two
goals, we present a data-centric representation
of mapping, which is concise and compiler
friendly.

DESCRIBING MAPPINGS

We use a CONVID operation described
in Figure 2 as an example operation to introduce
our mapping description. As described
in Figure 2, CONVID operation can be under-
stood as a sliding window operation of a filter
vector on a input vector, where individual multi-
plication results within a filter window are accu-
mulated to generated one output value in the
output vector. When we project the loop indices
in the loop nest in Figure 2(a), we obtain compu-
tation space in Figure 2(b) where loop indices
are on each axis, and partial sums are projected
in the plane. We also construct data space of
each vector as shown in Figure 2(b), where the
corresponding data index is on the axis. Note
that the data index is not the same as the loop
index (e.g., the input data index x is computed
using loop indices x'+s). Therefore, we denote
data indices using underlined index in this exam-
ple. Note that output and filter indices X’ and s
are identical to the loop indices x’' and s in this
simple example operation.

May/June 2020

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

We show an example of mapping on three-PE
accelerator in computation and data space
in Figure 2(b). In this example mapping, we map
three partial sum computation to each PE, and
each PE collaboratively compute partial outputs
(accumulated partial sums) on the same set of
outputs. When the PE array finishes computa-
tion in a tile (time=0 in the example), the PE
array the next computation tile
(time=1 in the example). The next computation
tile is in the direction of loop index x’. We project
the same mapping on the data space as shown
in Figure 2, using the array subscripts in the
loop nest of CONVID operation in Figure 2(a).
That is, partial sum at (x,’ s) requires weight at s,
input at x'+s, and output at x,’ as shown in the
loop body of in Figure 2(a). In the example, we
observe that the data space explicitly shows
data reuse behavior; mapped filter values do not
move over time, which implies that the example
mapping is based on a weight-stationary style
dataflow. This implies that inferring data reuse
can be significantly simplified when we describe
mapping in the data space, which can facilitate a
fast analysis framework of DNN accelerator’s
efficiency.

Motivated by the observation, we introduce
data-centric mapping directives that directly
describe the mapping in data space.

receives

Data-centric mapping directives

We introduce three data-centric mapping
directives in Figure 3(a). Temporal and spatial
map directives describe data mapping that
changes in time and space (PEs), respectively.
That is, temporal map corresponds to a normal
for loop in loop nest while spatial map corre-
sponds to a parallel for loop. Those two mapping

24

Top Picks

| - TemporalMap (Mapping size = int, Temporal Offset = int) Dim - SpatialMap (Mapping size = int, Spatial Offset = int) Dim

- Cluster (Cluster size = int)

(a) The Syntax of Data-centric Directives

Mapping Directive Mapping Size

Overall Mapping

Offset Mapping Dimension Description

Data Mapping

* Does each PE receives the same
to Describe

(temporal mapping) or different
(spatial mapping) set of data?

How many data points
each PE receives?

How does the mapping
updated over time or

Resulting Data
Mapping Description | Which dimension changes
faster? (Order of updates)

What is the data
dimension we describe
space? the mapping on?

Time = 0 Time =1 Time = 2

TemporalMap Mapping size = 3
>

Orp-5fs: +3 Output x

Temporal Offset = 3

g Slower

1,1s

Output (X') TemporalMap (3,3) X

Time = 0,1,2 Time = 3,4,5 (Sp-folding;
e eee e e

SpatialMap
o >
0sp-ofs: +1 Filter s

Mapping size = 1

Spatial Offset = 1

TemporalMap (3,3) X’
Filter (S) SpatialMap (1,1) S Faster

(b) A Process to Determine Data-centric Mapping Description

Change
Directive
Order

—Nw#mmm

SpatialMap (size=1, ofs=1) S TemporalMap (size=3, ofs=3) X’

TemporalMap (size=3, ofs=3) X’ SpatialMap (size=1, ofs=1) S

‘ Weight-Stationary ‘ ‘ Output-Stationary

Change
Spatial
Dimension

5
I
- PEO .« . - PEO
T23456X%

Process Flow

PEO

(/]

