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Abstract
Many ecological studies and conservation policies
are based on field observations of species, which
can be affected by systematic variability introduced
by the observation process. A recently introduced
causal modeling technique called “half-sibling re-
gression” can detect and correct for systematic er-
rors in measurements of multiple independent ran-
dom variables. However, it will remove intrinsic
variability if the variables are dependent, and there-
fore does not apply to many situations, including
modeling of species counts that are controlled by
common causes. We present a technique called
“three-quarter sibling regression” to partially over-
come this limitation. It can filter the effect of sys-
tematic noise when the latent variables have ob-
served common causes. We provide theoretical jus-
tification of this approach, demonstrate its effec-
tiveness on synthetic data, and show that it reduces
systematic detection variability due to moon bright-
ness in moth surveys.

1 Introduction
Observational data is increasingly important across a range
of domains and may be affected by measurement error. Fail-
ure to account for measurement error may lead to incorrect
inferences. For example, instrument noise in telescope data
can prevent detections of exoplanet transits [Schölkopf et al.,
2015]; under-reporting of drug use may lead to biased pub-
lic health decisions [Adams et al., 2019]; label noise in ma-
chine learning training data may lead to suboptimal mod-
els [Nettleton et al., 2010; Frénay and Verleysen, 2014]; and
imperfect detection in ecological surveys may lead to incor-
rect conclusions about species populations and demograph-
ics without the proper modeling [MacKenzie et al., 2002;
Hutchinson et al., 2017]. It is therefore important to develop
statistical approaches to model and correct for measurement
errors.

This paper is motivated by the analysis of ecological sur-
vey data. Surveys conducted by humans provide informa-
tion about population sizes and dynamics for scientific un-
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derstanding of animal populations and for setting conserva-
tion policies. However, humans may fail to detect a species
for a range of reasons, including animal behaviors, weather,
and observer skill. Making decisions to sustain animal popu-
lations requires correctly interpreting survey data with these
sources of error.

There are several lines of existing work for handling mea-
surement error. Prior work in the ecology literature has
focused on explicitly modeling the detection process using
latent-variable models [MacKenzie et al., 2002; Royle, 2004]
. These generally assume some repetition in surveys, which
helps distinguish variability in the detection process from in-
trinsic variability in animal counts. As citizen-science data
increases in importance, another line of work has sought
to model observer variability, either directly in latent vari-
able models [Yu et al., 2010; Yu et al., 2014a; Hutchin-
son et al., 2017], or as separate metrics [Yu et al., 2014b;
Kelling et al., 2015], for example, to help explain observer-
related variability in regression models. Latent-variable mod-
els are also used to model observation error in public health
and machine learning with label noise [Frénay and Verley-
sen, 2014]. Under certain parametric assumptions, the pa-
rameters of latent-variable models for measurement error are
identifiable—meaning it is possible to correctly attribute vari-
ability to the detection process as opposed to the underlying
process—even without repeated surveys [Lele et al., 2012;
Sólymos and Lele, 2016; Adams et al., 2019]. However, there
is also vigorous debate in the same literature about the as-
sumptions required for identifiability.

Causal modeling is an appealing alternative to parametric
latent-variable models. [Schölkopf et al., 2015] presented a
method called “half-sibling regression” that uses causal inde-
pendence assumptions to detect and remove systematic mea-
surement error. Independence assumptions are significantly
easier to reason about than specific parametric assumptions
about the relationships between variables. The basic idea is
to examine simultaneous measurements of multiple quantities
that are known a priori to be independent. Any dependence in
the measurements must be due to measurement error, which
can be quantified and partially removed. Although appealing,
half-sibling regression only applies when the hidden variables
of interest are independent. We wish to apply similar reason-
ing to remove systematic noise in surveys of many species. If
counts for all species are lower than expected on a given day,
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(a) (b)

Figure 1: (a) Half-sibling regression. (b) Three-
quarter sibling regression.

Figure 2: Seasonal patterns of Microcrambus elegans and Hypoprepia fucosa induce a
correlation in their abundance, even though there is no direct causal relationship.

this may well be due to detectability and not actual changes
in the populations. However, there are many common factors
such as habitat and time of year that influence the true counts
of different species, so these variables are not independent,
and half-sibling regression does not apply.

