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Abstract. The fast development of acceleration architectures and
applications has made heterogeneous computing the norm for high-
performance computing. The cost of high volume data movement to
the accelerators is an important bottleneck both in terms of application
performance and developer productivity. Memory management is still a
manual task performed tediously by expert programmers. In this paper,
we develop a compiler analysis to automate memory management for
heterogeneous computing. We propose an optimization framework that
casts the problem of detection and removal of redundant data move-
ments into a partial redundancy elimination (PRE) problem and applies
the lazy code motion technique to optimize these data movements. We
chose OpenMP as the underlying parallel programming model and imple-
mented our optimization framework in the LLVM toolchain. We evalu-
ated it with ten benchmarks and obtained a geometric speedup of 2.3×,
and reduced on average 50% of the total bytes transferred between the
host and GPU.

Keywords: Compiler optimization · GPUs · OpenMP · Memory
management

1 Introduction

As high-performance computing enters an era of extreme heterogeneity, there
is an increasing proliferation of general and special purpose accelerators as well
as a concerted effort by higher-level parallel programming models to support
heterogeneous computing, e.g., OpenMP, OpenACC, X10, Chapel, Julia. Data
movement between the host and accelerators is a fundamental operation in het-
erogeneous computing, and parallel programming models vary in supporting
data movement either explicitly or implicitly. Data movement is also a signifi-
cant source of overhead, both in execution time and energy. Thus, minimizing
data movement while maintaining the correctness of a program is one of the
most important optimizations that compilers and application developers focus
on [1,6,7,11,17].

We propose a program analysis framework to enable the compiler to auto-
matically detect and remove redundant memory copies. We use OpenMP 4.51 as
1 www.openmp.org/wp-content/uploads/openmp-4.5.pdf.
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an example parallel programming model to demonstrate our optimization frame-
work. We can offload a region of code to accelerators like GPUs using OpenMP.
An application developer can specify several different kinds and combinations of
OpenMP directives to extract optimal performance from specific hardware. But
the developer also needs to ensure the correctness and absence of data races while
manually optimizing the application. Given the complexity of OpenMP specifi-
cations, this is a nontrivial task and requires time-consuming efforts from expert
programmers. Tools like OmpSan [4] help developers debug incorrect usage of
OpenMP memory mapping directives. Our objective is to investigate how the
compiler can optimize the memory management operations, while the user only
needs to specify synchronization operations needed for correctness.
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Fig. 1. Compute time vs memory copy

Figure 1 shows the significance of
the data movement overhead for 10
OpenMP GPU applications discussed
later in Sect. 5. In this experiment,
the kernels don’t use any explicit
memory mapping and rely on the
default behavior, which is to copy
data from a host to the GPU before
launching the kernel and back to the
host after it executes. It compares
the % time spent on computing vs.
data transfer operations. The experi-
ment illustrates the inefficiency of the
default mapping since except for the

compute-intensive mm mpy and saxpy kernels, over 70% of the time is spent
on memory transfer operations in the remaining benchmarks. In this paper, we
formalize the data movement optimization problem and define an intermediate
representation suitable for the analysis of memory accesses and data movements
in heterogeneous computing. Then, we introduce our optimization framework
hat uses the intermediate representation to perform lazy code motion and par-
tial redundancy elimination on data movement operations.

The main contributions of this paper include:

1. We introduce a general optimization framework to apply partial redundancy
elimination, that uses dataflow analysis to identify redundancies in data move-
ment, and a code transformation to eliminate such redundancies.

2. We extend past work on Heap SSA [9] to a new Location-Aware heap SSA
(LASSA) to consider heterogeneous memory spaces. We implement construc-
tion of LASSA, and its associated optimizations, in the LLVM tool chain.

