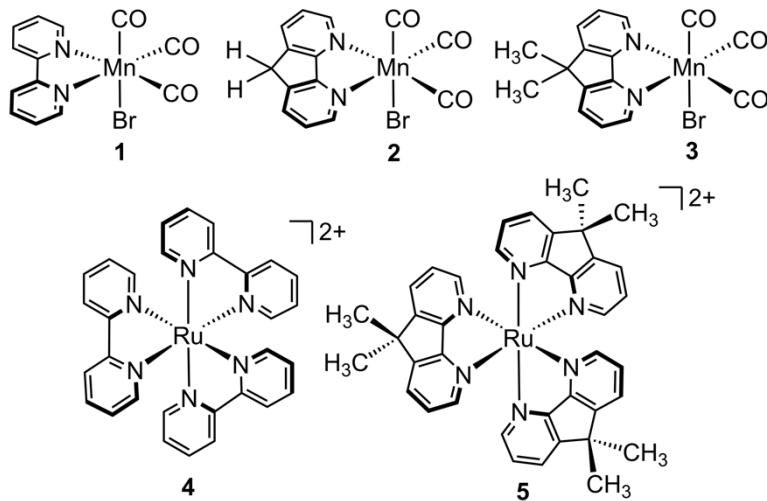


1 Article

2 **4,5-Diazafluorene and 9,9'-Dimethyl-4,5-
3 Diazafluorene as Ligands Supporting Redox-Active
4 Mn and Ru Complexes**5 Wade C. Henke, Julie A. Hopkins, Micah L. Anderson, Jonah P. Stiel, Victor W. Day and
6 James D. Blakemore*

7 Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA;

8 * Correspondence: Correspondence: blakemore@ku.edu (J.D.B.)

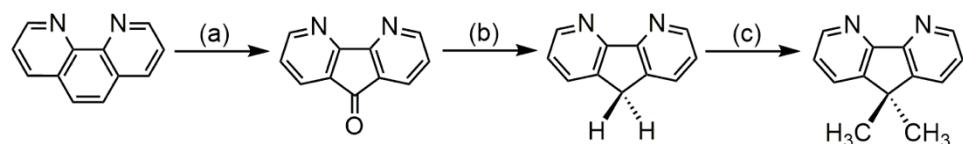

9 **Abstract:** 4,5-diazafluorene (daf) and 9,9'-dimethyl-4,5-diazafluorene (Me₂daf) are structurally
10 similar to the important ligand 2,2'-bipyridine (bpy), but significantly less is known about the redox
11 and spectroscopic properties of metal complexes containing Me₂daf as a ligand than those
12 containing bpy. New complexes Mn(CO)₃Br(daf) (2), Mn(CO)₃Br(Me₂daf) (3), and
13 [Ru(Me₂daf)₃](PF₆)₂ (5) have been prepared and fully characterized to understand the influence of
14 the Me₂daf framework on their chemical and electrochemical properties. Structural data for 2, 3, and
15 5 from single-crystal X-ray diffraction analysis reveal a distinctive widening of the daf and Me₂daf
16 chelate angles in comparison to the analogous Mn(CO)₃(bpy)Br (1) and [Ru(bpy)₃]²⁺ (4) complexes.
17 Electronic absorption data for these complexes confirm the electronic similarity of daf, Me₂daf, and
18 bpy, as spectra are dominated in each case by metal-to-ligand charge transfer bands in the visible
19 region. However, the electrochemical properties of 2, 3, and 5 reveal that the redox-active Me₂daf
20 framework in 3 and 5 undergoes reduction at a slightly more negative potential than that of bpy in
21 1 and 4. Taken together, the results indicate that Me₂daf could be useful for preparation of a variety
22 of new redox-active compounds, as it retains the useful redox-active nature of bpy but lacks the
23 acidic, benzylic C–H bonds that can induce secondary reactivity in complexes bearing daf.24 **Keywords:** manganese tricarbonyl; ruthenium; electrochemistry; 4,5-diazafluorene; 9,9-dimethyl-
25 4,5-diazafluorene
2627 **1. Introduction**28 2,2'-bipyridyl (bpy) is among the most ubiquitous ligands in inorganic and organometallic
29 chemistry. As a chelating ligand, bpy often binds to transition metals in a bidentate (κ^2) mode and
30 can support a variety of compounds with useful photophysical, redox, and/or catalytic properties
31 [1,2,3,4,5,6,7]. Metal complexes and catalysts bearing bpy-type ligands can be tuned by appending
32 electron-donating groups (EDG) and electron-withdrawing groups (EWG) to the bpy ligand; such
33 groups primarily modulate the π -accepting ability of the conjugated framework and, to a lesser
34 extent, the σ -donating ability of the nitrogen donor atoms. For example, we have recently used 4,4'-
35 disubstituted-2,2'-bipyridyl (^Rbpy) ligands to tune the photophysical properties and light-induced
36 reactivity of Mn(CO)₃X(^Rbpy) complexes [8] as well as to modulate the accessible pathways and
37 efficiency of dihydrogen production by [Cp^{*}Rh] complexes bearing ^Rbpy ligands [9]. Such
38 modifications have also been used to tune catalysis of carbon dioxide (CO₂) reduction to carbon
39 monoxide (CO) by [Re(CO)₃] and [Mn(CO)₃] complexes [10,11]. With these observations and many
40 others from the field, ^Rbpy ligands have been found to be uniquely suited to systematic investigation
41 of transition metal complexes. Furthermore, the wide range of accessible ^Rbpy ligands makes them
42 attractive for efforts in rational design of new metal complexes and molecular catalysts.

Ligands based upon 4,5-diazafluorene (daf) have several features in common with the workhorse ^Rbpy ligands, and thus offer a notable alternative for development of new metal complexes and catalysts [12]. In particular, both daf and bpy have $12e^- \pi$ systems and both commonly bind to metals in a κ^2 fashion. However, daf is distinguished from bpy by its more rigid structure, attributed to the linking inter-ring sp^3 -hybridized carbon present in the fused five-membered ring. Photochemical studies of metal complexes supported by daf and bpy have mapped the importance of these features, including involvement of the daf π -system in metal-to-ligand charge transfer behavior [12,13]. Furthermore, the constrained chelate angle of daf has been implicated in giving rise to more significant excited-state reactivity than that encountered for bpy [14].

Unfunctionalized daf features two doubly benzylic C–H bonds at the 9-position, opening further possibilities for ligand-centered acid/base reactivity that cannot occur with simple 2,2'-bipyridyl derivatives. Along these lines, Song and co-workers have explored the coordination chemistry of daf and substituted diazafluorenes, including significant work aimed at leveraging this unique acid/base chemistry [15]. In their work, Song and co-workers have found that the acidic C–H bonds of daf can undergo deprotonation that results in follow-up reactivity [16,17,18,19,20]. More broadly, Stahl [21,22,23] and several other groups [24,25,26] have developed a number of catalyst systems supported by diazafluorene ligands. In all these cases, daf and its derivatives seem to play a decisive role in enabling unique chemistry, confirming the usefulness of the ligands as a counterpoint to the more common ^Rbpy family.

As we have found in our own work that redox-active compounds and catalysts can be readily tuned by substituent effects with ^Rbpy ligands [8,9], 4,5-diazafluorene-based ligands could be useful in modulating the structural, electronic, and electrochemical properties of redox-active compounds more commonly supported by ^Rbpy derivatives. In particular, the coordination chemistry of the ligand 9,9'-dimethyl-4,5-diazafluorene (Me₂daf) has received less attention than it deserves [23], as this ligand avoids the acidic C–H bonds present in daf that can readily engage in non-innocent behavior. Furthermore, reliable methods from Schmidt and co-workers [27] and Tetsuya and co-workers [28] are available for preparation of Me₂daf, encouraging further exploration of its chemistry.

Here, we now report the synthesis, characterization, and electrochemical properties of Mn(CO)₃Br(daf) (**2**), Mn(CO)₃Br(Me₂daf) (**3**), and [Ru(Me₂daf)₃](PF₆)₂ (**5**), and compare their properties to the more common analogues Mn(CO)₃(bpy)Br (**1**) and [Ru(bpy)₃]²⁺ (**4**), respectively (see Chart 1 for structures of all compounds). We find that the use of daf and Me₂daf ligands in the complexes leads to unique spectroscopic features in the NMR and electronic absorption spectra, as well as a characteristic shift in the C–O vibrational frequencies found in the infrared (IR) spectra of **2** and **3** compared to that of **1**. Consistent with these spectroscopic observations, results from single-crystal X-ray diffraction analysis of **2**, **3**, and **5** reveal wider chelate angles and elongated M–N bond lengths in comparison with the analogous bpy complexes. The new complexes exhibit electrochemical profiles that are akin to those of their bpy analogues, confirming the similar redox-active natures of bpy, daf, and Me₂daf. However, related tests shows that complexes **2** and **3** are not catalysts for the reduction of CO₂ to CO, contrasting with the robust catalytic behavior of **1** [4]. Taken together, these results suggest that Me₂daf is an attractive ligand for development of new coordination compounds for use in studies of redox chemistry and catalysis.