We introduce a method called “three-quarter sibling regres-
sion” (3QS-regression) that extends half-sibling regression
and can remove systematic errors in measurements of quan-
tities that have observed common causes. Three-quarter sib-
ling regression is derived from a causal model and has a sim-
ple interpretation when applied to species counts: the residu-
als of one species with respect to predictions made using the
causal variables are used to correct counts of another species.
We prove bounds on the ability of 3QS-regression to reduce
measurement error under different assumptions. We apply
3QS-regression to a moth survey data set and show that it ef-
fectively reduces measurement error caused by moon bright-
ness, which makes it harder to attract moths to artificial lights
at survey sites.

2 Background: Half-Sibling Regression
The model motivating half-sibling regression is shown in Fig-
ure 1a. Here, Z1 and Z2 are two quantities of interest that
are known a priori to be independent. In the application
of [Schölkopf et al., 2015], these are the brightness values of
two distant stars. The variables Y1 and Y2 are measurements
of Z1 and Z2 that are affected by a common noise mechanism
N , for example, jitter in a telescope. In this model, any de-
pendence between Y1 and Y2 must be introduced by the noise
mechanism. The goal of half-sibling regression is to estimate
one target value Z1. It does so using the estimator

Ẑ1 = Y1 − E[Y1 | Y2]

which has the interpretation of subtracting from Y1 the por-
tion of Y1 that can be predicted by Y2. In practice, Y2 may
be vector valued (e.g., the brightness measurements of many
other stars), and the graphical model need not follow the exact
form given in Figure 1a as long as Y2⊥⊥Z1 but Y2 is not inde-
pendent of Y1 given N , so that Y2 contains some “signature”
of the noise process that produces Y1 from Z1.

2.1 Throwing out the Baby with the Bathwater
The key limitation of half-sibling regression for our purposes
occurs when Z1 and Z2 are not independent a priori, for ex-
ample, due to a common cause. In our application Z1 and Z2

will represent the counts of different species in a survey area,
which are affected by common factors such as the habitat and
time of year (see Fig. 2). In this setting, N represents factors
that affect detectability and are shared across species. In our
moth example, moon brightness is key factor, which induces
a second source of dependence between moth counts. More
generally, N may include transient factors such as weather,
or observer attributes such as skill.

If Z1 is not independent of Z2, there are two sources of
dependence between Y1 and Y2: (1) the a priori dependence
induced by Z1 and Z2, and (2) the dependence introduced by
the common noise mechanism N . If half-sibling regression
is applied in this case, the correction term E[Y1 | Y2] will re-
move some of the true signal, or, as described by [Schölkopf
et al., 2015], it will throw out (some of) the baby with the
bathwater. The variable Y2 contains information about the
noise mechanism, but it is unclear whether or how this can be
teased apart from the a priori dependence.

3 Three-Quarter Sibling Regression
We consider the model shown in Figure 1b. This extends half-
sibling regression by adding the observed variable X , which
is causal for both Z1 and Z2. We call X the process covari-
ates. A key assumption of this model is that Z1⊥⊥Z2|X . This
implies two things. First, there is no direct causal link be-
tween Z1 and Z2, which is appropriate for most species pairs
in our application to ecological surveys. Second, there are no
unobserved common causes ofZ1 andZ2. It is up to the mod-
eler to judge the validity of this assumption, which is standard
in causal modeling.1 In our moth survey application, time-of-
year will be the single process covariate, and it is reasonable
to assume that there are no other common causes.

In this model, Y1 and Y2 are now “three-quarter” siblings:
they share one parent and their unshared parents are siblings.2
Mathematically, the key assumption is Z1⊥⊥Y2 | X . One of
our results will also require N⊥⊥X . Again, although we are
motivated by the particular generative model of Figure 1b, the
method applies to any model that meets these assumptions.
For example, the symmetry of the model and presence of Z2

is not required — Y2 can be any variable that contains some

1If either assumption fails it will lead again to the problem of
(partially) throwing out the baby with the bathwater.

2This term is most commonly used to describe animal kinship
relationships
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information about the noise mechanism and is conditionally
independent of Z1 given X .

