
MAESTRO: A Data-Centric
Approach to Understand
Reuse, Performance, and
Hardware Cost of DNN
Mappings

Hyoukjun Kwon, Prasanth Chatarasi,

Vivek Sarkar, and Tushar Krishna

Georgia Tech

Michael Pellauer and Angshuman Parashar

NVIDIA Corp

Abstract—The efficiency of an accelerator depends on three factors—mapping, deep

neural network (DNN) layers, and hardware—constructing extremely complicated design

space of DNN accelerators. To demystify such complicated design space and guide the

DNN accelerator design for better efficiency, we propose an analytical cost model,

MAESTRO. MAESTRO receives DNNmodel description and hardware resources

information as a list, and mapping described in a data-centric representation we propose

as inputs. The data-centric representation consists of three directives that enable

concise description of mappings in a compiler-friendly form. MAESTRO analyzes various

forms of data reuse in an accelerator based on inputs quickly and generates more than 20

statistics including total latency, energy, throughput, etc., as outputs. MAESTRO’s fast

analysis enables various optimization tools for DNN accelerators such as hardware design

exploration tool we present as an example.

Digital Object Identifier 10.1109/MM.2020.2985963

Date of publication 22 April 2020; date of current version 22

May 2020.

Theme Article: Top PicksTheme Article: Top Picks

20
0272-1732 � 2020 IEEE Published by the IEEE Computer Society IEEE Micro

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

& DEEP NEURAL NETWORK (DNN) inference accel-

erators achieve high performance by exploiting

parallelism over hundreds of processing ele-

ments (PEs) and high energy efficiency by maxi-

mizing data reuse within PEs and on-chip

scratchpads.1–4 The efficiency (performance and

energy efficiency) of a DNN accelerator depends

on three factors depicted in Figure 1: 1) the

workload (DNN layers), 2) the amount and type

of available hardware resources (hardware), and

3) the mapping strategy of a DNN layer on the

target hardware (mapping). That is, we can pre-

dict the efficiency (latency, energy, buffer

requirement, etc.) of an accelerator when we

have full parameters for those three factors,

which can guide the DNN accelerator design for

better efficiency. One critical requirement on the

efficiency estimation is that it needs to be fast

since the design space (e.g., 480 million valid

designs in our hardware DSE even if we fix the

target mapping and layer) is huge, and we need

to query the efficiency of candidate designs in

the search space when we search for an optimal

design. How do we implement such a fast effi-

ciency estimation framework that thoroughly

considers all the parameters of the three

factors that determine the efficiency of DNN

accelerators?

Such demands led to the development of an

analytical cost model instead of cycle-accurate

simulators. Analytically, modeling the complex

high-dimensional DNN accelerator design space

over the three factors (DNN layer, hardware, and

mapping) is challenging because it requires

deep understanding of complex interaction of

hardware components, mapping, and DNN

layers. In particular, data reuse in scratchpad

memory hierarchy in DNN accelerators is one of

the key behaviors, which is critical for energy

efficiency, thus the prime optimization target of

DNN accelerators. Data reuse pattern is dictated

by dataflow,1 which are data/computation tile

scheduling and spatial partitioning strategies

without actual tile size as described in Figure 1

(a). To systematically and analytically model the

data reuse for DNN accelerators’ efficiency esti-

mation, we need a precise and thorough descrip-

tion of mapping and a framework to analyze data

reuse of a mapping on target hardware and the

DNN layer.

Therefore, we propose a data-centric repre-

sentation of mapping that enables precise

descriptions of all the possible mappings in a

concise and compiler-friendly manner. Leverag-

ing the compiler-friendly format, we develop

MAESTRO, a comprehensive cost-benefit analy-

sis framework based on systematic data reuse

analysis. As shown in Figure 1(b), MAESTRO

receives the three factors—DNN layer, hard-

ware, and mapping—as inputs and generates

more than 20 estimated statistics including

latency, energy, the number of buffer accesses,

buffer size requirement, etc. We validated the

performance statistics of MAESTRO against

cycle-accurate RTL simulation results5 and

reported performance in a previous work6 with

Figure 1. High-level overview of mapping a high-dimensional DNN layer (CONV2D in this figure) to an

accelerator with 2-D PE array. Note that tile scheduling also needs to be done within spatial partitioning; we omit

it for simplicity. (a) An Overview of MappingCONV2D to an Accelerator. (b) High-level Tool flow of MAESTRO.

