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If an open quantum system is periodically driven with high frequency and the driving commutes with
the system-bath coupling operator, it is known that the system approaches a Floquet-Gibbs state, a
generalization of Gibbs states to periodically driven systems. Here, we investigate the stationary state of an
ac-driven system when the driving and dissipation are noncommutative. Then, the resulting stationary state
does not obey the Floquet-Gibbs distribution, and the system dynamics is determined by inelastic scattering
processes of the driving field. Based on the Floquet-Redfield formalism, we show that the probability
distribution can exhibit population inversion and discontinuities, i.e., jumps, for parameters at which
coherent destruction of tunneling takes place. These discontinuities can be observed as intensity jumps in
the emission into the bath.
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Introduction.—Because of the precise experimental con-
trol, periodic driving has become a flexible tool for
quantum state manipulation with extensive applications,
e.g., quantum phase transitions, quantum transport, and
even-harmonic generation [1–14]. The study of periodic
driving becomes more interesting and challenging as the
limit of light-matter coupling gets continuously pushed to
the ultrastrong coupling regime [15].
As a quantum system is never completely decoupled

from its environment, thermalization finally leads to
relaxation towards a stationary state. Yet, relatively little
is known about possible stationary states of periodically
driven systems. In two recent articles, Shirai et al. have
discussed conditions for effective Floquet-Gibbs states
[16,17]. The probabilities of the Floquet states, character-
istic states of periodically driven systems, are determined
by their corresponding quasienergies ϵλ in a Gibbs-like
fashion; thus, pλ ∝ e−βϵλ . However, given the richness of
quantum effects in periodically driven systems, the sta-
tionary states in these systems can deviate from Floquet-
Gibbs states and can exhibit intriguing features [18–20].
Taking a driven two-level system coupled to the envi-

ronment [Fig. 1(a)] as an example, there are additional
processes which drive the system away from a Floquet-
Gibbs state. Besides the usual transitions between the
Floquet states jφn;λi within a Brillouin zone n [marked in

Fig. 1(a) with Að0Þ
ij ], there are additional transitions which

are accompanied by emitting or absorbing a phonon (or

photon) to the environment (marked with Að−1Þ
ij ). The

phonon can have one of the following frequencies: Ω − Δ

(jφn;0i → jφn−1;1i), Ω (jφn;0i → jφn−1;0i and jφn;1i →
jφn−1;1i), and Ωþ Δ (jφn;1i → jφn−1;0i). Here, Ω denotes
the driving frequency, and Δ denotes the difference between
two quasienergies. Thus, the monochromatic driving field is
scattered into three contributions. This emission is related to
the Mollow triplet [21–24], appearing for scattering of a
driving field closely in resonance with the level splitting.
In contrast, here we focus on the fast driving regime. The
emitted phonons can be blueshifted, unshifted, or redshifted,
respectively. The unshifted transitions do not change the
system state, but the shifted transitions can have a consid-
erable influence on the dynamics.
In coherent destruction of tunneling (CDT) [25], the

transition between two quantum states can be suppressed
due to a destructive interplay of coherent wave dynamics
and external periodic driving [26–28]. This genuine quan-
tum localization appears at special ratios of the driving
amplitude and frequency, which are associated with roots

(a) (b)

FIG. 1. (a) The ac-driven spin-boson model. Because of the
coherent dynamics, it emits phonons with Ω, Ω� Δ (unshifted,
blueshifted, and redshifted), respectively. The corresponding
transitions are depicted in (b).
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of the Bessel function. CDT has been experimentally
verified in Bose-Einstein condensates [29], optical wave-
guides [30], Fermi liquids [31], chaotic microcavities [32],
and superconducting quantum circuits [33].
This Letter studies exotic stationary states appearing for

weak system-bath coupling. The key difference from
previous studies is the noncommutative coupling, which
leads to exotic non-Gibbs distributions. In particular, we
discover exotic discontinuities in the stationary state when
smoothly increasing the driving amplitude. These jumps
are a consequence of the CDT and can therefore appear in
various systems. We explain how this counterintuitive
feature is manifested in the emission of the driven system.
Model system.—We consider a spin-boson model con-

sisting of a two-level system coupled to a thermal envi-
ronment. In general, two-level systems are idealizations of
more complicated level structures. The spin-boson model is
a minimal model for quantum dissipation and exhibits
quantum phenomena, including heat transfer, dissipative
tunneling, and quantum phase transitions [34,35]. Adding
an ac drive allows us to investigate spectroscopic proper-
ties. In a recent article, Maggazzù et al. have experimen-
tally implemented an ac-driven spin-boson model in a
superconducting quantum circuit [33]. Also, intriguing
physical effects have been theoretically investigated in
Refs. [36–42].
The Hamiltonian of the driven spin-boson model reads