3. We evaluate our approach using real-world heterogeneous computing appli-
cations.
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2 Background

2.1 OpenMP Execution Model

In this section, we briefly discuss the OpenMP programming model. We use
the term device to refer to a computing resource. The host device is the CPU
that begins executing the program. There are optional accelerators like a GPU
that are called target devices. An OpenMP program begins as a single thread of
sequential execution, called the master thread, which runs on the host device.
The OpenMP target directive specifies a block of code to offload to the device.
One or more target devices can be available to the host for offloading code and
data. The target directive generates a new target task, which may execute on a
target device. The target task starts with an initial thread, and teams of threads
can be optionally created depending on the usage of team/parallel constructs.

An important aspect of the memory model2 [10] is that the tasks running on
the host and tasks running on the target devices have separate states that are
not shared. Each host device and target device has at least one attached storage
resource(s) that is private to them. This is called a memory space in OpenMP
terminology. When the host and target task need to communicate, they do so by
explicitly copying data from one memory space to another. The memory space
is a persistent resource, e.g., the target memory space retains all data allocated
in its space unless it is explicitly deleted.

2.2 Heap SSA Form

Heap SSA [9] is an intermediate representation that extends Array SSA form [14]
to capture reads and writes to heap-allocated data. Heap SSA models each access
of a disjoint memory space as a distinct logical “heap array”. Heap SSA employs
use:uφ and definition:dφ operators to chain memory load and store operations,
respectively. It was designed for strongly typed languages like Java, but it is also
applicable to weakly typed languages by introducing a uniform heap array that
captures element-level dataflow information for heap data structures [21].

3 Motivation

Figure 2 shows some typical cases of redundant memory copies that programmers
need to detect and optimize manually. Here, memcpy host2device copies an
array from host to device, while memcpy device2host copies it back from the
device to host. It shows a dummy CFG in which the dotted line represents an
arbitrary sequence of code, which respects the condition mentioned alongside it.

Redundancy Pattern 1. Figure 2a is the simplest use case; if a kernel launched
on the device does not update an array, then there is no need to copy the array
back to the host. The default behavior of OpenMP target constructs is to copy
in and out every array.
2 www.openmp.org/wp-content/uploads/openmp-4.5.pdf.

www.openmp.org/wp-content/uploads/openmp-4.5.pdf
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(a) Redundant Copy-out
from device

(b) Redundant Copy-in
to device

(c) Redundant copies
within loop

Fig. 2. Common patterns of redundancy

1 int A[10];
2 #pragma omp target map(A)
3 {
4 for (i = 0 ; i < 10; i++)
5 A[i] = i;
6 }
7 print(A)
8 #pragma omp target map(A)
9 {

10 for (i = 0 ; i < 10; i++)
11 A[i] + = i;
12 }
13 print(A)

(a) Default memory map

1 int A[10];
2 #pragma omp target data map(tofrom:A)
3 {
4 #pragma omp target map(alloc:A)
5 {
6 for (i = 0 ; i < 10; i++)
7 A[i] = i;
8 }
9 #prargma omp target update from(A)

10 print(A)
11 #pragma omp target map(alloc:A)
12 {
13 for (i = 0 ; i < 10; i++)
14 A[i] + = i;
15 }
16 }
17 print(A)

(b) Explicitly specify data copies

Fig. 3. Redundancy Pattern 2

Redundancy Pattern 2. Figure 2b shows the second pattern, when a host-
to-device copy is redundant since the array is already the latest version on the
device because of the persistent device storage. After executing a kernel on the
device, we copy the array back from device-to-host. Figure 3a shows this coding
pattern using OpenMP target offloading constructs. Line 2 launches a kernel on
the device that updates the array A. Then the kernel launched on line 8 reads
and updates the array A in the device memory. The print statement on line 7 is
executed on the host. It only reads the array, and it is not updated on the host
before launching the second kernel. The device already has the latest version of
the array on line 8, and thus the copy is redundant. Figure 3b shows the usage
of target data map clause on line 2 to handle such redundancies. We explicitly
leave the array on the device’s persistent memory for later use.
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1 int A[10];
2 for (t = 0 ; t < 100; t++) {
3 #pragma omp target map(A)
4 {
5 for (i = 0 ; i < 10; i++)
6 A[i] += i;
7 }
8 }
9 print(A)