Change Mapping
Size / Offset

= NWh U0

2 3 456Y%
SpatialMap (size=3, ofs=3) X’ SpatialMap (size=1, ofs=1) X’

TemporalMap (size=1, ofs=1) S TemporalMap (size=3, ofs=3) S

Output-Stationary Output-Stationary ‘

(c) The Impact of Changes in Mapping Description

Figure 3. Introductory example of data-centric directives. (a) Syntax of data-centric directives. (b) Semantics
of two mapping directives based on an example description process on the example CONV1D mapping
in Figure 2. (c) Capability of data-centric mapping directives that can describe a variety of mapping styles.

directives take three parameters: Mapping size,
offset, and dimension. The mapping size speci-
fies the number of data points (in tensors, map-
ping size in the target dimension since a
mapping constructs a high-dimensional volume)
mapped on each PE. The offset describes how
the mapping is updated over time on temporal
map and space on spatial map. Cluster directive
specifies the hierarchical organization of PEs,
which enables us to explore multiple parallel
dimensions in a mapping.

To understand the syntax and semantics of
data-centric mapping directives, in Figure 3, we
provide an example process to determine a cor-
responding data mapping description of the
example mapping in Figure 2(b). We omit the
input tensor because input tensor data mapping
can be easily inferred from the mapping of out-
put and filter. We first determine if the mapping
is in time or space by checking the mapped
data are the same or different (i.e., paralleliza-
tion) across PEs. Next, we check the number of
data points mapped on each PE to determine
the mapping size, which are three and one for
output and filter, respectively, in the example.
To determine the offset parameter, we check
the temporal and spatial offset on temporal and
spatial map, respectively. For example, for

output vector in Figure 3(b), we observe that
the starting index of mapping changes over
time 3, which implies that the temporal offset is
3. For filter vector, we observe that the starting
index of mapping for each PE changes by 1,
which implies that the spatial offset is 1. Note
that spatial map can also involve temporal
aspect as the mapping on the filter vector
in Figure 3(b); after processing all the computa-
tion that involves the first data tile on filter, the
data tile will move on to the next position. This
happens when the number of PEs is not suffi-
cient to cover entire spatially mapped dimen-
sion (also known as spatial folding), and an
implicit temporal offset of (spatial offset) x
(number of PEs) is applied. Finally, we write the
dimension on which we describe the data map-
ping, then we obtain the data-centric mapping
description of each data mapping, as shown in
the resulting data mapping description column
in Figure 3(b). To specify the entire example
mapping, we need to specify the order of
changes in data tile between output and filter
vectors. Since filter is updated in a slower man-
ner, we place the data mapping description of
filter above, and write that of output below, like
we specify the update order in loop nest (outer-
most loop index changes slower).

IEEE Micro

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

Capability of Mapping Directives

Using the data-centric directives, we can
describe a variety of mappings if it maps con-
secutive data points in a regular manner (i.e.,
affine loop subscripts when described in a
loop nest representation). Figure 3(c) shows
the capability of the data-centric directive by
showing the changes in the resulting mapping
when we update the base representation we
obtained in Figure 3(b). When we change the
directive order, we describe a different order
of data tile update in dimensions. This effec-
tively changes the stationary vector from
weight to output, which changes the temporal
data reuse opportunities. When we change the
spatial dimension, then we exploit the parallel-
ism in a different dimension, as the third exam-
ple in Figure 3(b) and (c) shows. Finally, if we
change the mapping size (we accordingly
update the offset to keep the description
legal), we change the amount of mapped filter
and output, as shown in Figure 3(c) and (d).

Based on the fact that data reuse is explicit
in data dimension and the capability of data-
centric directives, we implement an analytical
cost-benefit analysis framework for DNN accel-
erators, MAESTRO. We discuss a high-level
overview of MAESTRO next and discuss
insights from the case studies we performed
based on MAESTRO next.

