2003.01736v1 [astro-ph.CO] 3 Mar 2020

arxiv

Mon. Not. R. Astron. Soc. 000, 1-25 (2020) Printed 5 March 2020 (MN ITEX style file v2.2)

SuperCLASS — III. Weak lensing from radio and optical
observations in Data Release 1

Tan Harrison 12, Michael L. Brown', Ben Tunbridge', Daniel B. Thomas',

Tom Hillier!, A. P, Thomson', Lee Whittaker', Filipe B. Abdalla?,

Richard A. Battye', Anna Bonaldi'*, Stefano Camera'®®, Caitlin M. Casey’,
Constantinos Demetroullas™®, Christopher A. Hales*!", Neal J. Jackson',

Scott T. Kay!, Sinclaire M. Manning’, Aaron Peters', Christopher J. Riseley!!12:13,
Robert A. Watson!, (SuperCLASS Collaboration)

L Jodrell Bank Centre for Astrophysics, Department of Physics & Astronomy, The University of Manchester, Manchester M13 9PL, UK
Department of Physics, University of Ozford, Denys Wilkinson Building, Keble Road, Ozford OX1 8RH, UK
Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK

SKA Organization, Jodrell Bank, Lower Whitington, Macclesfield, SK11 9DL, UK

Dipartimento di Fisica, Universitd degli Studi di Torino, Via P. Giuria 1, 10125 Torino, Italy

INFN - Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy

7 Department of Astronomy, University of Texas at Austin, 2515 Speedway Blvd, Stop C1400, Austin, Texas, U.S.A.
8 Cyprus University of Technology, Archiepiskopou Kyprianou 30, Limassol, 3036, Cyprus

9 National Radio Astronomy Observatory, PO Box 0, Socorro, NM 87801, USA

10 School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7TRU, UK

1 Dipartimento di Fisica e Astronomia, Universita degli Studi di Bologna, via P. Gobetti 93/2, 40129 Bologna, Italy
12 INAF - Istituto di Radioastronomia, via P. Gobetti 101, 40129 Bologna, Italy

13 CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia

U W N

5 March 2020

ABSTRACT

We describe the first results on weak gravitational lensing from the SuperCLASS
survey: the first survey specifically designed to measure the weak lensing effect in radio-
Wavelen%th data, both alone and in cross-correlation with optical data. We analyse
1.53 deg? of optical data from the Subaru telescope and 0.26 deg? of radio data from the
e-MERLIN and VLA telescopes (the DR1 data set). Using standard methodologies on
the optical data only we make a significant (100) detection of the weak lensing signal
(a shear power spectrum) due to the massive supercluster of galaxies in the targeted
region. For the radio data we develop a new method to measure the shapes of galaxies
from the interferometric data, and we construct a simulation pipeline to validate this
method. We then apply this analysis to our radio observations, treating the e-MERLIN
and VLA data independently. We achieve source densities of 0.5 arcmin~2 in the VLA
data and 0.06 arcmin~2 in the e-MERLIN data, numbers which prove too small to
allow a detection of a weak lensing signal in either the radio data alone or in cross-
correlation with the optical data. Finally, we show preliminary results from a visibility-
plane combination of the data from e-MERLIN and VLA which will be used for the
forthcoming full SuperCLASS data release. This approach to data combination is
expected to enhance both the number density of weak lensing sources available, and
the fidelity with which their shapes can be measured.

Key words: dark matter — large-scale structure of Universe — gravitational lensing

1 INTRODUCTION
Observations of weak gravitational lensing in the optical

wavebands have in the past twenty years moved from first
* E-mail: ian.harrison-2@manchester.ac.uk detections of the signal (Bacon et al. 2000; Kaiser et al. 2000;
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Van Waerbeke et al. 2000; Wittman et al. 2000) to compet-
itive cosmological constraints (KiDS-450, Hildebrandt et al.
2017; DES-Y1, Troxel et al. 2018; HSC first-year, Hikage
et al. 2018). The current generation of experiments has be-
gun to show a consistent picture of cosmological structure
formation at late times, and their final results will provide
useful information on the apparent tensions between such
probes and primary CMB measurements (see e.g. Raveri &
Hu 2018, for an overview). Following this, the next genera-
tion of weak lensing experiments such as LSST (The LSST
Dark Energy Science Collaboration et al. 2018) and the Fu-
clid satellite (Amendola et al. 2018), will further reduce sta-
tistical errors by an order of magnitude. However, there is
concern that systematic errors may already be overwhelm-
ing the statistical error bars. Cosmic shear surveys rely on
compilations of shapes, fluxes and distances for between mil-
lions and billions of galaxies, meaning even small biases in
analysis pipelines may compound to have significant impact
on inferred cosmological parameters. One potential way to
mitigate these problems is through performing weak lensing
observations in the radio waveband. As opposed to the filled
apertures and CCDs of optical and near-IR telescopes, the
relevant radio telescopes are interferometers. By using the
small and intermediate spatial scales available from interfer-
ometer data to measure galaxy shapes, we expect systematic
errors on the measurement of the weak lensing signal that
are caused by the instrument to be uncorrelated between the
radio and the optical. By cross-correlating maps of the weak
lensing signal between the two wavebands, systematics can
be removed (Camera et al. 2017) but statistical constraining
power is conserved (Harrison et al. 2016). Surveys possible
with the first phase Square Kilometre Array (SKA1; Square
Kilometre Array Cosmology Science Working Group et al.
2018), which is expected to begin observing near the end
of the next decade, will be comparable in weak lensing con-
straining power to the current optical surveys (Bonaldi et al.
2016), meaning their cross-correlation combinations will be
both statistically precise and systematically robust.

However, radio surveys have thus far lacked the combi-
nation of sub-arcsecond resolution, sub-uJy depth and wide
(> 10deg?) area necessary to detect high number densities
(> larcmin™?) of star-forming galaxies at z ~ 1 and hence
make a firm detection of the weak lensing signal. These two
tentative detections to date have both used observations not
designed for weak lensing science. Chang et al. (2004) used
the wide (~ 10* deg?) but shallow (~ 5x 1073 gal arcmin™?)
FIRST survey at 1.4 GHz to make a 3.60 detection of aper-
ture mass variance on angular scales of 1-4 degrees, whilst
Demetroullas & Brown (2016) combined the FIRST radio
and SDSS optical surveys to measure a shear signal from
cross-correlations of radio and optical shapes at 2.70. By
correlating the shapes of FIRST radio galaxies with the po-
sitions of SDSS DR10 objects Demetroullas & Brown (2018)
were also able to make a firm (100) detection of a galaxy-
galaxy lensing signal. Studies of the COSMOS field at both
1.4GHz (Tunbridge et al. 2016) and 3GHz (Hillier et al.
2019) radio frequencies have also attempted to detect the
optical cross-correlation signal, but have not achieved suffi-
cient number densities to make firm detections.

The subject of this paper is the SuperCLASS (Super
CLuster Assisted Shear Survey) survey (Battye & The Su-
perCLASS Collaboration 2019, hereafter Paper I), which is a

legacy survey using the e-MERLIN telescope, and is the first
survey designed from the outset for making a detection of
the weak lensing signal with radio observations. In the com-
panion paper (Paper I) we describe the full multiwavelength
data set taken for SuperCLASS, along with the details of
the data reduction and basic science results for the Data
Release 1 (DR1) subset. Manning & The SuperCLASS Col-
laboration (2019) (hereafter Paper II) describes the use of
these observations to constrain the photometric redshift dis-
tribution of the optical sources and understand the spectral
energy distributions of matched radio sources. In this pa-
per we use these observations to attempt to measure a weak
lensing signal. Limiting ourselves to the 0.26 deg? DR1 re-
gion of the SuperCLASS field, we demonstrate what can be
achieved using measurements of star-forming galaxy shapes
from the VLA and e-MERLIN radio data and Subaru op-
tical data. With these measurements we place constraints
on the weak lensing signal as quantified by the radio, opti-
cal and radio-optical-cross power spectra. We validate our
shape measurement methods for radio galaxies on simula-
tions of the data set with known inputs, and show that the
data which will be available for the full survey of ~ 1 deg?
may be capable of a detection of a radio-optical weak lensing
cross-correlation signal.

For a comprehensive introduction to and review of weak
lensing cosmology we refer the reader to Kilbinger (2015).

In Section 2 we briefly introduce the survey and the
radio and optical observations. Section 3 then details the
creation of the optical shape catalogue, and Section 4 the
creation of the radio shape catalogue from our VLA and e-
MERLIN data, whose properties we describe in Section 4.4.
We then present our measurement of the radio, optical and
radio-optical-cross shear power spectra in the SuperCLASS
DRI region in Section 5. We present the method of data
combination between VLA and e-MERLIN data sets to be
used for the full SuperCLASS survey in Section 6, and con-
clude in Section 7.

2 THE SUPERCLASS SURVEY

For a full description of the observations making up the
SuperCLASS Data Release 1 (DR1) data set, we refer the
reader to Paper I. We will briefly describe the key points
here. The full SuperCLASS field, displayed in Fig. 1, consists
of a ~ 1.53 deg? region of the Northern sky around 10h 15m
RA, 4+68d Declination. This field contains five candidate
Abell galaxy clusters of mass ~ 10'* M at redshift z = 0.2
— the supercluster referenced in the SuperCLASS acronym
— which we expect to enhance the lensing signal available to
be measured in the region by a factor of ~ 2 (Peters et al.
2018). This region has been covered in a number of different
observations for the SuperCLASS project (see Paper I), but
here we focus on the three data sets used for the weak lens-
ing science analysis: e-MERLIN and VLA radio data, and
Subaru Suprime-Cam (SC) and Hyper-Suprime-Cam (HSC)
optical data. For our primary analysis (which relies on the
available radio data) we also restrict ourselves to a 0.26 deg?
region indicated in Fig. 1 and referred to as the DRI region.
Though observations are complete for the full SuperCLASS
data set, and optical data are fully reduced, the DR1 region

© 2020 RAS, MNRAS 000, 1-25
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is the one which currently has radio data which is reduced
to a uniform depth and ready for science analysis.

2.1 Radio observations
2.1.1 VLA observations

The full SuperCLASS field was observed in 24 hours of A-
configuration Karl G. Jansky Very Large Array (VLA or
JVLA) time in August 2015. A total of 112 separate tele-
scope pointings were taken. These pointings were distributed
in an interlocking hexagonal strategy with 5.7’ between each
centre. This enabled the creation of a mosaic image with
approximately uniform RMS noise. The frequency range
was 1-2 GHz (L-band), divided in 4,000 spectral channels of
250 kHz each, with a 1 second time sampling. Each pointing
was individually imaged using the CASA (McMullin et al.
2007) tclean task, with a 1.4 deg? field of view of 0.2 arcsec?
pixels. Visibility plane data had Radio Frequency Interfer-
ence (RFI) removed and calibrations applied. The restor-
ing beam was fixed at 1.9 x 1.5 arcsec, with a position an-
gle 80 deg East from North. During imaging deconvolution
the Briggs weighting scheme was applied to the visibility
data to balance the desire for a low image-plane noise level
and low levels of PSF sidelobes, and wide field corrections
were applied. The tclean algorithm was also applied in the
multi-scale cleaning mode, using scales of 0, 4 and 12 arcsec-
onds. Individual pointings were then mosaiced together us-
ing a slant orthographic SIN projection, reducing the image-
plane noise level from 20 to 7 uJy beam ™!, except for regions
around bright contaminating sources, which were not con-
sidered for shape measurement. In this work, we make use
of only the 0.26 deg? DRI region.

