
Issues in the Reproducibility of Deep Learning Results

S. Jean-Paul, T. Elseify, I. Obeid and J. Picone

The Neural Engineering Data Consortium, Temple University, Philadelphia, Pennsylvania, USA
{tuh26880, tug98850, iobeid, picone}@temple.edu

The Neuronix high-performance computing cluster allows us to conduct extensive machine learning
experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2],
that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety
of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end
devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow
extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH
EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems,
and routinely employ multiple GPUs to accelerate the training process.

Reproducible results are essential to machine learning research. Reproducibility in this context means the
ability to replicate an existing experiment – performance metrics such as error rates should be identical and
floating-point calculations should match closely. Three examples of ways we typically expect an
experiment to be replicable are: (1) The same job run on the same processor should produce the same results
each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should
produce comparable results if the data is presented in a different order. System optimization requires an
ability to directly compare error rates for algorithms evaluated under comparable operating conditions.
However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that
often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one
we will explore in this poster.

Researchers must be able to replicate results on a specific data set to establish the integrity of an
implementation. They can then use that implementation as a baseline for comparison purposes. A lack of
reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally
important, since many results in deep learning research are dependent on the order in which the system is
exposed to the data, the specific processors used, and even the order in which those processors are accessed,
it becomes a challenging problem to compare two algorithms since each system must be individually
optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in
which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-
validation [5,6] can be used to mitigate these effects, but this is also computationally expensive.

These issues are further compounded by the fact that most deep learning algorithms are susceptible to the
way computational noise propagates through the system. GPUs are particularly notorious for this because,
in a clustered environment, it becomes more difficult to control which processors are used at various points
in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition
from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same
experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an
historical archive of experimental results that can be used to calibrate algorithm research is quite a
challenge. This makes it very difficult to optimize the system or select the best configurations.

1. Research reported in this publication was most recently supported by the National Science Foundation Partnership for
Innovation award number IIP-1827565. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

2. Research reported in this publication was also supported by the National Human Genome Research Institute of the National
Institutes of Health under award number U01HG008468. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

The overall impact of all of these issues described above is significant as error rates can fluctuate by as
much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate
this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing
infrastructure already running at max capacity.

GPUs are preferred when training a large network since these systems train at least two orders of magnitude
faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there
is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network
library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element
of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically
searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that
increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10].
Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of
comparing each epoch, we compare the average performance of the experiment because it gives us a hint
of how our model is performing per experiment, and if the changes we make are efficient.

In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate
these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by
default. TensorFlow determines the initialization point and how certain functions execute using the RNG.
The solution for this is seeding all the necessary components before training the model. This forces
TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers).
However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the
outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain
layers, etc.

To mitigate our problems with reproducibility, we first make sure that the data is processed in the same
order during training. Therefore, we save the data from the last experiment and to make sure the newer
experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to
how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults
to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary
significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces
differences due to computational noise even though technically it increases the amount of computational
noise.

We are currently developing more advanced techniques for preserving the efficiency of our training process
while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these
issues using some novel visualization tools, present several examples of the extent to which these issues
influence research results on electroencephalography (EEG) and digital pathology experiments and
introduce new ways to manage such computational issues.

REFERENCES

[1] C. Campbell, N. Mecca, I. Obeid, and J. Picone, “The Neuronix HPC Cluster: Improving Cluster
Management Using Free and Open Source Software Tools,” IEEE Signal Processing in Medicine
and Biology Symposium, 2017, p. 1.

[2] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux Utility for Resource
Management,” in Job Scheduling Strategies for Parallel Processing, 2003, pp. 44–60.

[3] I. Obeid and J. Picone, “The Temple University Hospital EEG Data Corpus,” in Augmentation of
Brain Function: Facts, Fiction and Controversy. Volume I: Brain-Machine Interfaces, 1st ed.,
vol. 10, Lausanne, Switzerland: Frontiers Media S.A., 2016, pp. 394–398.