ANALYTICAL COST MODEL

Based on the data-centric directives we dis-
cussed, we built a cost-benefit analysis frame-
work that considers all of the three factors—
DNN layers, hardware, and mapping—with pre-
cise modeling of data reuse. MAESTRO consists
of five preliminary engines: Tensor, cluster,
reuse, performance analysis, and cost analysis.
In the article, we focus on the high-level idea
without details such as edge case handling, mul-
tiple layers, and multiple level hierarchy, etc. We
present implementation details in our web page
and open-source repository.” We validated
MAESTRO'’s performance model against RTL sim-
ulation and reported processing delay of two
accelerators—MAERI® and Eyeriss® when

*https://maestrtxece.gatech.edu/

May/June 2020

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

running VGG16 and AlexNet, respectively. The
latency estimated by MAESTRO are within 3.9%
absolute error of the cycle-accurate RTL simula-
tion and reported processing delay® on average.

CASE STUDIES

With MAESTRO, we perform deeper case
studies about the costs-benefit tradeoff of vari-
ous mappings when applied to different DNN
operations. We evaluate five distinct mapping
styles listed in Figure 4(a) in the “Case Study [:
The Impact of Mapping Choices” section and the
preference of each mapping to different DNN
operators. For energy estimation, we multiply
activity counts with base energy values from
Cacti'® simulation (28 nm, 2 kB L1 scratchpad,
and 1 MB shared L2 buffer). We also present dis-
tinct design space of an early layer (wide and
shallow) and a late layer (narrow and deep) to
show the dramatically different hardware prefer-
ence of different DNN layers and mapping in the
“Case Study II: Hardware Design-Parameters and
Implementation Analysis” section.

Case Study I: The Impact of Mapping Choices
Figure 4(b) shows the DNN-operator granu-
larity estimation of latency and energy of each
mapping across five state-of-the-art DNN models
listed in the “Case Studies” section. Note that
this should be considered a comparison of map-
ping—not of actual designs, which can contain
several low-level implementation differences,
e.g.,, custom implementations of logic/memory
blocks, process technology, etc. We observe
that KC-P style mapping provides overall low
latency and energy. However, the energy effi-
ciency in VGG16 is worse than YR-P (Eyeriss'
style) mapping, and the latency is worse than
YX-P (Shidiannao'* style) mapping in UNet. This
is based on the different preference toward map-
ping of each DNN operator. YX-P provides short
latency to segmentation networks like UNet,
which has wide activation (e.g., 572 x 572 in the
input layer) and recovers the original activation
dimension at the end via up-scale convolution
(e.g., transposed convolutions). Such a prefer-
ence to the YX-P style is mainly based on its par-
allelization strategy: It exploits parallelism over
both of row and column dimensions in

https://maestro.ece.gatech.edu/

Top Picks

TemporalMap (Sz(R),1) Y
SpatialMap (Sz(S),1) X

- Input column (X)

Partitionin, . - Partitionin . -
9 Mapping Characteristics 9 Mapping Characteristics
Strategy Strategy
TemporalMap (1,1) K - Large spatial reduction
TemporalMap (Sz(R),1) Y opportunities (High output TemporalMap (2,2) C - High temporal reuse of input
C-Partitioned TemporalMap (Sz(S),1) X activation reuse) TemporalMap (2,2) K ‘activation and filter
(C-P) TemporalMap (Sz(R),Sz(R) R - Low input activation/filter reuse ?Daﬂa'Mm (&ge),;)\{ M - Spatial reduction opportunities
TemporalMap (Sz(S),S2(S) S - Input channel (C) parallelism YR-Partiioned | Jemporaiap Gz X (spatial reuse of output activation)
SpatialMap (1,1) C - No local reuse R-P) emporalMap (S2(R), S2(R) - Activation row () and filter
(VReP) TemporalMap ($(5),52(S) S column (S) ariill)ehsm
E:Eg:::mgs g};é |- High temporal reuse of filter gNS‘?e;"(V?Z(R(): oy i Row-stationr;ry
g atialMa
X-Partitioned | TemporalMap (Sz(R),Sz(R) R | Spatial reuse opportunities ShatialMap (1.1) R - Motivated by Eyeriss [1]
P) TemporalMap (S2(S),52(S) S (via halo in input activation) P p (1

- Weight-stationary

YX-Partitioned

TemporalMap (1,1) K
SpatialMap (Sz(R),1) Y
TemporalMap (8+Sz(S)-1
TemporalMap (1,1) C