(a) Kernel Launch within loop

1 int A[10];
2 #pragma omp target data map(tofrom:A)
3 {
4 for (t = 0 ; t < 100; t++) {
5 #pragma omp target map(alloc:A)
6 {
7 for (i = 0 ; i < 10; i++)
8 A[i] += i;
9 }

10 }
11 }
12 print(A)

(b) Explicit memory copies

Fig. 4. Redundant copies within loop, Pattern 3

This example motivates our claim that optimizing even simple memory copy
redundancies requires nontrivial understanding of OpenMP spec and the knowl-
edge of all the available directives and their possible usage.

Redundancy Pattern 3. Figure 2c shows another pattern where a host loop
launches a kernel on the device iteratively. This host loop does a host-to-device
copy before launching the kernel and again device-to-host copy after it finishes.
Both these copies are redundant since the host does not access the copied mem-
ory inside the loop. Figure 4a shows the OpenMP example for the third case,
the target construct on line 3 executes host-to-device copy before launching the
kernel on the device and then device-to-host copy after the kernel returns. But,
since the outer loop of line 2, executing on the host does not access the array,
both the copies are loop-invariant. In this case, it is legal to move the host-
to-device memory copy before the loop, and the device-to-host memory copy
after the outer loop. Figure 4b shows the usage of memory map environments to
remove the redundancy.

In this section, we presented three simple examples of redundant memory
copies to motivate our work. But these patterns can be generalized to complex
real-world use cases. The dotted line of the CFG can denote arbitrarily complex
source code. Hence the redundant memory copies can even occur across different
function calls and source files. This makes manual detection of redundant mem-
ory copies and its optimization much more complicated and error-prone. Several
OpenMP application developers have provided similar feedback regarding these
issues related to manual optimization of memory management. The common
uses cases are usually scientific applications with large legacy codebases, that
are being ported to GPUs using the OpenMP target offloading feature launched
in version 4.5. The nontrivial effort required for manual memory management is
our motivation to develop a compiler optimization to automate removal of such
redundant memory copies.
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3.1 Challenges

To address the problem introduced above, we need to address the following
challenges:

– Representation of concurrent memory accesses to the same array elements;
– Reasoning about the definition-use (def-use) relationships among array

accesses across different memory spaces;
– Whole program analysis that infers optimal program points for inserting

memory copy operations, and detects redundant data movements.

4 Our Approach

Problem Statement. Based on the programming-model, first, the compiler needs
to identify where to insert the memory copy operations to ensure correctness.
Then an analysis is required to determine partially and fully redundant memory
copies. Finally, a code transformation is needed to remove all the redundancies.

Proposed Solution. We design an intermediate representation to express the
memory model of the programming paradigm and develop an analysis based
on that representation, to optimize redundant memory copies between different
memory spaces. We make the following basic assumptions

– We assume that pointer analysis can disambiguate named arrays. If the alias
analysis fails to identify each array uniquely, our optimization fails.

– To keep the analysis simple, any element-level access is conservatively
assumed to access the entire array. This constraint can be removed by per-
forming an index range analysis for each array access.

4.1 Location Aware Heap SSA

The heterogeneous computing patterns mainly deal with array-based data struc-
tures over one or more memory spaces of different devices. In this section, we
introduce the Location-Aware Heap SSA (LASSA) IR, which extends Heap
SSA [9] to take into account the memory space in which each array resides.
To uniquely identify each array access in a LASSA program, we create a new
version of the array for every corresponding access to it. We define LASSA oper-
ators that map an array version in one memory space to another array version in
the same or different memory space. We call these array versions as a definition.

We use the notation, Dr
i , to denote the ith definition in memory space r.

Definition 1. We define the following operators in LASSA for an array A:

1. Ar
i = dφ(Ar

j) creates a new definition. such that, Ar
j is the prevailing defini-

tion of A just prior to Ar
i in the memory space r.

