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Abstract—Sparse matrix dense vector multiplication (SpMV),
exhibits the memory bandwidth and communication driven
nature of many sparse linear algebra operations. Irregular
memory accesses from the non-zero structure within a sparse
matrix wreak havoc on performance. This paper presents strong
scaling for communication avoiding SpMV implementations on a
migrating thread system intended to address the lack of locality in
sparse problems. We developed communication avoiding SpMV
code to attempt to reduce off-node thread migration by using the
hypergraph partitioning package HYPE to determine workload
distribution. Additionally, we investigate the performance impact
of overlapping communication and computation through the use
of remote memory operations supported by the architecture.
Incorporating remote memory operations with hypergraph par-
titioning we achieved 6.18X speedup for overall performance.

Index Terms—Emerging Architectures, migrating threads, ir-
regular applications, communication overhead, HPC

I. INTRODUCTION

Sparse problems such as sparse matrix dense vector multi-
plication (SpMV) are used extensively in many applications.
For instance, SpMV constitutes the bulk of the High Perfor-
mance Conjugate Gradient (HPCG) [5] code that has become
an alternative to LINPACK for rating supercomputers. It is also
used extensively in linear solvers such as HYPRE [7], and
finite element method applications such as PGFem3D [12],
[13]. While dense linear algebra problems have received con-
siderable attention, similar work on sparse problems remains
a field rife for improvement.

Several earlier studies have shown that sparse problems,
SpMV in particular, exhibit highly irregular memory access
patterns [14]–[16]. Due to such irregularity, when strong
scaling of SpMV is performed on conventional hybrid or het-
erogeneous systems the communication overhead associated
with inter-process updates eliminates any speedup from adding
additional computational capability. We have observed that
using accelerators such as Intel Knights Landing as well as
GPUs can reduce computational time requirements. However
communication with current network interconnects is still
several orders of magnitude slower. Fig. 1 from [15] shows the
impact communication has on overall performance for SpMV
on distributed systems. Even with efforts to reduce or eliminate
communication, any remaining communication requirements
outpace speedup from strong scaling.

Fig. 1: Overall SpMV Performance on Conventional Architectures

Data reuse and limited memory bandwidth drive the scant
performance seen in sparse problems. The new class of
Migrating Thread architectures [6], [8] provides a means
for moving work rather than data throughout the system,
and thus avoid using software to perform remote operations.
In this study we implemented several SpMV codes on this
new architecture so that we could observe and analyze strong
scaling. We performed partitioning on our benchmark matrices
by using the HYPE partitioner [11], as discussed in greater
detail in Sec. V-A. Scaling results are compared against a
naive distribution in which non-zeros are placed round-robin
across all nodelets. For comparison we also developed an
implementation of SpMV using remote memory operations.

Our contributions are two-fold: the use of migrating threads
seems to enable better scaling than any observed in our prior
studies, and the use of remote memory operations enabled
increased computational performance by overlapping memory
accesses with computation. In doing so we saw up to 6.18
speedup using remote operations when no data partitioning
scheme was used, and 6.15 with hypergraph partitioning.

The remainder of this paper is organized as follows: Section
II provides relevant background. Section III overviews related
work. Section IV describes the sparse matrices used in our
experiments. Section V overviews hypergraph partitioning for
SpMV, workload balancing and distribution, and experimental
setup of our SpMV implementations. Finally Section VI eval-
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Fig. 2: The Migrating Thread Architecture.

uates the scalablity observations and compares against related
works, and Section VII concludes.

Sections II and IV are modifications of similar discussions
in our prior studies on different architectures. However, the
migrating thread implementation discussed here is new.

II. BACKGROUND

A. SpMV Overview

The simplest sequential implementation of SpMV utilizes
two nested loops of which the innermost processes one non-
zero at a time from a row in matrix A. The matching memory
required is O(nnz + 2m), where m is the matrix row
dimension.

Performing iterative SpMV in a distributed environment
adds additional complexities such as communication overhead
which are tied to the workload partitioning of rows as well as
the non-zero structure of the sparse matrix. A sparse matrix A
is multiplied by a dense vector x, with its row results being
placed into the result vector b. In many applications such as
HPCG [10], SpMV is called iteratively on the same A, with
each result vector reused in some way for the x in the next
iteration. In this paper we assume that at some point each row
result must be sent to all processing elements that require it
to update their dense vectors for the next iteration.