2.1.2 e-MERLIN observations

Observations covering the DR1 region were also taken by
the e-MERLIN telescope, over the period 2014-2016. 49
pointings were taken in total, again in a seven point mo-
saic pattern, with L-band frequency coverage from 1.204 to
1.717 GHz, split into a total of 4,096 frequency channels of
125 kHz each and 1 second time sampling. As with the VLA
data, visibility plane data had RFI removed and calibra-
tions applied. These pointings were then imaged using the
WSCLEAN (Offringa et al. 2014) package, accounting for
w-projection terms in wide field imaging and using natu-
ral weighting of the visibility data to maximise sensitivity.
These pointings were again mosaiced together to provide
a final image with a uniform noise region in the central
0.26 deg?® with noise RMS ~ 7uJybeam™'. A further 49
pointings have subsequently been observed in the period
2017-2018, covering the rest of the Northern ~ 1 deg? re-
gion of the SuperCLASS field. However, these data have not
yet been reduced to a science-ready state and we do not
consider them here, deferring their analysis to the next data
release.

2.2 Optical observations

Optical observations used here were taken using the Sub-
aru 8.4 m telescope, using the Suprime-Cam (SC) for BVr'¢’
bands. Six pointings were taken to cover the field, with an
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Figure 1. Map of the weak lensing sources used in this work.
The DR1 region is indicated by the radio sources (black), whilst
the full SuperCLASS field is shown by the extent of the optical
sources (blue).

average seeing of 1.0 to 1.4 arcsec and time divided across fil-
ters to achieve a uniform depth of 25 magnitude in all bands.
Data reduction was performed with the Subaru Suprime-
Cam Data Reduction and Optical Imaging software (SD-
FRED2, Ouchi et al. 2004). Observations were also taken for
SuperCLASS in the 2’ band but these are not included due
to the uneven coverage, with only four (of six) fields being
observed in total. Photometric redshifts for these sources,
in particular the star-forming galaxies which also appear in
the e-MERLIN image, are described in Paper II.

3 OPTICAL SHAPE MEASUREMENT

From our optical observations we wish to select high redshift
(z 2 0.5) star-forming galaxies and measure their shapes, a
process which we describe here.

3.1 'Weak lensing catalogue

For source detection, it is desirable to combine the raw ob-
servations in such a way as to optimise sensitivity. A co-
added image was created consisting of all available and com-
plete bands, BVr'i’. The astrometric and photometric cal-
ibration was performed using the ASTROMETRY.NET soft-
ware package (Lang et al. 2010). Data from the Second-
Generation Guide Star Catalog (Lasker et al. 2008) and the
Data Release 1 (DR1) of the Panoramic Survey Telescope
And Rapid Response System (PanSTARRS) survey (Cham-
bers et al. 2016) were used to perform this calibration, due to
the similar band coverage. The measured magnitudes were
then colour-corrected using stellar templates from the Stel-
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Table 1. The source selection criteria used to optimise the opti-
cal shape catalogue for analysis. We make various cuts on source
sizes, position offset (offset in right ascension A« and in declina-
tion Ad) detection significance and fit statistics.

Type Selection Criteria

Source size FWHDMGgource > 1.2 Xx FWHMpspg

FWHMjsource < 6 arcsec
Position Ao < 1.0 arcsec
A§ < 1.0 arcsec

Detection 20 < SNR < 10°
ellipticity modulus < 0.95
model minimum > —0.05
iterations < 500
2
05 < XZie < 25

Goodness-of-fit statistics

lar Flux Library (Pickles 1998), convolved with the Subaru
filters.

The co-added image for source finding is PSF smoothed
to the poorest seeing conditions of exposures included, which
was found to be 1.38”. This smoothing of the PSF is not
ideal for shape measurement since we are limiting the re-
solving power of all exposures to match the worst seeing.
This co-added image was therefore used purely for source
finding. A source photometric catalogue was compiled from
the co-added image using the source extraction software,
SEXTRACTOR (Bertin & Arnouts 1996).

The full photometric source catalogue from Paper II
consists of ~ 6 x 10° sources, but not all of these will be
suitable for shape measurement. We perform a number of
cuts on various source features to select galaxies on which it
is suitable to apply our shape measurement method, which
will then be used for weak lensing shear estimation. We cut
on: source size to ensure morphological information is avail-
able (that the source is resolved); positional offset (of the
model fit centroid from the detection centroid) and mea-
sured signal-to-noise-ratio (SNR) to ensure we are not fit-
ting spurious detections of noise; and a number of model
goodness-of-fit statistics (as described in Table 1), which re-
moved failures in fitting due to overly-complex source mor-
phology, partially masked sources, or other failures. These
selection criteria are defined in Table 1.

Cluster members are also removed by cutting sources
which have zphot = 0.2 £ 0.08 and i < 22.5 (see Paper
I, section 4.3.2) from the shape catalogue. The final shape
catalogue for further analysis consists of 111,020 sources,
which corresponds to an optical source density of ngal =
19.8 arcmin 2.

3.2 PSF estimation

In order that we may deconvolve their effect on source
shapes, PSF models are constructed from the population of
stars visible across the field. Unlike galaxies, stars are intrin-
sically point-like from the point of view of these observations
and thus provide the approximate PSF response on an irreg-

ular grid of positions on the sky. By constructing a stellar
catalogue for each exposure, we can build the required PSF
models. In order to extract the best PSF models possible,
we perform PSF estimation (and subsequent galaxy shape
measurement) using the individual exposure images, rather
than the co-added and smoothed images used for source de-
tection in Section 3.1 above.

The full iterative procedure for identifying the stellar
locus for PSF modelling in the source catalogue is outlined
below:

(i) Calibrated single exposures. The single exposures
were prepared and calibrated from the raw data. We per-
form astrometric calibration of each CCD exposure inde-
pendently via a series of steps. The first involves creating
an initial source catalogue per exposure using the source
extraction software, SEXTRACTOR mentioned previously in
Section 3.1. Astrometric solutions were then calculated by
matching this catalogue to the Second-Generation Guide
Star Catalog (Lasker et al. 2008) as our astrometric ref-
erence catalogue; the solutions are computed using the ob-
servational calibration software SCAMP (Software for Cali-
brating AstroMetry and Photometry). Finally the astromet-
ric solutions are applied to the single exposure images using
the image resampling software package SWARP (Bertin et al.
2002).

(ii) Initial stellar catalogue. An initial source cata-
logue is constructed using SEXTRACTOR on each exposure.
We extract the stellar population in this first iteration by ap-
plying a selection cut to the SEXTRACTOR Neural-Network-
based star/galaxy classifier, class_star, which is described
in more detail in Bertin & Arnouts (1996). An initial star
selection cut was made with, class_star > 0.9 and signal-
to-noise-ratio SNR > 20 to produce the first iteration stellar
catalogue. The reliability of class_star is discussed in Hol-
werda (2005).

(iii) Improved stellar catalogue. The full surface
brightness PSF models were calculated using the software
package PSFEX (PSF Extractor, Bertin 2011) from the
initial stellar catalogue obtained in step (ii). These models
were then fed back into a second run of SEXTRACTOR to
construct a second iteration stellar catalogue. This time the
software incorporates the PSF model into the morphology
estimates and we are able to produce a more reliable
star/galaxy classification. We adapt the pseudo-code de-
tailed in Jarvis et al. (2016) (section 2.2) for the star source
selection which we implement as follows:

size_test = 0.9 <flux_radius/seeing < 1.3
and mag_auto < 24.0
star_test = class_star > 0.3

locus_test = spread._model

+spreaderr_model < 0.003

faint_psf_test = mag_psf > 40.0
and mag_auto < 26.0
and mag-psf < 90.0
stars = size_test and
[Locus_test or star_test]
and not faint_psf_test

© 2020 RAS, MNRAS 000, 1-25
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Figure 2. Example of stellar locus identification. The green
points show the successfully identified members of the stellar lo-
cus. Saturated stars, which are removed from the analysis, are
also identified.

where the seeing is estimated in the initial data re-
duction. The locus_test procedure identifies the source
locations relative to the stellar locus via the spread-model
parameter. This is an additional star/galaxy classifier based
on the difference in goodness-of-fit between the best fitting
PSF model and a model made from the same PSF convolved
with a circular exponential disc model (see Desai et al.
2012, for a more detailed discussion on the spread model
classifier). Again we only include stars with SNR > 20 in
our final stellar sample. A star is included in the final stellar
catalogue if it has measured SExtractor properties passing
the size_test (an initial stellar locus approximation); is
not flagged as junk by the faint_psf_test, and meets
either of the locus_test or star_test. Fig. 2 provides an
example of this classification.

(iv) Final PSF models. Finally we again generate PSF
models, this time from the improved stellar sample from
step (iii) and using PSFEX. This provides a PSF model as
a function of position on the sky for each of the individual
exposures.

3.3 PSF model diagnostics

To assess the quality of our PSF models constructed in
Section 3.2, we performed a number of systematic checks.
In particular we want to ensure that we have minimised
any potential PSF contamination of the galaxy shapes and
any remaining systematic is sufficiently smaller than our ex-
pected signal. These systematic errors may be introduced
through inaccuracies in the PSF modelling process, for ex-
ample through an inappropriate stellar sample or errors in
the interpolation. Such errors in the PSF models will be cor-
related among galaxies and hence become a source of sys-
tematic bias in estimated shapes which will propagate into
the shear estimates.

A useful diagnostic for quantifying the PSF model error

© 2020 RAS, MNRAS 000, 1-25

was first introduced by Rowe (2010) and provides a test
using the observed shapes of individual stars reproduced by
the PSF model constructed at that same location by the
model interpolation. This diagnostic is defined as

p1(0) = (depsr(x) depsr(x + 0)), (1)

where epgp is the PSF model ellipticity (defined as in Kil-
binger 2015, equation 25) at a given location and depsr is
the residual between the true measured stellar ellipticity and
the PSF model ellipticity evaluated at that location. Note
(a* a) defines the auto-correlation function of a given param-
eter a (for a full description and set of definitions for angular
correlation functions see Kilbinger 2015, section 3.8).

Following the approach taken in Paulin-Henriksson
et al. (2008) and Kuijken et al. (2015), we also introduce
a second statistic relating to the PSF residual sizes:

p2(0) = <6R12?’*SF(X) 6R%’SF(X +0)), (2)

where RI%SF = Q11 + Q22 are the unweighted second order
moments of the PSF model residual (residual from the PSF
model and observed star size).

For the purposes of this work (detection of the angular
power spectrum, rather than precision cosmological mea-
surements), anisotropy systematics from PSF model inter-
polation should be subdominant to the expected shear lens-
ing signal. To quantify this we measure the statistics, p; and
p2, from the data. To obtain depsr and §R3gp, an estimate
of the star population and PSF model shapes and sizes are
required. These are obtained from the quadrupole moment
measured using the FindAdaptiveMom tool in the GalSim
software package (Rowe et al. 2015). This tool iteratively
computes a best fitting elliptical Gaussian model to find the
equivalent weighted fit to the image quadrupole moments
(see Hirata & Seljak 2003). The star population shapes and
associated PSF shapes at the star positions are obtained di-
rectly from the FindAdaptiveMom task applied to the data
image and the synthetic PSF model cut-outs, respectively.

In Figure 3 we show the p1 and p2 statistics as a func-
tion of the associated parameter from the optical data at
a separation of 1 arcmin for a selection of exposures in the
SCLASS2 sub-field (one of six). A separation of 1arcmin was
chosen as in Kuijken et al. (2015), since this is roughly the
limiting scale at which the statistics p1 and p2 can be reli-
ably computed, given the stellar source density. We compare
p1 and p2 with the expected SuperCLASS shear signal (ob-
tained from the supercluster N-body simulations discussed
in Section 4.2.2). The p; and p2 can be seen to be lower
than the expected signal. For the purpose of this analysis,
this is sufficient for detection. We also consider an alterna-
tive approach to setting requirements on the PSF models,
in terms of the PSF leakage (denoted «) into galaxy shapes.
This provides a post process systematic check, looking for
traces of PSF contamination in the measured galaxy shapes.

We adopt the parametrisation of the galaxy shape ellip-
ticity contributions first proposed by Heymans et al. (2006),

(¢ =(0+m)y + aersr + ¢ ®3)

where m is the multiplicative error, c is the additive error
and « defines the PSF leakage upon the galaxy shapes. The
PSF leakage term « is often combined with the additive
bias ¢. However we follow Jarvis et al. (2016) and keep o
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decoupled from c since we are interested in testing the PSF
leakage explicitly. The minimisation of these three quantities
is the objective of the systematic corrections applied to weak
lensing data sets.