,8) X

- High temporal reuse of filter

|- Better spatial reuse opportunities
over X-P (via 2D halo in input
activation)

KC-Partitioned
(KC-P)

SpatialMap (1,1) K
TemporalMap (64,64) C
TemporalMap (Sz(R),Sz(R)) R
TemporalMap (Sz(S), Sz(SJ)
TemporalMap (Sz(R)))Y

- Spatial reuse of input activation

- High spatial reduction factor
(64-way) on input channel (C)

I Input/output channel

| (C and K) parallelism
(YX-P) mgg:mgg gig}gﬂg}s | 2D activation (X and) parallelism g‘;’gg,’g%‘ap SzS X - Weight-stationary
Cluster(8) ' - Output-stationary SpatialMap (1,7) C - Motivated by NVDLA [2]
i (Sz(S),1) X |- Motivated by Shi-diannao [14]
(a) Mappings Used in Case Study |
[Legend B Early Layer B Late Layer B Point-wise [] Residual [FC [] Depth-wise [Aggregated Residual] Transposed
> — 300M
g9 600M'
E 3 200M 200M' ng
T 3 100M 200M‘ .
e 20M
Mani N | o] e 2 -._ L1 L
apping === CP XP YXP YRP KoP OGP XP YXP YRP KGP CP XP VXP YRP KcP °cP XP YXP YRP KCP °CP XP YXP YRP X

P vxP YRP KCF Adaptwe

60
> 150
i< I I ""’Il III I ml
;2= -
w o .-—- e -- o | [— o | eap—
Mapping —ﬂ CcP XP VXP VRP KCP CP XP XP YXP YRP KCP XP _YXP YRP KCP CP XP VXP YRP KCP CP XP YXP YRP KCP Adaptive
Resnet 50 ResNeXt MoblleNetV2 Average
(b) Case Study I The Impact of Mapping Choices on Latency and Energy
#of PEs 8 M| T Il T T I 152 % [Proudhput Opimized Design
° S o= Energy-Optimized Design
- Area Constraint
o g i% ié *. Design|
oz 539 80 Points| Small No No Spatial
39 g. 5 % % Config Reference . " N
£ >20 G S 20 tat
>°> 50 % =, 6 s 100 125 140 O & Stats
g 6150 — Area Constraint 150 Number of
& g £3w 100 e 56 56 56 56
©
gzl" =" e
: o
Sos 0 B 10 © N i d? Bandwidth 40 24 40 40
rmalized Energy (GBps)
Area (mm? Buffer (KB
(mm?) uffer (KB) (16 X MAC Energy) o
<The Design Space of an Accelerator using KC-P Mapping> 58 Yes Yes No Yes
R 50 Area Constraint 1 5 0 Spatial |20
©g 40‘ w0 s . Reuse
F4 — 30 4 30 30 S rt| £
g o] 592 20 20 eeert & Yes Yes Yes No
SO 2o 10‘ - e 10 Sl 10 L4
\-g,s‘ o 4 6 8 10 12 14 1 0020 40 60 8 100 120 140 00 20 40 60 8 100 120
3N Area Constraint = Throughput
239w vea Constrint -} w - o Acag | 48.6 34.54 33.39 32.05
ez £ ‘Et 12 e 12| T 12 iy
oz S = 8 e o S 8 S = E
[oXs] —————— : i e 5.26 5.6 7.56 7.77
>0 —~— 4}‘0 2 4 & 8 10 12 14 ¢ 0 20 40 60 80 100 120 140 ‘ﬂ 5 10 15 20 25 30 BACMACE]

Area (mm?)