84

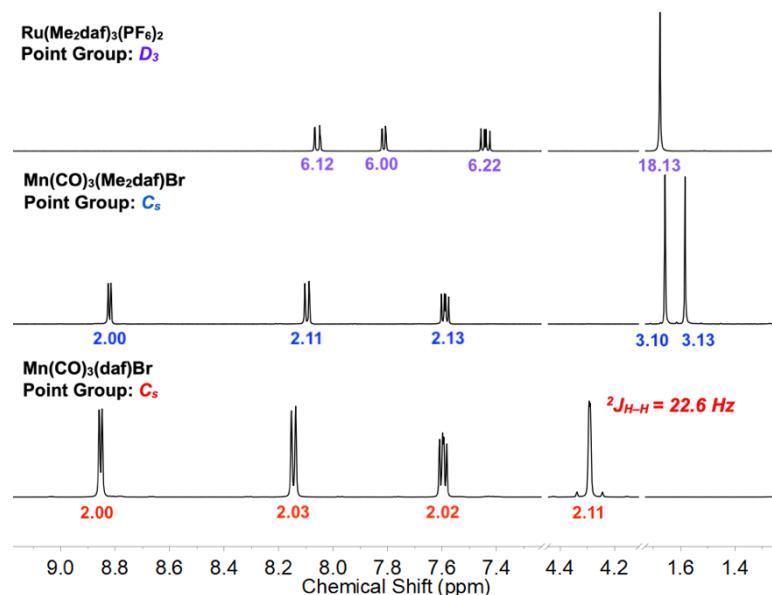
85 **Chart 1.** Manganese tricarbonyl and ruthenium complexes supported by bpy, daf, and Me₂daf
86 discussed in this study.

87 2. Results and Discussion

88 2.1. Synthesis and NMR characterization of complexes 2, 3, and 5

89 In order to synthesize the new compounds **2**, **3**, and **5**, we first prepared the daf and Me₂daf
90 ligands according to literature procedures starting from 1,10-phenanthroline (phen). Oxidation of the
91 unique olefinic functionality within phen results in the production of 4,5-diazafluoren-9-one
92 (dafone); Wolf-Kishner reduction of dafone with hydrazine hydrate results in the generation of the
93 desired daf [27]. To generate Me₂daf, we initially attempted deprotonation of the daf methylene
94 protons using *n*-butyllithium, but in our hands this resulted in decomposition. Instead, we utilized
95 a milder, sterically hindered base, potassium *tert*-butoxide (tBuOK), to deprotonate daf, followed by
96 the addition of iodomethane, to generate the anticipated Me₂daf ligand [28].

97


98 **Scheme 1.** The synthetic pathway for the generation of daf and Me₂daf. (a) 1. KOH, KMNO₄; H₂O, 16
99 h, 100 °C (b) NH₂NH₂·H₂O; diethylene glycol, 170 °C, (c) 1. tBuOK 2. MeI; THF, -10 °C to rt.

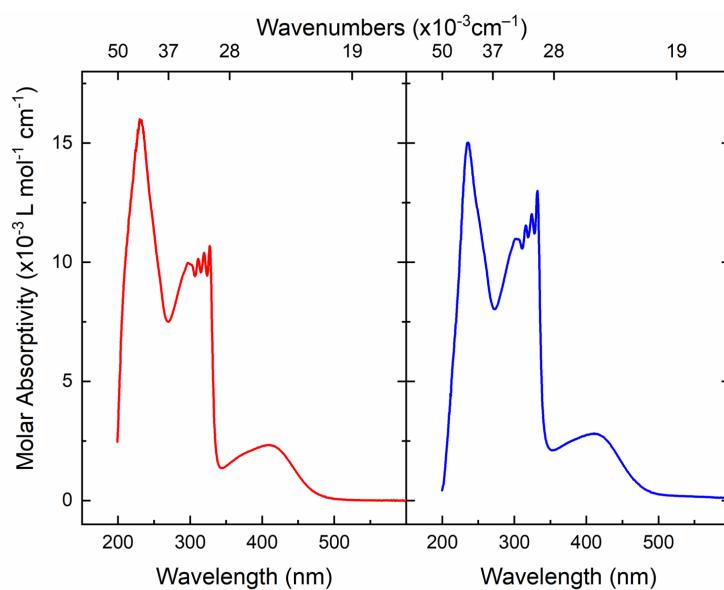
100 With the desired ligands in hand, we next moved to prepare **2** and **3** with synthetic chemistry
101 developed earlier by Wrighton, Meyer, and others for related bpy and phen derivatives [29,30,31].
102 Suspension of the appropriate ligand with Mn(CO)₅Br in diethyl ether at 38 °C results in the
103 generation of complexes **2** and **3** in moderate yields, 62% and 73%, respectively. Previously, Cherry
104 and co-workers have reported the synthesis of the complex [Ru(daf)](PF₆)₂ to examine its structural
105 properties and photophysical properties [12]. By adapting this literature procedure, the Me₂daf
106 analogue of [Ru(bpy)₃]²⁺ could be prepared in a relatively low yield of ca. 17%. As an aside, we
107 anticipate that the modest yield is likely due to differences in solubility between [Ru(daf)](PF₆)₂ and
108 **5** engendered by the methyl groups of Me₂daf. Notably, all the compounds in this study were found
109 to be acutely light sensitive and were handled in the dark or under red light to the extent possible.
110 Following successful generation of the complexes they were each fully characterized (see
111 Experimental Section and Figures S1-S9).

112 To begin characterization of the newly synthesized complexes, we turned to nuclear magnetic
113 resonance (NMR) spectroscopy. Complexes **2**, **3**, and **5** each exhibit three resonances in the aromatic
114 region of their ¹H-NMR spectra with splitting patterns arising from ³J_{H-H} and ⁴J_{H-H} coupling; these
115 signals correspond to the hydrogen atoms on the pyridyl rings of the daf and Me₂daf ligands

116 coordinated to their respective Mn and Ru centers (see Figure 1). Notably, complexes **2**, **3**, and **5**
 117 exhibit unique resonances for their daf-methylene and Me₂daf-methyl protons. While complexes **2**
 118 and **3** exhibit C_s symmetry in solution, complex **5** shows D₃ symmetry. Correspondingly, the six
 119 methyl groups belonging to the three Me₂daf ligands coordinated to the Ru center give rise to a singlet
 120 at 1.68 ppm (integrating to 18 H) confirming the successful preparation of complex **5**. The assignment
 121 of D₃ symmetry suggests that complex **5** is chiral and thus should be present as a 50:50 racemic
 122 mixture (of Δ and Λ isomers; *vide infra*). However, enantiomers have identical chemical and physical
 123 properties and thus we observe no additional resonances in the NMR spectra for the material isolated
 124 here.

125 Considering the change in symmetry from D₃ for **5** to C_s symmetry for **2** and **3**, unique NMR
 126 resonance in the latter two cases can be readily interpreted. Complex **2** possesses C_s symmetry in
 127 solution and, as a result, the chemical environment of the two protons on the methylene bridge (9-
 128 position) become chemically distinct from each other and are diastereotopic. This results in a
 129 distinctive signal centered at 4.29 ppm. The geminal coupling between the two methylene protons on
 130 daf might be anticipated to give rise to two unique doublets. However, when the frequency of the
 131 coupling constant (²J = 22.6 Hz) is on the same order of magnitude as the chemical shift difference (25
 132 Hz) between the two expected resonances, the usual one-to-one value for the resonance intensities is
 133 not observed [32,33]. Instead, a multiplet with intense inner peaks and weaker outer peaks is
 134 obtained, providing a diagnostic signal for the generation of complex **2** (in general, a phenomenon
 135 known in the field as 'roofing'). The identity of this signal is further confirmed by ¹³C-distortionless
 136 enhancement polarization transfer (DEPT-135) and 2D ¹H-¹³C heteronuclear single quantum
 137 coherence (HSQC) NMR techniques (see Figures S10-11). Similarly, complex **3** exhibits C_s symmetry
 138 in solution; the methyl groups on the apical carbon are diastereotopic, with one methyl oriented
 139 toward the axial CO ligand and the other oriented toward the bromide ligand. The difference in the
 140 chemical environment between the methyl group protons gives rise the anticipated diastereotopic
 141 resonances; these were observed using ¹H and ¹³C NMR, providing two signals for the protons (δ 1.58
 142 and 1.66 ppm, each integrating to 3 H) and two signals for the carbons (δ 24.4 and 25.3 ppm),
 143 confirming the expected structure of **3** in solution.

144
 145 **Figure 1.** Partial ¹H NMR spectra of **2** (bottom), **3** (middle), and **5** (top) in CD₃CN. Peak integrations
 146 are given beneath each resonance or multiplet in colored text.