May/June 2020 21
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

the accuracy of 96.1% on average. MAESTRO pro-

vides fast cost-benefit estimation based on an

analytical model, which took 493 ms to analyze

the entire Resent50 layers7 on a 256PE NVDLA-

style2 accelerator on a laptop with i9-9980H CPU

with 16 GB of memory. MAESTRO supports

arbitrary layer sizes and a variety of layer opera-

tions from state-of-the-art DNN models, which

includes CONV1D, CONV2D, fully connected (FC)

layer, depthwise separable convolution, up-scale

convolution, etc.

DATA REUSE IN DNN
ACCELERATORS

Data reuse is the key behavior in DNN acceler-

ator that improves both latency and energy via

reducing the number of remote buffer accesses

(i.e., global buffer),1;8 which is determined by

dataflow. Data reuse opportunities exist when

the dataflow assigns the same set of data tiles

over consecutive time on the same PE (i.e., reuse

in time) or across multiple PEs but not over con-

secutive time (i.e., reuse in space). We define

those opportunities as temporal and spatial

reuse opportunities. For example, in the example

dataflow in Figure 1, output tiles (orange tiles)

remain the same in time 0 and 1, which implies

the temporal reuse opportunities. Within time 1,

as the spatial partitioning example in Figure 1

shows, input tile 3 is mapped on all the PEs,

which implies the spatial reuse opportunities.

Dataflow implies data reuse opportunities,

and we can categorize data reuse in DNN acceler-

ators into four types (data reuse taxonomy),

which we summarize in Table 1. Each data reuse

type requires proper hardware support to

exploit the data reuse opportunity as actual data

reuse. We discuss those four reuse types

grouped in communication type as follows:

Spatial/Temporal Multicast. When the spa-

tial/temporal reuse opportunities are in input

tensors (i.e., filter and input activation), the

reused data can be multicasted to multiple PEs

(spatial reuse) or over time (temporal reuse).

The examples in Table 1 show such a pattern

based on fanout NoC (spatial multicast), which

delivers data to multiple PEs at the same time,

and buffer (temporal multicast).

In the spatial multicast example, tiles 1 and 2

are delivered to PE1 and PE2 at the same time

leveraging the multicast capability of fanout

hardware. Alternatively, store-and-forward style

implementation such as systolic arrays is avail-

able with tradeoff of hardware cost and latency.

In the temporal multicast example, the same

data tile appears over time in the same PE (PE1).

That is, we send the data to the future for reuse

in the future (i.e., store the data in a buffer and

read it in the future). Therefore, temporal multi-

cast, which is reading the same stored data over

time, requires a buffer, as shown in Table 1.

Spatial/Temporal Reduction. When the spa-

tial reuse opportunities are in the output activa-

tion tensor, the reuse pattern in hardware is

spatial reduction, which accumulates partial out-

puts (or, partial sums) for an output acrossmulti-

ple PEs. The example in Table 1 shows an

example reuse pattern based on store-and-for-

ward hardware. We observe that the output tiles

1 and 2 are moving to the next PE over time,

which illustrates pipelined accumulation to the

right direction assuming that PEs are receiving

new operands from above (i.e., a row of a systolic

array). Alternatively, fanin hardware such as

reduction tree can support the spatial reduction.

In contrast, the temporal reuse opportunities

imply that we compute partial sums over time

and accumulate them within the same location.

This type of reuse requires a buffer since

Table 1. The taxonomy of data reuse in DNN accelerators and

implementation choices for each. We highlight implementation used

in the example reuse patterns with red texts.

Top Picks

22 IEEE Micro

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

intermediate results need to be stored and read

again in the future, which effectively indicates

multiple read-modify-write to a buffer. The exam-

ple in Table 1 shows such a reuse pattern, where

the output tile 1 appears at the same PE over

time.

To identify the reuse opportunities in arbi-

trary mappings, we need a precise representa-

tion of mapping and systematically infer data

reuse from the description. For those two

goals, we present a data-centric representation

of mapping, which is concise and compiler

friendly.