By substituting Eq. (3) into the shear two-point corre-
lation functions, an expression for the systematic error on
the two correlation functions is obtained:

6€+(0) ~ 2mé+ (0) + o €57 (0) + £5°(0), (4)

where €57 is the auto-correlation function of the PSF shapes,
and £5° is the auto-correlation function of the additive error,
c. Here, we have assumed that the systematic quantities (m,
¢ and «) are uncorrelated.

For the SuperCLASS project, our expectations are the
detection of the shear field and thus our requirements are
not as stringent as other weak lensing studies (e.g. Jarvis
et al. 2016; Kuijken et al. 2015). We place requirements on
the systematic contributions to £+ (), which must be signif-
icantly less than the expected signal. Hence, from Eq. (4)
we can form this requirement in terms of the bias parame-
ters. For the PSF model analysis we are only concerned with
placing requirements on the PSF leakage term:

ae(g8) e

For our detection purposes this provides the condition
Q€ (0) < £x(0). (6)
We compute this PSF leakage in Section 3.4 using the galaxy

shapes measurements presented there, and present the result
in Fig. 4.

3.4 Shape measurement

With the image calibration and PSF model construction
complete to suitable requirements the galaxy shapes can
now be extracted from the data. We take advantage of on-
going weak lensing projects in optical studies. Specifically,
we follow closely one of the shape fitting procedures imple-
mented by Jarvis et al. (2016), applying a maximum likeli-
hood model-fitting algorithm, IM3SHAPE (Zuntz et al. 2013),
for estimating galaxy ellipticities.

IM3SHAPE was shown to be a good method for galaxy
shape estimation during the GREAT optical weak lensing
challenges (Kitching et al. 2012; Kacprzak et al. 2012; Man-
delbaum et al. 2015). Furthermore, IM3SHAPE allows for
multi-epoch fitting by a simultaneous fit to exposures. This
is an alternative approach to multi-exposure fitting by co-
addition (or stacking) of exposures. As already mentioned
in Section 3.2, we wish to minimise the resolution as much
as possible to obtain the optimal number of unbiased shape
estimates; co-addition would likely increase the minimum
resolution available for any given source. Instead by the si-
multaneous fit to exposures, we are able to keep an individ-
ual PSF model per exposure.

For each source postage stamp, we also check for neigh-
bouring sources in the cut-out area using SEXTRACTOR to
identify source positions on a stamp-by-stamp basis. Flux
from a neighbouring source can cause a bias in measured
galaxy shapes and consequently on the measured shear.
Even when considering an idealised (and isotropic) distri-
bution of neighbours over an ensemble of galaxies, work by
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Figure 3. The PSF model interpolation diagnostics are presented
for a selection of SuperCLASS Subaru SC photometric exposures
in the observation band i/, from the SCLASS2 sub-field as an ex-
ample. The top panel shows the depgp auto correlation and the
bottom panel shows (SR%SF auto correlation, which relate to the
PSF shape and size reproducible from the input stellar popula-
tion. The different symbols represent 4 different epochs of obser-
vations. Each exposure has 10 data points, one for each of the
CCDs. The dashed line shows the average expected signal from
the SuperCLASS-like supercluster simulations with the spread
across the different clusters indicated by shaded region. The un-
filled markers indicate negatives. This shows that PSF residual
systematics are constrained to be at a level below 10% of the
expected signal strength.

© 2020 RAS, MNRAS 000, 1-25



SuperCLASS - III. Radio & optical weak lensing 7

107 .
-3 L |
10 - : L] . ° ° ° °
10% ) L N N | -- £
= 5 T~ o~ i E &r
v P i e
109} 1 |11
107 E
10°®
10° 10!
6 [arcmin]
107 .
w4;%__ - _
B R :
10 5 Q i § ' ._ _ E\'Iltl
N . ¢80
B[ .
10 Df E E z:ﬂ.ff
107} 5
10-8 1
10° 10!
# [arcmin)

Figure 4. The |{4(0)| and |{—(0)| correlation functions for the
i’ band shape analysis as measured by TREECORR are presented
in the top and bottom panels respectively. The green points show
the galaxy auto correlations (the weak lensing signal, [£39(6)]).
The blue points show the PSF auto correlations (pure system-
atics, |€87(0)|) which are fully accounted for during the extrac-
tion of the galaxy shape measurements. The shaded region and
dashed line shows the spread and mean of theoretical signals from
the (SuperCLASS-like) supercluster simulations describe in Sec-
tion 4.2.2. We provide the systematic check from Equation (8) in
red for the |£4(0)| correlations (top panel). At lower separations
the recovered signal is significantly above the systematic checks.
The absolute values for each are plotted, with unfilled markers
indicating negative values.

Samuroff et al. (2018) found a significant multiplicative m
shear bias arose. This showed strong dependence on distance
to the nearest neighbour, and therefore the source density.

For minimising bias effects from neighbouring sources,
we include the masking of the neighbours in the accompany-
ing postage stamp weights. Pixels are associated with a given
source using the shape information from a Gaussian ellipti-
cal fit measured in the postage stamp SEXTRACTOR source
catalogue. Neighbours are searched for out to a distance of
1.5 times the source FWHM, measured by SEXTRACTOR.
The pixel weights are associated with the central source out
to twice the measured FWHM; this ensures the central area
remains unaffected by the neighbouring mask. An exam-
ple of a masked IM3SHAPE fit is shown in Figure 5. In this
case the model fit is clearly improved when the neighbour-
ing sources are masked. This is further indicated through
the measured xiixel which was found to be 38.99 and 1.45
for the un-masked and masked cases respectively.

© 2020 RAS, MNRAS 000, 1-25

Unmasked Masked

Figure 5. Postage stamps from a single exposure for source ID
467466 in the photometric catalogue, showing in the left column
the unmasked version and in the right column with masking ap-
plied by multiplying with associated stamp weights. The top row
shows the image and the bottom row the resulting IM3SHAPE
fit for each case.

Image

Model

For each galaxy position from the catalogue created in
Section 3.1, 10 arcsecond x 10 arcsecond image cut-outs from
the present exposures and the appropriate PSF model im-
ages are constructed. We also run through the fitting proce-
dure twice for each galaxy, since we found some issues with
using the two-component summation of the bulge and disc
fits. In many cases one of the components would be fit to a
large negative amplitude which we wish to avoid. We instead
fit first with a pure bulge (de Vaucouleurs) and then with a
pure disc (exponential) model, fixing the other component
to zero in each case. In the final catalogue we keep the fit
with the closest X?)ixcl to 1 for each galaxy.

3.5 Shear correlation function

In order to assess the quality of the shape measurements
discussed above, we make use of the real-space two-point
correlation functions of galaxy shapes.

We calculate the two-point correlation function, cor-
rected for sky curvature, from the shape catalogue produced
in Section 3.4, using the freely available code TREECORR'
(Jarvis et al. 2004; Jarvis 2015) which has been specifically
designed for use with cosmology and weak lensing studies.
The shear two-point correlation function is parametrised by
£9°(6) and £99(0) (gg: galaxy-galaxy) which are shown in
Figure 4. In each of these plots we also include the ex-
pected signal derived from the N-body supercluster simu-
lations (see Section 4.2.2). The shear two-point correlation
functions are calculated with TREECORR for the full range of

L https://github.com/rmjarvis/TreeCorr
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uncertainty given by the simulation realisations. The mea-
sured signal from the Suprime-Cam data, also displayed for
both £99(6) and £99(9), lies comfortably in the shaded region
(which represents the spread in correlation functions from
the different clusters in the simulations), signifying that the
data agrees with the theoretical signal expected from the
supercluster simulations.

In previous studies a number of tests have been used
to assess the quality of data by searching for signals which
would be zero without the presence of systematic errors in
the data. We perform a direct comparison of the galaxy
correlation function £%7(0), to the galaxy-PSF shape cross-
correlations &%

§47 = (e"(r))(epst(r +0)), (7)

where epge(r) is the shape of the PSF surface brightness
model at position r.

This cross-correlation test will expose any PSF leak-
age onto the galaxy shapes, potentially a major source of
shape bias. We parametrise this test in terms of the PSF
leakage parameter « in order to relate back to our noted re-
quirements in Section 3.3, where for our detection purposes,
€77 (0) < €99(0). We can re-write Eq. (3) in terms of £97,
to solve for a,

o = §F — {ega)” (epsr)
&~ [epsr)?

as shown in Jarvis et al. (2016). We make a comparison of
the detected signal in the correlation function to this statis-
tic in Fig. 4 where we can see that the lensing signal inferred
from the £97 is significantly above the systematic statistic
o€, at least up to scales of ~ 10 arcmin. A ‘pure’ sys-
tematic signal is shown by the PSF shape auto-correlations,
&P for comparison. We also show the &9 statistic, which
again is consistent with expectations from the simulated su-
percluster regions.

(8)

3.6 Redshift distributions

For a full description of the initial redshift analysis of the
optical data, we refer to Paper I1. Redshifts are derived using
the BVr'i’2'Y photometry from Subaru, plus IR data from
the Spitzer telescope, and by using the EAZY (Brammer
et al. 2008) template fitting code. The lack of full coverage
of the field in the 2’ band, and lack of any coverage in the u
band, means there are significant degeneracies between low-
redshift z < 0.5 and high-redshift z > 2 templates, making
many of the redshifts unreliable, particularly in the range
0.2 < z < 0.8. Therefore, other than isolating the cluster
members we do not use the photometric redshifts for these
sources in our weak lensing analysis, choosing instead to
perform a 2D cosmic shear analysis, without tomographic
binning, on the catalogue described above in Section 3.1.

3.7 Shear maps

In addition to the two-point shear statistics described in Sec-
tion 3.5 we also create maps of the shear measured from the
optical shapes in 6.67 arcmin pixels, as shown in the upper
panel of Fig. 6, plotted on top of the relative density of galax-
ies in the photometric data set which have zphot = 0.24+0.08

and 7' < 22.5 (see Paper II, section 4.3.2). Also plotted for
reference are the locations of the Abell clusters forming the
supercluster field. We validate this pipeline by also running
it on a simulation. In the lower panel of Fig. 6 we show
the shear signal in a comparable simulation of the Super-
CLASS optical observations. This simulation has a shear
signal calculated as described in Section 4.2.2 for one of the
supercluster regions. The distribution of foreground sources
is given by Poisson sampling the corresponding convergence
map and ensuring number densities match between simula-
tion and data. Shape noise is included by randomly rotating
the shapes of sources in the real optical catalogue and plac-
ing them in a uniform distribution across the map. We note
that the lack of visual correspondence between the cluster
overdensity field and the shear field is likely due to a num-
ber of reasons, including shot noise due to intrinsic galaxy
shapes, residual shear measurement systematics, and fore-
ground galaxies in the lensing sample. For a rigorous assess-
ment of the significance with which we detect a shear signal,
see Section 5 where we calculate the two-point statistics of
the measured shear field.

4 RADIO SHAPE MEASUREMENT

As discussed in Section 1, SuperCLASS is the first survey to
be designed with the express purpose of measuring a weak
lensing signal in the radio. The most basic building block
of a weak lensing cosmic shear measurement is a catalogue
of shapes of distant galaxies, from which the shear may be
inferred. Highly precise and accurate shape measurement
methods have been developed over a number of years for
CCD images (e.g. the compilation of Mandelbaum et al.
2015), but for radio interferometer data, the situation is
less well developed. A number of approaches have been pro-
posed (Rivi & Miller 2018; Rivi et al. 2019) but have only
been tested on simulations, and not real data. Conversely
the method used in Chang et al. (2004) was applied directly
to data, but not simulations (still less simulations of the
more recent data sets which are far greater in volume). Here
we detail the identification of sources in our data suitable
for weak lensing shape measurement, and our method for
recovering the shapes of sources in the image plane (which
we call SuperCALS and describe below in Section 4.3).