147

148

149 2.2. Electronic Absorption, IR, and X-ray Diffraction Studies

150 Complexes **1–5** are all highly colored and thus we next turned to electronic absorption (EA)
 151 spectroscopy. The EA spectrum for complex **5** exhibits a strong transition at 445 nm with a molar
 152 absorptivity of 13,000 M⁻¹cm⁻¹ (see Figures S17–25). The value of the molar absorptivity and the
 153 remarkable similarity of the spectrum to that of complex **4** enables assignment of this transition as a
 154 metal-to-ligand charge transfer (MLCT) [34,35]. This assignment is also consistent with known ability
 155 of daf ligands to enable visible-light induced charge transfer transitions at transition metal centers,
 156 similar to what is observed for complexes bearing bpy [12,13]. The observation of an MLCT transition
 157 for **5** supported by Me₂daf is also reasonable, since the two methyl groups installed at the 9 position
 158 of daf do not perturb the conjugated system of the two aromatic rings. The EA spectra for complexes
 159 **2** and **3** reveal transitions in the visible region at 410 nm and 411 nm with molar absorptivities of 2,200
 160 M⁻¹cm⁻¹ and 3,300 M⁻¹cm⁻¹, respectively (see Figure 2). Notably, these EA spectra are very similar to
 161 complex **1** [8], and based on this similarity, we are confident that these transitions can also be
 162 attributed to MLCT events.

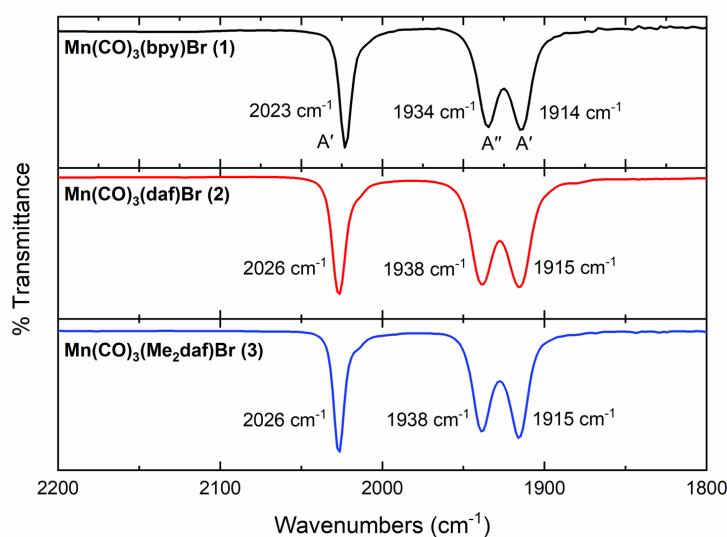
163 However, a distinguishing feature of the EA spectra of complexes **2** and **3** compared to that of
 164 complex **1** is the presence of four, relatively narrow absorptions in the UV region between 250 and
 165 350 nm. Based on their wavelengths and molar absorptivities, these absorptions can be assigned as
 166 π - π^* excitations displaying marked vibronic coupling. Such vibronic coupling has previously been
 167 observed for titanium complexes bearing diazafluorenide ligands [36], suggesting that vibronic
 168 coupling may be a common feature of the spectral profiles ligated by daf or substituted diazfluorenes.
 169 As expected, the spacing between the sharp transitions is uniform in a progression from
 170 approximately 700 cm⁻¹ to 900 cm⁻¹. This common observation for **2** and **3** suggests that the vibronic
 171 couplings engendered by daf and Me₂daf are similar in these compounds. Based on this rich
 172 spectroscopic profile, we anticipate that **2** and **3** may behave differently in the presence of light than
 173 the bpy analogue **1**, encouraging further work in the future to gain insight into how these complexes
 174 behave following exposure to visible and/or UV light [8].

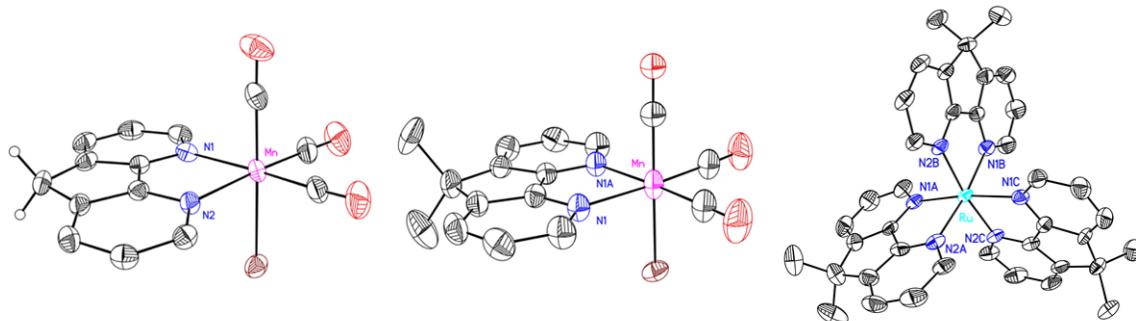
175

176 **Figure 2.** Electronic absorption spectra for **2** (left panel) and **3** (right panel) in MeCN.

177 The IR spectra of complexes **1**, **2**, and **3** confirm that the starting material, Mn(CO)₅Br (associated
 178 with absorption bands at 2004 cm⁻¹, 2046 cm⁻¹, and 2083 cm⁻¹) was consumed during the synthetic
 179 reactions and is not present in the products. The C_s symmetry of a *fac*-tricarbonyl complex is expected
 180 to give rise to three distinct C–O stretches in IR spectra based on group theory analysis. Upon
 181 examination of the experimental data, a three-band spectrum is observed and confirms the expected
 182 *fac*-tricarbonyl geometry for the complexes in THF solution (see Figure 3). The complexes have rather

similar C–O stretching, likely a consequence of the similar environment at Mn in all three cases. In particular, C–O stretching frequencies are primarily affected by π -bonding effects, and as the π -character of bpy, daf, and Me₂daf are not significantly different, a large shift in the vibrational frequencies for the CO ligands among **1**, **2**, and **3** is not expected. On the other hand, the modest shifts that are observable likely arise from the increased chelate bite angle of daf (**2**, 82.14(10) $^{\circ}$) and Me₂daf (**3**, 82.2(3) $^{\circ}$) compared to bpy (78.80(7) $^{\circ}$, *vide infra*) [37]. As a result of the increased bite angle, the σ -donor power of the nitrogen donor atoms to the manganese center should be decreased, resulting in a correspond increase in the C–O stretching frequency due to decreased Mn-to-CO backbonding. In accord with this model, the vibrational frequencies for **2** and **3** are virtually identical, confirming that the addition of distal methyl groups at the ligand **9** position does not substantially perturb the structure of Me₂daf in comparison with daf. To gain further structural insights into the properties of the new compounds, we next turned to X-ray diffraction analysis (XRD).




Figure 3. FTIR spectra of **1**–**3** in THF solution.

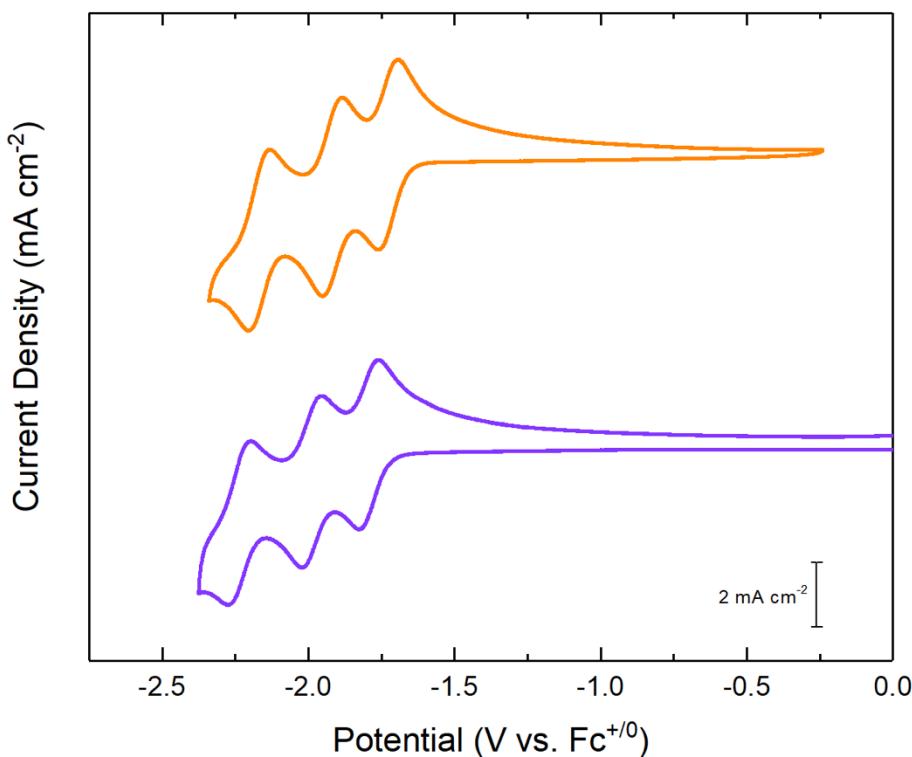
Vapor diffusion of diethyl ether into a concentrated THF solution of **2**, or vapor diffusion of diethyl ether into a concentrated acetonitrile (MeCN) solution of **3**, results in yellow crystals suitable for single crystal X-ray diffraction studies (see Figure 4). The results confirm the expected *fac*-geometry of the complexes with two equatorial CO ligands, an axial CO ligand, an axial bromide, and a κ^2 -daf ligand surrounding the manganese center. Although this is the first example of a formally Mn(I) complex chelated by daf or Me₂daf, the octahedral geometries of **2** and **3** resemble those of the analogous Mn(CO)₃(^Rbpy)Br complexes [8,37]. However, there is a significant increase in the diimine ligand bite angle for complexes **2** (82.14(10) $^{\circ}$) and **3** (82.2(3) $^{\circ}$) compared to **1** (78.80(7) $^{\circ}$, *vide supra*). Additionally, the average Mn–N distances for **2** and **3** are significantly longer than those of complex **1** (2.118(4) Å and 2.109(5) Å vs. 2.047(3) Å, respectively) [37]. This is attributable to the rigid polycyclic structure of the daf framework, enforced by the inter-ring methylene group at the **9** position, which presumably drives poorer orbital overlap between the metal center and the ligand in the cases of **2** and **3**, and results in an overall increase in the M–N bond distances.