DESCRIBING MAPPINGS
We use a CONV1D operation described

in Figure 2 as an example operation to introduce

our mapping description. As described

in Figure 2, CONV1D operation can be under-

stood as a sliding window operation of a filter

vector on a input vector, where individual multi-

plication results within a filter window are accu-

mulated to generated one output value in the

output vector. When we project the loop indices

in the loop nest in Figure 2(a), we obtain compu-

tation space in Figure 2(b) where loop indices

are on each axis, and partial sums are projected

in the plane. We also construct data space of

each vector as shown in Figure 2(b), where the

corresponding data index is on the axis. Note

that the data index is not the same as the loop

index (e.g., the input data index x is computed

using loop indices x0+s). Therefore, we denote

data indices using underlined index in this exam-

ple. Note that output and filter indices x0 and s

are identical to the loop indices x0 and s in this

simple example operation.

We show an example of mapping on three-PE

accelerator in computation and data space

in Figure 2(b). In this example mapping, we map

three partial sum computation to each PE, and

each PE collaboratively compute partial outputs

(accumulated partial sums) on the same set of

outputs. When the PE array finishes computa-

tion in a tile (time=0 in the example), the PE

array receives the next computation tile

(time=1 in the example). The next computation

tile is in the direction of loop index x0. We project

the same mapping on the data space as shown

in Figure 2, using the array subscripts in the

loop nest of CONV1D operation in Figure 2(a).

That is, partial sum at (x,0 s) requires weight at s,

input at x0+s, and output at x,0 as shown in the

loop body of in Figure 2(a). In the example, we

observe that the data space explicitly shows

data reuse behavior; mapped filter values do not

move over time, which implies that the example

mapping is based on a weight-stationary style

dataflow. This implies that inferring data reuse

can be significantly simplified when we describe

mapping in the data space, which can facilitate a

fast analysis framework of DNN accelerator’s

efficiency.

Motivated by the observation, we introduce

data-centric mapping directives that directly

describe the mapping in data space.

Data-centric mapping directives

We introduce three data-centric mapping

directives in Figure 3(a). Temporal and spatial

map directives describe data mapping that

changes in time and space (PEs), respectively.

That is, temporal map corresponds to a normal

for loop in loop nest while spatial map corre-

sponds to a parallel for loop. Those two mapping

Figure 2. Example CONV1D operation and mapping of the example on an accelerator. We represent the

mapping in both computation and data space, where each point corresponds to a partial sum and a data,

respectively. We use 1-based indices in this example.

May/June 2020 23
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

directives take three parameters: Mapping size,

offset, and dimension. The mapping size speci-

fies the number of data points (in tensors, map-

ping size in the target dimension since a

mapping constructs a high-dimensional volume)

mapped on each PE. The offset describes how

the mapping is updated over time on temporal

map and space on spatial map. Cluster directive

specifies the hierarchical organization of PEs,

which enables us to explore multiple parallel

dimensions in a mapping.

To understand the syntax and semantics of

data-centric mapping directives, in Figure 3, we

provide an example process to determine a cor-

responding data mapping description of the

example mapping in Figure 2(b). We omit the

input tensor because input tensor data mapping

can be easily inferred from the mapping of out-

put and filter. We first determine if the mapping

is in time or space by checking the mapped

data are the same or different (i.e., paralleliza-

tion) across PEs. Next, we check the number of

data points mapped on each PE to determine

the mapping size, which are three and one for

output and filter, respectively, in the example.

To determine the offset parameter, we check

the temporal and spatial offset on temporal and

spatial map, respectively. For example, for

output vector in Figure 3(b), we observe that

the starting index of mapping changes over

time 3, which implies that the temporal offset is

3. For filter vector, we observe that the starting

index of mapping for each PE changes by 1,

which implies that the spatial offset is 1. Note

that spatial map can also involve temporal

aspect as the mapping on the filter vector

in Figure 3(b); after processing all the computa-

tion that involves the first data tile on filter, the

data tile will move on to the next position. This

happens when the number of PEs is not suffi-

cient to cover entire spatially mapped dimen-

sion (also known as spatial folding), and an

implicit temporal offset of (spatial offset) �
(number of PEs) is applied. Finally, we write the

dimension on which we describe the data map-

ping, then we obtain the data-centric mapping

description of each data mapping, as shown in

the resulting data mapping description column

in Figure 3(b). To specify the entire example

mapping, we need to specify the order of

changes in data tile between output and filter

vectors. Since filter is updated in a slower man-

ner, we place the data mapping description of

filter above, and write that of output below, like

we specify the update order in loop nest (outer-

most loop index changes slower).