HðtÞ ¼ hx
2
σx þ

hzðtÞ
2

σz þ σ̂θ
X
k

Vkðbk þ b†kÞ þHB; ð1Þ

where σα with α ¼ fx; y; zg denote the Pauli matrices,
hx denotes the tunneling amplitude, and hzðtÞ ¼ hz;0 þ
hz;1 cosðΩtÞ is the time-dependent on-site energy, where
hz;0 is the offset, hz;1 is the driving amplitude, and Ω is the
driving frequency. The bathHB ¼ P

kωkb
†
kbk with phonon

frequencies ωk is quadratic in bosonic operators bk and is
coupled via the system operator σ̂θ ¼ sin θσx þ cos θσz
with strength Vk. Depending on the coupling angle θ,
undriven and driven systems can give rise to diverse
physical behavior [19,20,43–46].
Floquet theory describes the dynamics of periodically

driven systems [47,48]. Because of the driving with a
period of τ ¼ 2π=Ω, the characteristic states of the system
fulfill jΦn;λðtÞi ¼ e−iϵn;λtjφn;λðtÞi, with quasienergy ϵn;λ and
periodic Floquet state jφn;λðtÞi ¼ jφn;λðtþ τÞi. These
states are the analog to the eigenstates in time-independent
systems. The Floquet states λ are not uniquely defined
due to the Brillouin zone index n: A state with index n can
be related to the n ¼ 0 state by ϵn;λ ¼ ϵ0;λ þ nΩ and
jφn;λðtÞi ¼ e−inΩtjφ0;λðtÞi. The stroboscopic Floquet states
are the eigenstates of the time-evolution operator after one
period ÛsðτÞjφn;λð0Þi ¼ e−iϵn;λτjφn;λð0Þi.

In Fig. 2(a), we depict the quasienergies ϵλ ¼ ϵ0;λ of
the isolated two-level system as a function of hz;1=Ω,
where λ ¼ 0, 1 and n ¼ 0. The stroboscopic dynamics
follows the effective Hamiltonian Heff ¼ ðhz;0=2Þσz þ
ðhx=2ÞJ 0ðhz;1=ΩÞσx þOð1=ΩÞ [49]. For hz;0 ¼ 0, we find
ϵλ ¼ �hxJ 0ðhz;1=ΩÞ=2, so that there are degeneracies at
the roots of the Bessel function J 0ðhz;1=ΩÞ ¼ 0. This is the
CDT effect, as the dynamics is frozen. The stroboscopic
Floquet states read jφλð0Þi ≈ jsgn½J 0ðhz;1=ΩÞ�ð−1Þλix.
Accordingly, there is a nonanalytic switch of the Floquet
state, e.g., jφ0ð0Þi ¼ j − 1ix to jφ0ð0Þi ¼ j þ 1ix, at the
roots of the Bessel function.
Rate equations.—An important point to realize is that,

though the states jφn;λðtÞi of the two-level system are
equivalent for different n in a closed system, n becomes
physically relevant when the system is coupled to a bath
HB. The bath can trigger transitions between different
Brillouin zones n, n0. In Fig. 1(b), we illustrate transitions
associated with Δn ¼ n − n0 ∈ f0;−1g. Using the secular
Floquet-Redfield formalism [18,48,50], one can derive the
rate equations

(a)

(b)

(c)

FIG. 2. (a) Quasienergy spectrum as a function of the driving
amplitude hz;1. (b) and (c) depict the probabilities pλ for θ ¼ π=2
(σ̂π=2 ¼ σx) and θ ¼ π=4 (σ̂π=4 ¼ ð1= ffiffiffi

2
p Þσx þ ð1= ffiffiffi

2
p Þσz), re-

spectively. The Floquet states are approximately given by the
eigenstates of σx, which we denote by j − 1ix and j þ 1ix
corresponding to eigenvalues −1 and 1, respectively. We choose
hz;0 ¼ 0 [except for the thin lines in (b), where hz;0 ¼ 0.05hx],
ωc ¼ 10hx, Ω ¼ 40hx, and kBT ¼ 3hx. All results are presented
in a γ-independent way.
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d
dt

p0 ¼ −
X
Δn

AðΔnÞ
1←0p0 þ

X
Δn

AðΔnÞ
0←1p1;

d
dt

p1 ¼ þ
X
Δn

AðΔnÞ
1←0p0 −

X
Δn

AðΔnÞ
0←1p1; ð2Þ

where pλ denotes the probability to be in Floquet state λ

and AðnÞ
λ←μ is the transition probability between two Floquet

states:

AðnÞ
λ←μ ¼ ΓðΔn

λμÞ½nBðΔn
λμÞ þ 1�janλ←μj2;

aðnÞλ←μ ¼
1

τ

Z
τ

0

hφλð0Þjσ̂θðtÞjφμð0Þie−inΩtdt: ð3Þ

Here, nBðωÞ denotes the Bose distribution, ΓðωÞ ¼P
k V

2
kδðω − ωkÞ ¼ γω=ðω2 þ ω2

cÞ (coupling strength γ
and cutoff frequency ωc) denotes the coupling density,
defined for negative frequencies by ΓðωÞ ¼ −Γð−ωÞ,
and Δn

λμ ¼ ϵμ − ϵλ − nΩ. The time-dependent operator

reads σ̂θðtÞ ¼ eiΛ̂ðtÞσ̂θe−iΛ̂ðtÞ, where Λ̂ðtÞ is defined by
the Floquet states jφλðtÞi ¼ e−iΛ̂ðtÞjφλð0Þi.
It is easy to show that the rates obey the detailed balance

condition AðnÞ
λ←μ ¼ Að−nÞ

μ←λe
ΔðnÞ

λμ =T , where T is the temperature

of the environment. In general, the AðnÞ
λ←μ do not fulfill the

detailed balance condition, which gives rise to a breakdown
of a Gibbs-like state; thus, p0=p1 ≠ e−ðϵ1−ϵ0Þ=T .
Stationary state.—In the Floquet-Redfield formalism,

the stationary density matrix reads ρsðtÞ ¼P
λ pλjφλðtÞihφλðtÞj, which is time periodic. For θ ¼ 0,

the system approaches a Floquet-Gibbs state according to

Ref. [17], as the rates Aðn≠0Þ
λ←μ ≈ 0 and the rates Að0Þ

λ←μ keep the
detailed balance condition. This happens as, for θ ¼ 0, the
driving operator and system-bath coupling commute [17].
Figures 2(b) and 2(c) depict the stationary state for

θ ¼ π=2 and π=4, respectively. In Fig. 2(b), we find a
probability inversion for small hz;1=Ω and probability
jumps at the roots of the Bessel function
J 0ðhz;1=ΩÞ ¼ 0. Because of a generalized parity sym-

metry, Að0Þ
λ←μ vanishes exactly [51]. Consequently, the rate

equations are dominated by the transitions Δn ¼ −1, as
nBðjΔn>0

λμ jÞ ≪ 1 due to large Δn
λ;μ ≈ −nΩ. These transitions

are marked by the red and blue arrows in Fig. 1(b) (green
transitions do not change the state). The corresponding

coefficients jað−1Þμ←λ j are depicted in Fig. 3(a), where we

observe that jað−1Þ1←0j > jað−1Þ0←1j for, e.g., hz;1=Ω < z0, with z0
denoting the first root of the zeroth-order Bessel function.

As nBðΔn≠0
λμ Þ ≪ 1 and ΓðΔð−1Þ

10 Þ ≈ ΓðΔð−1Þ
01 Þ, we find from

Eq. (2) that p1=p0 ≈ jað−1Þ1←0j2=jað−1Þ0←1j2, which explains the
probability inversion. The rates explain the jump in the
probability distribution. In Fig. 3(a), we observe jumps at

the CDT positions, which are magnified in Fig. 3(b). The
noncontinuous behavior becomes more clear when con-
sidering Eq. (3). At the CDT, the Floquet states switch,
thus, jφλð0Þi ↔ jφμð0Þi, which gives rise to the nonana-
lytic behavior.
A similar reasoning can be applied to the σ̂π=4 coupling

depicted in Fig. 2(c). Away from the CDT, the probability
distribution mainly corresponds to the Floquet-Gibbs state:
The coupling σ̂π=4 has a σz contribution so that the rates

Að0Þ
λ←μ ≫ Að−1Þ

λ←μ are close to a Gibbs state. However, the

coefficients að−1Þλ←μ are almost equal to those of the σ̂π=2 case
giving rise to a probability jump, yet to a very small extent.
Importantly, although there is a jump discontinuity, the

density matrix remains continuous as a function of hz;1, as
the stationary density matrix ρsðtÞ ¼