Complex **5** is chiral and possesses *D*₃ symmetry in solution, on the basis of NMR spectra (*vide supra*). No measures were taken to obtain enantiomerically pure material, and thus we isolated **5** as the 50:50 racemic mixture of delta (Δ) and lambda (Λ) isomers. Vapor diffusion of pentane into a concentrated acetone solution, or vapor diffusion of pentane into a concentrated 50:50 acetone/THF solution resulted in two separate sets of orange crystals of **5** that were suitable for single-crystal XRD studies (see Figure 4). These two structures, named v74e and q36k respectively, both provide data confirming the successful synthesis of the [Ru(Me₂daf)₃]²⁺ core and reveal bond distances and angles

217 that are within error of each other (see the Supporting Information, Table S3 and S4 for comparisons.
 218 On the other hand, q36k represents a higher quality structure and will be discussed here. As expected,
 219 the average chelate angle (N–Ru–N) and corresponding average Ru–N distances for complex 5 (data
 220 from q36k) are larger than in the case of the famous $[\text{Ru}(\text{bpy})_3]^{2+}$ ($82.9(3)^\circ$ vs. $78.9(2)^\circ$; $2.117(13)$ Å vs.
 221 $2.063(6)$ Å) [38,39,40]. Gratifyingly, these values align with structural data previously available for
 222 $[\text{Ru}(\text{daf})_3]^{2+}$, confirming that use of daf or Me₂daf to form homoleptic Ru(II) complexes results in
 223 wider chelate angles and longer Ru–N distances in both cases [41].

224 Overall, observing the increased bite angles of the daf and Me₂daf ligands in complexes 2, 3, and
 225 5 was gratifying, since these changes should influence the electronic properties and reactivity at the
 226 metal centers in comparison with their bpy-supported analogues. Therefore, we next turned to
 227 electrochemical methods to probe the redox properties of these systems, with a particular focus on
 228 identifying features that distinguish the daf and Me₂daf compounds from their bpy-supported
 229 analogues.

230
 231
 232
 233
 234

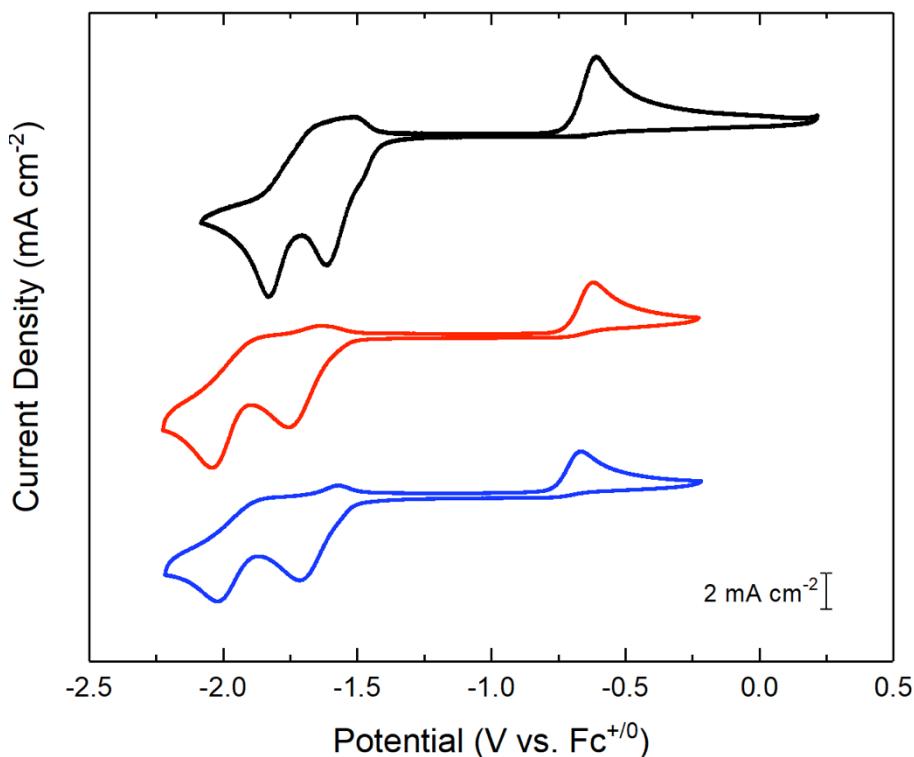

Figure 4. Solid-state structures of 2 (left), 3 (middle), and 5 (right, from structure q36k). Displacement ellipsoids are shown at 50% probability level. Hydrogen atoms (except H14A and H14B for 2) and outer sphere hexafluorophosphate counteranions and disordered co-crystallized solvent (for 5, from structure q36k) are omitted for clarity.

235 *2.3. Electrochemical Studies*

236 Initial cyclic voltammetry experiments were performed with 4 and 5 to interrogate how Me₂daf
 237 behaves under electrochemical conditions in comparison to bpy (see Figure 5). As one scans
 238 cathodically, the cyclic voltammetry of the parent bpy-complex 4 exhibits three quasi-reversible
 239 reductions centered at -1.73 V, -1.92 V, and -2.17 V respectively (all potentials are quoted versus
 240 ferrocenium/ferrocene, denoted $\text{Fc}^{+/-}$). Based on previous electrochemical studies, these reductive
 241 features can be confidently assigned to ligand-centered events; the complex is progressively reduced
 242 from $[\text{Ru}^{II}(\text{bpy})_3]^{2+}$, to $[\text{Ru}^{II}(\text{bpy})_2(\text{bpy}^-)]^+$, to $[\text{Ru}^{II}(\text{bpy})(\text{bpy}^-)_2]$, and finally to $[\text{Ru}^{II}(\text{bpy}^-)_3]^-$ [42,43,44].
 243 This rich manifold of accessible ground-state reductions for 4 highlights the redox non-innocence of
 244 the bpy ligand; redox non-innocent ligands continue to grow in popularity [1,4Error! Bookmark not
 245 defined,45,46] because of their wide-ranging applications in redox chemistry and small-molecule
 246 activation.

247 We were excited to find that the cyclic voltammetric profile of 5 is remarkably similar to that of
 248 4. As scanning cathodically with 5 reveals three quasi-reversible reductions at -1.79 V, -1.99 V, and $-$
 249 -2.24 V, respectively; each is centered at a slightly more negative potential than the corresponding
 250 event associated with bpy-complex 4. The more negative reduction potentials likely arise from the
 251 inductive effect of the additional fused five-membered ring and methyl groups of Me₂daf, resulting
 252 in a structure that is overall more electron-rich and slightly increasing the reduction potentials
 253 associated with Me₂daf-centered reductions of 5. Based on the electronic similarities of bpy and
 254 Me₂daf, we can reliably implicate redox non-innocence of the Me₂daf ligand as giving rise to the
 255 manifold of reductions observed for 5, similar to the case of bpy in 4. Considering this situation, we
 256 anticipate that 5 may have significant photochemical reactivity, and might serve as a useful
 257 photosensitizer in future work.

258 Consistent with the ligand-centered nature of the reductive events measured for **4** and **5**, the
 259 difference in the bite angle between Me₂daf and bpy does not strongly affect the reductive cyclic
 260 voltammetry of these compounds. However, confirmation that that Me₂daf behave as a redox-active
 261 ligand suggests that similar processes may be accessible in the tricarbonyl compounds **2** and **3**.


262

263 **Figure 5.** Cyclic voltammetry of **4** (orange) and **5** (purple) in MeCN solution with 0.1 M TBAPF₆
 264 supporting electrolyte (working electrode: highly-oriented pyrolytic graphite; pseudo-reference
 265 electrode: Ag^{+/0}; counter electrode: Pt wire). Ferrocene was used as an internal potential reference.