<The Design Space of an Accelerator using YR-P Mapping>
(c) Case Study II: Design Space Characterization

Buffer (KB)

Normalized Energy

(10° X MAC Energy)

(d) Example Design Points of KC-P Mapping-
based Accelerators on VGG16-CONV2

Figure 4. Summary of case studies. (a) List of mappings used in case study |. (b) Results of the case study I.
Top and bottom rows present latency and energy, respectively. We apply 256 PEs and 32 GBps NoC

bandwidth. We use five different DNN models: Resnet50,” VGG 16,° ResNeXt50,'° MobileNetVv2,'" an

d

UNet. "2 The right-most column presents the average results across models for each DNN operator type and
the adaptive mapping case. We compare the number of input channels and the input activation height to
identify early and late layers (If C >, late layer. Else, early layer). (c) Design space of KC-P and YR-P-based
accelerators. We highlight the design space of an early and a late layer to show their significantly different
hardware preference. We apply area/power constraints based on Eyeriss® to the DSE. The color of each data
point indicates the number of PEs. We mark the throughput- and energy-optimized designs using stars and
crosses. (d) The impact of multicast capability, bandwidth, and buffer size. Design points are selected from
the upper-most design space in (c). The name of design points refer to the differences from the throughput-
optimal reference point. Dark rows represent the efficiency of the selected design point.

activation. The energy efficiency of YR-P map-
ping in VGGI16 is based on its high reuse factor
(the number of local accesses per fetch) in early
layers. The YR-P mapping has 5.8x and 15.17x
higher activation and filter reuse factors, respec-
tively, in early layers. However, in late layers,
the reuse factors of YR-P and KC-P mapping are

26

almost similar (difference <11%), so the KC-P
mapping provides similar energy efficiency as
YR-P in these cases. This can also be observed in
the late layer (blue) bars in Figure 4(b) bottom-
row plots.

The diverse preference to mappings of differ-
ent DNN operators motivates us to employ

IEEE Micro

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

optimal mapping for each DNN operator type.
We refer such an approach as adaptive mapping
and present the benefits in the right-most col-
umn of Figure 4(b), the average case analysis
across entire models in the DNN operator granu-
larity. By employing the adaptive approach, we
could observe a potential 37% latency and 10%
energy reduction. Such an optimization opportu-
nity can be exploited by flexible accelerators like
Flexflow'® and MAERP® or via heterogeneous
accelerators that employ multiple subaccelera-
tors with various mapping styles in a single DNN
accelerator chip.

Case Study Il: Hardware Design-Parameters
and Implementation Analysis

Using MAESTRO, we implement a hardware
design space exploration (DSE) tool that
searches four hardware parameters (the number
of PEs, L1 buffer size, L2 buffer size, and
NoC bandwidth) optimized for either energy effi-
ciency, throughput, or energy-delay-product
(EDP) within given hardware area and power
constraints. The DSE tool receives the same set
of inputs as MAESTRO with hardware area/
power constraints and the area/power of build-
ing blocks synthesized with the target technol-
ogy. For the cost of building blocks, we
implement float/fixed point multiplier and adder,
bus, bus arbiter, and global/local scratchpad in
RTL and synthesis them using 28-nm technology.
For bus and arbiter cost, we fit the costs into a
linear and quadratic model using regression
because bus cost increases linearly and arbiter
cost increases quadratically (e.g., matrix
arbiter).

Using the DSE tool, we explore the design
space of KC-P and YR-P mapping accelerators.
We set the area and power constraint as 16 mm?
and 450 mW, which is the reported chip area
and power of Eyeriss.® We plot the entire design
space we explored in Figure 4(c). Whether an
accelerator can achieve peak throughput
depends on not only the number of PEs but also
NoC bandwidth. In particular, although an accel-
erator has sufficient number of PEs to exploit
the maximum degree of parallelism a mapping
allows, if the NoC does not provide sufficient
bandwidth, the accelerator suffers a communica-
tion bottleneck in the NoC. Such design points

May/June 2020

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

can be observed in the area-throughput plot
in Figure 4(c). YR-P mapping requires low NoC
bandwidth so it does not show the same behav-
ior as KC-P mapping. However, with more strin-
gent area and power constraints, YR-P mapping
will show the same behavior.