SpMV on a migrating thread system benefits from a shared
address space and does not need to send updates throughout
the system so that all computations have the latest results
after each iteration. Instead once a final row result has been
computed, every thread has access to that value by performing
a direct access. Thread migration may be required in order to
perform this access, however the hardware freely migrates the
thread, requiring no explicit control by the programmer.

B. The Migrating Thread Architecture

A migrating thread architecture [8] has features that help
with all these issues. All memory is in a single shared
address space where any thread in any physical core can have
load/store access to any of these locations. What is different
from a conventional shared memory architecture is that when
an access is made to a non-local location, the underlying
hardware, not software, actually moves the state of a thread to
a core close to that memory as required during execution.

Fig. 2 diagrams such an architecture as implemented by
Emu Solutions [6]. The basic unit, a nodelet, is a memory

module, its memory controller, and some number of multi-
threaded cores. All memory in the collection resides in a
common address space. A network connects all nodelets. A
thread runs in a core until it makes a memory reference that
is not contained in that nodelet’s memory. The hardware then
puts the thread to sleep, packages it, and moves it over the
network to the correct nodelet, and unpacks and restarts it.
There is no core-specific data cache. All memory accesses go
back to the appropriate memory controller.

Each nodelet’s memory controller includes computation
logic that allows it to perform atomic memory operations
against locations within its memory. The instruction set of a
migrating thread includes a rich set of operations that utilize
this atomic capability in addition to simple loads, and stores.

A thread can cheaply spawn additional threads who then
live existences independently of the parent. These threads
can be of several types. First are full-fledged threads capable
of executing arbitrary programs. Second are special purpose
threads that can only perform some dedicated operations such
as fetch-and-op. These latter thread types work directly with
the memory controllers at the target nodelet to perform remote
atomic operations without moving the whole thread state.

The current prototype has up to 64 nodelets packaged 8 to a
board, each with 8GB of memory, a RapidIO-based network,
and a dual core POWER microprocessor on each board to
run Linux, manage a local SSD, and initiate migrating threads
into the system. The memory bus for each nodelet delivers
8 bytes per access (rather than 64 bytes as on conventional
systems), meaning that for problems with a high percentage
of memory accesses that have little spatial locality1, the usable
bandwidth from them approaches 100%. The nodelet logic on
each board is implemented via an FPGA. The programming
tool chain is based on Cilk, with a prefix to function calls
to spawn new threads, a sync primitive to wait for a set of
children to complete, and a parallel forall to have a set of
independent threads cooperate on a loop. Supported intrinsics
include a rich set of atomic operations.

A larger system using the same boards is under develop-
ment, with additional enhancements such as caches in front of
memory2. Looking further out, the architecture is an excellent
match to 3D memory stacks where the nodelet logic is on
a logic chip on the bottom of the stack, and there may be
literally dozens of nodelets in each stack.

III. RELATED WORK

SpMV is known to be a memory bound problem, suffering
from poor data reuse and limited memory bandwidth on
conventional systems. A previous study developed an ana-
lytic projection of potential SpMV performance enhancements
using migrating threads [9]. A later study investigated the
impact migrating threads may have on bandwidth and thread
execution location within the EMU system [17]. Rolinger and

1This means for example that out of the data line accessed from memory
only a small percentage is used

2These caches are in the path for all accesses to the memory they hold so
that no coherency traffic is needed between cores on the nodelets



Krieger utilized several data placement techniques, including
cyclic and block, to partition their benchmark matrices onto
nodelets within the system. They observed that techniques
such as METIS and BFS for data reordering saw speedup of
only 16% on conventional systems while obtaining up to 70%
improvement on EMU.

One important note from this second study was the observa-
tion that even random ordering of data across nodelets would
achieve superior performance over no reordering at all. As
stated in [18] this contradicts traditional behavior observed
on conventional architectures in which randomization often
dramatically reduces performance by increasing cache misses
and their associated penalties.

Partitioning of data among distributed systems is a highly
studied area and one that can dramatically increase overall
performance when done correctly for the given system and
problem. In [17], [18] Rolinger et al attempt to optimize data
layout of sparse matrices on EMU nodelets. A 50% increase
in performance was obtained by implementing a block-based
data layout scheme in preparation for computing SpMV on the
benchmark matrices selected in their study. A cost model for
the current FPGA based implementation of the EMU migrating
thread architecture was developed and compared to observed
speedup obtained on an 8 node (64 nodelet) EMU system.