266 The electrochemical behavior of **1** was previously established by Deronzier, Chardon-Noblat
 267 and co-workers [4]. We have confirmed their findings here for comparison purposes (see Figure 6);
 268 scanning cathodically with **1** in solution, we observe two irreversible reductions with cathodic peak
 269 potentials ($E_{p,c}$) at -1.61 V and -1.83 V, followed by an oxidation at a more positive potential ($E_{p,a} = -$
 270 0.61 V). Based upon extensive mechanistic work from prior studies, the first reduction of **1** is
 271 associated with formation of a 19 e⁻ complex (an electron transfer or E process) which is coupled to
 272 the loss of bromide that generates a 17 e⁻ species (a chemical reaction or C process). This 17 e⁻ complex
 273 then dimerizes with itself (C process), forming [Mn(CO)₃(bpy)]₂ in an overall ECC-type process.
 274 [Mn(CO)₃(bpy)]₂ itself can then undergo reduction at the more negative potential, breaking the dimer
 275 to form [Mn(CO)₃(bpy)]⁻ in an EC-type process. Finally, scanning anodically, oxidation of
 276 [Mn(CO)₃(bpy)]₂ can regenerate the starting material **1**.

277 The cyclic voltammetric profiles of **2** and **3** are very similar to that associated with **1** (See Figure
 278 6). Scanning cathodically with **2** or **3**, two irreversible reductions and followed by an oxidation at
 279 more positive potentials during the paired anodic sweep (for **2**, $E_{1p,c} = -1.75$ V, $E_{2p,c} = -2.04$ V, $E_{p,a} = -$
 280 0.62 V; for **3**, $E_{1p,c} = -1.71$ V, $E_{2p,c} = -2.02$ V, $E_{p,a} = -0.67$ V). Qualitatively, these results suggest that the
 281 irreversible reductions corresponding to the ECC and EC processes exhibited by **1** also occur with **2**
 282 and **3**. Notably, however, the reduction events associated with **2** and **3** appear significantly broader
 283 than those associated with **1**, suggesting that heterogeneous electron transfer is slower with the
 284 diazafluorene derivatives. Furthermore, as $E_{1p,c}$ and $E_{2p,c}$ are both more negative for **2** than **3**, we
 285 anticipate that electron transfer kinetics dominate the potentials measured for these reductions;
 286 Me₂daf might have been expected to engender a more negative reduction potential for **3** over the case
 287 of daf in **2**, but the opposite is in fact observed here; this may be attributable to the influence of the

288 disparate electron-transfer kinetics, which push the reduction potential ($E^{1/p,c}$) of **2** to a more negative
 289 potential than **3**, contrary to the thermodynamic trend that would be predicted on the basis of the
 290 inductive effect of the methyl groups of Me₂daf.

291
 292 **Figure 6.** Cyclic voltammogram of complexes **1** (black), **2** (red), and **3** (blue) in MeCN solution with
 293 0.1 M TBAPF₆ electrolyte (WE: HOPG, Psuedo Ref: Ag^{+/-}, CE: Pt, internal Ref: Fc^{+/-}).

294 Encouraged by the similar cyclic voltammetry (CV) behavior displayed by **1**, **2**, and **3**, we also
 295 tested the new compounds for activity towards CO₂ reduction (see Figures S34–S39) since the known
 296 **1** has been demonstrated to be a robust catalyst for CO generation from CO₂ [4]. For this testing, water
 297 was added as a proton source (similar to the prior work with **1** described in reference 4) and CO₂ was
 298 sparged through the working solution and electrochemical cell to fully saturate the atmosphere and
 299 solution. Voltammograms collected immediately following these additions reveal enhancements in
 300 the current flowing at both the first and second irreversible reductions associated with **2** and **3**. The
 301 observed current enhancement suggests that significant reduction-induced reactivity is taking place
 302 at the electrode surface. Notably, the overall catalytic enhancement encountered with **2** is
 303 significantly greater than that with **3**, suggesting a unique role of the acidic protons on the methylene
 304 bridge of daf in promoting reactivity.

305 However, controlled potential electrolysis (CPE) coupled to product detection does not suggest
 306 effective catalytic reduction of CO₂ is taking place with **2** and **3**. Results from controlled potential
 307 electrolyses at -2.05 V vs Fc^{+/-} for 90 min (see Figures S40 and S41) in a custom two-compartment
 308 electrochemical cell do show that experiments with **2** and **3** produce less H₂ and more CO during the
 309 90 min electrolysis (see Table S1). However, **2** and **3** give low Faradic efficiencies (27% and 34%) and
 310 sub-stoichiometric yields (turnovers of 0.82 and 0.62, respectively) of CO, on the basis of total charge
 311 passed and initial loading of **2** or **3**, respectively. As analysis of working solutions with NMR
 312 spectroscopy following electrolysis did not reveal the presence of alternative products, including
 313 formate, we conclude that electrochemical reduction of **2** or **3** in the presence of H₂O and CO₂ leads
 314 primarily to decomposition.

315 On a final note, we wish to note that the chronoamperogram associated with electrolysis of **2** is
 316 considerably different than that of **3**. The current passed as a function of time widely fluctuated
 317 during the course of the electrolysis (see Figure S40). In particular, the initial current is rather large

318 but becomes attenuated over the course of the experiment, suggesting undesirable chemical reactivity
319 may be taking place with the daf ligand. These results suggest that further work is needed to reveal
320 the precise role of the acidic methylene protons in the daf framework during conditions of redox
321 catalysis, like those explored here. It should also be noted that both metal- and bpy-centered
322 reductions have been implicated in effective catalysis of CO₂ reduction with **1** [47]. As incoming CO₂
323 might therefore be required to interact with both the metal and the ligand, the enhanced steric profile
324 of Me₂daf ligand in **3** could negatively impact the approach of CO₂ and deactivate the catalyst.
325 Consequently, our future work will include a focus on revealing the influence of the functionalization
326 pattern of the 9-position of daf on redox chemistry and catalysis.

327 3. Conclusions

328 We have described the synthesis, characterization, and electrochemical properties of the new
329 daf- or Me₂daf-supported complexes **2**, **3**, and **5** and compared the properties of these compounds to
330 their bpy-supported analogues **1** and **4**. When daf and Me₂daf are bound to Mn or Ru centers, we
331 observe characteristic spectra that confirm the formation and symmetry of the desired complexes. In
332 particular, comparisons of bond lengths and geometric parameters confirm that daf and Me₂daf
333 enforce wider chelate angles and offer weaker σ-donation than bpy. Electrochemical studies of **5**
334 reveal that Me₂daf is a non-innocent redox active ligand at modestly reducing potentials, and related
335 electrochemical work with **2** and **3** shows that this ligand-centered reduction behavior is also
336 accessible in **2** and **3**, albeit with apparently slower heterogeneous electron transfer kinetics than those
337 encountered with analogous **1**. Taken together, these studies demonstrate daf and Me₂daf could be
338 useful for preparation of a variety of new redox-active compounds, building on the significant body
339 of findings for the workhorse bpy and ^Rbpy ligands

340 4. Materials and Methods

341 4.1. General Considerations

342 All manipulations were carried out in dry N₂-filled gloveboxes (Vacuum Atmospheres Co.,
343 Hawthorne, CA, USA) or under an N₂ atmosphere using standard Schlenk techniques unless
344 otherwise noted. All solvents were of commercial grade and dried over activated alumina using a
345 PPT Glass Contour (Nashua, NH, USA) solvent purification system prior to use, and were stored
346 over molecular sieves. All chemicals were obtained from major commercial suppliers. Manganese
347 pentacarbonyl bromide (98%, Strem Chemical Co.), ruthenium chloride hydrate (Pressure Chemical
348 Co.), and 1,10-phenanthroline (95%, Matrix Scientific) were used as received. The ligands, 4,5-
349 diazafluorene and 9,9-dimethyl diazafluorene were prepared according to literature methods with
350 minor modifications [27,28]. 4,5-diazafluorene can be sublimed at ca. 80 °C and 1 mTorr if pre-
351 purification is necessary. Deuterated solvents for NMR studies were purchased from Cambridge
352 Isotope Laboratories (Tewksbury, MA, USA); CD₃CN was dried over molecular sieves. ¹H-, ¹³C-, ¹⁹F-
353 , and ³¹P-NMR spectra were collected on 400 or 500 MHz Bruker spectrometers (Bruker, Billerica, MA,
354 USA) and referenced to the residual protio-solvent signal in the case of ¹H and ¹³C [48]. Heteronuclear
355 NMR spectra were referenced to the appropriate external standard following the recommended scale
356 based on ratios of absolute frequencies (Ξ) [49,50]. ¹⁹F NMR spectra are reported relative to CCl₃F,
357 and ³¹P NMR spectra are reported relative to H₃PO₄. Chemical shifts (δ) are reported in units of ppm
358 and coupling constants (J) are reported in Hz. Elemental analyses were performed by Midwest
359 Microlab, Inc. (Indianapolis, IN, USA).