3.1 Estimator
The “three-quarter sibling regression” estimator or 3QS-
estimator is:

Ẑ1 = Y1 − E
[
Y1 − E[Y1 | X]︸ ︷︷ ︸

residual

∣∣ X,Y2] (1)

This is equal to Y1 minus a correction term. The quantity
Y1 − E[Y1 | X] is the residual after predicting Y1 using X
alone. This residual is partly due to intrinsic variability in
p(Z1 | X), which we want to preserve, and partly due to
the effect of noise when producing the measurement Y1. The
variables X and Y2 should not be predictive of the intrinsic
variability but may be predictive of the measurement noise.
We subtract the portion of the residual that can be predicted
using X and Y2 in order to correct Y1 towards Z1.
Next we prove some results for 3QS analogous to ones
in [Schölkopf et al., 2015]. Under the model of Figure 1b
and an additional mild assumption, the 3QS-estimator more
accurately approximates Z1 than Y1 does.
Theorem 1. Assume Z1⊥⊥Y2 | X and E[Y1 | X] = E[Z1 |
X]. Then

E
[
(Ẑ1 − Z1)

2
]
≤ E

[
(Y1 − Z1)

2
]
.

The additional assumption that E[Z1 | X] = E[Y1 | X] is
satisfied by an additive zero-mean noise model, as well other
models. Note that this result does not require N⊥⊥X , as im-
plied by Figure 1b. Before proving the theorem, we give an
alternative expression for Ẑ1 that is useful for analysis.
Lemma 1. An equivalent expression for Ẑ1 is

Ẑ1 = Y1 − E[Y1 | X,Y2] + E[Y1 | X] (2)
Proof. From Eq. (1) we have

Ẑ1 = Y1 − E
[
Y1 − E[Y1 | X]

∣∣ X,Y2]
= Y1 − E[Y1 | X,Y2] + E

[
E[Y1 | X]

∣∣ X,Y2]
= Y1 − E[Y1 | X,Y2] + E[Y1 | X]

The last line holds because E[Y1 | X] is a deterministic func-
tion of (X,Y2). For any random variable U and deterministic
function g it is the case that E[g(U) | U ] = g(U).

Proof of Theorem 1. First, note that E[Y1 | X] = E[Z1 | X]
implies E[Y1] = E[Z1]. Then

E
[(
Z1 − Y1

)2]
= E

[(
(Z1 − EZ1

)
− (Y1 − EY1)

)2]
(3)

= E
[(
Z1 − Y1 − E[Z1 − Y1]

)2]
≥ E

[(
Z1 − Y1 − E[Z1 − Y1 | Y2, X]

)2]
(4)

= E
[(
Z1 − Y1 − E[Z1 | X] + E[Y1 | Y2, X]

)2]
(5)

= E
[(
Z1 − (Y1 − E[Y1 | Y2, X] + E[Y1 | X])

)2]
(6)

= E
[(
Z1 − Ẑ1

)2]

In Eq. (3), we subtracted EZ1 and added EY1, which are
equal. In Eq. (4), we used the fact that conditional variance is
no more than total variance. In Eq. (5), we used the fact that
Z1⊥⊥Y2 | X . In Eq. (6), we used E[Z1 | X] = E[Y1 | X] and
reordered terms.

3.2 Additive Noise Model
Now, further assume the following additive form for Y1:

Y1 = Z1 + f(N). (7)

Here Z1 is the “true” value and f(N) an additive error term
due to N . More generally, we could have Y1 = φ(Z1) +
f(N) where φ is an unknown transformation. Since we can
never learn such a transformation from observations of Y1, we
assume the form in Eq. (7), which amounts to reconstructing
the hidden variable after transforming it to the same units as
Y1.

Under the additive noise model, it is possible to quantify
the error of the 3QS-estimator for reconstructing Z1.
Theorem 2. Assume Z1⊥⊥Y2 | X and N⊥⊥X . Under the
additive model of Eq. (7), we have

E
[(
Ẑ1 − (Z1 + E[f(N)])

)2]
= Var

[
f(N) | X,Y2

]
.

Proof.