P
λ pλjφλðtÞihφλðtÞj

exhibits a simultaneous switch of pλ and jφλðtÞi. Yet, the
probability jump does not depend on how the states λ ¼ 0,
1 are labeled, as the labeling can be uniquely defined for
finite hz;0 → 0. A corresponding quasienergy spectrum is
depicted in Fig. 2(a) with thin lines. For finite but small
hz;0, the gap closing is released as depicted in Fig. 2(a).
Accordingly, the states depend smoothly on hz;1, so that the
pλ are also uniquely defined as can be observed in Fig. 2(b).
The ordering of the states λ ¼ 0, 1 can be thus uniquely
defined in terms of the limit hz;0 → 0. Moreover, quantum
state tomography of the stationary state for small hz;0 → 0

can experimentally reveal the jump.

(a)

(c) (d)

(e)

(b)

FIG. 3. (a) The transition coefficients for σ̂π=2. The coefficients
for σ̂π=4 are almost equal. (b) Magnification of the jump
discontinuity in (a). (c) and (d) depict corresponding intensities
of blue- and redshifted emitted phonons for θ ¼ π=2 and θ ¼ π=4
coupling, respectively. The ratio of the red- and blueshifted
emission intensities for θ ¼ π=4 is depicted in (e). Parameters are
the same as in Fig. 2.
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The interplay of θ and hz;1 can be fully analyzed in
Fig. 4(a), where the stationary state strongly depends on θ,
though the system is only weakly coupled to the environ-
ment. In particular, for θ ≈ 0.5π and small hz;1, we find
inversion: p0 < 0.5; thus, there is a strong deviation from
the Floquet-Gibbs state, appearing for θ ¼ 0.

Phonon emission.—The nonanalytic behavior of the
probabilities canbeobserved in the emission.Every transition

Að−1Þ
λ←μ is related to the emission of phonons with an energy

of either Ω or Ω� Δ. The corresponding intensities

Ib;r ¼ IðΩ� ΔÞ are given by Ib ¼ ðΩþ ϵ1 − ϵ0ÞAð−1Þ
0←1p1

and Ir ¼ ðΩ − ϵ1 þ ϵ0ÞAð−1Þ
1←0p0. We depict the blue- and

redshifted intensities in Figs. 3(c) and 3(d). For σ̂π=2, we
observe that the two intensities are almost equal. As the

stationary state is governed by the rates Að−1Þ
λ←ν , we find p0 ∝

Að−1Þ
0←1 and p1∝Að−1Þ

1←0, so that Ir ≈ Ib for high-frequency
Ω ≫ ϵ1 − ϵ0.
For σ̂0 ¼ σz, at which the system approaches a Floquet-

Gibbs state, it is known that the rates Aðn≠0Þ
μ←ν ≈ 0 [16].

Consequently, here both Ir=b vanish. Considering the
difference Ib − Ir in Fig. 4(b), we consequently find that
the difference is smooth in hz;1 for both limiting cases
θ ¼ 0, π=2. However, in between there is a significant
jump, which is the strongest for about θ ≈ 0.3π.
Let us consider the σ̂π=4 coupling. Because of the σz

coupling component, the Að0Þ
λ←ν rates are dominant, which

leads to an (almost) thermalization of the system with its

environment. However, the rates Að−1Þ
λ←ν still exhibit a jump

at the CDT, so that we find jumps in Ir and Ib, as can be
observed in Fig. 3(d).
Magnus expansion.—To develop further insight, we

evaluate the rates Eq. (3) using the Magnus expansion in

a rotating frame for a high driving frequency [52,53].
Details can be found in the Supplemental Material [49]. We
obtain

aðnÞμ;λ ¼ SðnÞ
x hσxiμλ þ i · SðnÞ

y hσyiμλ þ SðnÞ
z hσziμλ; ð4Þ

where we have defined hσαiμλ ¼ hφμð0Þjσαjφλð0Þi. The

coefficients SðnÞ
α depend on the system parameters and,

importantly, are real valued.