IV. MATRIX BENCHMARK SUITE

Similar to our previous study we have chosen 25 matrices
from the Suite Sparse Matrix Collection3 [3]. Emphasis was
on matrices with either extreme sparsity or irregular patterns.
Table I lists their characteristics. Matrices were selected based
on their average non-zeros per row nnzrow, as well as overall
non-zeros. At least two matrices from each nnz range were
chosen with similar size or nnz per row but different structure.
Additionally, matrices with significantly different structure
were chosen. For example, the non-zeros in atmosmodd cluster
along the main diagonal, whereas parabolic fem has a wider
dispersion. We focused on structural differences to evaluate
the impact of matrix structure on communication volume
and message size across different load balancing methods.
Additionally we chose matrices in a quasi logarithmic fashion
to ensure a wide spectrum of sparsities.

Not only were these matrices selected using this rational,
but also because these matrices provide a wide range of
characteristics while still being small enough to perform rapid
file I/O and load balancing for each test. We are aware of much
larger matrices which must be evaluated on distributed systems
due to their immense size requirements. However evaluating
such matrices is often cumbersome due to lengthy matrix read
and partitioning times along with increasing cluster allocation
sizes. Full scale tests to confirm our findings in this study will
be completed but are beyond the scope of this paper.

3Currently hosted at https://sparse.tamu.edu/

TABLE I: BENCHMARK MATRIX SUITE
matrix rows nnz nnz % nnz row

atmosmodd 1270432 8814880 5.46E-06 6.93
parabolic fem 525825 3674625 1.33E-05 6.98
rajat30 643994 6174244 1.49E-05 9.58
CurlCurl 3 1219574 13544618 9.11E-06 11.10
offshore 259789 4242673 6.29E-05 16.33
Fem 3D thermal2 147900 3489300 1.60E-04 23.59
nlpkkt80 1062400 28192672 2.50E-05 26.53
CO 221119 7666057 1.57E-04 34.66
gsm 106857 589446 21758924 6.26E-05 36.91
msdoor 415863 19173163 1.11E-04 46.10
bmw3 2 227632 11288630 2.18E-04 49.59
BenElechi1 245874 13150496 2.10E-04 53.48
t3dh 79171 4352105 6.94E-04 54.97
F2 71505 4294285 8.40E-4 60.05
consph 83334 6010480 8.65E-04 72.12
SiO2 155331 11283503 4.68E-04 72.64
torso1 116158 8516500 6.31E-04 73.31
dielFilterV3real 1102824 89306020 7.34E-05 80.97
RM07R 381689 37464962 2.57E-04 98.15
m t1 97578 9753570 1.02E-03 99.95
crankseg 2 63838 14148858 3.47E-03 221.63
nd24k 72000 28715634 5.54E-03 398.82
TSOPF RS b2383 38120 16171169 1.11E-02 424.21
mouse gene 45101 28967291 1.42E-02 642.27
human gene1 22283 24669643 4.97E-02 1107.10

V. EXPERIMENTAL SETUP

A. Workload Partitioning with Hypergraphs

The EMU architecture maintains a shared memory address
space among the system. As such migrating threads do not
require software-driven communication between processing
domains. This does not mean that there is no communication
present. Instead thread migrations perform ”communication”
by moving the thread state to the nodelet controlling the mem-
ory locations it intends to access. Similar to communication,
during thread migration useful computation is not taking place
and therefore degrading overall latency of computation for
that particular computation4. Many studies have attempted to
reduce communication volume by establishing optimized data
placement and have achieved varying degrees of success. We
implemented a more generalized approach, using hypergraph
partitioning, which is independent of specific matrix charac-
teristics and explores more general approaches that look at
the placement of non-zeros without the aid of any apriori
knowledge about the matrix.

Hypergraphs are higher dimensional representations of a
graph or data set which may reveal exploitable interconnec-
tions among data set elements. Hypergraphs contain hyper-
edges which, unlike traditional graph edges that connect only
two vertices, can join any number of vertices. All vertices
belonging to the vertex set of a hyperedge share some prop-
erty as defined by the data set and application in question.
Additionally, a vertex may exist in multiple hyperedges when
it has properties in common with more than one set of vertices.
Formally hypergraph partitioning is the process of finding a
partitioning of a hypergraph such that some cost function,
such as net cut, or fanout (k-1) is minimized. It is used in

4However, unlike conventional architectures, there is no consumption of
resources back where the thread left due to a stalled core, thus increasing the
useful time available back on that core.