4.1 Weak lensing catalogue

For a full description of the SuperCLASS catalogue gener-
ation, we refer to Paper I, Section 4. In short, from images
produced with the CLEAN algorithm, we run the PYBDSF
(Mohan & Rafferty 2015) source finding algorithm, which
both estimates the noise in the image and finds sources by
fitting multiple Gaussian profiles. The weak lensing cata-
logue is a subset of this full catalogue, with the selection
cuts described here. All the sources described are in the
DRI region defined above.

4.1.1 VLA catalogue

The VLA weak lensing catalogue is created from the VLA
DRI1 catalogue, whose creation is described in Paper I. From

© 2020 RAS, MNRAS 000, 1-25
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Figure 6. Maps of relative galaxy density (colour scale) and mea-
sured shear signal (ticks) from the SuperCLASS optical data (up-
per, with Abell cluster locations also shown as cyan circles) and
a simulated data set with the same noise properties and a shear
signal given by a comparable supercluster region (lower). Note
the different spatial extents and aspect ratios between the two
plots.

this catalogue we then select sources which are resolved ac-
cording to the PyBDSF output columns:
DCMin > 0
and DC_Maj > 0
and Maj > BMAJ,
where DC_Min and DC_Maj are the PyBDSF deconvolved ma-
jor and minor axes, Maj is the PyBDSF convolved major
axis and BMAJ is the restoring beam major axis, used in the

creation of the deconvolved image. We also impose a cut to
ensure the sources have high signal-to-noise ratio:

Total_flux > 50 uly,

where Total flux is again measured by PyBDSF, corre-
sponding to a typical SNR cut of SNR > 7.
We also make a cut to keep only sources which are visu-
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ally consistent with having ‘simple morphology’ — which we
use as a proxy for removing contaminating Active Galactic
Nuclei (AGN) sources. AGN are expected to be the source
of a significant fraction of the emission in the radio sky at
L-band frequencies, and themselves have a rich taxonomy of
spectral and morphological sub-classes. Weak lensing shape
measurement using simple models with elliptical isophotes,
as used here, relies on there being a small ‘model bias’ be-
tween such models and the true galaxy flux (see e.g. Voigt &
Bridle 2010), but this bias will be large when fitting a sim-
ple model to a complex AGN, meaning we choose to discard
them for shape measurement.

Here we assume that all sources are heavily dominated
by either i) synchrotron emission from star-forming regions,
or ii) emission from jets and hot spots associated with AGN.
Sources in the class i) are identified by having visually simple
morphology, whilst sources in class ii) are expected to have
more complex morphologies consisting of multiple compo-
nents and flux peaks. This classification was performed visu-
ally by multiple members of the SuperCLASS collaboration,
using tools from the Zooniverse (e.g. Fortson et al. 2012, and
Paper I Section 4.4), with postage stamp images of each
source to be classified from e-MERLIN, VLA and Subaru
data presented next to each other. Users are asked to classify
the sources as simple or complex morphology. Sources are
then included in the weak lensing catalogue when a major-
ity of users classify the source as having simple morphology.
More sophisticated ways of classifying radio sources between
AGN and star-forming galaxy categories exist (such as those
making use of radio-infra-red correlations), but here we use
this simple criterion with the goal of maximising the num-
ber of sources available for shape measurement rather than
losing information due to e.g. lack of infra-red detections.

Some of these sources may in fact have emission dom-
inated by a Radio Quiet AGN (RQ-AGN) component (see
e.g. Padovani et al. 2015; Prandoni et al. 2018). Cleanly
separating these populations is usually done by combining
L-band radio data with 24 um and X-ray data, which we do
not have available for this field. However, when plotting the
joint distribution of best fitting Sérsic index and radius for
the sources, we do not see any excess of sources which have
a high Sérsic index and small radius, as may be expected for
contaminating RQ-AGN.

When these cuts are applied and the SuperCALS shape
measurement method is applied (as in Section 4.3) we are
able to measure 440 shapes in the DR1 region, corresponding
to a radio weak lensing source number density of ngRal ~

0.47 arcmin 2.

4.1.2 e-MFERLIN catalogue

The e-MERLIN weak lensing catalogue is created by cross-
matching the e-MERLIN DR1 catalogue (as described in
Paper 1) with the VLA DR1 weak lensing catalogue. This
leads to a total of 56 sources available for shape measure-
ment in the ~ 0.26deg? area, a source density of 0.06
arcmin~2. The e-MERLIN catalogue is defined in this con-
servative way in order to avoid spurious detections in the
weak lensing catalogue. The nature of the e-MERLIN PSF
and noise correlations induced by the sparse uv-plane cov-
erage mean that high fractions of detections from running
the PyBDSF source finding code were identified as false de-
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tections — with similar numbers being found in the negative
image (i.e. the map multiplied by —1, which should contain
no real sources with negative flux). We therefore choose to
include e-MERLIN information as additional shape infor-
mation, where available, for the VLA catalogue in separate
columns in the weak lensing catalogue which are not used
in the main science analysis in Section 5.

4.2 Simulation pipeline

The process by which radiation falling on to a radio tele-
scope is turned into estimated measurements of the cosmic
shear signal along a given line of sight is a highly compli-
cated, non-linear process. Many aspects of this process are
potentially capable of introducing a spurious shear signal
into our data which may be mistaken for the true signal. In
order to evaluate and quantify these systematic error effects
we have constructed a simulation pipeline, referred to as
SimuCLASS, which seeks to replicate as far as possible the
full forward model applied to create a shear catalogue from
the sky brightness distribution: performing exactly the same
operations on the simulated data as are applied to the real
data. We then inject sky models with known shear proper-
ties into the pipeline and attempt to recover the signal using
our shear measurement method. This allows us to both cal-
ibrate and validate the method. The SimuCLASS pipeline
comprises four main parts, with the simulated visibility data
then being fed into the imaging and source finding pipeline
described in Section 4.1 and Paper I, before analysis with
the shape measurement method described in Section 4.3.

4.2.1 Population Model

For our population model we use the Tiered-Radio Extra-
galactic Continuum Simulation (T-RECS) of Bonaldi et al.
(2019). This is a new simulation of the radio sky in contin-
uum, which reproduces the most recent compilation of data
in terms of number counts, luminosity functions and redshift
distributions over the 150 MHz — 20 GHz range. Of the ob-
servational parameters modelled in T-RECS, those relevant
for this work are: the position on the sky, the integrated flux
at 1.4 GHz, the source class (either Active Galactic Nuclei,
AGNs, or Star-Forming Galaxies, SFGs) and the source size
and shape.

Starting from a dark matter-only N-body simulation of
800 ! Mpc?, haloes are found and grouped together down
to a mass of ~ 105 h™' My and light cones constructed in
a b x 5 deg sky area out to a redshift of z = 8. Abundance
matching methods are then used to assign galaxies to haloes,
thus giving realistic clustering properties to the galaxies of
each population.

The shape and size of AGNs is modelled in T-RECS
in terms of a largest angular size and distance between the
hot spots, in a way that reproduces the observed correlation
with both flat/steep spectrum and FRI/FRII classifications.

The shape and size of SFGs is modelled as an exponen-
tial intensity profile:

I(r) = Ipexp (—r/ro), 9)

where I is a flux normalisation, and ro is the scale radius.
The sources are given an intrinsic ellipticity |¢™| from the

distribution found in radio VLA observations of the COS-
MOS field as in Tunbridge et al. (2016):

; 2 ; c
int|y _ | int 7T|€1nt| _ 2|€1nt|
P(|€™]) = 1e™| [cos ( 3 )} exp [ ( B ,

(10)
with the best-fitting parameters B = 0.113+0.041 and C' =
0.303 £ 0.058, giving a shape noise dispersion of ¢** = 0.29
(per ellipticity component).

4.2.2  Shear Signals

In order to model the weak lensing shear expected in the
SuperCLASS field, we make use of a suite of N-body sim-
ulations to model the expected signal. Fully described in
Peters et al. (2018), this simulation consists of 25203 dark
matter particles of 5.43 x 10'° ™' My evolved from red-
shift z = 127 to z = 0. Superclusters are then identified
in the simulation which have similar properties to those ex-
pected in the SuperCLASS field — regions with five clus-
ter members in the z = 0.24 output snapshot which are
linked with a friends-of-friends algorithm with linking length
| = 8 ™ '*Mpc. This identifies 61 supercluster regions which
are then re-simulated, along with 60 randomly chosen re-
gions, at a higher resolution as part of the MACSIS project
(Barnes et al. 2017; Henson et al. 2017). This involved dark
matter only (particle mass 5.2 x 10° h™' M) and full hy-
drodynamical (initial gas particle mass 8.0 x 103 h™' M)
simulations. The supercluster regions allow us to predict
the measurable enhancement of the matter power spectrum
and, using techniques developed as part of the SUNGLASS
pipeline (Kiessling et al. 2011), the enhancement of the weak
lensing shear power spectrum, which may be expected in
the SuperCLASS region over a randomly chosen field. This
enhancement is found to be a factor ~ 2 with variations be-
tween 1 and 3. The mean measured shear power spectum
from the 61 supercluster regions is used to represent theo-
retical expectations for the shear power spectra measured in
Section 5.

4.2.8  Sky Models

The simulation pipeline creates models of sky emission us-
ing the GalSim galaxy image simulation toolkit (Rowe et al.
2015), a fast and accurate package for creating simulated
galaxy intensity profiles. We place sources with properties
in accordance with a simulated catalogue from the T-RECS
simulation (see Section 4.2.1), from which we take the sky
position (with respect to the pointing centre), source type,
flux, size, and intrinsic source shape. Each source is also
sheared with the correct amount of cosmic shear for its
sky position according to the shear signal simulation (Sec-
tion 4.2.2).

We use the same sky models to model the entire ob-
served radio bandwidth (i.e. assume flat spectral indices
across the sources), which is not strictly correct. However,
spectral imaging is not performed on the real data, mean-
ing morphological information available is averaged over the
bandwidth into a single image in the same way, and the shear
signal we are looking for is independent of wavelength.

Sources of extragalactic radio emission at the ~ 1 GHz

© 2020 RAS, MNRAS 000, 1-25
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frequencies and p Jy fluxes considered here are expected to
be a mixture of SFGs and AGN. Individual SFGs are ex-
pected to have (on average) simple emission profiles with
elliptical isophotes, and it is these objects which we seek to
measure the shape of in order to form an estimator for weak
lensing shear. Resolved AGN are expected to have signifi-
cantly more complicated morphologies, meaning we do not
consider them for shape measurement, but they can still be
included in simulations in order to quantify effects from e.g.
their un-deconvolved sidelobe noise.

For the purposes of DR1 we are using shapes only from
relatively high signal-to-noise objects in a relatively small
field, meaning we choose not to include AGN in the simula-
tions used for the SuperCALS calibration in Section 4.3.

Star-forming galaxies are drawn with the exponential
intensity profile (Eq. (9)) and intrinsic ellipticity (Eq. (10))
included in the T-RECS catalogue. We draw the values for
the galaxy position angle 6 from a uniform distribution. Fi-
nally, a shear 7 from the expected (from the N-body simu-
lation described in Section 4.2.2) weak lensing signal at the
sky location of the galaxy is added, and the flux is added
over the correct number of pixels in the full image out to a
maximum radius rggs such that 99.5% of the flux is placed
in the image.

4.2.4 Interferometer model

We then model the observation of these simulated skies by
the VLA and e-MERLIN radio telescopes. Schematically, ra-
dio interferometers turn a real, two-dimensional sky bright-
ness distribution I(l, m) into a three-dimensional data set of
complex-valued visibilities (see e.g. Thompson et al. 2017):

V(u,v,w) = MFCA I(l,m) + N. (11)
Here, the operators MFCA represent different components
of the forward model. A is the primary beam, giving the
response to the sky of an individual element within the in-
terferometer. C is the w-term, representing the projection
from the two-dimensional sky to the three-dimensional space
in which the antennas exist (i.e. due to the Earth’s curva-
ture). F is the Fourier transform operation, and M is the
masking function, representing the sampling of the full vis-
ibility space by the finite set of observations present in the
data. Each sample represents an integration over a small
time and frequency interval at a spatial scale represented by
the baseline between the pairs of antennas in the array. NV
is a noise term, typically taken to be Gaussian distributed
and uncorrelated between visibility points.