The aðnÞμ;λ are evaluated in Table I. Because of a symmetry

condition, some of the SðnÞ
α vanish exactly. For n ¼ 0, we

find a Hermitian structure for the eigenstates jφλð0Þi≈
j − 1ix; j þ 1ix, which are mainly determined byHð0Þ

eff ∝ σx.
For n ¼ −1, the transition coefficients are dominated by

Sð−1Þ
y ∝ J −1ðhz;1=ΩÞ, which explains the oscillations in

Fig. 3(a). Importantly, they do not exhibit a Hermitian
structure. This leads to a breakdown of the detailed balance
relation and gives rise to the jumps in Figs. 2(b) and 2(c).
This appears as jφ0ð0Þi switches from j − 1ix to j þ 1ix
and, simultaneously, jφ1ð0Þi switches from j þ 1ix to

j − 1ix, causing a jump of að−1Þμ;λ .
We can use Eq. (4) to understand the intensity jump.

Expanding around a root z0 of the Bessel function
J 0ðz0Þ ≈ 0, we find Ired=Iblue ≈ 1� 2ðhx=ΩÞα with a
constant α and � for hz;1=Ω ≶ z0. Interestingly, the effect
scales as 1=Ω near the CDT [Fig. 3(e)].

Discussion.—The CDT in a driven dissipative system
gives rise to surprising effects. The presence of a bath can
give rise to inversion and jumps due to CDT in the
probability distribution of the Floquet state. As there is a
simultaneous discontinuity of Floquet states, the reduced
density matrix remains continuous. Consequently, the
probability jumps cannot be detected in system observ-
ables. Yet, precursors of the jump can be observed when the
driving has a constant offset (thin lines in Fig. 2). Moreover,
the jump behavior has a consequence on the emission,
such that the blue- and redshifted intensities can exhibit a
discontinuity at the CDT. This can be measured by phonon
spectroscopy. For our parameters, the ratio of the shifted
intensities exhibits a jump of about 10%.

FIG. 4. (a) shows the probability of the Floquet state jφ0i in a
stationary state of the Hamiltonian Eq. (1). (b) depicts the
difference of the blue- and redshifted emission intensities into
the bath. Parameters are the same as in Fig. 2.

TABLE I. Transition coefficients aðnÞμ;λ of all possible transitions
between different Floquet states jφλð0Þi.

n ¼ 0 j − 1ix j þ 1ix
j − 1ix Sð0Þ

x Sð0Þ
z

j þ 1ix Sð0Þ
z −Sð0Þ

x

n ¼ −1 j − 1ix j þ 1ix
j − 1ix Sð−1Þ

x Sð−1Þ
y þ Sð−1Þ

z

j þ 1ix Sð−1Þ
y − Sð−1Þ

z −Sð−1Þ
x
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The underlying reason for these discontinuities is a
crossing of the Floquet states at the CDT. This causes a
jump in the transition coefficients of the rates in Eq. (3).
Consequently, the effect does not depend on the details of
the bath. Yet, the system-bath coupling operator is impor-
tant. For a σ̂0 ¼ σz coupling as investigated in Ref. [16],
the stationary density matrix of the system recovers the
Floquet-Gibbs states. For σ̂π=2 ¼ σx, we find extreme
deviations from the Floquet-Gibbs state with probability
inversion as observed in Fig. 2(b). With this noncommu-
tative coupling, the probability jump at the CDT turns out
to be most significant. However, there is no signature in the
frequency-shifted intensities. For σ̂π=4 coupling, though the
probability jumps are very small, there is a clear jump
discontinuity in the blue- and redshifted intensity.
The noncontinuous behavior is general. First, it is not a

consequence of the high-frequency regime, which we
considered here to obtain analytical calculations. The
CDT appears due to an exact degeneracy of the quasie-
nergies which is persistent even for very low driving
frequencies [48]. Consequently, the jump behavior could
remain when lowering the driving frequency. Second, our
findings are not restricted to the dissipative two-level
system. Similar probability jumps could also be observed
in a dissipative driven Lipikin-Meshkov-Glick model,
which gives rise to many-body CDT [52]. Furthermore,
these findings will be important for electronic transport
[54–56]. It will be interesting to explore the fate of the
jumps for stronger environmental coupling using methods
such as in Refs. [57–62].
Periodic driving provides a flexible but highly control-

lable tool to manipulate quantum systems. Given the
findings in this Letter, one could employ the jump effect
to create transistorlike switches, as the frequency-shifted
intensities sensitively depend on the driving amplitude.
Because of the various driving modes and the extensive
parameter space, it is not surprising that the probability
jumps remained undiscovered. For instance, when the
driving force is a rotating field and, thus, cosðΩtÞσx þ
sinðΩtÞσy as in Refs. [39–41], the probabilities jumps do
not appear, as the system does not exhibit CDT.
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