Figure 3. Introductory example of data-centric directives. (a) Syntax of data-centric directives. (b) Semantics

of two mapping directives based on an example description process on the example CONV1D mapping

in Figure 2. (c) Capability of data-centric mapping directives that can describe a variety of mapping styles.

Top Picks

24 IEEE Micro

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

Capability of Mapping Directives

Using the data-centric directives, we can

describe a variety of mappings if it maps con-

secutive data points in a regular manner (i.e.,

affine loop subscripts when described in a

loop nest representation). Figure 3(c) shows

the capability of the data-centric directive by

showing the changes in the resulting mapping

when we update the base representation we

obtained in Figure 3(b). When we change the

directive order, we describe a different order

of data tile update in dimensions. This effec-

tively changes the stationary vector from

weight to output, which changes the temporal

data reuse opportunities. When we change the

spatial dimension, then we exploit the parallel-

ism in a different dimension, as the third exam-

ple in Figure 3(b) and (c) shows. Finally, if we

change the mapping size (we accordingly

update the offset to keep the description

legal), we change the amount of mapped filter

and output, as shown in Figure 3(c) and (d).

Based on the fact that data reuse is explicit

in data dimension and the capability of data-

centric directives, we implement an analytical

cost-benefit analysis framework for DNN accel-

erators, MAESTRO. We discuss a high-level

overview of MAESTRO next and discuss

insights from the case studies we performed

based on MAESTRO next.

ANALYTICAL COST MODEL
Based on the data-centric directives we dis-

cussed, we built a cost-benefit analysis frame-

work that considers all of the three factors—

DNN layers, hardware, and mapping—with pre-

cise modeling of data reuse. MAESTRO consists

of five preliminary engines: Tensor, cluster,

reuse, performance analysis, and cost analysis.

In the article, we focus on the high-level idea

without details such as edge case handling, mul-

tiple layers, and multiple level hierarchy, etc. We

present implementation details in our web page

and open-source repository.� We validated

MAESTRO’s performance model against RTL sim-

ulation and reported processing delay of two

accelerators—MAERI5 and Eyeriss6 when

running VGG16 and AlexNet, respectively. The

latency estimated by MAESTRO are within 3.9%

absolute error of the cycle-accurate RTL simula-

tion and reported processing delay6 on average.

CASE STUDIES
With MAESTRO, we perform deeper case

studies about the costs-benefit tradeoff of vari-

ous mappings when applied to different DNN

operations. We evaluate five distinct mapping

styles listed in Figure 4(a) in the “Case Study I:

The Impact of Mapping Choices” section and the

preference of each mapping to different DNN

operators. For energy estimation, we multiply

activity counts with base energy values from

Cacti13 simulation (28 nm, 2 kB L1 scratchpad,

and 1 MB shared L2 buffer). We also present dis-

tinct design space of an early layer (wide and

shallow) and a late layer (narrow and deep) to

show the dramatically different hardware prefer-

ence of different DNN layers and mapping in the

“Case Study II: Hardware Design-Parameters and

Implementation Analysis” section.

Case Study I: The Impact of Mapping Choices

Figure 4(b) shows the DNN-operator granu-

larity estimation of latency and energy of each

mapping across five state-of-the-art DNN models

listed in the “Case Studies” section. Note that

this should be considered a comparison of map-

ping—not of actual designs, which can contain

several low-level implementation differences,

e.g., custom implementations of logic/memory

blocks, process technology, etc. We observe

that KC-P style mapping provides overall low

latency and energy. However, the energy effi-

ciency in VGG16 is worse than YR-P (Eyeriss1

style) mapping, and the latency is worse than

YX-P (Shidiannao14 style) mapping in UNet. This

is based on the different preference toward map-

ping of each DNN operator. YX-P provides short

latency to segmentation networks like UNet,

which has wide activation (e.g., 572 � 572 in the

input layer) and recovers the original activation

dimension at the end via up-scale convolution

(e.g., transposed convolutions). Such a prefer-

ence to the YX-P style is mainly based on its par-

allelization strategy: It exploits parallelism over

both of row and column dimensions in�
https://maestro.ece.gatech.edu/

May/June 2020 25
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

https://maestro.ece.gatech.edu/

activation. The energy efficiency of YR-P map-

ping in VGG16 is based on its high reuse factor

(the number of local accesses per fetch) in early

layers. The YR-P mapping has 5.8� and 15.17�
higher activation and filter reuse factors, respec-

tively, in early layers. However, in late layers,

the reuse factors of YR-P and KC-P mapping are

almost similar (difference < 11%), so the KC-P

mapping provides similar energy efficiency as

YR-P in these cases. This can also be observed in

the late layer (blue) bars in Figure 4(b) bottom-

row plots.