During DSE runs, MAESTRO reports buffer
requirements for each mapping and the DSE tool
places the exact amount buffers MAESTRO
reported. Contrary to intuition, larger buffer
sizes do not always provide high throughput, as
shown in buffer-throughput plots in Figure 4
(plots in the second column). The optimal points
regarding the throughput per buffer size are in
the top-left region of the buffer-throughput plots.
The existence of such points indicates that the
tiling strategy of the mapping (mapping sizes
in our directive representation) significantly
affects the efficiency of buffer use. We observe
that the throughput-optimized designs have a
moderate number of PEs and buffer sizes, imply-
ing that hardware resources need to be distrib-
uted not only to PEs but also to NoC and buffers
for high PE utilization. Likewise, we observe that
the buffer amount does not directly increase
throughput and energy efficiency. These results
imply that all the components are intertwined,
and they need to be well-balanced to obtain a
highly efficient accelerator.

We also observe the impact of hardware sup-
port for each data reuse type, discussed
in Table 1. Figure 4(d) shows such design points
found in the design space of KC-P mapping on
VGG16-conv2 layer presented in the first row of
Figure 4(c). The reference design point is the
throughput-optimized design represented as a
star in the first row of Figure 4(c). When band-
width gets smaller, the throughput significantly
drops, but energy remains similar. However, the
lack of spatial multicast or reduction support
resulted in approximately 47% energy increase,
as the third and fourth design points shows.

CONCLUSION

Fast modeling of cost-benefit space of DNN
accelerators is critical for automated optimiza-
tion tools since the design space is huge and
high dimensional based on hundreds of DNN
model, hardware, and mapping parameters. In

Top Picks

this article, we presented a methodology to
enable fast cost-benefit estimation of a DNN
accelerator on a given DNN model and mapping,
which consists of a compiler-friendly data-cen-
tric representation of mappings and an analyti-
cal cost-benefit estimation framework that
exploits the explicit data reuse in data space in
data-centric repre-
sentations. To ana-

Using MAESTRO, we
lytically estimate the

show that no single

costs and benefits,
we demystify data
reuse in hardware
and required hard-
ware support and
apply the observa-
tion into the ana-

mapping and no single
hardware is ideal for all
the DNN layers, which
implies the complexity
of the DNN accelerator
design space. Using
hardware design
space exploration

lytical cost-benefit
estimation frame-
work, MAESTRO.

Using MAESTRO,
we show that no sin-
gle mapping and no
single hardware is
ideal for all the
DNN layers, which
implies the complex-
ity of the DNN accelerator design space. Using
hardware design space exploration framework
we implemented using MAESTRO, we also show
that hardware features can significantly impact
the throughput and energy. Those cases show
that the capability of MAESTRO for various anal-
ysis problems on DNN accelerator design space.
In addition to the case studies we performed,
MAESTRO also facilitates many other optimiza-
tion (e.g., neural architecture search specialized
for a target accelerator, mapping search for a tar-
get accelerator, etc.) frameworks based on its
speed and accuracy, which will lead to broad
impact on various areas (DNN model design,
compiler, architecture, etc.) in the DNN accelera-
tor domain.

framework we
implemented using
MAESTRO, we also
show that hardware
features can
significantly impact the
throughput

and energy.

B REFERENCES

1. Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial
architecture for energy-efficient dataflow for
convolutional neural networks,” in Proc. Int. Symp.
Comput. Archit., 2016, pp. 367-379.

2. “Nvdla deep learning accelerator,” 2017. [Online].
Available: http://nvdla.org.

3. A. Parashar et al, “Scnn: An accelerator for
compressed-sparse convolutional neural networks,”
in Proc. Int. Symp. Comput. Archit., 2017,
pp. 27-40.

4. N. P. Jouppi et al, “In-datacenter performance
analysis of a tensor processing unit,” in Proc. IEEE
Int. Symp. Comput. Archit., 2017, pp. 1-12.

5. H. Kwon, A. Samajdar, and T. Krishna, “Maeri:
Enabling flexible dataflow mapping over DNN
accelerators via reconfigurable interconnects,” in
Proc. Int. Conf. Archit. Support Program. Lang. Oper.
Syst., 2018, pp. 461-475.

6. Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze,
“Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks,”
IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-
138, Jan. 2017.

7. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 770-778.