Fig. 3: Hypergraph Partitioning of a Sparse Matrix

many fields such as VLSI design [1], database storage shard
reduction, and distributed graph preprocessing [4].

Any sparse matrix can be treated as a hypergraph by
considering an arbitrary row[i] as a hyperedge h[i], and the
column id of the non-zeros within that row[i] as vertices
belonging to h[i]. Partitioning of a hypergraph representation
of sparse matrices for use in SpMV have been shown to reduce
communication by up to 60%, as it more accurately depicts
the communication pattern required by row result updates [2].

Similar to [17] our focus is on avoiding thread migration
where possible by implementing optimized data placement
techniques. Because of this we chose to evaluate the impact
of hypergraph partitioning on overall performance for the
matrices included in our benchmark matrix suite. Fig. 3 shows
a sample matrix A and its transpose AT . If a hypergraph is
generated using A then its rows are treated as hyperedges,
with the column ids of the rows’ non-zero values treated
as the vertices in each hyperedge’s vertex set. Therefore the
unifying property of each hyperedge’s vertices is that they all
belong to the same row of A. Conversely if the transpose of
a sparse matrix is used to generate a hypergraph, then the
columns become hyperedges and row ids of the non-zeros
within each column are the vertices within them. The visual
representation of the hypergraph in Fig. 3 illustrates the higher-
dimensional and overlapping behavior inherent to hyperedges.
Our implementation performs partitioning on hypergraphs
generated using the transpose of each benchmark matrix. This
was important because we used CSR storage format for local
matrix data, which can obtain improved cache performance
when all non-zeros of a row are contiguous in memory.

With respect to SpMV, hypergraph partitioning has the
potential to reduce interprocess communication by assigning
rows which have high column similarity to the same nodelet.
Thus the elements requiring that row result in subsequent
iterations would often be co-located with the row itself, This
enables hypergraph partitioning to often eliminate the need
for communication of row results, or allow for reducing the
number of partitions to which a result must be distributed if
optimal partitioning could not be generated.

The HYPE hypergraph partitioner [11] uses neighborhood
expansion for efficiently determining optimal vertex assign-
ment. HYPE performs a balanced k-way partitioning by an-
alyzing the vertices within each hyperedge and generating a
minimal core set of vertices with which to calculate similarity.
Additionally HYPE minimizes the K-1 metric, the number
of times that neighboring vertices are assigned to different
partitions. While HYPE produces balanced partitionings with
respect to row (vertex) per partition assignments, the number
of non-zeros per partition can vary widely depending on which
rows have been assigned. Therefore it is possible that such a
hypergraph partitioning may be imbalanced with respect to the
computational requirements of the SpMV operation.

In our tests HYPE produced partitions with a hyperedge
cut 20%-40% lower than the total row count of each matrix.
This indicates that message volume and communication has
potentially been reduced by 40% or more, due to reduced
fanout of vertex interconnections.

B. SpMV on Migrating Threads

For this study we developed a migrating thread implemen-
tation of SpMV. This implementation is run across select
nodelet counts of powers of 2 up to 64 nodelets. Workload
distribution uses two methods: hypergraph partitioning or a
naive round-robin method. The Hypergraph partitioning for the
input matrix and nodelet count is read in from file and checked
against non-zeros as they are read in from file. Alternatively
the round-robin method stripes non-zeros across all nodelets
used in the run such that non− zero0 is placed on nodelet 0,
non− zero1 nodelet 1, etc.

Dense vector x and result vector result are striped across all
nodes used in the test. Remember that a thread will migrate
any time it attempts to access memory that is not local to the
nodelet on which it is current executing. This means that when
any arbitrary thread attempts to access elements of the dense
vector, non-zero data, or update a row result, a migration may
result depending on data placement throughout the system. In
this study no attempt was made to have local copies of the x or
result vectors, but instead we allow the hardware the freedom
to perform thread migrations among its shared address space.

Non-zero elements are placed on each nodelet according
to the distribution method selected. Each nodelet has a local
array in which the non-zeros it has been assigned are placed.
Threads are spawned on each nodelet and begin working over
the locally assigned non-zero elements within this array. This
enables threads to access local non-zero data without having
to perform a migration. For this study we set the initial thread
count for each nodelet to 64, the maximum that can be stored
in a nodelet core’s thread buffer.