2. Ar
k = cφ(Ar

i , A
r
j), creates a control merge of the definitions {Ar

i , A
r
j}.

3. Ar
i = uφ(Ar

j), denotes the read of A.
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(a) LASSA example 1

(b) LASSA example 2
(c) LASSA example 3

Fig. 5. Example LASSA operators, shaded blocks are executed on device

4. Ar
i = mcpyφ(Ap

j ), creates a new definition of A, due to a copy from memory
space p to memory space r, this is a new operator that was not present in
Heap SSA.

The semantics of the dφ and uφ operators are associated with the respective
memory write and read operations. The uφ operator also generates a dummy
definition, for array reads. The main purpose of the uφ operator is to remove
redundant copy statements. The control merge operator cφ merges the reaching
definitions from two incoming paths and creates a new definition. The uφ, dφ and
cφ are the same operators as in Heap SSA [9]. A mcpyφ is associated with a pro-
gram point where the memory from source memory space data is flushed/written
out to the destination memory space. This guarantees the copied data is visible
to any subsequent memory operations. We can use mcpyφ for both synchronous
or asynchronous memory copy. But, the placement of the operator depends only
on when the actual write is visible, as defined by the memory concurrency model.
For an array A and device memories dev1, dev2, We use the notation Adev1,dev2

to denote that both the memory spaces dev1 and dev2 have exactly the same
copy of array A. We now discuss some example LASSA representations.

Case 1. Figure 5a shows an example LASSA IR for case 1. Basic Block B1 copies
data back from the device to the host, assuming there is some preceding kernel
that executes on the device not shown here. Assuming Adevice

1 is the most recent
version of the array on the device, the copy creates Ahost

1 , a new version of the
array on the host represented by Ahost

1 = mcpyφ(Adevice
1 ). Next, B2 reads a

location of the array on the host, represented by the uφ operator. Finally, B3
uses the mcpyφ operator to denote the host-to-device memory copy.
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Case 2. Figure 5b shows the LASSA IR for case 2. B2 is a kernel executed on
device, denoted by the shaded block in the figure. B1 denotes the host-to-device
memory copy with the mcpyφ operator, and it updates the version of the array
on device to Adevice

2 . After the copy, Adevice
1 is the updated version of the array

on the device read by the uφ operator of B2. B3 copies the array back to the
host after B2 finishes execution on the device.

Case 3. In Figure 5c, B4 is a kernel launched on device, which is executed inside
a loop. This represents the loop invariant case. B3 copies the array from the host-
to-device, and B5 copies the array back from the device-to-host. B2 is the entry
block of the loop, it merges the control from the back edge. Assuming Ahost

0 is the
last version of array on the host before entry to loop, the Ahost

1 = cφ(Ahost
0 , Ahost

2 )
merges the Ahost

2 from loop body to create a new version Ahost
1 . B4 updates the

array on device, denoted by the dφ operator which creates the version Adevice
2 ,

that is copied back to the host at B5.

4.2 Redundancy

We will use the data flow analysis defined in Chapter 10 of the compiler textbook
[20] for partial redundancy elimination [8,15] of memory copies across different
memory spaces. In this section, we define the data flow properties in terms of
the mcpyφ LASSA operator.

Definition 2 Availability: An mcpyφ of A is said to be available between two
memory spaces m and p, at a basic block B, if any memory copy of A between
m and p is redundant at B since both memory spaces have the same version of
the array after the last copy. This is a forward analysis.