Ẑ1 = Y1 − E[Y1 | X,Y2] + E[Y1 | X]

= Z1 + f(N)−
(
E[Z1|X,Y2] + E[f(N)|X,Y2]

)
+
(
E[Z1 | X] + E[f(N) | X]

) (8)

= Z1 + f(N)−
(
E[Z1|X] + E[f(N)|X,Y2]

)
+
(
E[Z1 | X] + E[f(N)]

) (9)

= Z1 +
(
f(N)− E[f(N) | X,Y2]

)
+ E[f(N)] (10)

Eq. (8) uses the additive expansion of Y1 three times. Eq. (9)
uses the facts that Z1⊥⊥Y2 | X and N⊥⊥X . Eq. (10) rear-
ranges. Then, rearranging,

Ẑ1 − (Z1 + E[f(N)]) = f(N)− E[f(N) | X,Y2].
Therefore,

E
[(
Ẑ1−(Z1+E[f(N)])

)2
= E

[(
f(N)−E[f(N)|X,Y2]

)2]
= Var[f(N) | X,Y2].

Theorem 2 says that it is possible to reconstruct Z1—up to a
constant additive offset equal to the mean of the measurement
error—with squared error equal to the conditional variance of
the measurement error given the observed variables X and
Y2. If the measurement error is completely determined by
the observed variables, then Z1 + E[f(N)] is reconstructed
exactly.
Corollary 1. If there is a function ψ such that f(N) =

ψ(X,Y2), then Ẑ1 = Z1 + E[f(N)].

Proof. In this case Var
[
f(N)

∣∣ X,Y2] = Var
[
ψ(X,Y2)

∣∣
X,Y2

]
= 0, which implies that Ẑ1−(Z1+E[f(N)]) = 0.
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(a) (b)

(c) (d)

Figure3: Resultsonsyntheticdata.(a) MSEvsspeciescountn,
(b) MSEvsnoisedeviationσ,(c)HSand3QS MSEvs.n,(d)HS
and3QSMSEvs.σ.

Implementation
Inpractice,theconditionalexpectationsinthe3QS-estimator
areunknown,butcanbereplacedbyregressionmodels.The
3QS-estimatorusedinpracticeis:

Ẑ1=Y1−ÊY1−Ê[Y1|X] X,Y2

whereÊ[B |A]isaregressionmodeltrainedtopredictB
fromA.

Inourapplication,theYivariablesaresymmetricandrep-
resentcountsofdifferentspecies. Wefirstfitaregression

model Ê[Yi |X]usingonlyprocesscovariatesforeach

species.Then,defineRi=Yi−Ê[Yi|X]tobetheresidual
forspeciesi,andletR ibethevectorofresidualsforall
otherspecies. Weusetheestimator

Ẑi=Yi−ÊRi|R i].

Thishasaverysimpleinterpretation. Wesubtractthepor-
tionoftheresidualforthetargetspeciesthatcanbepredicted
usingtheresidualsoftheotherspecies. Thisisaspecial
caseofthe3QS-estimatorwheretheregressionmodelusing
(X,Y i)aspredictorsisparameterizedasafunctionofonly

theresidualY i−Ê[Y i|X].

4 Experiments
Inthissectionweexperimentallydemonstratetheabilityof
3QS-regressiontoremovesystematicmeasurementerrorin
thepresenceofcommoncausesusingfirstsyntheticdataand
thenamothsurveydatasetfromtheDiscoverLifeproject.

4.1 SyntheticExperiments
Wefirstconductsexperimentsusingsyntheticdata,forwhich
thetruevalueofZ1 isknown. Thisallowsusto measure
theabilityof3QS-regressiontorecoverZ1andevaluateits
performanceinsettingswheretheauxiliary measurements
Y2 = Y 1 containavaryingamountofinformationabout
thenoisemechanism.

Methodology
Oursyntheticdatagenerationispatternedofftheexperiments
of[Scḧolkopfetal.,2015]forhalf-siblingregression,butex-
tendedtoincludeprocesscovariates. Wesimulatednspecies
(indexedbyi)whoseoccurrencesYiaredeterminedasthe
followingfunctionofaprocesscovariateX ∈Randnoise
variableN ∈R:

Yi=w
(i)
X X

Zi

+gi(w
(i)
N N)

fi(N)

+ .