Visibilities are an incomplete sampling of a 3D inte-
gral transform (Fourier transform plus the w-term) of the
sky brightness distribution. Figure 7 shows the inverse-noise
weighted density of the Fourier uv plane sampling in one
pointing of the VLA and e-MERLIN observations from Su-
perCLASS. Transforming this coverage back into the image
plane provides the PSF (usually referred to as the ‘dirty
beam’) which is convolved with the sky. This beam is set by
the time and frequency samplings and the spatial distribu-
tion of antennas in the telescope, all of which are known to
a high degree of precision. However, the missing information
from unsampled parts of the Fourier plane leads to signifi-
cant PSF sidelobes which extend across the entire sky. These
sidelobes mix information from multiple sources, making
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shape measurement of individual sources highly challenging
and potentially requiring simultaneous shape measurement
across many sources as described in Rivi et al. (2019). The
visibilities here are created using the simulation tools in the
CASA radio astronomy package (McMullin et al. 2007). In
order that the dirty beam PSF of our simulations matches
as closely as possible that of the real data, we make use
of the uv coverage available on each pointing centre in the
real data, after losses due to telescope outages and Radio
Frequency Interference (RFI) removal. This means we can
create simulated images which have exactly the same dirty
beam PSF as the real ones.

From the real data pipeline (see Paper I, Section 3) we
obtain single CASA measurement sets corresponding to the
full set of observations for each of the SuperCLASS point-
ings, separately for the e-MERLIN and VLA telescopes. The
CASA simulator tool is then used as sm.openfromms and
sm.predict in order to project the simulated sky brightness
distribution onto the visibilities. This prediction consists of
the full three dimensional transform, including the w-term.

Noise is added as uncorrelated Gaussian random vari-
ates to each visibility point, with a variance of 0.4 Jy in order
to match the image-plane noise levels. Here, we assume no
calibration errors (such as residual phase errors) are present
in the data, seeking only to assess the impact of noisy inter-
ferometric imaging observation and imaging reconstruction,
but such effects should be included in future.

4.2.5 Imaging deconvolution

Imaging of each simulation is carried out using the same
algorithms and settings as for the real data, to ensure
shape measurement artefacts are correctly mimicked. Simu-
lated VLA data are imaged (as in Section 2.1.1) using the
CASA tclean task, with multi-scale CLEAN and Briggs
weighting, while e-MERLIN data are imaged (as in Sec-
tion 2.1.2) using WSCLEAN, using natural weighting. As
no sources brighter than 500 uJy are included in the sky
model, there is no need to account for the effects of such
sources via peeling or self-calibration, but this means our
simulations also do not include detrimental effects from in-
completely removed bright confusing sources.

4.3 Shape measurement with SuperCALS

Although images recovered from radio interferometer data
have been shown to contain useful morphological informa-
tion, galaxy ellipticity measurements from such images are
typically highly biased (Patel et al. 2015). Here, we imple-
ment an image-plane shape measurement method on the
images produced from our data which involves a step to cal-
ibrate these biases, referring to this method as SuperCALS
(Super Calibration of All Lensed Sources). The philosophy
of this method originates in the many optical shear mea-
surement methods which rely on a step in which simulated
sources are injected into the noise environment of the real
data (e.g. MetaCal, Sheldon & Huff 2017). Even if a method
produces a shear measurement which is biased, if we can pro-
duce simulations which are sufficiently representative of the
real data (specifically in that the method has the same bias
with respect to the simulations as the real data) then we
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Figure 7. uv plane coverage of the J28 pointing for (left) e-MERLIN and (right) VLA on Fourier scales in units of kilo-wavelengths.
Colours show the density of visibility data, with bright regions having higher density, and hence lower noise on the corresponding Fourier
scales. Black areas represent gaps in the uv coverage where no telescope baselines exist to make a measurement.

may inject data with known shear signals into the method,
recover the biased results and then use these bias values to
calibrate our shear estimates in the real data images. This is
reliant on the biases created being relatively small, i.e. still
well-modelled by first order shear transformations of galaxy
profiles with elliptical isophotes. The results in Section 4.3.2
show that this appears to be the case for the majority of the
sources of interest.

4.8.1 Method

We first make an image from the VLA or e-MERLIN data
using the CLEAN algorithm, as described in Section 4.2.5
(and in Paper I, Section 3). The CLEAN algorithm creates
a model of the original sky brightness distribution by iter-
atively deconvolving the dirty beam PSF. This process is
highly non-linear, and has noise properties which are hard
to estimate. The outputs from this process are:

e The dirty beam PSF: the image plane representation of
the uv coverage. This is the PSF which is convolved with the
sky brightness distribution in the observation, and is pre-
cisely known and highly deterministic, but has significant
sidelobes extending across the entire field, meaning confu-
sion is a problem for all sources.

e The ‘dirty image’, consisting of the transformation of
the data into the image plane, giving the sky emission con-
volved with the dirty beam PSF.

e The ‘model image’, consisting of a set of source models
(typically Dirac d-functions) of varying brightness and sky
location, representing the deconvolved sky brightness emis-
sion as determined via the CLEAN algorithm.

e The ‘CLEAN image’, consisting of the addition of the
flux from the residual image (see below), plus that from
the convolution of the Dirac §-function model image with a

Gaussian ‘CLEAN beam’ representative of the central lobe
of the full dirty beam (i.e. with no sidelobes). Note that in
the CASA CLEAN task used for the VLA data, both the
residual image and the Dirac d-function model image is con-
volved with the CLEAN beam, leading to additional noise
correlations (at least when the restoring beam is manually
fixed, as it is here?).

e The ‘residual image’, consisting of the remaining flux
after the set of Dirac d-functions in the model image is con-
volved with the dirty beam and subtracted from the dirty
image.

Rather than measuring shear directly from the CLEAN im-
age, we rather use the output residual image to model the
‘noise’ on a shape measurement in our data at a given sky
location, both random (but correlated in the image plane)
thermal noise and systematic noise from un-deconvolved or
incorrectly deconvolved sidelobes from other sources. We
then use this model to correct the shear measurement from
the CLEAN image.

We first perform an initial estimate of source shapes
by running the IM3SHAPE code (Zuntz et al. 2013) on
the images. As described in relation to the optical data in
Section 3.4, IM3SHAPE performs a maximum likelihood
fit of elliptical Sérsic intensity profiles convolved with a PSF
model to image plane data, and has been shown to peform
at a high level of precision and accuracy when recovering
cosmic shear signals from optical images (Mandelbaum et al.
2015). For this first run, we use the CLEAN image and
CLEAN beam to estimate the source shapes. IM3SHAPE
is run three times in different modes: once fitting a single

2 See note on restoringbeam argument at https://casa.nrao.
edu/docs/taskref/tclean-task.html
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Gaussian profile to each source, once fitting a Sérsic profile
with free index, and once fitting a joint bulge (Sérsic n = 4)
plus disk (Sérsic n = 1) profile. The best-fitting of these
three runs is then chosen, with subsequent IM3SHAPE runs
for a given source retaining the fixed combination of number
of components and Sérsic indices for their fitted profiles. We
have found this approach allows a good fit to be found for
nearly all of the weak lensing catalogue sources, with 24%
having Gaussian fits, 67% having free-Sérsic fits and the
remainder having bulge plus disk fits.

For each source, we then inject model sources with the
same size and flux properties, but known ellipticity, into the
residual image. We then perform a ‘ring test’ to remove the
effect of shape noise (Nakajima & Bernstein 2007) and create
a model of the bias on the IM3SHAPE measured ellipticity
at this sky position as a 2D surface. For each source position
on the sky (labelled k) we find the bias between measured
and input ellipticity component e; as a function of both
input e; and esa:

bi (P, el'P) = 5™ — i, (12)

bs inp

ie, by is a 2D surface with height e7™® — e]"® at loca-
inp _inp

tion (e;"?,e5®). We construct a similar surface with the
heights given by eS” — e;“p. Theses surfaces are interpo-
lated between injected simulations using second-order 2D
polynomials. Specifically, we run IM3SHAPE, fixed to the
combination of Sérsic profiles already determined for this
source, on a total of 33 different injected sources,with
e; = {0,£0.2375,£0.475, £7125,40.95}. Our estimate of
the true shape for a given source k is then its initial
IM3SHAPE estimate from the CLEAN image, corrected
by the bias surface calculated using the residual image and
simulations, evaluated at the measured uncorrected elliptic-

ity:
el = el — br(ed, e5%), (13)

and similar for es. In the weak lensing catalogue, we include
both the uncorrected source ellipticity from IM3SHAPE
(ec{,b,j, eg’b,:), and the ellipticity estimated by the SuperCALS
method (5%, e5%). We refer to this calibration as source-

level calibration.

4.3.2  Performance on simulations

We evaluate the performance of SuperCALS on simulated
images of the VLA and e-MERLIN data created using the
SimuCLASS pipeline described in Section 4.2. We simu-
lated pointings of the VLA data, injecting only star-forming
galaxy sources with total flux > 50 uJy into the sky model,
giving ~ 400 sources per pointing, a number density of
~ 0.5arcmin~2. We run the PyBDSF source finder on these
images and for the resultant catalogue run the SuperCALS
pipeline. Given that the Sérsic index is fixed to n = 1 for
the input sources, we only run the IM3BSHAPE parts of Su-
perCALS in this mode, in contrast to the real data where
the Sérsic index is chosen from the best fitting one across
multiple IM3SHAPE runs.

In Fig. 8 we illustrate the calibration of an individual
source ellipticity by the SuperCALS process. Unfilled blue
points show the measured ellipticities of the sources injected
into the CLEAN residual image. The difference between the
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injected and recovered values of ellipticity are used to cal-
culate the calibration surface using Eq. (12), with filled cir-
cles showing the calibrated positions of the injected sources
after the bias correction is applied (note that input posi-
tions are not perfectly recovered due to the interpolation).
As can be seen in the left panel, the significant biases rep-
resented by the distorted shape of the eight-pointed cross
can be corrected to a high level. We also show in red the
uncalibrated (unfilled) and calibrated (filled) location of the
observed source’s ellipticity.

This procedure works for the vast majority of sources,
but a number of sources with particularly significant im-
age plane noise artefacts have ‘calibration crosses’ (the data
points in Fig. 8) which are highly distorted, to the point
where they no longer form an obvious cross (i.e. as in the
right panel). We find in general these sources cannot then be
succesfully calibrated, with crosses remaining significantly
distorted after calibration, and hence we exclude them from
our shape catalogue. This is done by measuring the to-
tal square distance dx between the uncalibrated injection
points in the calibration cross (unfilled blue circles in Fig. 8)
and the input ellipticity values for the injected sources. For
sources which are clear visual failures, with the cross shape
not being recovered, this value is in the range ~ 5—50 (with
numbers decreasing sharply as dx increases), and we remove
all sources with dx > 5, which corresponds to a fraction of
~ 8%.

We have applied this method to a number of simula-
tions, varying the input properties of the input T-RECS
sky model. For the fiducial sky model specified by T-RECS,
the shape measurement recovery (the input ellipticities plot-
ted against the calibrated measured ellipticities) for a single
pointing region of the VLA data is presented in Fig. 9, and
for a sky model in which we increase both sizes (by a factor
of three) and fluxes (by a factor of 100) in Fig. 10. For these
sources, the SNR defined as the ratio of the peak recovered
source flux to the RMS noise is 12 < SNRpeax < 580 and
for the SNR defined as the ratio with the total recovered
source flux is 80 < SNRyotar < 1200. For the VLA data,
which has a relatively large restoring beam (1.9 x 1.5 arcsec)
compared to the typical size (~ 1arcsec) of T-RECS star-
forming galaxies, the shapes of the fiducial sky model are not
recovered well. This is in contrast to the case of the bright,
large source sky model, which demonstrates the ability of
the SuperCALS method to recover unbiased shapes.

