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Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related 
disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious 
task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality 
and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with 
at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently 
claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5].  

In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] 
into a low latency real-time or online seizure detection system. An overview of the system is shown in 
Figure 1. The main difference between an online versus offline system is that an online system should 
always be causal and has minimum latency which is often defined by domain experts. The offline system, 
shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based 
long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients 
(LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model 
and create additional features that carry information about the detected events and their confidence. The P2 
model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the 
EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 
aggregates the results from both P1 and P2 before applying a final postprocessing step. 

The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading 
techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into 
five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. 
The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and 

 
Figure 1. The block diagram of the real-time/online seizure detection system 
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the visualizer. The feature extractor generates 
LFCC features in real time from the streaming 
EEG signal. Next, the system computes seizure 
and background probabilities using a channel-
based LSTM model and applies a postprocessor 
to aggregate the detected events across 
channels. The system then displays the EEG 
signal and the decisions simultaneously using a 
visualization module. The online system uses 
C++, Python, TensorFlow, and PyQtGraph in 
its implementation. 

The online system accepts streamed EEG data 
sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. 
Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the 
online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG 
signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each 
channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In 
the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the 
visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal 
information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer 
reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading 
while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in 
the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its 
operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism 
ensures that only one process can access the file by prohibiting other processes from reading or writing 
while one process is modifying the file [9].  

The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for 
extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC 
features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting 
the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second 
absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and 
minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features 
are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are 
calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not 
included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to 
the system.  

We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system 
[10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using 
the features derived from the train set using the 
online feature extractor module. A window-based 
normalization technique was applied to those 
features. In the offline model, we scale features 
by normalizing using the maximum absolute 
value of a channel [11] before applying a sliding 
window approach. Since the online system has 
access to a limited amount of data, we normalize 
based on the observed window. The model uses 
the feature vectors with a frame size of 1 second 

 
Figure 2. A system level block diagram of the offline seizure 
detection system 

 

 
 
 

Table 1. TUSZ v1.2.1 Database Statistics 

 Train Set Dev Set 
Total Files 1989 1015 

Files with Seizures 384 273 
Total Duration (secs) 1,188,313.00 617,102.00 

Seizure Duration (secs) 78,838.09 58,322.37 
Patients 264 50 

Patients with seizures 118 38 
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and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine 
the efficacy of the delayed features and the window-based normalization technique. As shown by the results 
of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. 
The online event decoder module utilizes this trained model for computing probabilities for the seizure and 
background classes. These posteriors are then postprocessed to remove spurious detections.   

The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. 
It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining 
events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the 
channels where the seizures were observed. The postprocessor delivers the label and confidence to the 
visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in 
Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and 
confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. 
The visualizer uses red for seizure with the label SEIZ and green for the background class with the label 
BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames 
are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and 
confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can 
plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate 
options. 

For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 
database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the 
overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the 
previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs 
per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) 
performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% 
sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the 
window-based normalization technique for developing the online system. Using the offline decoder and 
postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model 
was then evaluated with the online modules. The current performance of the overall online system is 45.80% 
sensitivity with 28.14 FAs per 24 hours.  

Table 2 summarizes the performances 
of these systems.  The performance of 
the online system deviates from the 
offline P1 model because the online 
postprocessor fails to combine the 
events as the seizure probability 
fluctuates during an event. The modules 
in the online system add a total of 11.1 
seconds of delay for processing each 
second of the data, as shown in Figure 3. 
In practice, we also count the time for 
loading the model and starting the 
visualizer block. When we consider 
these facts, the system consumes 15 
seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 
15 seconds.  

Implementing an automatic seizure detection model in real time is not trivial. We used a variety of 
techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, 

Table 2. A comparison of performances of different models 

Exp. 
No. 

Systems Description Sensitivity 
(%) 

FA/24 
Hours 

1 The offline 
system 

P1-The channel-
based LSTM model 

39.46 11.62 

2 P2-The CNN-LSTM 
aggregator 

41.16 11.69 

3 P3 and final 
postprocessor 

40.29 5.77 

4 
The online 
system (the 
online channel-
based LSTM 
model) 

Evaluated with the 
offline P1 decoder 
and postprocessor 

36.23 9.52 

5 
Evaluated with the 
online P1 
postprocessor 

45.80 28.14 
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and signal-decision plotting to realize the system. A video demonstrating the system is available at: 
https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video
_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online 
performance of each module. 
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Figure 3. The data flow mechanism of the online (real-time) seizure detection system. Note that the figure is not drawn to scale. 
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