Availability implies, after the last copy: Dm
i = mcpyφ(A,Dp

j ), Dm
i is still the

most recent version of the array A on memory space m, and Dp
j is the most

recent version of array A on memory space p. It is computed using a forward
analysis. Given a basic block B, AvailOut(B) denotes the availability at the exit
of B. DEExpr(B) and UEExpr(B) is the set of downward and upward exposed
mcpyφ operators respectively. They are defined in Table 1. ExprKill(B) denotes
the memory copies that are killed due to an update. We use the same definition
of AvailOut from [20],

AvailOut(n) =
�

m∈preds(n)

(DEExpr(m) ∪ (AvailOut(m) ∩ ExprKill(m)))

AvailOut(inputBlock) = φ, and for all other blocks AvailOut(B) = All Copies,

Definition 3 Anticipability: An mcpyφ of A is anticipable (very busy)
between memory spaces m and p, on exit of a basic block B, if every path that
leaves B, executes a memory copy of A between m and p, and it is legal to hoist
it to the end of B.
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Table 1. Transfer functions for the basic block local properties

LASSA
operators

Downward exposed Upward exposed Killed copy

Explanation if A{p,q} ∈ DEExpr(B)
then, the version of A
on p and q are same at
the end of B

if A{p,q} ∈ UEExpr(B)
then, copy from p to q
can be hoisted up at the
head of B

Killed Copy

Initialization DEExpr(B) = {} UEExpr(B) = {} ExprKill(B) =
{}

Analysis
direction

Forward Backward Forward

Dr
i =

dφ(A, Dr
i )

DEExpr(B) \ A{r,x}∀x UEExpr(B) \ A{r,x}∀x ExprKill(B) ∪
A{r,x}∀x

Dr
i =

uφ(A, Dr
j )

DEExpr(B) UEExpr(B) ExprKill(B)

Dr
i =

mcpyφ(A, Dq
j )

DEExpr(B) ∪ A{q,r} UEExpr(B) ∪ A{q,r} ExprKill(B)

Table 2. Computing availability and anticipability

Available out

Figure 5a B1 A{host,device}

Figure 5a B2 A{host,device}

Figure 5b B1 A{host,device}

Figure 5b B2 A{host,device}

(a) Redundancy

Available out Anticipable in

B1 φ A{host,device}

B2 φ A{host,device}

B3 A{host,device} A{host,device}

B4 φ φ

B5 A{host,device} A{host,device}

B6 A{host,device} φ

B7 A{host,device} φ

(b) Partial redundancy

Anticipability is computed by a backward analysis using the following equations,

AntIn(m) = UEExpr(m) ∪ (AntOut(m) ∩ ExprKill(m))

AntOut(n) =
�

m∈succ(n)

AntIn(m), m �= Exit Block

AntOut(Exit Block) = φ, and for all other blocks AntOut(n) = All Copies
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To compute the availability and anticipability, we define a lattice over the
mcpyφ of array variables. We use A{src,dst} to denote that the memory copy of
A between src and dst is redundant, that is both memory spaces have exactly
the same copy of A. Our analysis is based on the “lazy code motion” data-flow-
equations from [8]. Table 1 defines the local properties used to compute the avail-
ability and anticipability.

Definition 4 Redundancy: A copy statement between memory spaces m and
p for a particular array A is redundant, if both the memory spaces already have
the same version of A.

A memory copy, Dp
i = mcpyφ(A,Dm

j ) is redundant if A{m,p} ∈ AvailOut(Dm
j )

Example of Redundancy. Consider Fig. 5a and Fig. 5b, in both these cases B1
and B3 have an mcpyφ operator, and there is no write to the array between this
pair of mcpyφ statements. Thus, as Table 2a shows, A{host,device} is available at
the entry to basic block B3 which means the host and device memory space
have the same copy of the array and any further copy is redundant. Thus we can
remove the memory copy from the B3 in the first two cases.

Definition 5 Partial Redundancy: A copy statement between memory spaces
m and p for a particular array A, constitutes a partial redundancy, if both the
memory spaces already have an updated copy on some but not all paths reaching
the copy statement.