We quantify this with the linear ellipticity bias model
e°Ps — P — melP 4 ¢ for the recovered shapes, and the
Pearson correlation coefficient R between the input and out-
put ellipticities, the measured values for which are shown in
the figure legends. For the fiducial sky model, the correla-
tion coefficient is low (consistent with zero for the 59 data
points here if they are assumed uncorrelated) and the Super-
CALS method is therefore unable to significantly measure
the input shapes in this case (i.e. there is little morphology
information preserved in the image for it to measure). When
reporting measured shapes from SuperCALS for the radio
sources in Section 4.4 we also apply the linear bias correc-
tion derived from Fig. 9 as a population-level calibration in
addition to the source-level calibration part of SuperCALS
and described above.

As an additional shape measurement method to Super-
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Figure 8. ‘Calibration crosses’ from the SuperCALS method. Unfilled blue circles show the recovered ellipticies of simulated sources
injected into the CLEAN residual image at the location of the real source. Filled blue circles show the calibrated ellipticity measurements
for these sources. Red unfilled and filled points show the ellipticity of the real source, before and after calibration. Left shows a source
for which calibration is considered a success, right a source for which calibration is considered a failure.
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Figure 9. Input vs recovered source ellipticity for the simulated
J28 pointing of the VLA DR1 data using SuperCALS, with the
fiducial T-RECS sky model. The legend indicates the intercept
and slope of the best-fitting linear relation, and the estimated
correlation coefficient between the e® and e®"t values.

CALS, we also provide the initial, uncorrected IM3SHAPE-
only shape measurement of the VLA source shapes.

4.4 Radio shape analysis

We apply the SuperCALS shape measurement described
above to our VLA-only weak lensing catalogue, described
in Section 4.1.1. We include in our catalogue both cali-
brated and uncalibrated measurements of the galaxy el-
lipticities e; and ez (the uncalibrated measurement corre-
sponds to simply running IM3SHAPE on the image, the

O ei,{m,c, R} = {0.08 +0.05, —0.03 + 0.01,0.91} ,//
es,{m,c, R} = {0.1: .06, —0.03 s
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Figure 10. Input vs recovered source ellipticity for the simulated
J28 pointing of the VLA DR1 data using SuperCALS, with the
fiducial T-RECS sky model modified so that each source is three
times larger and 100 times brighter, demonstrating the ability of
the method to recover unbiased source morphology. The legend
is as in Fig. 9.

same method as used in Section 3.4 for the optical data).
These shape measurements are plotted in Fig. 11 and his-
tograms of their ellipticity modulus |e| = /€2 + €2 (for
which we expect a Rayleigh-like distribution) and position
angle PA = 0.5tan"*(ea/e;) (for which we expect a flat uni-
form distribution) in Fig. 12. Inspection of the uncalibrated
shape distributions in Fig. 12 leads us to doubt that credi-
ble conclusions can be drawn on morphological information
from this data set. The histogram of position angle shows a
significant peak at the position angle of the beam, in spite

© 2020 RAS, MNRAS 000, 1-25
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Figure 11. Measured and calibrated ellipticities from the Su-
perCALS shape measurement method for the weak lensing radio
catalogue from the VLA data. Dashed lines represent the unit
circle in which physical ellipticities lie, and the points with solid
black outlines are the averages for uncalibrated and calibrated
ellipticities.

of the resolution cut imposed in Section 4.1.1. Upon inspec-
tion of the IM3SHAPE measured source sizes, we find many
are consistent with being smaller than the restoring beam
used for the VLA imaging, as shown in Fig. 13, which again
demonstrates the significant peak at the beam position and
size. This strongly indicates that the morphology of many of
the shapes in this image are still dominated by the restoring
beam imposed in the imaging step. To illustrate this further,
in Fig. 13 we show a 2D histogram of the measured PSF-
deconvolved source position angle and radius, this time mea-
sured in pixels by IM3SHAPE while performing the shape
fitting. Orange lines represent the shape of the restoring
beam used in the VLA imaging process. As can be seen, even
though these sources pass the resolution cut from PYBDSF
measurements in Section 4.1.1, they do not appear resolved
when measured with IM3SHAPE and are still dominated by
the beam shape. For further discussion of the ability of our
data to constrain the size and Sérsic profile of these sources
see Section 5.2 of Paper I. These sources may be from un-
resolved sources interacting with noise peaks in the image,
causing their size to be artificially ‘upscattered’, an effect
expected in radio interferometer images (see e.g. Thomson
et al. 2019).

Because of this residual effect of the beam position angle
on the shape, we apply a further correction to the source
ellipticities. A linearly biased galaxy ellipticity measurement
can be rotated into the frame of a PSF with known position
angle QOPSF:

exp(—i2apsr)eobs = (1 + m) exp(—i2apsrF)etrue + ¢, (14)

and, if m and ¢ can be reliably estimated then we can correct
for the known PSF ellipticity:
€obs — €xp(i2apsr)c

€corrected = 1+m . (15)

© 2020 RAS, MNRAS 000, 1-25

We therefore use the values for m and ¢ derived from our
simulations in Section 4.3.2 along with the known restor-
ing beam position angle of 80 deg (imposed as part of the
VLA imaging process). Shapes presented (as ‘Calibrated’)
in Fig. 11 and Fig. 12 and in the shape catalogue used in
Section 5 have this correction applied.

For the analysis presented here, weak lensing measure-
ments are still dominated by shot noise due to the low num-
ber density of sources, dominating over even this significant
systematic. In the next section we proceed to measure the
primary weak lensing observable of the shear power spec-
trum inferred from these shapes. For the full data release
with higher number density of galaxies and hence lower shot
noise, we expect that improvements in the imaging proce-
dure may remove this systematic feature. The addition of
smaller spatial scales from the e-MERLIN data will also
raise the level of morphological information in the image.

5 SHEAR POWER SPECTRA

From the galaxy shapes measured in Sections 3 and 4 we
measure the angular shear power spectra, CZUH(J ). The
two-point statistics of the shear field are sensitive to cos-
mological parameters through the underlying matter over-
density power spectrum Ps(k), which is a linear function of
the Gaussian primordial perturbations on large scales. For
the shear power spectrum observable used here (e.g. Bartel-

mann & Schneider 2001):
L
P ) )
’ (fK(X) X)
(16)

_ 9HG 5, /Xh B I 0900

T Tac J, N e
where Hy is the Hubble constant, {2, is the total matter
density, c is the speed of light in a vacuum, Y is the comoving
distance, a(x) is the scale factor of the Universe and fx () is
the comoving distance (fx(x) = x for a flat Universe). The
kernels, g*’ (x) describe the relative contributions of the two
galaxy samples to the lensing signal, and are given by

fK fe(X' = x)

/ dx'n Fe) (17)
where n;(x) is the distribution of galaxies, as a function
of comoving distance, for galaxy sample i, and the integral
extends to the horizon, yn. Here the sample labels i, j take
on values ‘O’ for the optical sample and ‘R’ for the radio
sample, giving the three power spectra CR®, CPC and CRO.

In order to calculate the power spectra we use the pub-
licly available® flat-sky maximum likelihood power spectrum
estimation code fully described in Kohlinger et al. (2016,
2017). This code is a development of the algorithm presented
in Hu & White (2001) to allow for a tomographic analysis
between several pairs of redshift bins. We do not apply a
tomographic shear analysis in this work. Instead, we per-
form a 2D cosmic shear analysis between two shear maps,
where all background sources reside in a single, very broad,
redshift bin.

When estimating the power spectrum Eq. (16) from a
finite sample of galaxies the shear, v is estimated from the
ensemble average of the measured ellipticities of a number

cy 1)

3 https://bitbucket.org/fkoehlin/qe_public
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Figure 13. IM3SHAPE radii compared to the restoring beam
position angle for the VLA data. Orange lines show the position
angle of the restoring beam and its size (minor axis, major axis,
and the geometric mean of these as the dashed line). This demon-
strates that the size and shape of the beam is still dominating the
morphology recovered for these sources.

of sources N within a small region or ‘shear pixel’ of the sky:

1
v = N Z €. (18)
We pixelate our shear maps with a side length of Opix =
3 arcmin. The radio and optical shear catalogues have galaxy

number densities of ngRal ~ 0.5 arcmin™? and ngal ~

19 arcmin™?, leaving each shear pixel with an average of
= 153 optical sources and =~ 4.5 radio sources.

The estimate of shear from averaging down galaxy
shapes with (¢) = 0 but {€) # 0 on a given angular scale
£ then has a shot noise term, related to the number density
of available galaxy shapes, n;al arcmin™? and the expected
covariance of the intrinsic (i.e. before lensing) galaxy shapes:

N9 = #(ZEQZ%)

Y
Nga"gal aci BEF
ij
n
al
= 2" cov(e,e€;). (19)
nt_n’
gal'“gal

where n;il is the number of galaxies common to both sam-
ples. Here we assume negligible overlap between the radio
and optical galaxy samples, meaning the cross-noise power
spectrum is also negligible, N®° = 0 (which will also be a
good approximation on the angular scales considered here,
as discussed in Hillier et al. 2019). However, for the auto
power spectra where i = j, Eq. (19) gives N°° = 0620 /ngo.al
and NRE = U?R / ngal, where o, is the dispersion of intrinsic
galaxy ellipticites in the i*" sample.

5.1 Band power selection

The nominal multipole ranges for power spectra extrac-
tion were selected following the prescription outlined in
Kohlinger et al. (2017). While the method of extracting mul-
tipoles is the same for both the DR1 and full regions, we
present spectra for both because of the differing areas.

The largest multipole available to be extracted from
the shear maps is set by the shear pixel side length, Opix =
3 arcmin, corresponding to a multipole of ¢,ix = 7200. The
smallest multipole available is determined by the survey ar-
eas. The DRI region covers an area of 0.26 deg?, so we
choose a survey side length of AR} = /0.26 deg, corre-

max

© 2020 RAS, MNRAS 000, 1-25
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Table 2. Band power intervals used for the power spectra ex-
traction with the two different binnings corresponding to the
0.26 deg? DRI region and the 1 deg? simulations. Only bins 2, 3
(and bin 4 for the 1 deg? binning) were retained for further anal-
ysis, see Section 5.1. The extraction of the full 1.53 deg? optical
area used the 1 deg? binning, see Section 5.4. Bands shown in
grey are measured but not used in the analysis.

Band 0.26 deg? binning 1 deg? binning
No. f-range f-range f-range f-range
[arcmin] [arcmin]
2 711-2499 30.4-8.6 361-1099 59.8-19.7
3 2500-4999 8.6-4.3 1100-2499 19.6-8.6
4 2500-4499 8.6-4.8

sponding to £hii = 710. We have also run the power spec-

trum estimator on simulations, see Section 5.2, which cover
an area of 1 deg?®. For these runs, the survey side length
is 01,998 = 1 deg, corresponding to ééﬁng = 360. To ac-
count for DC offset effects and/or ambiguous modes (modes
which cannot be distinguished into E- and B-modes), we
also include “junk” multipole bins at lower multipoles with
a lowest multipole of ¢y = 100. Since this bin contains
unreliable band power measurements, we discard it in any
further analysis.

The widths of intermediate multipole bins were set to
at least 20509 to minimise correlations between the band
powers (Hu & White 2001). These widths corresponded to
1420 and 720 for the 0.26 deg® DR1 and 1 deg® binnings,
respectively. The maximum multipole of the highest-¢ band
power for both binnings was extended to 2¢pix =~ 14,400, to
absorb any effects resulting from the highly oscillatory be-
haviour of the pixel window function on scales close to and
larger than £pix (Kohlinger et al. 2017). This highest-¢ band
power was also labelled a “junk” bin and was discarded for
further analysis. Moreover, we have also followed Kohlinger
et al. (2017) in discarding the second-to-last bin when inter-
preting the results.