[4] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems,” arXiv: 1603.04467, p. 19, Jan. 2015. https://arxiv.org/pdf/1603.04467.pdf.

[5] J. Gardner, Y. Yang, R. Baker, and C. Brooks, “Enabling End-To-End Machine Learning
Replicability: A Case Study in Educational Data Mining,” arXiv:1806.05208v2 [cs.LG], p. 10,
Jun. 2018.

[6] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York City, New York, USA:
John Wiley & Sons, Inc, 2001.

[7] Google, “Using GPUs for training models in the cloud,” 2019. [Online]. Available:
https://cloud.google.com/ml-engine/docs/using-gpus. [Accessed: 31-Oct-2019].

[8] S. Chetlur et al., “cuDNN: Efficient Primitives for Deep Learning,” arXiv: 1410.0759, p. 9, 2014.

[9] P. Nagarajan, G. Warnell, and P. Stone, “The Impact of Nondeterminism on Reproducibility in
Deep Reinforcement Learning,” in 2nd Reproducibility in Machine Learning Workshop, 2018, p.
10.

[10] P. Nagarajan, G. Warnell, and P. Stone, “Deterministic Implementations for Reproducibility in
Deep Reinforcement Learning,” in AAAI 2019 Workshop on Reproducible AI, 2019, p. 17.

[11] M. Taufer, O. Padron, P. Saponaro, and S. Patel, “Improving numerical reproducibility and
stability in large-scale numerical simulations on GPUs,” in IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), 2010, pp. 1–9.

[12] D. Yablonski, “Numerical Accuracy Differences in CPU and GPGPU Codes,” Northeastern
University, 2011.

[13] D. Fay, A. Sazegari, and D. Connors, “A Detailed Study of the Numerical Accuracy of GPU-
Implemented Math Functions,” in Proceedings of the Supercomputing Workshop on General
Purpose GPU Computing: Practice and Experience, 2006, p. 1.

Statistical Analysis
• To determine the effect of varying initial conditions,
a different model was initialized with 100 unique
large prime numbers as the seeds.

• The results showed that the initial starting point of
the model’s weights has a sizeable effect on its
performance. Depending on the seed used, a model
with the same architecture produced error rates with
a difference of over 7%.

• The input feature dimensionality was a determining
factor for how much the error rates varied. The 2 and
5-dimensional datasets produced error rates with a
significantly smaller standard deviation than the 26-
dimensional dataset.

• PyTorch consistently produced error rates with a
higher standard deviation than TensorFlow for all
datasets that were evaluated.

• The learning rates for the models were kept at
0.0005. This prevented the models from diverging,
but also reduced their potential to explore the error
space.

• The distinct random starting points caused the
models to converge at different local minima
resulting in different error rates. This is a well-known
problem in gradient descent approaches.

Issues in the Reproducibility of Deep Learning Results
S. Jean-Paul, T. Elseify, I. Obeid and J. Picone

The Neural Engineering Data Consortium, Temple University

Mismatched Architectures
• Four unique devices used:

q CPU: Intel Xeon(R) CPU E5-2620 v4 @ 2.10GHz
q GTX 1070: 8GB GDDR5, 256 GB/s Bandwidth
q Tesla P40: 24GB GDDR5X, 480 GB/s Bandwidth
q RTX 2080 : 8GB GDDR6, 448 GB/s Bandwidth

• Software packages used with Python 3:
q PyTorch v1.3.1
q TensorFlow v1.14 / Keras v2.3.1
q CUDA v10.1.243

• Cross-platform evaluations:

• Statistical Significance:
q 2D: +/- 1.40% [7.21%, 10.01%]
q 5D: +/- 1.12% [35.74%, 37.98%]
q 26D: +/- 3.42% [45.52%, 52.36%]

• The t-tests performed on the three sets suggest as
the feature’s dimensionality increases, the
difference in results between TensorFlow and
PyTorch becomes less significant.