Example of Partial Redundancy. Consider the loop invariant case in Fig. 5c. As
Table 2b shows, The memory copy of B3 is anticipable at the entry of both B1
and B2, that is to the entry block of the loop. But the device definition in B4
makes sure that the B5 copy is not redundant. Now, the copy of B5 is available
at the exit of B5 and also till the loop exit block B7. Consider the two edges of
B1−B2 and B6−B2, A{host,device} is available only on the back edge B6−B2,
but not on the entry to the loop. Hence it is partially redundant at B2.

4.3 Lazy Code Motion

Partial redundancy elimination (PRE) [15] eliminates redundant computation
of expressions in programs by moving invariant computations out of loops and
also eliminating identical computations that are performed more than once on
any execution path. In this paper, we use the formulation from [20] and [8]. Our
customized PRE algorithm for data movements has the following steps:

1. Basic block local properties: compute the local properties of upward-exposed
and downward-exposed mcpyφ operators using the transfer functions defined
over LASSA operators in Table 1.

2. Solve the data flow equations: compute available and anticipable copy opera-
tions according to Definition 2 and Definition 3.
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3. Determine Earliest and Latest placement : given the solutions of availability
and anticipability, we can determine the earliest point in the program at
which it is safe to hoist the copy statement. It is profitable to insert a copy
statement at a basic block B, if it makes other copy statements redundant.
Again we use the original data flow equations [20], to solve for earliest and
later placement.

4. Redundant copies: this translates to identifying redundant memory copy
statements according to Definition 4.

5. Code rewrite: identify the program point to insert the memory copy, and the
set of redundant memory copies that can be deleted.

Note that dataflow analysis on the LASSA IR ensures that the transformed
program produces the same output as the original output. The semantics of the
mcpyφ IR ensures the legality of the optimization.

(a) Framework LLVM implementation
(b) Speedup compared to default map
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(d) Improvement in Total Bytes Copied

Fig. 6. Experimental framework and results
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5 Evaluation

Implementation. We implemented our analysis in the LLVM 9.0.1 compiler
framework3. Figure 6a shows an overview of our analysis and the optimiza-
tion framework. We used Clang to emit LLVM IR using the target-independent
“libomptarget” OpenMP offloading library. The analysis pass then analyzes the
API calls and their arguments to infer the offload pragmas specified by the user.
We implemented an Andersen like flow-insensitive alias analysis, and also used
two LLVM built-in analyses: scalar evolution for array index analysis and mem-
ory SSA4 for chaining memory access and data copy operations.

For optimal memory copy insertion, we developed our analysis pass Omp-
MemOpt. It performs an inter-procedural analysis to detect redundant memory
copies. Based on the analysis results, we infer the optimal places to insert the
OpenMP memory copy constructs. Finally, we developed a Perl script to insert
the appropriate memory mapping directives into the input source files. Thus,
given an OpenMP target offloading application with no explicit memory man-
agement, our tool analyzes the program and finally generates the modified source
files after adding the optimal set of OpenMP memory map directives.

Experimental Setup. We use the OpenMP benchmarks from SPEC ACCEL v1.2
to evaluate our analysis and optimizations. We exclude Fortran applications from
our evaluation, since they are not supported by our current tool chain; we also
exclude benchmarks that do not use target offloading. We show results for the 6
SPEC benchmarks, and also include 4 other applications: saxpy, Cardoid ,Matrix
Multiply and Matrix Transpose.

Our experimental results were obtained from a Linux (Ubuntu 18.04.3)
workstation, Intel Core i5-7600 CPU (3.50GHz), 16GB memory and an Nvidia
“TITAN Xp” GPU with 12GB memory and CUDA 10.1.

Experimental Result and Discussion. We removed all the explicit memory map-
ping constructs specified in the benchmarks to obtain our baseline. The host
performs host-to-device copy in the baseline version before launching every ker-
nel on the device and device-to-host copy after the kernel finishes execution.

After running our optimization on the benchmark, we have three versions of
each application: the baseline, OmpMemOpt optimized version, and the original
hand-optimized benchmark. We compare the performance of these three ver-
sions to evaluate our framework. We measure the efficiency on such metrics: the
improvement of execution time, the reducing of data volumes and time consumed
on data movement.