Threads spawned at each nodelet are given an initial id i
from 0 to 63. Each thread then computes the partial sum for the
ith non-zero element in the nodelet’s non-zero array. Once the
thread completes computation for each individual non-zero,
its id is incremented by the number of threads per nodelet.
This process is continued by every thread until all non-zeros
assigned to the nodelet have been evaluated. By performing



computation in this manner each non-zero is accessed only
once and no locking or access control mechanism is necessary
for the non-zero array. During computation a thread may
migrate to another nodelet to obtain the dense vector value
associated with the column of the non-zero being operated
on. A thread that has migrated accesses the desired memory
address and then returns to its ”home” nodelet where it
continues execution.

Rows are updated with the partial sums calculated by
the threads. The EMU architecture provides support for
remote memory operations such as REMOTE ADD, RE-
MOTE AND, REMOTE XOR. These remote memory oper-
ations allows a thread to launch an asynchronous write to a
memory address without having to either migrate or wait for
an acknowledgement of completion, increasing performance.

Thread migration can be costly as seen in [17]. Therefore
we evaluated scalability for both data partitioning methods by
allowing thread migration for row updates, and again using
the REMOTE ADD operation to ensure that these updates
occurred asynchronously with any remaining computation.

VI. PERFORMANCE EVALUATION

To show speedup obtained using our SpMV benchmarks we
measured the time required to perform any necessary compu-
tation and thread migrations. Thread migrations for memory
accesses, as well as any latent memory operations which may
have been queued for execution within a nodelets memory
engine are all included in the timing measurements. Fig. 4
shows the observed speedup for all benchmark matrices used
in this study. Each sparse matrix was evaluated with 4 total
variations of the SpMV benchmark: naive partitioning (Fig.
4a), hypergraph partitioning (Fig. 4b), naive partitioning using
REMOTE ADDs (Fig. 4c), and lastly hypergraph partitioning
with REMOTE ADDs (Fig. 4d).

As can be seen in Fig. 4 (a) and (c) both implementations
of the naive matrix partitioning exhibited nearly identical
behavior. Speedups of up to 6.18X were achieved regardless
of the use of remote memory operations for storing row result
updates. While good scaling was obtained up to 8 nodelets,
performance declined sharply at 16 nodelets, which constitute
of two node cards. As observed previously in [17] this is likely
due to increases in thread migration latency when migrating
between nodes across the network interconnect as opposed to
the backplane which links all nodelets inside of a single node.
We then see increased speedup as we continued to scale our
tests onto 32 nodelets (4 nodes).

Fig. 4 (b) and (d) also illustrates the the high level of similar-
ity between both implementations of hypergraph partitioning
as well as hypergraph partitioning when the REMOTE ADD
intrinsic is used for row updates. Overall the behavior is
nearly identical with the exception of SiO2 being the only
matrix to obtain negative speedup. This occurred at when
using 16 nodelets when remote adds are used. As with the
naive partitioning method good scaling returns after this initial
transition from intra-node to multi-node execution with a
maximum achieved speedup of 6.15X.

While hypergraph partitioning has been shown to reduce
communication and therefore increase overall performance in
conventional systems, we did not see any substantial gains
from its use in our benchmarks. Fig. 5 shows the speedup
of hypergraph partitioning with the use of remote memory
operations, compared to that of the naive partitioning. For
several matrices the hypergraph partitioning method actual
degrades performance rather than providing any benefit.

It extremely important to note that while the hypergraph
partitioning method is not superior to the naive method in
this case, both partitioning methods employed on the EMU
migrating thread architecture achieved speedup several orders
of magnitude greater than what has been seen on conventional
architectures up to this point.

VII. CONCLUSION

This study developed a migrating thread implementation of
SpMV capable of utilizing hypergraph partitioning in an effort
to reduce migrations. We then analyzed the scalablity of our
benchmarks across 25 benchmark matrices. For both workload
distribution methods employed we saw overall speedup of up
to 6.18X. Previous studies which utilize distributed systems
requiring communication methods such as MPI struggle to
achieve any positive speedup above 1.0 with the average
speedup being several orders of magnitude worse than that.

In this study we observed some of the best strong scaling
behavior we have seen so far for SpMV. The ability to move
work do the data in order to perform computation appears to
be a good fit for sparse problems such as SpMV as it allows
for the elimination of explicit communication during runtime.
However migrating threads still constitute communication in
a sense and further research must be performed in order to
ascertain to what extent migration overhead can be mitigated,
and what the impact on scalablity will be.
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