Thecoefficientsw
(i)
X andw

(i)
N aredrawnuniformlyfrom

[−1,1]foreachspecies,andcontroltherelationshipbe-
tweenthespeciesoccurrenceandtheprocessandnoisevari-
ables. Thefunctiongiisasigmoidfunctionwithrandom-
izedparameters(tocontroltheinflectionpoints,etc.).Finally

∼N(0,σ2)isindependentnoise.
Weconducttwoexperimentstosimulatedecreasingtheun-

certaintyaboutf1(N)givenY 1.Inthefirstcaseweset
σ2=0andincreasethenumberofspecies,eachwithitsown
noisefunctionfi. Asthenumberofspeciesnincreases,we
get morepredictorsoftheerrorf1(N).Inthesecondex-
perimentwefixn=2andf1 = f2(i.etheeffectofnoise
onbothspeciesisexactlythesame)whilevaryingthenoise
σ2.Ineithercase,whentheconditionalvarianceoff1(N)
given(X,Y 1)reduces,Theorem2predictsamoreaccurate
reconstruction.

Fortheseexperimentsweusedthealternateformofthe
estimatorgiveninEq.2,whichmeanswefitregressionmod-

elŝE[Yi|X,Y i]and̂E[Yi|X]andcomputedẐiaccordingto
Eq.2.TheestimatorscouldbeshiftedfromZibyanycon-
stantoffset(cf. Theorem2),sowecenteredthemtohave
zero-meantomatchZi. Weconductourexperimentswith
twodifferentregressionalgorithms—support-vectorregres-
sion(SVR)andgradientboostedregressiontrees,usingim-
plementationsanddefaultsettingsfromthescikit-learnpack-
age.3 Following[Scḧolkopfetal.,2015],wecreate20dif-
ferentfixedinstancesand measurethe meansquarederror

(MSE)ofourdenoisedcountŝZiagainsttruevalueZi.

Results. Figures 3aand3bshowthereconstructionerror
asafunctionofthenumberofspeciesnandnoisevariance
σ2,respectively.ThefiguresplotmeanMSEanderroracross
theruns.Fig.3ashowsthatincreasingthenumberofspecies
inY icauseserrortodecreasewithbothregressionmeth-
ods.Thisisexpected,becausewithmorepredictorsthatare
correlatedwithf(N),wecanlearnabetter modelforthe
systematicerror. Fig.3bshowsthatasσ2 → 0theerror
alsotendstowardszero. Thisisalsoexpected,because,in
thiscase,f(N)becomesadeterministicfunctionofX,Y2.
Figs.3cand3dcomparethemean MSEofhalf-sibling(HS)
regressionagainstourmethod(3QS).HSregressionperforms
poorlyduetothecommondependenceofYivariablesonX.

4.2 DiscoverLife MothObservations
Oursecondsetofexperimentsuse mothsurveydatafrom
theDiscoverLifeproject4forstudyingspatio-temporalvari-
ationinmothcommunities.Thisdatasetconsistsofcountsof

3https://pypi.org/project/scikit-learn/
4https://www.discoverlife.org/moth
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Figure 4: Residuals and moon brightness vs. time. Residuals are calculated relative to a predictive model fit across several years.

Figure 5: Pairwise scatter plots of residuals for common species and
moon brightness. Inset numbers are correlations.

moths of different species collected at regular intervals at dif-
ferent study sites by both citizen scientists and moth experts.
The protocol involves using artificial light to attract moths to
a white surface and then photographing and identifying each
specimen. The dataset spans eight years and has been used
for analysing seasonal flights [Pickering, 2015], comparative
taxonomy [Pickering et al., 2016] and other studies. The data
set is unique in its temporal resolution—at some of the sites,
counts have been conducted almost every day for many years.

A typical use of this type of data is to estimate smooth
curves of species abundance versus time such as the ones
shown in Fig. 2 (see also [Dennis et al., 2013]). The smooth
curve is then used as a proxy of the actual abundance at a
given site in a given year to create indices of population size
and to analyze temporal patterns, such as the timing of differ-
ent generations (many species occur in discrete generations
each year, e.g., see H. fucosa in Fig. 2). Scientists are espe-
cially interested in how populations and timing vary across
years to understand population dynamics and potential links
with external factors such as climate.