3 http://llvm.org/.
4 https://llvm.org/docs/MemorySSA.html.

http://llvm.org/
https://llvm.org/docs/MemorySSA.html
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Table 3. Comparison of our achieved speedup with manually opti-
mized speedup

Benchmark In putMemory copy timeTotal timeManual speedupOur speedup

503.postencil ref 954491.4 983668.3 33.5 1.0

503.postencil test 3108.6 3205.2 25.6 1.0

503.postencil train 3116.8 3211.5 25.5 1.0

504.polbm ref 497859.3 553697.4 9.5 9.5

504.polbm test 2014.5 2243.0 7.0 7.0

504.polbm train 30222.4 33615.8 9.4 9.3

552.pep ref 563182.7 671546.9 5.7 1.0

552.pep test 469.8 653.9 3.6 1.0

552.pep train 35889.8 42726.6 5.8 1.0

554.pcg ref 807757.1 1040824.3 4.5 3.9

554.pcg test 24129.3 31056.1 4.4 4.0

554.pcg train 88261.0 113651.9 4.5 4.0

557.pcsp ref 1204141.9 1308006.4 2.0 1.5

557.pcsp test 20098.1 20229.1 1.5 1.5

557.pcsp train 464849.7 475782.2 2.0 1.5

570.pbt ref 3750608.5 4221773.7 3.7 3.7

570.pbt test 1321807.1 1339861.0 2.6 2.6

570.pbt train 2563893.7 2728456.2 3.6 3.6

Cardoid 838.5 1163.8 3.17 3.17

mm mpy 750.8 54555 1.02 1.02

mtx transpose 16.66 17.7 2.8 2.8

Saxpy 154.7 315.9 1.09 1.09

We did the
following study
for the compari-
son with baseline
code. Figure 6b
shows the overall
speedup obtai-
ned by our app-
roach compared
to the naive data
mapping baseline.
As we can see
except 503 and
552, all the bench-
marks show a
speedup ranging
from 1.02× to
almost 10×. The
503 and 552 bench-
marks did not
get a chance to be optimized due to limitations in the precision of the alias
analysis used—flow-insensitive pointer analysis could not disambiguate the array
references in those two benchmarks.

Figure 6c explains the reason for the speedup, by showing the improvement
factor of memory copy time, compared to the baseline. A significant point to
note here is that the performance gain is mostly dependent on the problem size
(i.e., input data size). This also implies that the efficiency depends on the data
volume reduced for transfer.

Finally, Fig. 6d gives a quantization study of the data volume transferred
between the host and the device. It shows the reduction in total bytes copied.
As is evident, there is a correlation between the factor by which total bytes are
reduced and the obtained speedup. The speedup also depends on the pattern of
computation. As the Matrix Multiplication example shows, even though there is
a 1.5× reduction of memory-copy-time, it does not result in a speedup since the
application is compute-intensive. In the benchmark Cardoid, there is an outer
loop which iterates for 100 iterations, and launches an inner loop on the target
device. The default semantics of the target construct would perform host-to-
device and device-to-host copy in each iteration. But, since there is no host
access, there is no need to copy the data back and forth every time. This is
why almost 100% of the memory copies are eliminated after our optimization.
Benchmark Saxpy is similar to Cardoid, there is an outer loop that launches the
target task every iteration, and redundantly copies the data in every iteration.

Table 3 shows the comparison of speedup obtained from our approach with
the manually optimized version. The manually optimized version is the original
source released as the SPEC ACCEL benchmarks. The 3rd and 4th columns give
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the memory copy time and total execution time for baseline code (i.e. naive mem-
ory mapping version). The 5th column shows the speedup obtained by compar-
ing user manually optimized code against baseline. And the last column shows
the speedup got from our approach. In general, the user manually optimized
version gives the better improvement by comparing the last two columns, and
our approach (i.e. compiler optimization) got similar performance on 504.polbm
and 570.pbt. As mentioned above, there is no improvement from 503.postencil
and 552.pep due to the precision issues from pointer alias analysis. This study
shows the compiler’s potential to automatically generate as efficient code as a
programmer’s manually optimized version.