360 Electronic absorption spectra were collected with an Ocean Optics Flame spectrometer equipped
361 with a DH-Mini light source (Ocean Optics, Largo, FL, USA).

362 IR spectra were collected using a Shimadzu IRSpirit Fourier Transform Infrared Spectrometer in
363 transmission mode using a 0.1 cm liquid IR cell with KBr windows.

364 4.2. X-ray Crystallography

365 Single-crystal diffraction data were collected with a Bruker APEX-II CCD diffractometer. The
366 Cambridge Crystallographic Data Centre (CCDC) entries 1977431, 1994285, 1982214, and 2013030
367 contain the supplementary crystallographic data for complexes **2**, **3**, and **5** (v74e and q36k),
368 respectively. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or
369 by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data
370 Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

371 4.3. Electrochemistry

372 Electrochemical experiments were performed in a N₂-filled glovebox, or outside of the box in an
373 argon flushed electrochemical cell. Dry, degassed MeCN and 0.1 M tetra(*n*-butyl)ammonium
374 hexafluorophosphate ([ⁿBu₄N]⁺[PF₆]⁻ (Sigma-Aldrich, electrochemical grade) were used as the
375 solvent and supporting electrolyte; Measurements were carried out with Reference 600+
376 Potentiostat/Galvanostat (Gamry Instruments, Warminster, PA, USA), or an Electrochemical
377 Analyzer potentiostat (CH Instruments), using a standard three-electrode configuration. For CV
378 experiments: the working electrode was the basal plane of highly oriented pyrolytic graphite (HOPG)
379 (GraphiteStore.com, Buffalo Grove, IL, USA; surface area: 0.09 cm²), the counter electrode was a
380 platinum wire (Kurt J. Lesker, Jefferson Hills, PA, USA; 99.99%, 0.5 mm diameter), and a silver wire
381 immersed in electrolyte solution served as a pseudo-reference electrode (CH instruments). The
382 reference was separated from the working solution by a Vycor frit (Bioanalytical Systems, Inc., West
383 Lafayette, IN, USA). For CV acid addition experiments: the working electrode was the basal plane of
384 HOPG (surface area: 0.09 cm²), the counter and reference electrodes were platinum wires (99.99%, 0.5
385 mm diameter). Ferrocene (Sigma-Aldrich, St. Louis, MO, USA; twice-sublimed) was added to the
386 electrolyte solution at the end of each experiment; the midpoint potential of the
387 ferrocenium/ferrocene couple (denoted as Fc^{+/0}) was used as an external standard for comparison of
388 the recorded potentials. Concentrations of the analytes for cyclic voltammetry were typically 1 mM.
389 Experiments were typically conducted by first scanning cathodically, then anodically on the return
390 sweep.

391 Bulk electrolysis experiments were performed in a custom two-chamber electrochemical cell
392 equipped with connections to achieve gas-tight operation. The working electrode was the basal plane
393 of HOPG ((Graphitestore.com, Buffalo Grove, IL, USA; surface area: 10 cm²), the counter electrode
394 was a platinum wire (99.99%, 0.5 mm diameter), and a silver wire immersed in electrolyte solution
395 served as a pseudo-reference electrode. The volume of solution held by the cell in total was 60 mL,
396 with about 105 mL of total head-space volume.

397 4.4. Gas Chromatography

398 Gas chromatography were collected with a Shimadzu GC-2014 Custom-GC gas chromatograph
399 with a thermal conductivity detector and dual flame-ionization detectors. A custom set of 8 columns
400 and timed valves enable quantitative analysis of the following gases: hydrogen, nitrogen, oxygen,
401 carbon dioxide, carbon monoxide, methane, ethane, ethylene, and ethyne. Argon serves as the carrier
402 gas. The instrument was calibrated with a standard checkout gas mixture (Agilent 5190-0519, Santa
403 Clara, CA, USA) prior to experimental runs to obtain quantitative data for CO and other gases.
404 Calibration curves over a range of 100–35,000 ppm were constructed with prepared mixture of CO
405 and N₂ to enable CO quantification.

406 4.5. Preparation of Mn(CO)₃(4,5-diazafluorene)Br (2)

407 In the dark, to a 50 mL Schlenk flask equipped with a stir bar, was added 4,5-diazafluorene
408 (0.0644 g, 0.383 mmol) in 50 mL of diethyl ether. Then Mn(CO)₅Br (0.0998 g, 0.363 mmol) was added
409 and the reaction was brought to reflux. The reaction was monitored by ¹H NMR until consumption
410 of the starting material was observed to be complete, after approximately 3 hours. Once the reaction
411 had reached completion, the Schlenk flask was placed into a refrigerator at -20 °C for 30 minutes. The
412 resulting solid was then filtered off with a fritted glass funnel and washed with cold pentane to afford

413 the title compound as a yellow solid. Yield: 0.088 g (62%). $^1\text{H-NMR}$ (CD_3CN , 500 MHz) δ 8.85 (d, $^3\text{J}_{\text{H-H}} = 5.3$ Hz, 2H), 8.14 (d, $^3\text{J}_{\text{H-H}} = 7.6$ Hz, 2H), 7.61-7.58 (dd, $^3\text{J}_{\text{H-H}} = 7.6$ Hz, $^4\text{J}_{\text{H-H}} = 5.6$ Hz, 2H), 4.29 (d, $^2\text{J}_{\text{H-H}} = 22.6$ Hz, 2H) ppm. $^{13}\text{C}\{^1\text{H}\}$ NMR (176 MHz, CD_3CN): δ 162.3, 151.3, 137.7, 136.5, 126.9, 37.6 ppm. $^{13}\text{C}\{^1\text{H}\}$ -DEPT-135 NMR δ 151.2, 136.4, 126.9, 37.5 ppm. Electronic absorption spectrum (MeCN): 230 (16000), 297 (9970), 301 (9910), 311 (10100), 320 (10400), 327 (10700), 410 nm ($2200 \text{ M}^{-1} \text{ cm}^{-1}$). IR (THF): $\nu_{\text{C=O}}$ 2026 (m) (A'), $\nu_{\text{C=O}}$ 1938 (m) (A''), and $\nu_{\text{C=O}}$ 1917 (m) (A') cm^{-1} . ESI-MS (positive) m/z: 348.0 (98%)(**1**-Br-+NCMe), 349.0 (18%), 350.0 (2%); 306.9 (29%) (**1**-Br-), 307.9 (5%), 308.9 (0.5%); 305.0 (96%) (**1**-Br-3CO+2NCMe), 306.0 (18%); 264.0 (45%) (**1**-Br-3CO+NCMe), 265.0 (7%); 223.0 (100%) (**1**-Br-3CO), 224.0 (13%). Anal. Calcd. for $\text{MnC}_{14}\text{H}_8\text{BrN}_2\text{O}_3$: C, 43.44; H, 2.08; N, 7.24. Found: C, 43.38; H, 2.08; N, 7.14.

423 4.6. Preparation of $\text{Mn}(\text{CO})_3(9,9'\text{-dimethyl-4,5-diazafluorene})\text{Br}$ (3)

424 In the dark, to a Schlenk flask equipped with a stir bar was added 9,9'-dimethyl-4,5-
425 diazafluorene (0.0749 g, 0.364 mmol) and 50 mL of diethyl ether. Then $\text{Mn}(\text{CO})_5\text{Br}$ (0.1000g, 0.382
426 mmol) was added and the reaction was brought to reflux. The reaction was monitored by $^1\text{H-NMR}$
427 until consumption of the starting material was observed to be complete, after approximately 3 hours.
428 Once the reaction had reached completion the Schlenk flask was placed into a -20 °C refrigerator for
429 30 minutes. The resulting solid was then filtered off with a fritted glass funnel and washed with cold
430 Et_2O to afford the title compound as a yellow solid. Yield: 0.1098 g (73%). $^1\text{H-NMR}$ (CD_3CN , 500 MHz)
431 δ 8.82 (d, $^3\text{J}_{\text{H-H}} = 5.3$ Hz, 2H), 8.10 (d, $^3\text{J}_{\text{H-H}} = 7.7$ Hz, 2H), 7.59 (dd, $^3\text{J}_{\text{H-H}} = 7.7$ Hz, $^4\text{J}_{\text{H-H}} = 5.3$ Hz, 2H), 1.66
432 (s, 3H), 1.58 (s, 3H) ppm. $^{13}\text{C}\{^1\text{H}\}$ NMR (176 MHz, CD_3CN): δ 160.3, 151.5, 147.2, 134.0, 127.5, 52.1,
433 25.3, 24.4 ppm. Electronic absorption spectrum (MeCN): 236 (15000), 301 (11000), 306 (11000), 316
434 (11600), 324 (12000), 332 (13000), 411 nm ($3300 \text{ M}^{-1} \text{ cm}^{-1}$). IR (THF): $\nu_{\text{C=O}}$ 2026 (m) (A'), $\nu_{\text{C=O}}$ 1938 (m)
435 (A''), and $\nu_{\text{C=O}}$ 1915 (m) (A') cm^{-1} . ESI-MS (positive) m/z: 251.0 (100%)(**1**-Br-3CO), 252.0 (15%), 253.0
436 (1%). Anal. Calcd. for $\text{MnC}_{16}\text{H}_{12}\text{BrN}_2\text{O}_3$: C, 46.29; H, 2.91; N, 6.75. Found: C, 46.35; H, 3.03; N, 6.97.