• The weights of the model were initialized randomly
using a constant seeding value.

• Model parameters (e.g., weights) were not
reproducible in TensorFlow.

• The error rates were reproducible when the
computing architecture remained constant.

• A network containing a single 26 neuron hidden
layer with lower dimensional input (i.e. 2D) tend to
learn redundant information.

• Since the number of nodes in the hidden layer
remained constant, inputs with a higher feature
dimension increased the number of weights in the
model in the input layer.

• TensorFlow and PyTorch invoke reduction functions
that introduce non-deterministic behavior on GPU
and multi-threaded CPU architectures.

• This non-determinism is caused by threads not
performing operations in the same order after each
run. It is impossible to control these things from
high-level interfaces (e.g., Keras).

College of Engineering
Temple Universitywww.nedcdata.org

Sensitivity to Data Ordering
• The ordering of the data influences the performance
of a model due to how the weights become
initialized. The effect of this was measured by
creating a single model and fitting a shuffled version
of the data after each run.

• There were a total of 100 runs where the training
data was shuffled with a unique seed each run.

• Despite keeping the model architecture constant,
changing the order of the data resulted in error rates
within 3% absolute of one another.

• Ensuring the same ordering of data can help prevent
variations in performance, but this is application
specific.

Acknowledgements
• Research reported in this publication was most
recently supported by the National Human Genome
Research Institute of the National Institutes of Health
under award number U01HG008468. The content is
solely the responsibility of the authors and does not
necessarily represent the official views of the
National Institutes of Health.

• This material is also based in part upon work
supported by the National Science Foundation under
Grant No. CNS-1726188. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National Science
Foundation.

Summary
• It is difficult to achieve reproducibility when using
popular deep learning software packages such as
PyTorch and TensorFlow. Their dependence on
CUDA functions compounds the problem.
Parallelization and floating-point precision
(e.g., CPU vs. GPU) play a significant role also.

• Seeding all the random number generators helps
mitigate the error in performance by ensuring the
model is initialized with the same random weights.

• The complexity of the model influences the variance
in error rates.

• The effects of increased model and data complexity
on reproducibility will be a topic explored in future
experiments.

Introduction
• There were a total of three unique datasets used for
training and evaluation purposes:
q 2D (10K train, 2K dev, 2K eval): two-dimensional

randomly generated multivariate Gaussian data:

q 5D (100K train, 10K dev, 10K eval): five-
dimensional multivariate Gaussian data with
covariance matrices that resemble EEG data.

q 26D (18,936 train, 1,154 eval): 26-dimensional EEG
vectors extracted from seizure events in the TUH
EEG Seizure Detection Corpus.

• The data sets are publicly available at:
www.isip.piconepress.com/courses/temple/ece_8527/resources/data/

• An MLP model with
26 hidden nodes, Adam
optimization and a
categorical entropy
loss function was used
for all experiments. The
software is also
available at the above
URL.

Abstract
• Reproducible result: a researcher should be able to
generate performance comparable to a published
baseline using the same data and algorithm but a
different computer architecture.

• Reproducible results are essential to machine
learning research since system optimization
requires an ability to directly compare error rates for
algorithms evaluated under comparable conditions.

• GPUs are preferred when training a large network
since these systems train at least an order of
magnitude faster than CPUs.

• GPUs, however, produce different numeric results
than CPUs. The degree of difference is, of course,
architecture specific, compounding the problem.

• Most deep learning toolboxes use a math library
known as CUDA which also introduce randomness.
State of the art systems typically use multiple GPUs
for training, which adds even more randomness.

• In this study, two popular machine learning libraries,
PyTorch and TensorFlow, were analyzed.

• Seeding techniques specific to individual
architectures are used to mitigate the effects of non-
deterministic behavior.

https://www.isip.piconepress.com/courses/temple/ece_8527/resources/data/