6 Related Work

The problem of code generation and communication optimization for distributed
memory machines is a classical problem, studied for a long time. Amarasinghe
and Lam [1] introduced a data flow analysis framework to generate remote mes-
sage read/write code, and then detect and remove redundancies in homoge-
neous distributed computing. Chavarria and Mellor-Crummey [6] proposed a
communication coalescing optimization to reduce redundant data transfer for
high-performance Fortran applications. Dathathri et al. [7] introduced a poly-
hedral model to enable static analysis and automatically generate efficient data
movement code for non-shared address spaces.

Load elimination and partial code motion are the classic optimizations for
eliminating redundant memory loads in a sequential program. In [5], Bodik
et al. phrased the load-reuse problem as a path-sensitive analysis problem on
the dataflow graph. Their algorithm can detect the reuse pattern for both
scalar variable and pointer-based memory load operations. Recently, GPU based
heterogeneous computing is becoming the mainstream configuration of high-
performance computing. Several compiler optimizations and runtime techniques
have been developed for reducing the communication overhead. In [12], Jablin et
al. introduced a CPU-GPU Communication Manager (CGCM), which employs
a static analysis with a runtime library to optimize CPU-GPU communication.
Ramashekar and Bondhugula introduced BBMM [19] for communication opti-
mizations on a multi-GPU system. They applied communication optimization
for the tiled loop nest and generated the OpenCL code that uses BBMM runtime
API to perform buffer management and data communication.

Ashcraft et al. built a compilation technique [3] that performs whole-program
analysis to make the optimal placement of data transfer operations. Their app-
roach is based on a liveness analysis to identify the preliminary scheduling loca-
tions for the data transfer and then use the dominator tree to optimize the loca-
tions. In [16], Mendonca et al. developed an automatic annotation mechanism
for enabling GPU based data parallelism from the source code and eliminate the
redundant CPU-GPU data copies.

There are also several runtime based communication optimization techniques
for eliminating the CPU-GPU redundant memory copies. Asai et al. [2] discussed
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a runtime based approach using data dependence analysis for reducing the mem-
ory copy operations in a GPU-enabled version of the Apache Spark framework.
Kim et al. developed a runtime communication optimization: Unnecessary Data
Transfer Elimination (UDTE) [13], which uses a page-fault mechanism to avoid
redundant CPU-GPU memory copies.

Compared with past work, our approach introduced a general compiler opti-
mization framework that optimizes data movement across different memory
spaces in heterogeneous computing. The related work mentioned above addressed
this problem using runtime based mechanisms. Our framework reduces data
movement overheads, and is applicable to parallel programming models that
support heterogeneous computation.

7 Conclusion

In this work, we addressed the problem of optimizing data movement across
different computation devices in a heterogeneous computing application. Given
that many parallel programming language models (e.g., OpenMP, OpenACC)
support offloading of computations and data to different accelerators, automatic
elimination of redundant memory copies to improve performance, while still
ensuring correctness, is an important challenge for compilers. To address this
problem, we developed an optimization framework to identify redundant data
movements and perform code transformations to eliminate those redundancies.
We first extended Heap SSA to a Location-Aware heap SSA form (LASSA), an
intermediate representation that can track host-to-device memory copies across
multiple devices. Then, we performed a partial redundancy elimination dataflow
analysis on LASSA to address the problem of removing redundant data transfers.
We evaluated our technique on 10 benchmarks written in OpenMP 4.5 with tar-
get offloading constructs. Our approach demonstrated a geometric mean speedup
of 2.3× and saved a geometric mean of 3.48 GB in redundant data transfers. For
one of our future work directions, we plan to explore the use of immutability
information [18] to further reduce the data transfers performed.
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