437 4.7. Preparation of [Tris(9,9'-dimethyl-4,5-diazafluorene)Ruthenium](PF₆)₂ (5)

438 In the dark, to a three-neck round bottom flask equipped with a stir bar was added 9,9'-
439 dimethyl-4,5-diazafluorene (0.1000 g, 0.509 mmol), $\text{RuCl}_3 \times \text{H}_2\text{O}$ (0.0266 g, 0.128 mmol), and Zn^0
440 powder (0.0420 g, 0.642 mmol). A 2:1 ethanol:water mixture was used as a solvent to suspend the
441 material, the reaction mixture was brought to reflux, and was allowed to stir overnight. The resulting
442 bright-orange solution was then filtered into a flask containing ammonium hexafluorophosphate
443 (0.0438 g, 0.269 mmol), which resulted in immediate precipitation of the desired product. The
444 precipitate was filtered, and then washed progressively with cold water and diethyl ether. The
445 desired complex was purified by recrystallization from boiling methanol to afford an orange solid.
446 Yield (0.0210 g, 17%). $^1\text{H-NMR}$ (CD_3CN , 400 MHz) δ 8.06 (dd, $^3\text{J}_{\text{H-H}} = 7.8$ Hz, $^4\text{J}_{\text{H-H}} = 0.9$ Hz, 6H), 7.81
447 (dd, $^3\text{J}_{\text{H-H}} = 5.5$ Hz, $^4\text{J}_{\text{H-H}} = 0.9$ Hz, 6H), 7.44 (dd, $^3\text{J}_{\text{H-H}} = 7.8$ Hz, $^4\text{J}_{\text{H-H}} = 5.5$ Hz, 6H), 1.68 (s, 18H)
448 ppm. $^{13}\text{C}\{^1\text{H}\}$ NMR (176 MHz, CD_3CN): δ 162.8, 152.9, 147.4, 133.4, 127.9, 53.2, 24.5 ppm. $^{19}\text{F-NMR}$ (276
449 MHz, CD_3CN): δ -72.9 (d, 706.4 Hz) ppm. $^{31}\text{P-NMR}$ (162 MHz, CD_3CN): δ -144.7 (m, 706.4 Hz) ppm.
450 Electronic absorption spectrum (MeCN): 231 (27000), 249 (14400), 256 (13500), 295 (75000), 445 nm
451 (17000 $\text{M}^{-1} \text{ cm}^{-1}$). Anal. Calcd. for $\text{RuC}_{29}\text{H}_{36}\text{N}_6\text{F}_{12}\text{P}_2$: C, 47.81; H, 3.70; N, 8.58. Found: C, 47.62; H, 3.70;
452 N, 8.30.

453 **Supplementary Materials:** The following are available online: NMR spectra, IR Spectra, electronic absorption
454 spectra, electrochemical, gas chromatography data, and crystallographic details (PDF); cartesian coordinates
455 (XYZ).

456 **Author Contributions:** Conceptualization, J.D.B., W.C.H., J.A.H.; Investigation, W.C.H., J.A.H., M.L.A., V.W.D.,
457 and J.P.S.; Supervision, W.C.H., J.A.H. and J.D.B.; Writing—original draft, W.C.H.; Writing—review and editing,
458 W.C.H., J.A.H., M.L.A., J.P.S., V.W.D. and J.D.B.

459 **Funding:** This work was supported by the US National Science Foundation through award OIA-1833087.
460 Synthesis and preliminary characterization of **5** was supported by the US National Science Foundation through
461 the NSF REU Program in Chemistry at the University of Kansas (CHE-1560279). W.C.H. was supported by the

462 US National Institutes of Health Graduate Training Program in the Dynamic Aspects of Chemical Biology (T32
463 GM008545- 25). Support for the NMR instrumentation was provided by NIH Shared Instrumentation Grants
464 (S10OD016360, S10RR024664) and NSF MRI funding (CHE-1625923).

465 **Acknowledgments:** The authors thank Javier Concepcion (Brookhaven National Laboratory) for helpful
466 discussions regarding the synthesis of **5**, and Justin Douglas and Sarah Neuenswander for assistance with NMR
467 spectroscopy.

468 **Conflicts of Interest:** The authors declare no conflict of interest.

469 **References**

1. English, A. M.; DeLaive, P. J.; Gray, H. B.; Lum, V. R., Metalloprotein electron-transfer mechanisms. Quenching of electronically excited tris(2,2'-bipyridine)ruthenium(II) by reduced blue copper proteins. *J. Am. Chem. Soc.* **1982**, *104*, 870-871.
2. Brunschwig, B. S.; DeLaive, P. J.; English, A. M.; Goldberg, M.; Gray, H. B.; Mayo, S. L.; Sutin, N., Kinetics and mechanisms of electron transfer between blue copper proteins and electronically excited chromium and ruthenium polypyridine complexes. *Inorg. Chem.* **1985**, *24*, 3743-3749.
3. Sullivan, B. P.; Bolinger, C. M.; Conrad, D.; Vining, W. J.; Meyer, T. J., One- and two-electron pathways in the electrocatalytic reduction of CO₂ by fac-Re(bpy)(CO)₃Cl (bpy = 2,2'-bipyridine). *J. the Chem. Soc., Chem. Commun.* **1985**, 1414-1416.
4. Bourrez, M.; Molton, F.; Chardon-Noblat, S.; Deronzier, A., [Mn(bipyridyl)(CO)₃Br]: An abundant metal carbonyl complex as efficient electrocatalyst for CO₂ reduction. *Angew. Chem. Int. Ed.* **2011**, *50*, 9903-9906.
5. Meyer, T. J., Electron Transfer Reactions Induced by Excited State Quenching. *Isr. J. Chem.* **1976**, *15*, 200-205.
6. Moyer, B. A.; Meyer, T. J., Properties of the oxo/aqua system (bpy)₂(py)RuO²⁺/(bpy)₂(py)Ru(OH₂)²⁺. *Inorg. Chem.* **1981**, *20*, 436-444.
7. Imayoshi, R.; Tanaka, H.; Matsuo, Y.; Yuki, M.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y., Cobalt-catalyzed transformation of molecular dinitrogen into silylamine under ambient reaction conditions. *Chem-Eur. J.* **2015**, *21*, 8905-8909.
8. Henke, W. C.; Otolski, C. J.; Moore, W. N. G.; Elles, C. G.; Blakemore, J. D., Ultrafast spectroscopy of [Mn(CO)₃] complexes: tuning the kinetics of light-driven CO release and solvent binding. *Inorg. Chem.* **2020**, *59*, 2178-2187.
9. Henke, W. C.; Lionetti, D.; Moore, W. N. G.; Hopkins, J. A.; Day, V. W.; Blakemore, J. D., Ligand substituents govern the efficiency and mechanistic path of hydrogen production with [Cp^{*}Rh] catalysts. *ChemSusChem* **2017**, *10*, 4589-4598.
10. Clark, M. L.; Cheung, P. L.; Lessio, M.; Carter, E. A.; Kubiak, C. P., Kinetic and mechanistic effects of bipyridine (bpy) substituent, labile ligand, and brønsted acid on electrocatalytic CO₂ reduction by Re(bpy) complexes. *ACS Catal.* **2018**, *8*, 2021-2029.
11. Tignor, S. E.; Kuo, H.-Y.; Lee, T. S.; Scholes, G. D.; Bocarsly, A. B., Manganese-based catalysts with varying ligand substituents for the electrochemical reduction of CO₂ to CO. *Organometallics* **2019**, *38*, 1292-1299.
12. Henderson, L. J.; Fronczek, F. R.; Cherry, W. R., Selective perturbation of ligand field excited states in polypyridine ruthenium(II) complexes. *J. Am. Chem. Soc.* **1984**, *106*, 5876-5879.

13. Yam, V. W.-W.; Wang, K.-Z.; Wang, C.-R.; Yang, Y.; Cheung, K.-K., Synthesis, Characterization, and Second-Harmonic Generation Studies of Surfactant Rhenium(I) Diimine Complexes in Langmuir–Blodgett Films. X-ray Crystal Structure of $\text{fac-ClRe}(\text{CO})_3\text{L}$ ($\text{L} = 9\text{-Heptyl amino-4,5-diazafluorene}$). *Organometallics* **1998**, *17*, 2440–2446.

14. Sykora, M.; Kincaid, J. R., Synthetic Manipulation of Excited State Decay Pathways in a Series of Ruthenium(II) Complexes Containing Bipyrazine and Substituted Bipyridine Ligands. *Inorg. Chem.* **1995**, *34*, 5852–5856.