The diverse preference to mappings of differ-

ent DNN operators motivates us to employ

Figure 4. Summary of case studies. (a) List of mappings used in case study I. (b) Results of the case study I.

Top and bottom rows present latency and energy, respectively. We apply 256 PEs and 32 GBps NoC

bandwidth. We use five different DNN models; Resnet50,7 VGG16,9 ResNeXt50,10 MobileNetV2,11 and

UNet.12 The right-most column presents the average results across models for each DNN operator type and

the adaptive mapping case. We compare the number of input channels and the input activation height to

identify early and late layers (If C >Y, late layer. Else, early layer). (c) Design space of KC-P and YR-P-based

accelerators. We highlight the design space of an early and a late layer to show their significantly different

hardware preference. We apply area/power constraints based on Eyeriss6 to the DSE. The color of each data

point indicates the number of PEs. We mark the throughput- and energy-optimized designs using stars and

crosses. (d) The impact of multicast capability, bandwidth, and buffer size. Design points are selected from

the upper-most design space in (c). The name of design points refer to the differences from the throughput-

optimal reference point. Dark rows represent the efficiency of the selected design point.

Top Picks

26 IEEE Micro

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

optimal mapping for each DNN operator type.

We refer such an approach as adaptive mapping

and present the benefits in the right-most col-

umn of Figure 4(b), the average case analysis

across entire models in the DNN operator granu-

larity. By employing the adaptive approach, we

could observe a potential 37% latency and 10%

energy reduction. Such an optimization opportu-

nity can be exploited by flexible accelerators like

Flexflow15 and MAERI5 or via heterogeneous

accelerators that employ multiple subaccelera-

tors with various mapping styles in a single DNN

accelerator chip.

Case Study II: Hardware Design-Parameters

and Implementation Analysis

Using MAESTRO, we implement a hardware

design space exploration (DSE) tool that

searches four hardware parameters (the number

of PEs, L1 buffer size, L2 buffer size, and

NoC bandwidth) optimized for either energy effi-

ciency, throughput, or energy-delay-product

(EDP) within given hardware area and power

constraints. The DSE tool receives the same set

of inputs as MAESTRO with hardware area/

power constraints and the area/power of build-

ing blocks synthesized with the target technol-

ogy. For the cost of building blocks, we

implement float/fixed point multiplier and adder,

bus, bus arbiter, and global/local scratchpad in

RTL and synthesis them using 28-nm technology.

For bus and arbiter cost, we fit the costs into a

linear and quadratic model using regression

because bus cost increases linearly and arbiter

cost increases quadratically (e.g., matrix

arbiter).

Using the DSE tool, we explore the design

space of KC-P and YR-P mapping accelerators.

We set the area and power constraint as 16 mm2

and 450 mW, which is the reported chip area

and power of Eyeriss.6 We plot the entire design

space we explored in Figure 4(c). Whether an

accelerator can achieve peak throughput

depends on not only the number of PEs but also

NoC bandwidth. In particular, although an accel-

erator has sufficient number of PEs to exploit

the maximum degree of parallelism a mapping

allows, if the NoC does not provide sufficient

bandwidth, the accelerator suffers a communica-

tion bottleneck in the NoC. Such design points

can be observed in the area-throughput plot

in Figure 4(c). YR-P mapping requires low NoC

bandwidth so it does not show the same behav-

ior as KC-P mapping. However, with more strin-

gent area and power constraints, YR-P mapping

will show the same behavior.

During DSE runs, MAESTRO reports buffer

requirements for each mapping and the DSE tool

places the exact amount buffers MAESTRO

reported. Contrary to intuition, larger buffer

sizes do not always provide high throughput, as

shown in buffer-throughput plots in Figure 4

(plots in the second column). The optimal points

regarding the throughput per buffer size are in

the top-left region of the buffer-throughput plots.