Table 2 lists the resulting band power definitions. Only
bins 2, 3 (and 4 for the 1 deg® binning) contain reliable
band powers for the reasons mentioned above. The table
also contains approximate real-space 6-ranges for each bin.
These ranges only serve as an approximation of the real-
space scales probed by each band power, and should not be
used to directly compare the power spectra measurements
to real-space correlation function analyses for reasons that
are discussed in Kohlinger et al. (2017).

5.2 Simulations

To estimate the uncertainties in the band power measure-
ments, we used the simulated 1 deg? supercluster shear
maps introduced in Section 4.2.2. These simulations were
also used to extract the expectation band powers for a clus-
ter field and to assess the performance of the power spec-
trum estimator in the presence of the masking and spatial
distribution of sources found in the real data.

In total, 61 supercluster sub-volume simulations were

© 2020 RAS, MNRAS 000, 1-25
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Figure 14. The redshift distribution used to weight the simulated
shear maps, given by equation (21) with values of z4(7) = —0.1219
and o4(7) = 0.636

used, each covering an area of 1 deg? and split into 20 red-
shift bins ranging from zmin = 0.1 t0 Zmax = 2.0 in in-
crements of Az = 0.1. The shear maps were made with a
resolution of 0.1 arcmin pixel ™' and dimensions of 600x600
pixels.

We combine each set of 20 redshift slices by weighting
them by redshift according to

z2=2.0

1,2(2) = Z w=71,2(2), (20)

2=0.1

where the horizontal bar indicates the weighted aver-
age shear for each 0.1 x 0.1 arcmin® pixel, applied on a
component-by-component basis. The sum is over the red-
shift range of the input shear maps and the weights are
described by (Lima et al. 2008):

w. = P(2|i') = Bz* exp {— {Hd(z/)r} (21)

oal(i’)

for a given median i’-band magnitude, i’. The normalisation
factor, B is obtained by requiring that

Zmax=2.0

> Pl =1 (22)

Zmin=0.1
The constants, z4(i’) and oq(i") were estimated by using a
combination of our measured median i’-band magnitude of
i’ = 22.57 and values given in Lima et al. (2008), which
made use of mock DES catalogues. This gave values of
z4(i') = —0.1219 and 04(i") = 0.636 and the resulting red-
shift distribution of w, is shown in Fig. 14.

This process created 61 redshift-weighted shear maps,
which were used as the basis for both our optical and radio
simulations. For the 0.26 deg? DRI area with overlapping
optical and radio regions, the band power uncertainties were
estimated by sampling the simulated shear fields at the po-
sitions of real sources as listed in the optical and radio shape
catalogues. For the 1.53 deg? full area, we use random po-
sitions scattered over 1 deg?, with the same source number
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density as the full optical catalogue of ngal = 19 arcmin ™2,
and then scale the error bars accordingly. We choose ran-
dom positions here since the full 1.53 deg? optical catalogue
does not contain a continuous square region covering 1 deg?.
Details of the error bar scaling are given in Section 5.4.

Shape noise was added by randomly selecting real mea-
sured ellipticities from the shape catalogues, and adding
them to the shear entries for the galaxies. This naturally
replicates the measurement error contributions from the real
catalogues, and in the case where real data positions are
used, the spatial distributions of sources in the real data are
incorporated, including for example the gaps in the optical
data coverage due to masking.

Each set of 2x61 mock data maps (optical and radio)
was run through the power spectrum estimator using the
same settings as the data runs, including the two different
multipole bin sets described in Section 5.1. Error bars were
extracted from the standard deviation of the 61 recovered
band powers in each multipole bin, where we assume a sym-
metrical distribution (not necessarily Gaussian) about each
mean band power.

We also generate expectation band powers, P! from the
61 redshift-weighted, noiseless shear maps. Ordinarily, one
would convolve a theoretical cosmic shear signal, CCluster
with the band power window functions, Wy, (e.g. Knox 1999;
Lin et al. 2012):

@ é(f + 1) CeCluster

pth _
b 14 27

(23)
4

for each multipole bin, b. This standard approach was
demonstrated in e.g. Hillier et al. (2019), where the theo-
retical cosmic shear signal chosen was a well-defined, flat,
6-parameter ACDM model. However, since the theoretical
model for a supercluster field, CC™*" cannot be well de-
fined, we use the redshift-weighted shear maps with no shape
noise or masking to obtain the expectation band powers
computationally. Each band power expectation value was
extracted as the mean of those measured from the 61 noise-
less shear maps. This was done for both sets of multipole bin
definitions listed in Table 2, since different binnings produce
different band power window functions.

5.3 Detection significances and signal-to-noise
ratios

For each of the power spectrum measurements, we calculate
a detection significance, which quantifies the significance of
a lensing signal being above a null signal, and a signal-to-
noise ratio, accounting for both noise and cosmic variance.
Detection significances were calculated according to

where ¢ € {EE, BB}, the index b runs over the number of
bands included, given in Table 2, ]5b¢ are the measured E-
or B-mode band powers, and o}, are the uncertainties on the
band powers excluding cosmic variance. These uncertainties
were estimated using the standard deviations of the B-mode

band powers* recovered from the cluster simulations,

o= {mEm?) - ey, 25)

where the angled brackets denote an average over the clus-
ter simulations. Correspondingly, signal-to-noise ratios were
calculated according to

where o}, are now the uncertainties including both measure-
ment noise and cosmic variance. The o, values were esti-
mated using the standard deviations of the ¢-mode band
powers recovered from the cluster simulations:

ot =\[((r)") - ()" o7

Note that equations (24) and (26) are identical when calcu-
lating B-mode values.

5.4 Optical power spectra for the full
SuperCLASS region

For the full 1.53 deg2 SuperCLASS region, we apply a bin-
ning which is appropriate for the 1 deg2 area. This conser-
vative choice is motivated by the fact that the cluster sim-
ulations only cover an area of 1 degz, as discussed in Sec-
tion 5.2. Hence, only theoretical band powers and error bar
estimates for a 1 deg? binning can be extracted. This does
not mean that we lose any information on the scales that
we do probe, since all the 1.53 deg2 data is used. The con-
servative binning only means that we do not probe lower
f-modes, which would extend down to éfli;iidegz ~ 290 for a
1.53 deg? binning scheme.

The difference in area between the simulations and the
data also mean the error bars should be scaled. To first or-
der, the error bars of a given survey scale according to (e.g.
Kaiser 1992)

AC, = #@ + Ug) (28)
TN @A D fa U )

Assuming the cosmological signal, Cy the shape noise vari-
ance, o2 and the galaxy number density, nga1 to be constant
between the two areas, the ratio of error bars can be approx-
imated as

A1.53 deg? 1deg?
AC, | fay (29)
A1 deg? 1.53 deg? *
AO@ fsky

However, equation (29) does not account for the effect of
differences in the masking between two maps. To model this
effect, we create Gaussian random fields with the same 6-
parameter, flat, ACDM input model used in Hillier et al.
(2019). These simulations were created over an area large
enough to extract both a 1 deg? randomly sampled area and

4 The cluster simulations contain zero input B-mode signal.
Therefore the run-to-run scatters of the recovered B-mode band
power estimates are free from cosmic variance.
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the full 1.53 deg? masked area. 100 sets of simulations were
produced. The 1 deg? simulated shape catalogues were cre-
ated in exactly the same way as for the cluster simulations:
random positions with randomly-sampled real shape noise.
The 1.53 deg? masked area simulations used positions from
the real optical weak lensing catalogue, Fig. 1, and shape
noise was included by randomly sampling shapes across the
weak lensing catalogue. The differences in band power errors
between the case where equation (29) is applied directly and
when the simulations are used to also account for the mask
are ~ 10% (with errors decreasing when the masking effect
is included).

Each set of 2x100 simulations was run separately
through the power spectrum estimator and the standard de-
viations of the extracted band powers were measured. The
ratios between the standard deviations of the two sets of
band powers for each multipole bin were used to scale down
the cluster simulation measured error bars.

In Fig. 15 we show the measured E- and B-mode power
spectra for the full 1.53 deg? region covered by the optical
data. Circles show the measured band powers for each range
of ¢-modes, which are illustrated by the widths of the shaded
regions. The vertical extents of the shaded regions represent
the uncertainty in the estimated band powers. The band
powers and uncertainties here correspond to a 9.90 detec-
tion of a non-zero weak lensing F-mode power spectrum.
We also measure a significant B-mode lensing signal at a de-
tection significance of 4.60, indicating the presence of some
residual B-modes. However, we note that these B-modes are
measured at a smaller significance than the F-modes. These
statements are quantified in Table 3.

Also displayed in Fig. 15 are the E-mode expectation
band powers for a supercluster region similar to the Super-
CLASS field, P{*, computed as described in Section 5.2. For
clarity, the expectation band powers are shown as a dashed
line joining the band powers. The B-mode expectation band
powers are zero and are not shown in the figure.

5.5 Radio-optical and radio-radio power spectra
of DR1 region

In Fig. 16 we show the measured shear power spectra for the
radio and optical catalogues in the 0.26 deg? DR1 region,
including the optical-optical, radio-optical and radio-radio
combinations. The top row shows the measured E-modes
and the lower row the measured B-modes. As in Fig. 15,
the E-mode cluster expectation band powers are illustrated
by the dashed curve, this time for the 0.26 deg? binning.
Note the different vertical scales for each channel to contain
the vertical extents of the error boxes. As one would expect,
for this smaller 0.26 deg? region the random noise is too
large to make a detection in any of the combinations, as is
clear in Fig. 16 and reported in Table 3.

We note that the band powers in Fig. 16 were measured
using a joint convergence of all three spectra simultaneously.
We have also measured only the optical-optical spectra in
the DR1 independently of the radio data, and find both
methods to be consistent, and consistent with the optical-
optical spectra in the full region in Fig. 15.
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Figure 15. Measured E- (top) and B-mode (bottom) optical-only
power spectra for the full 1.53 deg? SuperCLASS region. The
dashed curve illustrates the E-mode expectation band powers for
a supercluster region. Note the different vertical axis scales and
factors of £ for the two panels. These power spectra measurements
are quantified in Table 3.

5.6 DR2 Forecasts

Table 3 also presents forecasted detection significances
and signal-to-noise ratios for simulated radio and optical
weak lensing shape catalogues covering the DR2 area of
0.755 deg® — the uniform depth area of the full VLA data
set.

The forecasts assumed source number densities of
ngal = 19 gal arcmin™?, as already measured and ngRal =1
gal arcmin~2, where the expected increase comes from the
improved depth and resolution from the e-MERLIN + VLA
combined image over the VLA-only one. For the optical
sources, shape noise was sampled from the real data mea-
surements, and for the radio sources, a Gaussian shape
noise distribution was used with a standard deviation of
oe = 0.3. Galaxy positions were randomly sampled within
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Figure 16. Measured E- (top row) and B-mode (bottom row) power spectra for the 0.26 deg? DRI region. From left to right, the
panels display the optical-optical, radio-optical and radio-radio channels. Only the calibrated SuperCALS radio catalogue described in
Section 4.4 was used to generate these power spectra, along with the same optical catalogue used for Fig. 15. As in Fig. 15, the E-mode
cluster expectation band powers are illustrated by the dashed curve, but this time use the 0.26 deg? ¢-binning. Note the different vertical
scaling between the E- and B-modes, as well as the different vertical ranges in each channel to cover the full extent of the error bars.
Detection significances and signal-to-noise ratios are listed in Table 3.

Table 3. Detection significances, D and signal-to-noise ratios, S for the band power measurements shown in Fig. 15 and Fig. 16,
calculated using Eq. (24) and Eq. (26). Values calculated using the mean signal recovered from the simulated cluster data sets are also
listed. All values were determined by only using the measurements of bands 2, 3 (and 4 for the full SuperCLASS region; see Table 2).
For the DR1 0.26 deg? rows, only the values measured using the calibrated SuperCALS radio shape catalogue are listed. For the DR2
0.755 deg? Forecasts, the forecasts correspond to detections of a theory shear power spectrum given by the best-fitting band powers from
the real optical data, see Section 5.6.