8. A. Parashar et al., “Timeloop: A systematic approach
to DNN accelerator evaluation,” in Proc. IEEE Int.
Symp. Perform. Anal. Syst. Softw., Mar. 2019,
pp. 304-315.

9. K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image
recognition,” in Proc. Int. Conf. Learn.
Representations, 2015. [Online]. Available: https://iclr.
cc/archive/www/doku.php%3Fid=iclr2015:accepted-
main.html

10. S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He,
“Aggregated residual transformations for deep
neural networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 1492-1500.

11. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.
Chen, “MobileNetV2: Inverted Residuals and Linear
Bottlenecks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 4510-4520.

12. O. Ronneberger, P. Fischer, and T. Brox, “U-net:
Convolutional networks for biomedical image
segmentation,” in Proc. Int. Conf. Med. Image Comput.
Comput.-Assisted Intervention, 2015, pp. 234-241.

13. N. Muralimanohar, R. Balasubramonian, and N. P.
Jouppi, “Cacti 6.0: A tool to model large caches,” HP
Laboratories, vol. 27, p. 28, 2009.

14. Z. Du et al., “Shidiannao: Shifting vision processing
closer to the sensor,” in Proc. Int. Symp. Comput.
Archit, 2015, pp. 92-104.

IEEE Micro

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

http://nvdla.org
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html

15. W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li,
“Flexflow: A flexible dataflow accelerator architecture
for convolutional neural networks,” in Proc. Int. Symp.
High Perform. Comput. Archit., 2017, pp. 553-564.

Hyoukjun Kwon is currently working toward the
Ph.D. degree in the College of Computing, Georgia
Institute of Technology. His research interest includes
communication-centric and flexible accelerator design
and modeling mappings on spatial accelerators. Kwon
received B.S. degrees in environmental materials sci-
ence and in computer science and engineering from
Seoul National University. He is a student member of
IEEE. Contact him at hyoukjun@gatech.edu.

Prasanth Chatarasi is a senior Ph.D. student
advised by Prof. Vivek Sarkar and Dr. Jun Shirako in
the School of Computer Science, Georgia Institute of
Technology. His research focuses on advancing
compiler optimizations for high-performance appli-
cations on general-purpose and domain-specific
parallel architectures. In the past, he focused on
enhancing traditional compilation techniques for
both sequential and explicitly parallel programs
for performance optimizations and debugging
on general-purpose architectures. Contact him at
cprasanth@gatech.edu.

Vivek Sarkar is a Professor and the Stephen Flem-
ing Chair for Telecommunications in the College of
Computing at Georgia Institute of Technology, where
he conducts research in multiple aspects of software
for parallel computing. He is a Fellow of ACM and
IEEE. Contact him at vsarkar@gatech.edu.

May/June 2020

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

Tushar Krishna is an Assistant Professor in the
School of Electrical and Computer Engineering,
Georgia Institute of Technology, where he also holds
the ON Semiconductor Junior Professorship. His
research interests include computer architecture,
on-chip interconnection networks, and deep learning
accelerators. Krishna received the Ph.D. degree in
electrical engineering and computer science from
Massachusetts Institute of Technology. He received
the NSF CRIl Award in 2018. He is a member of IEEE
and ACM. Contact him at tushar@ece.gatech.edu.

Michael Pellauer is a Senior Research Scientist at
NVIDIA. His research interests are building domain
specific accelerators, with a special emphasis on
deep learning and sparse tensor algebra. Pellauer
received the Ph.D. degree from Massachusetts Insti-
tute of Technology, the Masters degree from Chalm-
ers University of Technology, and the Bachelor's
degree from Brown University. Contact him at
mpellauer@nvida.com.

Angshuman Parashar is a Senior Research
Scientist at NVIDIA. His research interests are in
building, evaluating, and programming spatial and
data-parallel architectures, with a present focus
on automated mapping of machine learning
algorithms onto architectures based on explicit
decoupled data orchestration. Parashar received
the Ph.D. degree in computer science and engi-
neering from the Pennsylvania State University
(2007), and the B.Tech. degree in computer
science and engineering from the Indian Institute
of Technology, Delhi, India (2002). Contact him at
aparashar@nvidia.com.

29