Moon Brightness
A known systematic bias in moth counting studies is lunar
brightness. On nights when the moon is bright, moths are less

likely to be attracted to the white surface where they are pho-
tographed and counted. We show evidence of this in Figs. 4
and 5. Fig. 4 shows the residuals of moth counts with re-
spect to a fitted model of count vs. day-of-year, together with
moon brightness. The residuals track the moon phases and
are anti-correlated with moon brightness. For example no-
tice the significantly positive residual during early Septem-
ber which seems to rise exactly as lunar brightness reaches
its nadir. Fig. 5 shows pairwise scatter plots and correlation
values for the residuals of three moth species together with
moon brightness. All residuals are negatively correlated with
moon brightness, and positively correlated with each other,
with moon brightness being one contributing factor. In this
example residuals are generally more correlated with each
other than with moon brightness. One explanation is that
moon brightness is measured using astronomical calculations
and does not correspond exactly to brightness on the ground,
which depends on factors like cloud cover. A second expla-
nation is the effect of other factors besides brightness on de-
tectability. A third (and less desirable) explanation is that
there are other causal factors that are unmeasured. The real-
ity is likely some combination of the three.

Overall Experimental Strategy

Our hypothesis is that moon brightness is one source of sys-
tematic measurement error that can be effectively detected
and removed using 3QS-regression. To test this, we will use
moon brightness as an external variable that is not available
to our methods, and test the correlation of moth counts with
brightness before and after applying denoising techniques, as
well as the accuracy of predictive models on “gold-standard”
test nights when lunar brightness is minimal, so this particular
source of variability is removed.

Our overall goal is to develop the best smoothed models of
abundance over time for individual years (cf. Fig. 2), and we
hypothesize that correcting systematic errors will help. Eval-
uation is challenging because the true abundance in a given
year is unknown. Our approach will be to fit smooth models
in individual years and test their predictive accuracy for other
years. It is not our hope that the predictive accuracy is perfect
— indeed, we want our model to preserve variability across
years. However, another source of such variability is differ-
ently aligned moon phases, which affect detection but not true
abundance. A model that corrects for such systematic errors
should therefore generalize better to other years by reducing
this source of variation.
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CorrelationwithMB Std.dev.%

Species Y ẐHS Ẑ3QS ẐHS Ẑ3QS

HalysidotaH. -0.20 -0.14 -0.16 0.91 0.96
HypoprepiaF. -0.15 -0.01 -0.04 0.80 0.90
HypagyrtisE. -0.18 -0.09 -0.11 0.82 0.95
MicrocrambusE. -0.16 -0.03 -0.10 0.84 0.97
ClemensiaA. -0.13 -0.09 -0.05 0.92 0.95
LochmaeusB. -0.13 -0.01 -0.05 0.82 0.92
MelanolophiaC. -0.29 -0.22 -0.20 0.77 0.88
IridopsisD. -0.18 -0.15 -0.13 0.94 0.97

Table1: Correlationwithlunarbrightnessbeforeandafterdenois-
ing,andretainedstandarddeviationasafractionofthatofY

(a) (b)

Figure6:AveragepercentimprovementinpredictiveMSErelative
toaGAMfittedtotherawcounts.(a)Differentestimators.(b)3QS
withincreasingnumberofspecies.

Methodology
Wechoosemothcountsfromonesite(BlueHeronDrive)
for2013through2018.Lunarbrightnessforthetimeofob-
servationiscomputedwiththesoftwarePyephem5usingthe
latitudeandlongitudeofthesite.Weusethelog-transformed
countsofthemostcommon10species.
Weholdoutoneyearatatimefortestingandmakepre-

dictionsusingeachotheryear,foratotalof20train-year/
test-yearpairs. Whenpredictingonetestyear,wefirstuse

allfourotheryearstofittheregressionmodelsÊ[Yi|X]and

Ê[Ri|R i]whereRi=Yi−Ê[Yi|X]istheresidual.Inall
experiments,Xconsistsonlyofday-of-year. Wethencom-

puteẐiforeachtrainingyearusingthe3QS-estimator,fita

smoothedregressionmodel̂E[̂Zi|X]tothedenoisedcounts
forasingletrainingyearatatime,andusethemodeltopre-
dictonthetestyear.Thisisrepeatedforalltrain-year/test-
yearpairsandforallspecies. Wecompare3QS-regression
tomultiplebaselines,includingusingtheoriginalmeasure-
mentsY1toestimateZ1,aswellasthehalf-sibling(HS)re-
gressionmethodof[Scḧolkopfetal.,2015].ThepyGAM
package[Serv́enandBrummitt,2018]forgeneralizedaddi-
tivemodels(GAMs)isusedinallregressionmodels.