Spectrum Area Figure Data Simulations
D S D S

OpOpfE Full 1.53 deg? 15 99 43 64 25
OpOpBE 4.6 0.1
OpOpP¥ DR1 0.26 deg? 16 25 22 1.7 1.1
RadOpZ®¥ 0.8 08 05 04
RadRadZF 1.3 14 03 03
OpOpBE 3.6 0.2
RadOpPZ 1.1 0.2
RadRad BB 0.6 0.2
OpOpPF  DR2 0.755 deg? - - 6.0 33
RadOp®F Forecasts 2.2 1.6
RadRadZF 04 04
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the 0.755 deg? area and the shear signals added to the shape
catalogues, using the measured shear power from the full
optical data (i.e. the data points in Fig. 15). 61 pairs of sim-
ulations were generated and power spectra were extracted
using a 0.755 deg? /-binning. As in Section 5.2, the standard
deviations of the output band powers were used as estimates
of the error bars around the mean values for each ¢ bin. The
forecasts show that the significance of the detection of the
radio-optical power may be expected to be low, at 2.20.

6 DEMONSTRATION OF DATA
COMBINATION FROM DIFFERENT
TELESCOPES

As discussed in Section 4.4, the combination of both VLA
and e-MERLIN data will maximise the amount of avail-
able morphological information on the sources in the Super-
CLASS survey. We take uv-plane approach to this data com-
bination, which has the advantage over image-plane combi-
nation of the data (e.g. Muxlow et al. 2005) that it delivers
a well-defined, deterministic PSF for the CLEANed image,
which is crucial for our analysis. Moreover, combination of
data from both telescopes in the uv plane may enable shape
measurements to be made directly in the uv plane, circum-
venting possible biases which may arise from the (non-linear)
CLEAN process altogether.

The SuperCLASS observations were designed with this
data combination in mind, as the set of angular scales sam-
pled by the VLA and e-MERLIN telescopes are highly com-
plementary (see Paper I Fig. 1 and associated discussion). e-
MERLIN has access to small angular scales (6 ~ 0.2") from
widely separated antennae, but the lack of shorter separa-
tions means that much of the flux from diffuse sources falls
on parts of the Fourier plane not covered by the telescope
array and is ‘resolved out’ (hence the problems with source
detection discussed in Section 4.1.2). The VLA antenna con-
figuration provides a much denser sampling of small sep-
arations (large angular scales), and so more sensitivity to
diffuse structure, but lacks sensitivity to small scales, with
the smallest scale (§ ~ 1.5”) sampled being larger than the
~ larcsec expected to be a typical size for sources relevant
for shape measurement. These effects can be seen in Fig. 7,
where the e-MERLIN coverage has large gaps at larger scales
(small v and v) and the VLA coverage contains no infor-
mation at smaller scales (large u,v). Fig. 17 also shows this
information in real space in the form of the dirty beam PSFs
for both VLA (blue, which is smooth and well behaved but
broad) and e-MERLIN (red, which has a small central peak
but complicated structure including negative sidelobes).

For the pointing labelled ‘J28’ in our observation
scheme (with pointing centre at 10:27:04.012, +-68:09:27.00)
we have performed a full combined imaging of our data from
both VLA and e-MERLIN telescopes, with this data being
at the full single image depth for both. In order to ensure
scales in the image are always dominated by the array which
contains the most signal on that scale, a weighting scheme
is applied to the two data sets before combination, follow-
ing a similar strategy to that used for the eMERGE Legacy
Survey (Muxlow et al., 2020 in prep).

Rather than apply a global scaling of VLA or e-
MERLIN data with respect to each other (equivalent to
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a step function in the uv plane), our data combination
approach allows us to apply a smooth tapering function
throughout the uv plane, smoothing out any shoulders in
the combined-array PSF and enabling the trade-off between
angular resolution and surface brightness sensitivity (which
is inherent in every interferometer dataset) to be explored.
This weighting scheme consists of application of Tukey fil-
ters of differing widths to the visibilities; symmetric taper-
ing functions which progressively downweight different parts
of the outer and inner regions of the visibility plane. From
an initial suite of 243 images made with different weighting
functions (with beams shown by the grey lines in Fig. 17),
we identify three for scientific exploitation. We use the re-
covered CLEAN beam major axis size and RMS noise for
each image, and cut the T-RECS (Bonaldi et al. 2019) cat-
alogue to find the total number of sources which will be
resolved (have sizes larger than the beam major axis) and
detected (have fluxes greater than five times the RMS noise
value) by each choice of weighting. From this procedure we
chose the ‘Max Ngai’ weighting as the one which returns
the highest total of detectable, resolvable galaxies, and the
‘Edge of knee’ weighting, which has a lower number of usable
galaxies than Max Nga but is smaller, sitting at the edge
of a drop off in sensitivity with decreasing beam size. We
also chose a third weighting according to the requirement
that the dirty beam PSF is as small as possible without
including negative sidelobes, which resolve out flux and can
lead to problems in the imaging procedure. One dimensional
cuts through the major axis of these beams are highlighted
in purple in Fig. 17, along with a one arcsecond half-light
radius Sérsic exponential profile (shown in orange).

In Fig. 18 we show the results of this data combination
on deconvolved images of an example bright source, of simple
morphology, chosen from our J28 data sets from e-MERLIN
and the VLA. As can be seen, the unresolved emission in the
VLA image appears undetectable in the e-MERLIN image,
but is both detected and resolved in the combination images.
We expect this effect will improve our shape measurements
significantly for the full data release, by coherently including
information on small angular scales from the e-MERLIN
long baselines.

7 SUMMARY AND CONCLUSION

We have analysed the first stage of data from the Super-
CLASS experiment, consisting of 1.53 deg? of optical data
from the Subaru telescope and 0.26 deg® radio data from
the VLA and e-MERLIN telescopes. Previously existing ra-
dio surveys have not been designed with weak lensing in
mind and so have not been capable of making a first de-
tection of the signal. SuperCLASS has been designed as a
survey of a region of sky containing a supercluster at z ~ 0.2
in the Northern sky with the aim of making the first detec-
tion of a weak lensing signal, both in the radio data alone
and by cross-correlating the radio data with optical data. By
making use of data from both the Karl G. Jansky VLA and
e-MERLIN telescope arrays, SuperCLASS is sensitive to the
range of Fourier scales expected to carry the morphological
information about radio star-forming galaxies necessary to
infer the shear signal from weak lensing. Here we have pre-
sented radio data from only the 0.26 deg® DRI region, which
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Figure 17. Point spread functions for the various data weighting combinations considered. Individual telescope dirty beam PSFs are
shown in blue (VLA) and red (e-MERLIN). Black lines show the dirty beam PSFs resulting from the different weightings tried, with
those which were picked out for further exploration picked out in cyan. Numbers in the legend refer to the noise level in our simulated
data set which was produced by each weighting. For reference we also show in orange a one arcsecond exponential Sérsic profile.
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Figure 18. e-MERLIN and VLA combined CLEAN images of a source in the J28 pointing, showing the differences in morphology
information available from the different weightings, which are described in the text. For reference, one dimensional cut throughs of the

dirty beam for each image are shown on the top row.

contains information from the first 50% (~ 400 hours) of the
e-MERLIN data, and is the area which is covered by these
data to a uniform noise level of 7 uJy/beam, along with data
in this region from the full VLA data set.

Following Paper I which describes the survey and the
creation of the catalogues, we have further described the

weak lensing methods applied to the data. For the Subaru
Suprime-Cam optical data in the BV 7'’ bands we have used
a pipeline consisting of well-proven methods and measured
the two-point function of galaxy shapes, the non-zero sig-
nal in which we interpret as being due to the cosmic shear
signal. As shown in Fig. 15 and Table 3 this allowed us to
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measure an F-mode shear power spectrum with a detection
signficance of 9.9 and signal-to-noise ratio of 4.3, confirming
the presence of the lensing mass in the supercluster region.
We have additionally constructed other weak lensing observ-
ables from this data, including real space correlation func-
tions (Fig. 4), which are detected to be significantly larger
than systematics signals estimated by cross-correlating the
shapes of weak lensing sources (i.e. galaxies) with the shape
of the deconvolved point spread function.

Using the radio catalogues described in Paper I we have
also measured the shapes of sources detected in deconvolved
radio images. After performing a by-eye classification of
sources, we identify those with low ~ uJy fluxes and simple
morphology as star-forming galaxies which may have their
intensity profiles well-modeled by a Sérsic profile with el-
liptical isophotes. In the deconvolved image from the VLA
data we then use a method we call SuperCALS to measure
the best fitting elliptical profile for each source. SuperCALS
works by injecting simulated sources of known shapes into
the residual image available from the CLEAN imaging pro-
cess. The shapes measured for these injected sources are
then used to form a model for the bias in shape in the true
noise environment at that location in the image, and the
real source measurements are corrected for this bias. We
have constructed a sophisticated simulation pipeline, called
SimuCLASS, consisting of sky model, simulated interferom-
eter measurement and imaging reconstruction, which closely
match the steps in the real data pipeline. Using this simula-
tion pipeline, we have found that for the source population
models (in terms of sizes, fluxes and profiles) expected for
our observation, the VLA-only data does not provide the re-
quired resolution to successfully recover source shape mea-
surements, but that the SuperCALS method does work ade-
quately when the morphological information is available (by
artificially increasing the size of the simulated sources). We
have then applied the SuperCALS method to the real VLA
data catalogue and formed the radio-radio and radio-optical
ellipticity power spectra, finding no significant detection, as
expected due to the low number density of sources leading to
the signal being noise dominated — we do not have enough
galaxies to average down the ‘shape noise’ from intrinsic
galaxy ellipticities.

As discussed at length in Section 5 of Paper I the e-
MERLIN data alone ‘resolves out’ much of the flux for the
sources we wish to measure shapes with (much of the flux
falls on parts of the Fourier plane not covered by the e-
MERLIN telescope baselines). For the 56 sources which are
detected in both the VLA and e-MERLIN images, we mea-
sure the e-MERLIN shapes with SuperCALS and provide
them in the catalogue, but do not use them in our science
analysis. Inclusion of e-MERLIN data will however allow im-
provements in the shape measurement when combined in a
coherent way during the imaging process (i.e. through com-
bination of data in the visibility plane). As discussed in Sec-
tion 6 we have begun this procedure, exploring different rela-
tive weighting schemes for the VLA and e-MERLIN data in
the joint imaging process. The results of this section provide
important information for the design of radio weak lensing
surveys in the future: that their uv-coverage should be de-
signed with extended source sensitivity, not point source sen-
sitivity, in mind and with a dirty beam PSF which as closely
as possible matches the expected source intensity profile.
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By performing this data combination in the full data
set consisting of all of the VLA data and a further ~ 400
hours of e-MERLIN data (which has been taken but not yet
fully reduced) we will in the near future release results on
a DR2 area covering a total area of 0.755deg?. If the data
combination enables us, through reducing the effective noise
in the image and improving the ellipticity measurement, to
double the source density of radio sources to 1 arcmin 2 then
a marginal detection of a radio-optical cross power spectrum
may be possible but is not expected, as shown in Table 3,
and a significant detection of a radio-radio power spectrum
is unlikely.

In the future, weak lensing using radio data from the
Square Kilometre Array (SKA) will be capable of cosmologi-
cal constraints at the Stage I1I and Stage IV levels (Harrison
et al. 2016; Bonaldi et al. 2016), and will allow the forma-
tion of cross-correlations with optical surveys which will be
highly robust to systematics (Camera et al. 2017). This work
represents a step forward in the sophistication of radio weak
lensing and radio data analysis in general (e.g. through the
use of the simulation pipeline and cross-correlation with op-
tical data), and provides cutting-edge data on the flux distri-
bution and morphology of star-forming galaxy radio sources
at pJy fluxes. The lessons learned, in particular on the im-
portance of good telescope sensitivity across a wide range of
angular scales, will be invaluable for future experiments such
as the proposed 5 deg® VLA Deep Extragalactic Cosmology
Survey (V-DECS) survey with the VLA and eventual sur-
veys with the SKA.
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