15. Annibale, V. T.; Song, D., Coordination chemistry and applications of versatile 4,5-diazafluorene derivatives. *Dalton Trans.* **2016**, *45*, 32–49.

16. Jiang, H.; Song, D., Syntheses, characterizations, and reactivities of 4,5-diazafluorenide complexes of palladium(II) and rhodium(I). *Organometallics* **2008**, *27*, 3587–3592.

17. Jiang, H.; Stepowska, E.; Song, D., Syntheses, structures and reactivities of rhodium 4,5-diazafluorene derivatives. *Eur. J. Inorg. Chem.* **2009**, 2083–2089.

18. Stepowska, E.; Jiang, H.; Song, D., Reversible H₂ splitting between Ru(ii) and a remote carbanion in a zwitterionic compound. *Chem. Commun.* **2010**, *46*, 556–558.

19. Annibale, V. T.; Batcup, R.; Bai, T.; Hughes, S. J.; Song, D., RuCp^{*} Complexes of ambidentate 4,5-diazafluorene derivatives: from linkage isomers to coordination-driven self-assembly. *Organometallics* **2013**, *32*, 6511–6521.

20. Batcup, R.; Chiu, F. S. N.; Annibale, V. T.; Huh, J.-e. U.; Tan, R.; Song, D., Selective one-pot syntheses of Pt II Cu I heterobimetallic complexes of 4,5-diazafluorenide derivatives. *Dalton Trans.* **2013**, *42*, 16343–16350.

21. Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S., Allylic C–H acetoxylation with a 4,5-diazafluorenone-ligated palladium catalyst: a ligand-based strategy to achieve aerobic catalytic turnover. *J. Am. Chem. Soc.* **2010**, *132*, 15116–15119.

22. Campbell, A. N.; Meyer, E. B.; Stahl, S. S., Regiocontrolled aerobic oxidative coupling of indoles and benzene using Pd catalysts with 4,5-diazafluorene ligands. *Chem. Commun.* **2011**, *47*, 10257–10259.

23. White, P. B.; Jaworski, J. N.; Fry, C. G.; Dolinar, B. S.; Guzei, I. A.; Stahl, S. S., Structurally diverse diazafluorene-ligated palladium(II) complexes and their implications for aerobic oxidation reactions. *J. Am. Chem. Soc.* **2016**, *138*, 4869–4880.

24. Elsevier, C. J., Catalytic and stoichiometric C–C bond formation employing palladium compounds with nitrogen ligands. *Coord. Chem. Rev.* **1999**, *185–186*, 809–822.

25. Baran, M. F.; Durap, F.; Aydemir, M.; Baysal, A., Transfer hydrogenation of aryl ketones with homogeneous ruthenium catalysts containing diazafluorene ligands. *Appl. Organomet. Chem.* **2016**, *30*, 1030–1035.

26. Klein, R. A.; Witte, P.; van Belzen, R.; Fraanje, J.; Goubitz, K.; Numan, M.; Schenk, H.; Ernsting, J. M.; Elsevier, C. J., Monodentate and bridging coordination of 3,3'-Annelated 2,2'-Bipyridines in zerovalent palladium- and platinum-p-quinone complexes. *Eur. J. Inorg. Chem.* **1998**, *1998*, 319–330.

27. Druey, J.; Schmidt, P., Phenanthrolinchinone und diazafluorene. *Helv. Chim. Acta* **1950**, *33*, 1080–1087.

28. H. Ohrui, A. Senoo, K. Tetsuya, U.S. Pat. Appl. 0161574, **2008**.

29. Luong, J. C.; Faltynek, R. A.; Wrighton, M. S. Ground- and excited-state oxidation-reduction chemistry of (triphenyltin)- and (triphenylgermanium)tricarbonyl(1,10-phenanthroline)rhenium and related compounds. *J. Am. Chem. Soc.* **1980**, *102*, 7892–7900.

30. Caspar, J. V.; Meyer, T. J. Application of the energy gap law to nonradiative, excited-state decay. *J. Phys. Chem.* **1983**, *87*, 952–957.

31. Miguel, D.; Riera, V. Synthesis of manganese(I) carbonyls with σ - bonded alkynyl ligands. *J. Organomet. Chem.* **1985**, *293*, 379–390.

32. H. Günther, NMR spectroscopy, John Wiley & Sons, New York, **1980**.

33. Türschmann, P.; Colell, J.; Theis, T.; Blümich, B.; Appelt, S., Analysis of parahydrogen polarized spin system in low magnetic fields. *Phys. Chem. Chem. Phys.* **2014**, *16*, 15411-15421.

34. Meyer, T.J., Pure Appl. Chem., **1986**, *58*, 1193-1206.

35. Kalyanasundaram, K., Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. *Coord. Chem. Rev.* **1982**, *46*, 159-244.

36. Witte, P. T.; Klein, R.; Kooijman, H.; Spek, A. L.; Polášek, M.; Varga, V.; Mach, K., Electron transfer in the reactions of titanocene-bis(trimethylsilyl) acetylene complexes with 2,2'-bipyridine and 4,5-diazafluorene. The crystal structure of (4,5-diazafluorenyl) bis(pentamethylcyclopentadienyl) titanium(III). *J. Organomet. Chem.* **1996**, *519*, 195-204.

37. Machan, C. W.; Sampson, M. D.; Chabolla, S. A.; Dang, T.; Kubiak, C. P., Developing a mechanistic understanding of molecular electrocatalysts for CO₂ reduction using infrared spectroelectrochemistry. *Organometallics* **2014**, *33*, 4550-4559,

38. Rillema, D. P.; Jones, D. S.; Levy, H. A., Structure of tris(2,2'-bipyridyl)ruthenium(II) hexafluorophosphate, [Ru(bipy)₃][PF₆]₂; x-ray crystallographic determination. *J. Chem. Soc., Chem. Commun.* **1979**, 849-851.

39. Rillema, D. P.; Jones, D. S.; Woods, C.; Levy, H. A., Comparison of the crystal structures of tris heterocyclic ligand complexes of ruthenium(II). *Inorg. Chem.* **1992**, *31*, 2935-2938.

40. Breu, J.; Domel, H.; Stoll, A., Racemic compound formation versus conglomerate formation with [M(bpy)₃](PF₆)₂ (M = Ni, Zn, Ru); molecular and crystal structures. *Eur. J. Inorg. Chem.* **2000**, 2401-2408.

41. Fronczek, F. R., CCDC 287572: Experimental Crystal Structure Determination, 2006, DOI: 10.5517/cc9n7jp

42. Constable, E. C., Homoleptic complexes of 2,2'-bipyridine. *Adv. Inorg. Chem.*, Sykes, A. G., Ed. Academic Press: 1989; Vol. 34, pp 1-63.

43. Kaim, W., The transition metal coordination chemistry of anion radicals. *Coord. Chem. Rev.* **1987**, *76*, 187-235.

44. England, J.; Scarborough, C. C.; Weyhermüller, T.; Sproules, S.; Wieghardt, K., Electronic Structures of the Electron Transfer Series [M(bpy)₃]ⁿ, [M(tpy)₂]ⁿ, and [Fe(tbpy)₃]ⁿ (M = Fe, Ru; n = 3+, 2+, 1+, 0, 1-): A Mössbauer Spectroscopic and DFT Study. *Eur. J. Inorg. Chem.* **2012**, 4605-4621.

45. Lyaskovskyy, V.; de Bruin, B., Redox non-Innocent ligands: versatile new tools to control catalytic reactions. *ACS Catal.* **2012**, *2*, 270-279.

46. Corcos, A. R.; Villanueva, O.; Walroth, R. C.; Sharma, S. K.; Bacsa, J.; Lancaster, K. M.; MacBeth, C. E.; Berry, J. F., Oxygen activation by Co(II) and a redox non-innocent ligand: spectroscopic characterization of a radical-Co(II)-superoxide complex with divergent catalytic reactivity. *J. Am. Chem. Soc.* **2016**, *138*, 1796-1799.

47. Riplinger, C.; Sampson, M. D.; Ritzmann, A. M.; Kubiak, C. P.; Carter, E. A., Mechanistic contrasts between manganese and rhenium bipyridine electrocatalysts for the reduction of carbon dioxide. *J. Am. Chem. Soc.* **2014**, *136*, 16285–16298.

48. Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **2010**, *29*, 2176–2179.

49. Harris, R.K.; Becker, E.D.; Cabral De Menezes, S.M.; Goodfellow, R.; Granger, P. NMR nomenclature. Nuclear spin properties and conventions for chemical shifts (IUPAC recommendations 2001). *Pure Appl. Chem.* **2001**, *73*, 1795–1818.

50. Harris, R.K.; Becker, E.D.; Cabral De Menezes, S.M.; Granger, P.; Hoffman, R.E.; Zilm, K.W. Further conventions for NMR shielding and chemical shifts: (IUPAC recommendations 2008). *Pure Appl. Chem.* **2008**, *80*, 59–84.

Sample Availability: Samples of compounds **2**, **3**, and **5** are available from the authors upon request.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).