The existence of such points indicates that the

tiling strategy of the mapping (mapping sizes

in our directive representation) significantly

affects the efficiency of buffer use. We observe

that the throughput-optimized designs have a

moderate number of PEs and buffer sizes, imply-

ing that hardware resources need to be distrib-

uted not only to PEs but also to NoC and buffers

for high PE utilization. Likewise, we observe that

the buffer amount does not directly increase

throughput and energy efficiency. These results

imply that all the components are intertwined,

and they need to be well-balanced to obtain a

highly efficient accelerator.

We also observe the impact of hardware sup-

port for each data reuse type, discussed

in Table 1. Figure 4(d) shows such design points

found in the design space of KC-P mapping on

VGG16-conv2 layer presented in the first row of

Figure 4(c). The reference design point is the

throughput-optimized design represented as a

star in the first row of Figure 4(c). When band-

width gets smaller, the throughput significantly

drops, but energy remains similar. However, the

lack of spatial multicast or reduction support

resulted in approximately 47% energy increase,

as the third and fourth design points shows.

CONCLUSION
Fast modeling of cost-benefit space of DNN

accelerators is critical for automated optimiza-

tion tools since the design space is huge and

high dimensional based on hundreds of DNN

model, hardware, and mapping parameters. In

May/June 2020 27
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

this article, we presented a methodology to

enable fast cost-benefit estimation of a DNN

accelerator on a given DNN model and mapping,

which consists of a compiler-friendly data-cen-

tric representation of mappings and an analyti-

cal cost-benefit estimation framework that

exploits the explicit data reuse in data space in

data-centric repre-

sentations. To ana-

lytically estimate the

costs and benefits,

we demystify data

reuse in hardware

and required hard-

ware support and

apply the observa-

tion into the ana-

lytical cost-benefit

estimation frame-

work, MAESTRO.

Using MAESTRO,

we show that no sin-

gle mapping and no

single hardware is

ideal for all the

DNN layers, which

implies the complex-

ity of the DNN accelerator design space. Using

hardware design space exploration framework

we implemented using MAESTRO, we also show

that hardware features can significantly impact

the throughput and energy. Those cases show

that the capability of MAESTRO for various anal-

ysis problems on DNN accelerator design space.

In addition to the case studies we performed,

MAESTRO also facilitates many other optimiza-

tion (e.g., neural architecture search specialized

for a target accelerator, mapping search for a tar-

get accelerator, etc.) frameworks based on its

speed and accuracy, which will lead to broad

impact on various areas (DNN model design,

compiler, architecture, etc.) in the DNN accelera-

tor domain.

& REFERENCES

1. Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial

architecture for energy-efficient dataflow for

convolutional neural networks,” in Proc. Int. Symp.

Comput. Archit., 2016, pp. 367–379.

2. “Nvdla deep learning accelerator,” 2017. [Online].

Available: http://nvdla.org.

3. A. Parashar et al., “Scnn: An accelerator for

compressed-sparse convolutional neural networks,”

in Proc. Int. Symp. Comput. Archit., 2017,

pp. 27–40.

4. N. P. Jouppi et al., “In-datacenter performance

analysis of a tensor processing unit,” in Proc. IEEE

Int. Symp. Comput. Archit., 2017, pp. 1–12.

5. H. Kwon, A. Samajdar, and T. Krishna, “Maeri:

Enabling flexible dataflow mapping over DNN

accelerators via reconfigurable interconnects,” in

Proc. Int. Conf. Archit. Support Program. Lang. Oper.

Syst., 2018, pp. 461–475.

6. Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze,

“Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks,”

IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–

138, Jan. 2017.

7. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 2016, pp. 770–778.

8. A. Parashar et al., “Timeloop: A systematic approach

to DNN accelerator evaluation,” in Proc. IEEE Int.

Symp. Perform. Anal. Syst. Softw., Mar. 2019,

pp. 304–315.

9. K. Simonyan and A. Zisserman, “Very deep

convolutional networks for large-scale image

recognition,” in Proc. Int. Conf. Learn.