Results:MoonBrightness. Wefirstcomparetherelation-
shipbetweencountsandmoonbrightnessbeforeandafter
3QS-regression.Itisexpectedthatmostspecieswillhave
negativecorrelationwithlunarbrightnessinitially,butthe
correlationwillbesignificantlylessafterdenoising.There-
sultsarepresentedinTable1.Typicalcorrelationsbetween

5https://pypi.org/project/pyephem/

rawcountsandlunarbrightnessareontheorderof-15%to
-20%;afterdenosing,themagnitudeofcorrelationsdecrease
byanaverageofabout7%.TheHS-regressionestimatoris
shownforcomparison,andalsodecorrelatesthecountsfrom
lunarbrightness.Howeverifcountsarecorrelatedduetoa
commoncause,HS-regressionwillalsoremovesomeofthe
intrinsic(non-noise)variability(the“throwingoutthebaby
withthebathwater”problem).ThiscanalsobeseeninTa-

ble1:theoverallvarianceofẐHSissignificantlyreduced
relativetotherawcounts. Wewillshowinournextexper-
imentthisremovedvariancecorrespondstotruevariability
thatshouldnotberemoved.

Results:PredictiveAccuracy. Fig.6ashowspredictiveac-
curacyofseveralmethodsaveragedoverallspeciesandtrain-
year/test-yearpairs.Thenumbersarepercentimprovement
inMSErelativetothebaselineofaGAMfittothenoisy
countsinthetrainingyear. MSEiscomputedonlyondata
fromthetest-yearwithmoonbrightnesszero.“Global”is
anoraclemodelshownforcomparison.Itistrainedonraw
countsoffourtrainingyearsinsteadofone.Byfittingone
modeltomultipletrainingyears,itisexpectedtosmoothout
bothsourcesofyear-to-yearvariability(intrinsicandmoon
phase)andthereforepredictbetteronaheld-outyear.How-
ever,thisisnotourmodelinggoal —wewanttopreserve
intrinsicyear-to-yearvariabilityandeliminatevariabilitydue
tomoonphase.“MB”isamodelthatincludesmoonbright-
nessasafeaturetomodeldetectionvariability.Theresults
showthat3QSoutperformsallcompetitors,includingtheMB
modelthathasaccesstomoonbrightnessasafeature.The
globalmodelperformsbetter,asexpected.TheHSmodel
isworsethanthebaselineduetoremovingintrinsicvariabil-
ity.Fig.6bshowstheimpactofusingagreaternumberof
speciesforY2. MSEisreportedforthefulltestsetaswell
asthemoon-brightnesszeroset.ByTheorem2,weexpect
morespeciestoreducetheconditionalvarianceandthere-
foreimproveaccuracy,whichisborneoutinFig.6bonboth
test-sets. Accuracyonthefulltestsetisworsethanonthe
moon-brightnesszerotestset,whichisexpectedduetoextra
variabilityinthetestset.

5 Conclusion
Buildingonrecentworkoncausalmodels,wepresented
three-quarter-sibling(3QS)regressiontoremovesystematic
measurementerrorforspeciesthatshareobservedcommon
causes.Wetheoreticallyanalyzed3QSandpresentedempiri-
calevidenceofitssuccess.Afuturelineofworkwouldbeto
usesimultaneousmeasurementstoquantifyuncertainty,pos-
siblycombinedwithBayesianmethods[Ellison,2004].Our
methodmayalsobeusefulappliedtootherdomains,such
asunder-reportingofdruguse[Adamsetal.,2019].Afinal
questionwouldbetoaddressconfoundinginthepresenceof
non-independentnoise,i.e.,whenXisnotindependentofN.
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