Representations, 2015. [Online]. Available: https://iclr.

cc/archive/www/doku.php%3Fid=iclr2015:accepted-

main.html

10. S. Xie, R. Girshick, P. Doll�ar, Z. Tu, and K. He,

“Aggregated residual transformations for deep

neural networks,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., 2017, pp. 1492–1500.

11. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.

Chen, “MobileNetV2: Inverted Residuals and Linear

Bottlenecks,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., 2018, pp. 4510–4520.

12. O. Ronneberger, P. Fischer, and T. Brox, “U-net:

Convolutional networks for biomedical image

segmentation,” in Proc. Int. Conf. Med. Image Comput.

Comput.-Assisted Intervention, 2015, pp. 234–241.

13. N. Muralimanohar, R. Balasubramonian, and N. P.

Jouppi, “Cacti 6.0: A tool to model large caches,” HP

Laboratories, vol. 27, p. 28, 2009.

14. Z. Du et al., “Shidiannao: Shifting vision processing

closer to the sensor,” in Proc. Int. Symp. Comput.

Archit, 2015, pp. 92–104.

Using MAESTRO, we

show that no single

mapping and no single

hardware is ideal for all

the DNN layers, which

implies the complexity

of the DNN accelerator

design space. Using

hardware design

space exploration

framework we

implemented using

MAESTRO, we also

show that hardware

features can

significantly impact the

throughput

and energy.

Top Picks

28 IEEE Micro

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

http://nvdla.org
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html

15. W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li,

“Flexflow: A flexible dataflow accelerator architecture

for convolutional neural networks,” in Proc. Int. Symp.

High Perform. Comput. Archit., 2017, pp. 553–564.

Hyoukjun Kwon is currently working toward the

Ph.D. degree in the College of Computing, Georgia

Institute of Technology. His research interest includes

communication-centric and flexible accelerator design

and modeling mappings on spatial accelerators. Kwon

received B.S. degrees in environmental materials sci-

ence and in computer science and engineering from

Seoul National University. He is a student member of

IEEE. Contact him at hyoukjun@gatech.edu.

Prasanth Chatarasi is a senior Ph.D. student

advised by Prof. Vivek Sarkar and Dr. Jun Shirako in

the School of Computer Science, Georgia Institute of

Technology. His research focuses on advancing

compiler optimizations for high-performance appli-

cations on general-purpose and domain-specific

parallel architectures. In the past, he focused on

enhancing traditional compilation techniques for

both sequential and explicitly parallel programs

for performance optimizations and debugging

on general-purpose architectures. Contact him at

cprasanth@gatech.edu.

Vivek Sarkar is a Professor and the Stephen Flem-

ing Chair for Telecommunications in the College of

Computing at Georgia Institute of Technology, where

he conducts research in multiple aspects of software

for parallel computing. He is a Fellow of ACM and

IEEE. Contact him at vsarkar@gatech.edu.

Tushar Krishna is an Assistant Professor in the

School of Electrical and Computer Engineering,

Georgia Institute of Technology, where he also holds

the ON Semiconductor Junior Professorship. His

research interests include computer architecture,

on-chip interconnection networks, and deep learning

accelerators. Krishna received the Ph.D. degree in

electrical engineering and computer science from

Massachusetts Institute of Technology. He received

the NSF CRII Award in 2018. He is a member of IEEE

and ACM. Contact him at tushar@ece.gatech.edu.

Michael Pellauer is a Senior Research Scientist at

NVIDIA. His research interests are building domain

specific accelerators, with a special emphasis on

deep learning and sparse tensor algebra. Pellauer

received the Ph.D. degree from Massachusetts Insti-

tute of Technology, the Masters degree from Chalm-

ers University of Technology, and the Bachelor’s

degree from Brown University. Contact him at

mpellauer@nvida.com.

Angshuman Parashar is a Senior Research

Scientist at NVIDIA. His research interests are in

building, evaluating, and programming spatial and

data-parallel architectures, with a present focus

on automated mapping of machine learning

algorithms onto architectures based on explicit

decoupled data orchestration. Parashar received

the Ph.D. degree in computer science and engi-

neering from the Pennsylvania State University

(2007), and the B.Tech. degree in computer

science and engineering from the Indian Institute

of Technology, Delhi, India (2002). Contact him at

aparashar@nvidia.com.

May/June 2020 29
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 29,2020 at 03:40:23 UTC from IEEE Xplore. Restrictions apply.

